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ABSTRACT rn 
The helium dimer 'Hez has recently been detected, confirming earlier ab initio 
predictions of stability for a single bound state with binding energy of 1.310 mK. The 
predicted potential minimum is at 2.96 A, with a radial distribution function peaking 
at 6.96 A. We model this system using a Dirac bubble potential, which also admits just 
one bound J = 0 state. With the bubble located at 6.96 A, an overlap of 0.9994 with 
the ab initio wave function is obtained. An average internuclear distance of 52.6 A 
is calculated, in good agreement with the ab initio result. The root mean square 
deviation from the mean, 48.0 A, indicates an enormous spread of the radial wave 
function. Also consistent with our model is the absence of bound states for the 
isotopic variants 'He'He and ?Hez. Cross sections for helium-helium scattering are 
also computed, using both a partial-wave expansion and the Born approximation. 
General trends in the energy dependence of the total cross section are accounted for, in 
qualitative agreement with experimental results. 0 1995 John Wiley & Sons, Inc. 

Introduction 

he long-sought 'He2 gaseous diatomic mol- T ecule has recently been detected in extreme 
pulsed expansions of He [l]. Stability of a sin- 
gle bound state with v = 0, J = 0 had been ex- 
pected, based on highly accurate computations of 
the interaction between two 'He atoms. No other 
states bound with respect to dissociation are pre- 
dicted. For example, the "LM2M2" analytic rep- 
resentation of the potential [2,3] is characterized 
by a well depth of 10.970 K, a binding energy 
of only 1.310 mK for the v = 0, J = 0 state, and 
an equilibrium internuclear distance of 5.61 bohr 

(2.97 A). This potential was constructed by fitting 
both ab initio calculated points [4,5] and exper- 
imental data on viscosity and the second virial 
coefficient. A recent quantum Monte Carlo calcula- 
tion [6] yielded a well depth of 11.01 t 0.10 K and 
an equilibrium separation of 5.6 bohr (2.96 A). The 
marginal stability of this molecule is reflected in 
the extremely large mean internuclear separation, 
( r )  = 98.1 bohr (51.9 A) as calculated [7] from the 
wave function associated with the LM2M2 poten- 
tial [2]. In addition, it has been predicted [8] that no 
bound states exist for either of the isotopic variants 
3He'He or 3He2. It has recently been shown [7] that 
the effect of retardation is to decrease the binding 
energy of 'He2 by about 10% and to increase ( r )  by 
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about 5%. A number of other theoretical treatments 
of the He-He interaction have been presented 191. 

Model 

We propose, as a simple model for the interac- 
tion between two helium atoms, an attractive delta- 
function potential in the shape of a spherical bubble 
[lo]. This “Dirac bubble potential” had previously 
been applied to model the Fermi contact interaction 
[ll] and the photodetachment of an electron from 
the Cbo molecule [12]. Our model for He2 requires 
just two parameters: the equilibrium separation 
ro and the effective strength of the potential, as 
represented by the constant a .  

A deltafunction model might appear, at first 
glance, to be an inappropriate representation for 
a potential energy function so broad and shal- 
low. However, several key features of the single 
bound state of the actual potential lend support 
to our model. The computed [6,7] mean internu- 
clear separation of 51.9 A is very laree compared 
to the equilibrium separation of 2.96 A and to the 
outer turning radius of 14.09 A, indicating that the 
”particle” spends much of its time very far from 
its equilibrium position. Thus, the potential well 
is actually narrow on the scale of its mean separa- 
tion. The Dirac deltafunction represents the limiting 
case of a narrow potential, the concomitant infinite 
depth being just incidental. It should be noted that 
the strength of the model potential is determined, 
not by its depth, but by the multiplicative param- 
eter a that is fitted to the ab initio binding energy. 
As a approaches negative infinity, the number 
of bound states increases and the model becomes 
equivalent to a rigid rotor. 

The Schrodinger equation for a diatomic species 
bound by a spherical deltafunction potential can 
be written 

Spherical symmetry allows the factorization $(r) = 

RKJ(r)YJM(O, 4) .  The radial equation for the bound 
J = 0 level can be written 

having defined 

E - i i2K2/2p (3) 

A = pcy/2rrh2ro. (4) 

and 

Equation (2) has been solved exactly [lo] by ex- 
ploiting its isomorphism with free-particle partial- 
wave Green’s functions. For A < 0, corresponding 
to an attractive deltafunction potential, there exists 
one and only one bound state for each angular 
momentum J for which the condition 

IA(  > 2J + 1 ( 5 )  

is fulfilled. The normalized J = 0 eigenfunction is 
given by 

(6)  

l ‘ ^  1 - ( 2 ~ ~ 0  + l)e-2Kro 
4Kb-i 

sinh(Kr,) e P K r >  
X 

Kr< Kr> 

[ R,(r)  = 

where r ,  and r< are, respectively, the larger and 
smaller of r ,  ro. The corresponding eigenvalue is 
determined by the connection at r = ro, viz., 

e - 2 K r 0  - 1 1  
(7) - - - 

2Kro A ’  

The reported binding energy, 1.310 mK, corre- 
sponds to E = -4.148 X Hartrees. We find 
[cf. Eq. (3)] K = 0.005520 bohr-I . The most obvious 
choice for ro in Eqs. (6) and (7) is the radius at 
the potential minimum, 2.9596 A or 5.61 bohr. With 
this value, the overlap integral between the wave 
function (6) and that obtained from the LM2M2 
potential equals 0.95. If we choose, instead, ro = 

13.15 bohr (6.96 A), corresponding to the maximum 
of the LM2M2 radial distribution function, we ob- 
tain the amazing overlap. 

lx R h u h b l e ( r ) R ~ ~ 2 ~ ~ ( r ) r 2  dr  = 0.99942. (8) 

We will therefore adopt the value ro = 13.15 bohr 
in our subsequent computations. 

Two views of the radial distribution function 
D ( r )  = r2R2(r )  are plotted in Figures 1 and 2, with 
the LM2M2 function shown dashed. As in all so- 
lutions of the bubble potential, a cusp occurs at 
r = ro. The extreme delocalization of the wave 
function reflects a value of K very nearly zero. 

From Eq. (7), we identify A4-4 = -1.0741, just 
barely fulfilling condition (5) for a J = 0 bound 
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FIGURE 1. Radial distribution function D(r) for the J = 0 bound state of 4He2. Solid line: bubble potential; 
dashed line: LM2M2 computation. 

state. If we assume that the parameter a in Eqs. (1) 
and (4) characterizes the He-He potential func- 
tion, then A is proportional to the reduced mass 
p. This implies, for 3He4He, A3-4 = -0.9207, and 
for 3He2, A3-3 = -0.8056, thus no bound state for 
either isotopic variant. 

The expectation value of r for the wave function 
(6) works out to 

(9) 
rO(1 + K Y O  - e 2 K r O )  1 

2 K  
- L -  

( r )  = 1 + 2 K r O  - e 2 K r O  

0 .  
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FIGURE 2. Radial distribution function D(r) vs. r on logarithmic scale. Solid line: bubble potential; dashed 
line: LM2M2 computation. 

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 41 5 



DELTAFUNCTION MODEL FOR THE HELIUM DIMER 

With the chosen parameters, ( r )  = 99.4 bohr or 
52.6 A, agreeing well with the ab initio value: 
51.9 A. The rms deviation from the mean equals 
90.6 bohr or 48.0 A. 

The bubble-potential model also enables calcula- 
tion of scattering cross sections for the three pairs 
4He-4He, 3He-3He, and 3He-4He (abbreviated 
4-4, 3-3, and 3-4, respectively). The continuum 
eigenfunctions can be represented as follows: 

Rk, l ( r )  = ( 2 k / ~ ) ” ~  
X [ j/(kr,) cos 61 - y/(kr,) sin 6/] 

x jdkr<)lj /wo) 9 (10) 

where j l  and y1 are spherical Bessel functions and 

E = fi2k2/2p. (11) 

The phase shifts a1 are determined by 

For 3He4He, the scattering amplitude is given by 

co 

f ( 0 )  = (2ik)-’ x ( 2 1  + 1) (eZisi - 1 )Pl(COS 0 ) .  
/=o 

(13) 
This gives the differential cross section 

and the total scattering cross section 

Lr:G4 = 2n- j,-,T lf(0)12 sin 0 d8  

For 4He-4He, the scattering amplitude must 
be replaced by the symmetric combination f ( 0 )  + 
f(n- - 0), to take account of boson statistics. Thus, 
only the even-1 partial waves contribute with 

For scattering of the fermions 3He-3He, even 
partial waves contribute for the singlet nuclear- 
spin state and odd partial waves for the triplet. 

Assuming a 1:3 statistical population ratio, the total 
cross section works out to 

cc 1 

Figure 3 shows the energy dependence of the 
total cross section for He-He scattering. Although 
these results do not agree quantitatively with 
experimental data [13], they do give the correct 
trends. Thus, the 4-4 curve dips around 112 meV 
to reflect the missing 1 = 1 partial wave. The 3-3 
curve shows enhancement of odd4 partial waves 
compared to the 3-4. 

For scattering at higher energies, the Born ap- 
proximation can be applied. For a spherically sym- 
metric potential, 

f (0)  = -- ;G lco r sin(Kr)V(r) dr, 

0 
2 

K = 2k sin - .  

For the bubble potential, 
ff 

V(Y) = 7 4n-YO 6(r - ro) ;  

thus 
sin( Kro) 

K 
f ( 0 )  = - A  ___. 

For helium 3-4 scattering, the total cross section is 
given by 

u:G4 = 2n- lq lf(0)I2 sin 0 d0 

dK 
2rA2 2k sin2(Kro) = T l  K 

= 4n-riA2F(2kro), (21) 

where 

F(X) = [ y  + ln(2x) - ci(2x)]/x2. (22) 

Here, y is Euler’s constant (0.5772...), and Ci, the 
cosine integral: 

For helium 4-4 scattering, 
77 

= 2 7 ~  .I, I f ( 6 )  + ,f(n- - O)l2 sin 0 d o .  
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FIGURE 3. Total cross section vs. center-of-mass energy for He-He scattering. The three isotopic 
combinations; 4-4, 3-3, and 3-4 (dashed) are shown. 
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FIGURE 4. Total cross section vs. relative beam velocity. Glory scattering can be seen for the helium 4-4 case. 
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The interference term in (24) involves the integral 

JOT sinlyK'o) sin(K'r0) 
sin 0 do,  

K' 

(25) 
0 
2 

K' 2k cos - .  

This works out to 

2 k 2  
= 2r;G(2kro) (26) 

in terms of a rapidly convergent sum over Bessel 
functions of odd order: 

cc 

~ ( x )  ~ n m ~ 2 n + 1 ( ~ ) ~ 2 m + l ( ~ )  
n,m=O 

(4m + 2) (-), - (4n + 2) ( - ) m  

( m  - n) (m  + n + 1) ' Cnm = 

4( -)" c,, = ~ 

2n + 1 

The total scattering cross section is 

af0T4 = 8.irriA2[F(2kro) + G(2kro)l. (28) 

For helium 3-3 scattering, the analogous result is 

(29) 

Figure 4 shows plots of utot vs. relative beam ve- 
locity. The oscillations in the helium 4-4 cross 
section correspond to glory extrema observed in 
4-4 scattering [13]. They also occur for helium 3-3 
(not shown) but not for helium 3-4 and are thus 
correctly accounted for by our model. 

I 1 
riA2 F(2kro) - - G(2kro) . [ 2 &3 = 8 T  

Summary 

We have demonstrated that a simple Dirac bub- 
ble potential model is remarkably capable of rep- 
resenting several distinctive features of the helium 

dimer: the existence of exactly one bound state for 
4He2, with J = 0; the instability of its isotopic vari- 
ants; the extreme delocalization of the vibrational 
wave function; the minute ratio of binding energy 
to well depth; the suppression of odd partial waves 
in 4He-4He scattering; and the occurrence of glory 
scattering. With minimal computational efforts, we 
have thus been able to reproduce results previously 
obtained only by elaborate ab initio computations. 
We anticipate that our model potential might find 
application for other noble gas interactions and 
in simulations involving clusters of three or more 
helium atoms. 
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