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Our procedure for employing analytical gradients of ab initio potential energy hypersurfaces in the de- 
scription of centrifugally distorted molecules is applied for the first time to an asymmetric top, namely 
ozone. Both single determinantal (HF/6-31G*) and analytically fitted multiconfigurational self-consis- 
tent field surfaces were utilized. The focus of the HF/6-31G* study is upon the centrifugal distortion 
pathway. Quartic centrifugal spectroscopic coefficients are obtained in both cases and are in reasonable 
agreement with experiment. 

INTRODUCTION 

In a recent publication' we outlined a pro- 
cedure for employing analytical gradients of 
ab initio potential energy hypersurfaces in 
the description of centrifugally distorted 
molecules. Stationary points were located on 
the effective hypersurface defined as the 
sum of electronic and rotational energies. 
Centrifugal distortion pathways and cen- 
trifugal stabilization energies were defined; 
from the latter quartic centrifugal distortion 
spectroscopic constants were obtained for 
H l ,  NH3, CHI, BF3, and SF6. Comparisons 
with experimentally determined constants 
were generally quite satisfactory, with cal- 
culated values being typically 10% smaller 
than those observed and with this error 
being primarily the result of the overesti- 
mation of the curvature of the electronic 
hypersurfaces a t  the computational level 
employed, namely HF/6-31G**. Particularly 
satisfying was the excellent description of 
both the scalar and tensor quartic coeffi- 
cients, D, and D,, respectively, for the spheri- 
cal tops CH4 and SFs. In the present article 
we outline an extension of the method to 
asymmetric tops and give results for a par- 
ticularly important molecule, namely ozone, 
for which we have also made a theoretical 
study of the effects of anharmonicity on its 
ultraviolet continuum band shape.2 

METHODS 

We define an effective potential energy 
hypersurface E(Q, J) as 

(1) 
where Eel denotes the electronic energy, E, 
the rotational energy, Q the set of nuclear 
coordinates, and J the rotational angular 
momentum. Molecular vibration is ignored 
in the present form of our method, while 
molecular rotation is treated classically. 
Thus the method provides a description of 
vibrational ground states in terms of vibra- 
tionless rotating deformable bodies. 

We locate stationary points on the hyper- 
surface by the condition that VE(Q, J) = 0 .  
Such points are not necessarily local minima 
as they may be saddle points or local maxima 
instead. However, for structures close to the 
true (J = 0) equilibrium geometry they have 
typically been found' to be local minima. In 
most of the examples considered in our pre- 
vious study' the use of cylindrical coordinates 
led to a rotational energy E, which depended 
upon only one coordinate. Thus for a total of 
n = 3N - 6 internal coordinates, where N 
is the number of atoms in the molecule, there 
were n equations to be solved, namely 

E(Q, J) = Ee,(Q) + Er(Q, J) 
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a(Ee1 + E r ) / a Q n  = 0 (2b) 
where Q, is the single coordinate appear- 
ing in E,. One exception was our treatment 
of the rotation of NH3 about an axis per- 
pendicular to the C3 axis. In this case the 
rotational energy depended upon three coor- 
dinates, so that three equations of the type 
of (2b) had to be solved simultaneously. 

Selecting a principal axis system to  de- 
scribe the rotations of an asymmetric top, 
we write E, simply as 

Er(Q, J )  = A(Q, J)J i  + B(Q, J)J i  
+ C(Q,J)JF (3) 

where J,, Jb,  and J ,  are the projections of 
the rotational angular momentum on the 
axes a,  b ,  and c. These axes are typically 
taken to correspond to the customary order- 
ing of rotational constants as A > B > C ,  
where these effective constants may depend 
on J as well as Q.  For ozone a is the in-plane 
axis perpendicular to the C2 axis, b is the C2 

axis, and c is the axis perpendicular to the 
molecular plane. For asymmetric tops whose 
principal axis directions change with J it 
may be more convenient not to  assume a 
principal axis representation to begin with, 
but for ozone this is not the situation. The 
distortions accompanying rotation about any 
one of the principal axes of ozone preserve 
the CZu symmetry, so that there are only two 
structural parameters. We find it convenient 
to describe the molecule using the Cartesian 
coordinates ( x , y , z )  for the three atoms as 
( 2 d , 0 , 0 ) ,  ( - d ,  0 , e )  and ( - d , O ,  -el .  These 
coordinates may be viewed as cylindrical co- 
ordinates for J Ilx and J 112, but not for J IIy. 
The Cartesian axes are associated with the 
rotational axes according to the I' represen- 
tation, namely x with b, y with c, and z with 
a, this association being particularly desir- 
able for an asymmetric top such as ozone 
which is close to being a prolate symmetric 
top. In terms of the distances d and e the 
bond length R and bond angle 8 are given by 

R = (9d2 + e2)1'2 (4a) 
8 = cos-l[(R2 - 2e2>/R2] (4b) 

I,  = 6m0d2 (5a) 
I6 = 2m0e2 (5b) 

(5c) 

The moments of inertia are 

I, = I,  + I b  

where mo is mass of an o atom. 

The condition VE(Q, J )  = 0 when com- 
bined with the moments of inertia in ( 5 )  
yield the following: 

Jlb 
dE,,/ad - Ji/6mod3 = 0 (6a) 

aEel/ae = 0 (6b) 

dE,l/ad = 0 (64 
aE,,/ae - J$/2moe3 = 0 (6d) 

dE,l/ad - 3dJ:/2mo(3d2 + e2)2 = 0 

aE,,/ae - eJ:/2mo(3d2 + e2)2 = 0 

Jllb 

Jllc 

(64 

(60 

For Jlla we simply select d ,  obtain e by 
criterion (6b), calculate dE,l/dd at the struc- 
ture corresponding t o  d and e ,  and then 
solve (6a) for J, .  The procedure for J 11 b is 
similar, while that for J 1 1  c requires a simul- 
taneous solution of (6e) and (6f) which may 
be expressed by the condition that 

(aEe,/ad)/(aEedae) = 3d/e (7) 

We define as before' a centrifugal stabi- 
lization energy AE as the difference between 
the energy of a rigid molecule with J and 
that of the deformable molecule with the 
same J .  That is, 

AE(J) = AEel(J) + AEr(J) (8) 

where AEeI(J)  is the negative difference 
between Eel at Q = Q ,  the equilibrium ge- 
ometry, and a t  Q = Q ( J > ,  the quasiequi- 
librium geometry for a given J ,  and AE, is 
the positive difference between E, at Q = Q 
and at Q = Q(J).  Typically AE, has approxi- 
mately twice the magnitude of AE,], so that 
the sum AE is positive with one-half the 
magnitude of AE,. 

It may appear inconsistent to assume a 
classical description of molecular rotation 
for an asymmetric top and then to consider 
in (6c) and (6d) J to be parallel to the inter- 
mediate principal axis b, as such a rotation 
is unstable in the sense that it corresponds 
to a saddle point on the rotational energy 
surface, with intersecting contours of con- 
stant energy, corresponding to semiclassical 
trajectories, leading away from it. However, 
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the Eqs. (6c) and (6d) representing the 
quasiequilibrium are nonetheless valid, as J 
parallel to  any principal axis implies dy- 
namical balance, albeit unstable in some 
cases, with J parallel to the angular velocity 
o. What we are so far unable to describe 
with our method are the dynamically unbal- 
anced cases of J not parallel to  a principal 
axis and hence not parallel to a. 

The electronic structure calculations were 
made at two levels, the first being the single- 
determinantal level using the GAUSSIAN 80 
and 82 programs3 with the split valence plus 
polarization basis set 6-31G*.4p This compu- 
tational level is designated HF/6-31G*. Ana- 
lytical gradients were employed in locating 
both the unconstrained (J = 0) and con- 
strained (J + 0) stationary points as de- 
scribed below. Analytical second derivatives 
were employed in calculating vibrational 
frequencies, although the latter are not used 
in our procedure for obtaining centrifugal 
distortion constants. 

The second level of electronic structure 
calculations employed a published analyti- 
cal fit6 by Sheppard and Walker of the gen- 
eralized valence bond perfect pair ing 
(GVB-PP) multiconfiguration self-consistent 
field (MCSCF) hypersurface calculated7 by 
Hay et al. This excellent surface was also 
used as the ground state in our recent theo- 
retical study of the ultraviolet continuum 
band shape.2 

RESULTS 
In Table I we present the basic computed 

parameters bond length R ,  bond angle 8, 
rotational constants A, B ,  and C and vi- 
brational frequencies TI, V 2 ,  and V3. As 

the HF/6-31G* level yields a 
computed bond length which is too short" 
and vibrational frequencies which are too 
large." However, these errors will tend to 
cancel in the calculation of centrifugal dis- 
tortion constants. The results obtained for 
these parameters by using the Sheppard- 
Walker (SW) fit6 of the GVB-PP MCSCF surface7 
are very much better. The vibrational fre- 
quencies were obtained by us using ana- 
lytical second derivatives of the sw surface 
and differ somewhat from those reported by 
Hay et al.7 

As in our previous study' the HF/6-31G* 
level is used to explore energies and distor- 
tions for large J values, with information for 
low J obtained by extrapolation. In Figure 1 
we show the centrifugal stabilizations in the 
form of AE/J4 us J using AE from (8) for the 
three cases J 11 a, J 1 1  b, and J 1 1  c.  From the ex- 
trapolations to J = 0 shown by the dashed 
lines we obtain the quartic coefficients D,, 
Db, and D, as listed in Table I. The relation- 
ship of these parameters to parameters A j ,  
A j K ,  A K ,  SJ,  and SK is also given in Table I. 
The latter parameters appear as coefficients 
in the quartic portion of the quantum me- 
chanical rotational hamiltonian12 as follows 

Table I. Computed molecular parameters' for 03. 

Calculated 

Parameter H F ~  MCSCF' Observed 

1.204 

4.233 
0.489 
0.439 

119.0 

1537.5 
849.3 

1454.1 
+ A~ 2.55 x 10-~  

4.85 x lo-' 
2.48 x 10-~ 

1.304 

3.2885 
0.4322 
0.3822 

115.8 

1209.0 
680.7 

1086.1 
1.75 x 10-~ 
7.25 x 10-7 
4.59 x 10-~  

1.278d 

3.55366633" 
0.445283212' 
0.394751810" 

116.8d 

1134.9' 
716.0' 

1089.2' 
2.102694325 x 
5.93864892 X lo-'' 
3.1467846 X lo-'' 

"All parameters in cm-' except bond length R in Angstroms and bond angle 8 in 

cF/6-31G* level. 
"Analytically fitted GVB-PP MCSCF level (Refs. 6 and 7). 
dReference 10. 
"Reference 12. 
'Reference 11; harmonic frequencies, not fundamentals, are tabulated. 

de ees. 
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Figure 1. Centrifugal stabilizations AE/J4 in cm-' vs. J for O3 at 
the W/6-31G* level for (a) Jl(a,  (b) J( lb ,  and (c) Jllc. Circles denote 
the computed points with the dashed lines giving the extrapolations 
to J = 0.  The associated J values may be taken from the legend for 
Figure 2. AE is defined in Eq. (8). 

H4 = - A j J 4  - AJKJ2J: 
- AK J," - 2aJ J& J 2  (9) 

where J2 = J - J, J& = Jf - J;, and the x ,  
y ,  and z axes correspond to b, c, and a, re- 
spectively. The agreement with experiment12 
is generally satisfactory even at  the HF/6- 
31G* level. For the MCSCF level we have uti- 
lized our analytical expressions2 for the 
second derivatives to obtain directly the 
quartic distortion coefficients in the low J 
limit, thus eliminating the need for extrapo- 
lations. The centrifugal distortion of ozone 
has been previously discussed'3* l4 in terms of 
the conventional description15 involving ro- 
tational constants, vibrational frequencies, 
and Coriolis coupling coefficients. Our 
method, as illustrated by the HF/6-31G* re- 
sults in Figure 1, involves a direct estima- 
tion of the total (electronic plus rotational) 
energy of a rotating molecule. 

- aK(J; J& + J& 5:) 

In Figure 2 we show the computed cen- 
trifugal distortion pathways as bond angle 
changes versus bond length changes for the 
three cases J 1) a, J 11 b, and J 11 c, again for the 
HF/6-31G* level. The results may be ex- 
pressed in terms of J as follows 

(a) Jlla AR = 6.8 X 10-6JZ 

(b) Jllb AR = 4.9 X 10-7J2, 
AO = -3.0 x 10-35: 

AO = 1.1 x 10-452, 

A O  = 5.9 x 10-55: 
(c) J I ~ C  AR = 4.8 x 10-75: 

In the above AR is the change in bond 
length in Angstroms. A0 is the change in 
bond angle in degrees, and J,, Jb, and J, are 
the dimensionless components of J. The dis- 
placements may be expressed in terms of the 
zero-order rotational energies using the cal- 
culated rotational constants from Table I as 
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follows 
(a) Jlla AR = 1.6 x 10-6E: 

(b) Jllb AR = 1.0 X 10-6Eg 

(c) Jl(c AR = 1.1 x 10-6E,0 

In the above the energy com onents are in 
cm-' while AR and A 0  are in H ngstroms and 
degrees as before. We note that  the bond 
lengthening is nearly isotropic when ex- 
pressed in terms of rotational energy rather 
than angular momentum. 

A 0  = -7.1 X 10-4Et 

A e  = 2.2 x 1 0 - 4 ~ g  

A e  = 1.3 x 10-4~:  

SUMMARY 

We have reviewed the procedure for calcu- 
lating centrifugal distortions and accompa- 

10.0 

- 
CT 
Q, 
-0 - 5.0 0 
a 

I 

0.0 

nying energy stabilizations from gradients 
of a b  initio potential energy hypersurfaces 
and applied the procedure for the first time 
to an asymmetric top, namely ozone. The re- 
sulting quartic centrifugal coefficients are in 
good agreement with experiment. The bond 
length change is found to be nearly isotropic 
when expressed in terms of rotational energy 
rather than in terms of angular momentum. 
We conclude that our quasistatic procedure' 
provides a generally adequate picture of cen- 
trifugal distortions in ozone. The strength of 
our method lies in its use to answer the fol- 
lowing question: What is the geometry and 
energy of a molecule with a large rotational 
angular momentum? 

The authors wish to thank Dr. H.M. Pickett for 
helpful discussions concerning ozone and the Univer- 
sity of Michigan Computing Center for the use of its 
facilities. 

cT 
Q, 
U 
v 

0 
a 

5.0 - 

0.0 0.00 / // 0.01 0.02 0.03 

A R  GI 
Figure 2. Centrifugal distortion pathways as bond angle changes 
A6 in degrees versus bond length changes AR in Angstroms €or O3 at 
the H~/6-31G* level for (a) J(Ia, (b) Jl(b,  and (c) Jl(c. 
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