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ABSTRACT 

The dependence of the rotational energy of small argon clusters on the magnitude and 
direction of their rotational angular momenta is obtained by two different methods, 
namely, by analytic descriptions parametric in structural variables (centrifugal 
displacements) and by classical simulations carried out in rotating frames so that 
rotational angular momenta are conserved. Potential energies are taken as additive Ar, 
pair potentials [R. A. Aziz, J. Chem. Phys. 99,4518 (199311, augmented in some cases by 
three-body Axilrod-Teller interactions, thus complementing our earlier studies of rare-gas 
clusters modeled by additive Lennard-Jones oscillator (LJO) pair potentials [L. L. Lohr and 
C. H. Huben, J. Chem. Phys. 99, 6369 (199311. Quartic and sextic spectroscopic constants 
are found to be approximately 10% smaller when the Aziz pair potential is used, 
reflecting its greater stiffness as compared to the LJO potential. The sign of the sextic 
tensor coefficient for both tetrahedral Ar, and octahedral Ar, is such that for sufficiently 
high J the C,,, (or D 2 h )  structures with I parallel to a pseudo-C, (or true C,) axis (saddle 
points on the rotational energy surface at low J )  become local energy maxima, the D2d 
(or D4\,) structures with J parallel to an S, (or C,) axis representing the energy minima. 
The trigonal bipyramidal cluster Ar, resembles both Ar, and Ar, in its rotational 
characteristics but with reduced manifestations of nonrigidity. As found with an LJO pair 
potential [D. H. Li and J. Jellinek, Z.  Phys. D 12, 177 (1989)], the icosahedral Ar,, cluster 
displays a very slight preference for D,, structures with J parallel to a C, axis, while the 
D,,, structures with J parallel to a C, axis are energy maxima and the D,,, structures 
with J parallel to a C, axis are saddle points on the rotational energy surface. The scalar 
quartic spectroscopic coefficient for Arl, is found to be 2.15 X times that for the 
reference diatomic Ar,. A variety of structural instabilities are described for Ar,, clusters 
with very high rotational energies. 0 1996 John Wiley & Sons, Inc. 
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Introduction 

e recently presented [la, bl analytic expres- vv sions, parametric in centrifugal displace- 
ment coordinates, which provide exact classical 
descriptions of rotational energy dispersions, i.e., 
the dependence of rotational energy on the magni- 
tude and direction of rotational angular momen- 
tum for small nonrigid rare-gas (Rg) clusters 
modeled by painvise additive 6-12 Lennard-Jones 
oscillator (LJO) potential energies. As a complement 
to our analytic descriptions, our studies also in- 
cluded angular momentum-conserving classical 
simulations. Specific properties discussed included 
quartic and higher-order spectroscopic constants 
for Rg,, Rg,, and Rg,, rotational instabilities for 
Rg,, and “cubic” rotational anisotropies for the 
spherical tops Rg, and Rg,. These studies were 
extensions of our earlier analytic study [2] of cen- 
trifugal distortions in diatomic molecules and our 
related ab initio studies [3-81 of such distortions in 
polyatomic molecules. 

In the present study, we describe argon clusters 
by pairwise additive potential energy functions 
based on the highly accurate 15-parameter di- 
atomic Ar, potential reported by Aziz [9]. This 
function is stiffer than is a LJO potential with the 
same well depth and equilibrium separation (see 
Diatomic Ar, section), reducing the deformability. 
For comparative purposes, we studied the same 
clusters described earlier using the LJO potential. 
These are the symmetric top triangular Ar,, the 
most deformable for a given rotational energy, the 
spherical top tetrahedral Ar,, and octahedral Ar,, 
whose high symmetry facilitates their description. 
Additional clusters considered here are the sym- 
metric top trigonal bipyramidal Ar5, which com- 
bines features of Ar, and Ar,, and the spherical 
top icosahedral ArI3. In some cases, we augmented 
this assumed cluster potential by the Axilrod- 
Teller three-body (triple-dipole) interaction 
[lo-131. 

Outline of Procedures 

ANALYTIC DESCRIPTIONS 

The basic outline of our analytic procedures is 
as before [la, b], with a generalization of the para- 
metric rotational energy dispersions to an arbitrary 

pairwise potential. First, consider a diatomic Rg, 
described by a potential energy function V(r> hav- 
ing a well depth E and an equilibrium separation 
re .  Let v ( x )  be the reduced potential energy 
V / E  as a function of the reduced separation x = 
r / r e  and v ‘ ( x )  be the derivative d v / d x .  The J- 
dependent effective energy v, ff may be expressed 
parametrically in x by the equations 

(la) 

(lb) 

where p is the reduced rigid-rotor rotational con- 
stant B e / & .  For the LJO case, we previously [la] 
replaced the right-hand side of Eqs. (la) and (lb) 
by polynomials in the variable z = 1/x2 (we pre- 
viously used x to denote the reduced displace- 
ment, not the reduced separation as here) and 
showed that for selected polyatomic clusters de- 
scribed by pairwise additive LJO potentials (i.e., for 
ones for which a single structural variable suffices 
for describing the dispersion) the right-hand sides 
of Eqs. (la) and (lb) are simply multiplied by 
integers which we tabulated. These relationships 
hold in the present, more general case. For exam- 
ple, to describe the dispersion for the tetrahedral 
cluster Rg, with J II S,, simply multiply Eq. (la) 
by 2 and Eq. (lb) by 24. Cases requiring two or 
more structural variables to describe the disper- 
sion typically require three or more parametric 
equations. For example, consider the cluster Rg, 
with J II C,, producing a molecule with D,, sym- 
metry. The octahedron has six edges at a reduced 
separation of x in the plane normal to J ,  six with a 
smaller reduced separation of y, and three with a 
reduced separation of z (the trans interactions), 
the last not to be confused with our previous use 
of z. The dispersion may be described parametri- 
cally by the equations 

veff = 6 d x )  + 6v(y) + 3v(z) + pJ32/4x2 (2a) 

pJ: = 12x3v’(x) + 6(x4/z)v’(z), (2b) 

v‘eff - - v ( x >  + (x/2)v’(x) 

~ J ( J  + 1) = (x3/2w(X), 

in conjunction with the constraints 

0 = 3y3v‘(y) + (3y4/2z)v’(z) (2c) 

(2d) 

In the above, p is the reduced rotational constant 
for the reference diatomic Rg,, J, is the projection 
of J on the C, axis, and v’ denotes the derivative 
of v. Similar sets of equations may be readily 
obtained for other cases such as Rg, with J II C,. 

z2 = x2  + y2. 
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NUMERICAL SIMULATIONS 

Our second method [la, b], used as a comple- 
ment to the analytic method for the clusters Ar,, 
Ar,, and Ar,, and as the sole method for the 
clusters Ar, and Ar,,, employs a C-language pro- 
gram for carrying out classical mechanical simula- 
tions with the imposed constraint of a fixed rota- 
tional angular momentum J in the molecular 
frame. The procedure is summarized as follows: 

1. 

2. 

3. 

4. 

5. 

A set of masses {mi]  and initial coordinates 
( r , )  are selected, with the center of mass of 
the cluster taken as the origin. 
A magnitude and direction for J with respect 
to the molecular frame is selected, with the 
direction typically corresponding to a princi- 
pal axis of the moment of inertia tensor I. 
The tensor I is calculated from the masses 
and coordinates; the angular velocity w is 
then calculated from w = I - ' J .  
The force F, acting on the ith particle is 
calculated as 

F, = -m , {w  x ( 0  x T i ) ]  - v,v, 
where the first term represents the J- 
dependent centrifugal force and the second 
term arises from the assumed potential en- 
ergy V .  
The system is allowed to evolve toward a 
minimum-energy configuration subject to the 
constraint of fixed J by assuming a time step 
A t ,  calculating a set of displacements {Ar,] 
from the forces {F,}, setting acquired veloci- 
ties to zero, and repeating the process until 
the energy has converged. 

AZIZ PAIR POTENTIAL 

We have assumed that the argon clusters are 
described by a painvise additive potential energy 
function based on the highly accurate Ar, poten- 
tial reported by Aziz [9]. This potential energy 
function, which represents an improvement over 
the earlier Aziz-Slaman functions [ 14, 151, con- 
tains damped attractive terms in powers y - " ,  with 
n = 6,8,10,12, and 14, and fits, within experimen- 
tal error, the vibrational-rotational levels extracted 
by Herman et al. from their vacuum w laser 
absorption spectrum [16] of Ar,. The Aziz function 
contains 15 parameters, including the well depth E 

of 99.577 ,cm-' and the equilibrium separation re 
of 3.7570 A. In addition, we have included in some 

of our cluster potential energies the Axilrod-Teller 
three-body interaction [lo-131 which may be 
written as 

where Z is a parameter calculated [12] to be 176.7 
Hartrees a: for Ar, (Z = 8.4977 X lo-, in reduced 
units of E r:), cx is the angle opposite the edge 123;  

0, opposite r13; and y, opposite r12. For an equilat- 
eral triangle of edge x, the interaction V ,  is repul- 
sive, namely, 33Z/8x9, for a right isosceles trian- 
gle it is less repulsive, namely 3Z/81/2x9, while 
for an equidistant linear array it is attractive, 
namely, -3Z/4x9. Thus, V,  for equilateral Ar, 
with x = 1 is 0.03505 in units of the well depth F 

for Ar,. 
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Results and Discussion 

DIATOMIC Ar, 
Key properties of Ar,, such as the harmonic 

force constant k, the reduced harmonic frequency 
W/B, and the first two vibrational energies c0 and 
F , ,  are all significantly higher with either the Aziz 
or Aziz-Slaman potentials than with the 6-12 LJO 
potential having the same well depth and equilib- 
rium separation (the Aziz force constant is about 
12% higher than the LJO value, with the vibrational 
energies also higher). As a consequence of this 
reduced deformability, the rotational energy dis- 
persion obtained from using the Aziz (or the 
slightly different Aziz-Slaman) potential differs 
from that obtained using the LJO by having a 
maximum in vCff at a somewhat smaller distance 
(1.1496 vs. 1.1650), a higher ueff at this maximum 
(1.9992 vs. 1.8), and appreciably smaller (in magni- 
tude) reduced quartic (0.8964 vs. 1) and sextic 
( - 0.7128 vs. - 1) coefficients (Table I; the reduced 
units for d and h are f3 ,~/36 and p ,~/324, respec- 
tively). 

TRIANGULAR Ar, 
The important cluster Ar, has been the subject 

of many recent investigations [13,17-191. Our ana- 
lytic description of classical rotation based on use 
of an arbitrary painvise additive potential energy 
is readily obtained for the cases of J II C,( D,,,) and 
J 1 1  C,(C,,); for the former case, Eqs. (la) and (lb) 
are multiplied by 36 and 3, respectively, while for 
the latter case, these equations are multiplied by 6 
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TABLE I 
Summary of reduced binding energies and spectroscopic constants for argon clustersa. 

Cluster  BE^ BE/nC Cased be 6‘ S(W0)S 

Ar, 1 .o 0.5 J 1 C, 

Ar3 3.0 1 .o J II C3 
J I C3 

Ar, 6.0 1.5 Scalar 
Tensor 

J 1 C3 

Ar, 12.5501 2.091 7 Scalar 
Tensor 

Ar13 43.2227 3.3248 Scalar 

Ar5 9.071 7 1.81 43 J I I  C3 

1 .o 
0.5 
1 .o 
0.5 
- 

0.4990 
0.2736 

0.251 8 
- 

0.0644 

0.8964 
0.0749 
0.8987 

0.0907 
0.0055 

0.0747 
0.0168 

0.01 01 
0.00085 

0.00022 

1 .o 
0.0833 
1 .o 
0.1 
0.0062 
- 
- 

0.01 23 
0.00093 
- 

aAssuming additive Aziz pair potential. 
Binding energy in units of well depth E = 99.577 cm - ’. 
Binding energy per atom. 
Orientation of J (or specification of “scalar” or “tensor” coefficient for spherical tops). 
Quadratic coefficient (rotational constant) in units of B(Ar,) = 0.05980 cm - ’ . 
Quartic coefficient in units of p % /  36 (units for which S = D / E = 1, or D = 8.312 x 10 - * cm - ‘, for diatomic WO). 
Reduced WO quartic coefficients from [la]. 

and 1, respectively. The case of J I to both C, 
and C,, which we designated as Jy, is described by 
two structural parameters. This case corresponds 
to rotation about a pseudo-C, axis, meaning that it 
corresponds to rotation about a true C2 axis in 
J-space of the rotational energy surface which has 
D,,, symmetry. 

The equations for any of the above three cases 
may easily be extended to include the Axilrod- 
Teller interaction, which not only raises the energy 
slightly but also reduces the second derivative of 
the energy. Thus, the effect of its inclusion is also 
to increase slightly the centrifugal displacement 
for which veff is a maximum and to decrease 
slightly the value of this maximum; this increases 
the magnitudes of both the quartic and sextic 
coefficients, by approximately 0.5% and 0.1%, re- 
spectively, amounts so small that we did not in- 
clude the three-body interaction in our studies of 
the dispersions for the larger clusters described 
below, although we did include it in 
characterizing the structures of non-rotating Ar, 
and Ar,. 

As previously noted [la], the orientation of 
J I C, and ( I  C2(J,) for the cluster Rg, leads to an 
obtuse isosceles triangular structure and is slightly 
favored (lower energy for a given 111) over the 
acute isosceles triangular structure arising from 
the case J I C2(J,). A representative solution of 
Eqs. (4a-c) for the latter case for Ar, with an 

assumed pairwise additive Aziz potential is that 
for p J 2  = 1.9487 (corresponding to J = 56); the 
energy veff = E, = 1.8505, while the structure is 
characterized by two edges stretched to a reduced 
distance of 1.0400 and the single edge parallel to J 
slightly compressed to 0.9886. For this same J, the 
energy E ,  is 1.8250, with one edge stretched to 
1.0902 and two edges remaining unchanged ( x  = 
1). The corresponding energy E, is 0.9662, with 
each of the three edges stretched to 1.009. The fact 
that E, is somewhat higher than one-half of E ,  or 
E, for this planar symmetric top reflects the smaller 
centrifugal deformability for J I I  C3 than for J 1 C,. 
This is also reflected in the very small extension of 
the edges to 1.009 for the former case as compared 
to those for the latter. For further comparison, the 
energy of nonrotating linear Ar, is 0.9805, assum- 
ing a painvise additive Aziz potential (0.9790 if the 
Axilrod-Teller interaction is included). 

TETRAHEDRAL Ar, AND OCTAHEDRAL Ar, 
Considerable theoretical attention has been de- 

voted, especially by Harter [20, 211, to semirigid 
spherical top molecules such as Ch, and SF,. We 
included results for the spherical tops Rg4 and Rg, 
in our studies [la] of analytic descriptions of LJO 
rare-gas clusters, with expressions being presented 
for Rg, with J II S4(D2,) and J II C,(C,,) and for 
Rg6 with J I I  C4(D4h), J II C3(D3d), and J I I  C2(D*h). 
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A key finding was that the sign of the cubic 
anisotropy in the rotational energy dispersion is 
the same for both Rg, and Rg,, and the same as 
for CH,, meaning that for a given magnitude of J 
the six energy minima correspond to J I 1  S,, with 
the eight equivalent maxima corresponding to J II 
C,. This is the opposite behavior to that known for 
SF, [20,211, for which there are six maxima ( J  II C,) 
and eight minima ( J  II C,). An interesting case is 
that for Ar, with J parallel to one of the edges of 
the tetrahedron, producing a centrifugally dis- 
torted molecule of c,, symmetry (the c, axis is 
1 to J).  While this direction for J is not parallel 
to a symmetry axis of the molecule, it does corre- 
spond to a C, axis in the centrosymmetric space of 
the rotational energy surface and is the tetrahedral 
analog of the J I1 C,(D,,) case for the octahedral 
Rg, cluster. We refer to this axis as a pseudo-C, 
axis, as it is similar to the rotation of Rg, which 
we described in these terms. 

As with Rg,, the generalized analytic dispersion 
relationships for the J I I  S,(DZd) and J I I  C,(C,,) 
cases for Rg, are simple multiples of the diatomic 
Rg, expressions given in Eqs. (la) and (lb). Specif- 
ically, these equations are multiplied by 24 and 2 
in the former case and by 36 and 3 in the latter 
case. The case of J parallel to a pseudo-C, axis for 
Rg, and the three cases of J II c4(D4h)t J I1 C3(D3d)r 
and I1 C,( D,,,) for Rg, are each described by sets 
of equations, with the set for J II C,(D,d) for Rg, 
being given in Eqs. (2a-d). The sets of equations 
for the other cases are similar in style to Eqs. 
(2a-d) and thus not presented here. 

Energies for Ar, and Ar, were obtained inde- 
pendently from our analytic rotational energy dis- 
persions and from our numerical J-conserving 
simulations. With the latter, the molecules some- 
times display abrupt changes in symmetry. For 
example, using the Aziz pair potential for Ar,, we 
find for > 100 that the D,, structures expected 
for lI S, acquire D,h symmetry; the molecule has 
become planar and diamond-shaped. Runs initi- 
ated with (I pseudo-C, have C,, symmetry for 
all I and lead to these same planar diamond- 
shaped D,,, structures for ] > 100 (an increase in 
symmetry!). Similarly, using the Aziz pair poten- 
tial for Ar,, we find for J > 225 that the D4h 
structures expected for J II C, actually have only 
C,,, symmetry, while the D,, structures with J II C, 
and the D2,1 structures with J 11 C, are stable for J 
up to at least 300. 

For Ar,, we calculated the quartic scalar and 
tensor spectroscopic constants assuming the pair- 

wise additive Aziz potential. The method is that 
used previously [ l l  with the LJO potential and also 
used in this study for Ar,, namely, by the evalua- 
tion of the limits as / 3 J 2  approaches zero of cen- 
trifugal stabilization energies [l, 21 divided by 
( In reduced units of /3 , ~ / 3 6 ,  we find (Table 
I) the scalar coefficient 6, to be 0.0907 as compared 
to 1/10 in the LJO case and the tensor coefficient 
6, to be 5.508 x lo-, as compared to 1/160 = 

6.250 x loL3 in the LJO case. For /3 = 6.005 X lop4  
and E = 99.577 cm-’, D, and D, are, thus, 9.047 X 

cm-’, respectively. The re- 
duction in the quartic coefficients by approxi- 
mately 10% in going from the LJO to the Aziz 
potential descriptions is quite consistent with the 
reductions listed (Table I) for Ar, and Ar,. We also 
list similarly computed values of 6, and 6, for 
octahedral Ar,, these also showing reductions of 
approximately 10% in going from the LJO to the 
Aziz potential descriptions. 

and 5.494 X 

TRIGONAL BIPYRAMIDAL Ar, 
A structural type which we did not consider in 

our LJO studies [la, b] is the five-atom trigonal 
bipyramid with D,h symmetry. This is the small- 
est cluster in which all atom pairs cannot simulta- 
neously be at the diatomic equilibrium separation. 
We find, using the Aziz pair potential, that the 
attraction between the two apical atoms causes a 
slight shortening of the apical to equatorial separa- 
tion (0.9986) and a slight stretching of the equato- 
rial to equatorial separations (1.0010). The energy 
of the nonrotating cluster is 0.9283 relative to all 
pairs being at zero energy with unit separation, or 
- 9.0717 relative to separated atoms. We have con- 
sidered the three rotational cases analogous to 
those for Ar,: These are J II C,(z), symmetry D3h; 
J II C,( XI, symmetry C,,; and II pseudo-C, ( y), 
symmetry C2,. In comparing our results to those 
for Ar, and Ar,, we conclude that the effect of the 
added atom(s> is to reduce the deformability. The 
D,, symmetry associated with the J I 1  C,(z) case 
appears to be stable up to J = 130, above which 
the symmetry ”breaks” to C,,, in the form of a 
tetrahedron with one atom over an edge parallel to 
], the C, axis being normal to J. (This edge corre- 
sponds to the apical atoms which have closed to a 
“bonding” distance.) The energy is 4.8244 units 
above that for J = 0; this energy is quite high, 
being 1.7527 units above that for nonrotating Ar, 
plus Ar and only 0.2473 units below that for non- 
rotating Ar, plus Ar,. The two cases considered 
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with J in the plane normal to the symmetry axis 
have very nearly identical energy dispersions; for 
J = 100, the I ,  case is higher in energy than is the 
J, case by only 1.5 X lo-, units out of an energy 
of 1.6424 relative to that for J = 0. This same 
energy obtains for Ar, with J 1 C ,  with J approx- 
imately 53, for which the J II pseudo-C,(y) case is 
higher in energy than is the J II C , ( x )  case by a 
very much larger amount, namely, approximately 
0.018 units, despite the much smaller J value. 
Thus, the sextic tensor coefficient representing the 
deviation of the rotational energy surface from 
cylindrical symmetry about the J, axis is negligi- 
bly small for Ar,. The general result, illustrated 
also in the comparison of Ar, and Ar, results 
made above and in the discussion of the Ar,, 
results given below, is that for two clusters of 
different size (different number of atoms), but with 
the same rotational energy, the smaller cluster will 
display the greater effects of nonrigidity, as mea- 
sured, e.g., by the quartic tensor coefficient for 
cubic spherical tops or by the sextic tensor coeffi- 
cient for trigonal symmetric tops and icosahedral 
spherical tops. 

ICOSAHEDRAL Ar,, 
Icosahedral clusters of rare-gas atoms have been 

the subject of numerous investigations. Of closest 
relevance to our investigation is the study by Li 
and Jellinek [ 231 of the centrifugally induced dis- 
tortion and isomerization of Ar13 modeled with an 
LJO pair potential. They have also presented [24, 
251 a general formalism for the separation of the 
energy of rotation in any N-body system, leading 
to the concept of J-dependent normal vibrational 
modes. Chartrand et al. studied [26] the effects of 
the three-body Axilrod-Teller interaction on the 
structure and dynamics of Ar13 and Kr,, and found 
that this interaction lowers the "melting" tempera- 
ture of the clusters by approximately 10%. 

We have used our J-conserving simulation pro- 
gram to study icosahedral Ar,, modeled with the 
Aziz pair potential Specifically, we considered J in 
steps of 20 from 0 to 400 and steps of 40 from 440 
to 1000 for the three cases J II C5(D5,),  J II C,(&h)r 
and J 11 C3(D3,),  cases considered by Li and 
Jellinek [23] with an LJO pair potential. For J = 0, 
the cluster has an energy of 34.7773 relative to all 
78 'pair interactions having zero energy, or 
-43.2227 relative to separated atoms, in units of 
the reference Ar, well depth. This J = 0 cluster is 
characterized by the 30 external edges having a 

length of 1.0149 and the 12 "radial" distances 
having a length of 0.9652, both in units of the 
reference Ar, equilibrium separation. As a refer- 
ence, the similarly computed energy for an Ar,, 
cluster with C,, symmetry has an energy of 
28.9384, or - 37.0616 relative to separated atoms. 
Thus, the energy to remove one atom from Ar,, is 
6.1611, which is approximately the energy to break 
six Ar-Ar "bonds." Because of its icosahedral ( I h )  

symmetry, the leading tensor (nonspherical) term 
in the rotational Hamiltonian for Ar13 is sixth 
power in J; as a consequence, the icosahedral 
anisotropy in the rotational energy is quite 
small. For example, with J = 400, the energies E,, 
E , ,  and E,, corresponding to the three cases 
J II c5(D5d), J I I  C,(&h), and J I I  C3(D3d) ,  respec- 
tively, have energies of 6.4060, 6.4056, and 6.4055 
above that for J = 0. (Note that these energies are 
slightly above the dissociation limit to form Ar,, 
plus Ar.) Thus, rotation with J (I C, is preferred, 
but only by 0.0005, or about 0.008% of its rota- 
tional energy, over rotation with J II C,. The case 
J II C,( D z h )  corresponds to the saddle points on the 
rotational energy surface and is seen to be only 
very slightly higher in energy than is the D,, 
minima. Thus, the relative energies for these three 
cases are the same as those found by Li and 
Jellinek with their LJO model. They also found that 
new structures are produced in the C ,  and C ,  
cases for L = 550 (in units of 1.57h), with fragmen- 
tation occurring at L = 650 for C,  and 700 for C,. 
Our results are similar, differing slightly in detail. 
We find the D5d(J I1 C,) structure to be "stable" up 
to J = 1000 (in units of h), with an energy of 
37.9532 above that for J = 0, while the D2h(J (I C, )  
and D3,(J I1 C,)  structures are nearly identical in 
energy up to J = 840; the latter is very slightly 
favored up to this value, although the former 
(D,,,) structure has a lower energy for still higher 
J. Near J = 900, the D2h symmetry structure for 
J II C, passes through a tetracapped cube structure 
having D4h symmetry (a fragment of a body- 
centered structure) to form a structure having only 
C,,  symmetry [Fig. 1 (a) and (b)]. This change 
results from the triangles having J passing through 
the midpoint of their shared edges opening up to 
form a square. In this same range, the D,, struc- 
ture associated with J II C, also undergoes a sym- 
metry breaking, namely, to a structure having the 
chiral symmetry C ,  [Fig. 1 (c) and (d)]. 

What does one make of these instabilities? First, 
for Ar13, they occur at quite high energies, typi- 
cally 30 units (of the reference diatomic dissocia- 
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FIGURE 1. Structure of icosahedral (1,) Ar,, (J = O), viewed along C, axis; (b) same with J I1 C, (J = 9001, the D,h 
structure converts to C,, symmetry; (c) structure of icosahedral (b) Ar,, (J = 01, viewed along C, axis; (d) same with 
J 1) C, ( J  2 900), the D,, structure converts to the chiral symmetry C,. 

tion energy), far more than that needed to detach a 
single atom, so that they are unlikely to be of 
experimental significance. Nonetheless, they illus- 
trate the richness of structures accessible for clus- 
ters with high rotational angular momenta. 
Second, some of them conserve the symmetry of 
the low-\ centrifugally distorted structures; others 
do not. An example of the former is the abrupt 
collapse of the slightly compressed D4k structure 
of Ar, with J I1 C, to a D,, structure with the 
apical atoms "touching," while an example of the 
latter is the reduction of symmetry to C, ,  at still 
higher J. The absence of symmetry breaking is not 
a valid criterion for a stable equilibrium as it may 
simply indicate that the molecule is stuck in an 
unstable equilibrium. Third, the examples de- 
scribed above, and those described by Li and 
Jellinek [23], do serve to illustrate the rich variety 
of structures, nearly degenerate in energy, which 
obtain for rare-gas clusters with high rotational 
energy. 

We have extracted (Table I) from our energies a 
reduced scalar quartic coefficient 6, (as mentioned 
above, there is no tensor quartic coefficient) for 

Ar,, of 2.15 X lo-,  in units of p2/36e, the units 
for which 6 equals 1.0 for the reference diatomic 
Ar,. This 6, is indeed quite small, although since 
the rigid-rotor constant for Ar,, is 0.0644 times 
that for Ar,, a given rotational energy for Ar13 
corresponds to a much larger J value than the 
same energy does for Ar,, so that for a given 
energy, J4 (Ar13) is about 220 times J4  (Ar,), thus 
making the effect of the quartic term for Ar,, 
approximately rather than times that for 
Ar, . 

We also considered the cube-octahedral Ar,, 
cluster with 0, symmetry. For J = 0, the energy is 
38.4554, which is 3.6781 units above that of the 1, 
structure, and the nearest-neighbor separations are 
0.9924. The energies rise more slowly with J than 
do those starting from the 1, structure, and then 
drop, with the structures changing at relatively 
low rotational excitations. Specifically, near J = 

120, both the J I/ c,(D,,) and J II C,(D,,) cases 
become identical to the J /I C,(D,,) case originat- 
ing from the I,l structure, while near J = 200, the 
J 1 1  c3(D3d) case becomes identical to that with 
J I1 C,(D,,) originating from the 1, structure. 
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Summary 

In this study, we extended both the analytic 
description of the rotational energy dispersions 
of rare-gas clusters and the angular momentum- 
conserving simulation procedure to include the 
highly accurate Ar-Ar pair potential of Aziz [91 
augmented in some cases by the three-body Axil- 
rod-Teller interaction. In addition to the three-, 
four-, and six-atom systems that we considered in 
our earlier study [ll based on Lennard-Jones pair 
potentials, we presented here results obtained by 
the simulation method for the icosahedral cluster 
ArI3. Results for the clusters Ar,, with n ranging 
from 7 to 147, will be presented elsewhere [271. 
The central product of any of these studies is a 
description of the structure and energy of a rare-gas 
cluster having a given magnitude and direction of 
its rotational angular momentum, while special 
features of the rotational energy dispersions are 
highlighted by the extraction of quartic and sextic 
spectroscopic constants. Each ]-dependent struc- 
ture and energy thus represents a reference point 
about which the molecule having that ] vibrates. 
Consequently, the results presented here serve as 
approximate descriptions of the ground vibra- 
tional state of each cluster. This is illustrated by 
Ar,, for which the observed ratio of B, to be B ,  is 
1161 0.05776 cm-'/0.05965 cm-' = 0.9683, while 
that of 0, to D, is 1.22 X 
cm-' = 1.36; as ZI increase, the ratio B J B ,  falls 
while D J D ,  rises. We further note that the zero- 
point energy [16] for Ar, is 14.8 cm-', or 0.149 in 
units of its well depth, while that [19] for Ar, is 
43.9 cm-', which is nearly the same fraction (0.147) 
of its well depth, suggesting a rough constancy in 
the relative magnitude of the zero-point energy. To 
the extent that rotation about a principal axis may 
be considered separable from other degrees of 
freedom, the accompanying displacement along a 
centrifugal distortion pathway may be treated as a 
single degree of freedom describable semiclassi- 
cally in the same manner [281 as the stretching of a 
rotating diatomic, i.e., evaluation of the first-order 
vibrational action integral as a function of energy 
and angular momentum will provide the informa- 
tion needed to obtain the rotational energy disper- 
sion for a specified vibrational action (vibrational 
state). 

cm-'/0.896 X 
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