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Linearized embedding is a variant on the usual distance geometry methods for finding atomic Cartesian 
coordinates given constraints on interatomic distances. Instead of dealing primarily with the matrix of inter- 
atomic distances, linearized embedding concentrates on properties of the metric matrix, the matrix of inner 
products between pairs of vectors defining local coordinate systems within the molecule. We developed a 
pair of general computer programs that fist convert a given arbitrary conformation of any covalent molecule 
from atomic Cartesian coordinates representation to internal local coordinate systems enforcing rigid valence 
geometry and then generate a random sampling of conformers in terms of atomic Cartesian coordinates that 
satisfy the rigid local geometry and a given list of interatomic distance constraints. We studied the sampling 
properties of this linearized embedding algorithm vs. a standard metric matrix embedding program, DGEOM, 
on cyclohexane, cycloheptane, and a cyclic pentapeptide. Linearized embedding always produces exactly 
correct bond lengths, bond angles, planarities, and chiralities; it runs at least two times faster per structure 
generated, and is successful as much as four times as often at refining these structures to full agreement with 
the constraints. It samples the full range of allowed conformations broadly, although not perfectly uniformly. 
Because local geometry is rigid, linearized embedding’s sampling in terms of torsion angles is more restricted 
than that of DGEOM, but it finds in some instances conformations missed by DGEOM. 8 1992 by John Wiley 
& Sons, Inc. 

INTRODUCTION 

A commonly occurring problem in chemistry is to 
calculate a molecule’s conformation or conforma- 
tions, if any, that satisfy a given set of geometric 
constraints. This most often arises in the determi- 
nation of the conformation of small proteins in so- 
lution by nuclear magnetic resonance (NMR), where 
the constraints are restrictions on some dihedral an- 
gles from coupling constant measurements, upper 
bounds on the distances between a few specified 
pairs of atoms from nuclear Overhauser effect 
(NOE) measurements, plus all the a priori bond 
lengths, bond angles, van der Waals radii of atoms, 
and the planarity or chirality of various groups. The 
obvious way to solve this is by local minimization 
of a penalty function, which consists of a sum of 
terms, one for each constraint, such that a term is 
zero if the constraint is satisfied or monotonically 
increasingly positive as the violation of the con- 
straint increases. The difficulty is that the optimi- 
zation starts from an arbitrarily chosen conforma- 
tion and proceeds nearly always to a local minimum 
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where the penalty function is greater than zero. That 
is, no small perturbation of the conformation can 
improve the remaining violation of constraints. His- 
torically, the first practical approach to the problem 
was the distance geometry EMBED algorithm,’ 
which uses the constraints to produce better starting 
conformations, in the sense that the subsequent min- 
imization of the penalty function more often suc- 
ceeds in reaching zero, i.e., complete agreement with 
the constraints. Another way to avoid the attrition 
problem is to vary the penalty function during the 
course of minimization.2 The other popular approach 
is to begin with a conformation typically calculated 
by EMBED and seek a low-energy Conformation still 
satisfying the constraints by using simulated an- 
nealing and molecular dynamics with a potential 
function that is the sum of an empirical intramole- 
cular energy function and the penalty f ~ n c t i o n . ~  In 
any case, these procedures produce, more or less 
efficiently, a collection of conformers, each obeying 
the original constraints more or less accurately, or 
else some indication that the constraints are mu- 
tually contradictory. The set of output structures is 
supposed to be a more or less thorough and more 
or less representative random sample of the theo- 
retically allowed conformation space. The sampling 
properties of these methods has been particularly 
hotly debated. 
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To explain our new linearized embedding proce- 
dure, we must first briefly summarize the EMBED 
algorithm.' First, almost all the local constraints 
are expressed as upper and lower bounds on the 
distances between specified pairs of atoms: bond 
lengths, bond angles, rigidity of some ring systems, 
and torsion angle constraints that do not involve the 
sign of the dihedral angle. Other local constraints 
are included only later as terms in the penalty func- 
tion: signed torsion angle constraints, chirality of 
asymmetric centers, and planarity of some ring sys- 
tems. Explicit constraints, such as the results of 
NMR experiments, are similarly expressed as upper 
and/or lower bounds on certain interatomic dis- 
tances. Van der Waals contact distances otherwise 
provide lower bounds for the remaining interatomic 
distances, but these do little to restrict the overall 
conformation. At this point, most interatomic dis- 
tances have only a weak lower bound and essentially 
no upper bound at all, in the sense that these are far 
from being the greatest lower bounds and the least 
upper bounds consistent with the given constraints. 
However, the effects of the few strong constraints 
can be propagated in various ways to all distances, 
a process termed bound smoothing. All this prelim- 
inary work, especially the bound smoothing, can be 
rather time consuming but is done only once for a 
given molecule and its explicit constraints. Then, for 
each random structure to be generated, the algo- 
rithm simply chooses an n, x n, matrix of random 
interatomic trial distances, each within its corre- 
sponding lower and upper bounds, where there are 
n, atoms in the molecule. This matrix is in turn con- 
verted to its corresponding n, X n, trial metric 
matrix. The trial metric matrix corresponds in gen- 
eral to some conformation in Rn (or in no space at 
all, due to an incorrect choice of trial distances), but 
the nearest rank 3 metric matrix, built up out of the 
three largest positive eigenvalues and corresponding 
eigenvectors of the trial metric matrix, can be di- 
rectly converted to a set of atomic trial coordinates 
in W3. The trial coordinates have the correct dimen- 
sionality, but they no longer obey the original geo- 
metric constraints, in general. Refined coordinates 
are found by local numerical minimization of the 
constraint violations as a function of atomic coor- 
dinates starting from the trial coordinates. Many vari- 
ations on EMBED have been pr~grammed?,~ but the 
version used here for comparison purposes is the 
DGEOM code, as furnished by QCPE.' This was 
based upon early programs due to Crippen and co- 
workers but greatly modified primarily by Jeffrey 
Blaney and also Andrew Dearing and J. Scott 
D i x ~ n . ~ - ~  

In this study, we further develop the linearized 
embedding approach.1° Instead of concentrating on 
atomic coordinates and interatomic distances, atoms 
are positioned indirectly once a set of local coor- 
dinate systems are determined, one system for each 

group of atoms having fixed positions with respect 
to each other under the assumption of rigid valence 
geometry. Thus, all the local constraints are built 
into the initial linearized representation of the 
molecule, as described below. Each conformation to 
be generated is represented primarily by an nu x nu 
metric matrix, giving the relative orientations of the 
nu local coordinate system axis unit vectors. Then, 
as in EMBED, the trial metric matrix is converted 
to unit vector trial coordinates in W3 and a penalty 
function is minimized, but with respect to dihedral 
angles rather than atom coordinates. Sampling the 
allowed conformation space is still done in terms 
of choosing many different random trial metric ma- 
trices and producing refined atomic Cartesian co- 
ordinates from each. In what follows, we describe 
major changes to the linearized embedding algo- 
rithm and compare its sampling with results from 
DGEOM. 

METHODS 

Linearized Representation 

Depending upon the approximations one wants to 
make, a molecule can be idealized in many different 
ways, such as a continuously varying electron den- 
sity function, a list of atomic coordinates, or an ab- 
stract graph with atoms for nodes and bonds for 
edges. Here, we assume the atoms are points in R3, 
all the atoms of a molecule are connected by co- 
valent bonds, bond lengths and vicinal bond angles 
are fixed, and the only variation in conformation 
comes from rotating about single bonds. (Techni- 
cally, we also assume that all rings are rigid, so that 
the calculation of the pseudorotation of cyclohexane 
is done by putting extra ring closure constraints on 
the acyclic hexane molecule.) Let a set of atoms with 
fixed relative positions be called a rigid group. 
Then, one can think of the molecule as a set of n, 
rigid groups linked together by n, - 1 rotatable 
bonds. Because all cycles are assumed rigid, the rigid 
groups cannot be connected together in any sort of 
loop, so they form a tree graph. Choose one relatively 
central rigid group as the root of the tree, called here 
the first rigid group, and number the rest 2, . . . , n, 
in breadth-first order. The atoms on either end of a 
rotatable bond can be considered members of either 
rigid group, and we choose to put both in the rigid 
group higher in the tree. Figure 1 shows the example 
of biphenylmethane, where the methyl is the first 
rigid group at the root of the molecular tree, and it 
includes two hydrogens, the central carbon A, and 
the carbon atoms B and C. The other two rigid groups 
are the remainders of the two phenyl rings. Here, 
n, = 3 and the two rotatable bonds are AB and AC. 
We will refer to B as the root atom for the second 
rigid group, A as its parent atom, and Al3 as its 
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Figure 1. Molecule showing assignment of rigid groups. 
The two bonds, from A to B and from A to C, are rotatable 
torsions. The atom labeled B is the root atom for the 
second rigid group and the vector from A to B is the bond 
vector for the second rigid group. Similarly, the atom la- 
beled C is the root for the third rigid group and the vector 
from A to C is its bond vector. 

defining bond. For the third rigid group, these are 
C, A, and AC, respectively. In general, the defining 
bond is the rotatable bond linking a rigid group to 
its parent rigid group, the root atom is on the end 
of the defining bond nearer the rigid group, and the 
parent atom is on the other end. 

The central feature of the linearized representa- 
tion of a molecule is that each rigid group has a local 
coordinate system that moves with it as the molecule 
changes conformation. In Figure 1, the nonplanar 
first rigid group requires a full three-dimensional co- 
ordinate system with coordinate axes, called unit 
vectors, labeled ul, u2, and u3. Subsequent rigid 
groups use the corresponding defining bond vector 
as one axis, and then one or two additional unit 
vectors, depending upon whether the group is planar 
or nonplanar, respectively. For every atom, there is 
a linear combination of unit vectors and a coeffi- 
cients that describes its position. 

j =  1 

pz' = p;,,, + az'vvT + c apl; 
j =  1 

where pf is the position vector of the ith atom in 
the r th  rigid group, w is the translation vector from 
the fixed external frame of reference to the centroid 
of the f i s t  rigid group, uj' is the j th unit vector in 
the r th  rigid group, n; is the number of unit vectors 
that define the rth rigid group (nh = 1,2,  or 3; sub- 
sequent n; = 0, 1, or 2), vr is the normalized defining 
bond vector for the rth rigid group, and afj is the 
coefficient associated with the ith atom andjth unit 
vector (or the bond vector v') in the rth rigid group. 
In terms of atom positions already defined by unit 
vectors and as of previous rigid groups, 

(2) 
v r  =  lot - PLarent 

I l ~ L o t  - Pcarentll 

The converse is also true. Every unit vector can 
be described by a linear combination of atom posi- 
tions. 

na 
u! = c @!.(pi - w) 

u; = c p$(p: - p;,,, - CUW) 

3 Y 

(3) i = l  

n: 

i= l  

where /3& is the coefficient associated with the ith 
atom andjth unit vector in the r th  rigid group, and 
n; is the number of atoms in the r th  rigid group. As 
the molecule changes conformation, the unit vectors 
change direction, but the as and ps remain constant. 

The LINIZE program finds a linearized represen- 
tation for a molecule. Its input is the atomic coor- 
dinates of the molecule, which element each atom 
is, and the simple, unlabeled connectivity between 
pairs of atoms. Its output is the organization of the 
molecule into rigid groups, the as and ps  for all 
possible conformations, as well as the particular co- 
ordinates for the unit vectors corresponding to the 
given conformation. 

LINIZE begins with the given connectivity, atom 
coordinates, and a unique label for each atom that 
starts with its atomic symbol. A series of depth-first 
searches are made to determine the most central 
atom in the molecular graph and identify those at- 
oms involved in cycles. Bond types are determined 
for each bond in the molecule using the connectivity 
data, each atom's chemical identity, and simple rules 
of chemistry. 

Next, the program must break the molecule up 
into a collection of rigid groups, as defined above. 
A single bond that is not part of a ring and does not 
link a terminal atom is viewed as a rotatable bond 
and must connect two rigid groups. To minimize the 
propagation of errors associated with the lineariza- 
tion process, the first rigid group is the one contain- 
ing the central atom. Subsequent rigid groups are 
numbered in order of a breadth-first traversal of the 
tree of rigid groups. Each subsequent rigid group has 
not only a collection of atoms belonging directly to 
it but also references to its root atom, parent atom, 
and defining bond, all of which technically are part 
of the parent rigid group in the tree. 

Once the rigid group organization is complete, we 
calculate unit vector coordinates and as for each 
rigid group from the atomic coordinates. The cen- 
troid for the first rigid group, w, amounts to the 
overall translation vector of the molecule from the 
origin of the atomic coordinates external reference 
frame. Subtracting this from the coordinates of each 
atom gives reduced coordinates, c;, that are local 
to the rigid group. 

1 na c P: nt 
c; = pi - w 

w = -  
(4) 
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For the subsequent rigid groups, reduced coordi- 
nates are calculated by subtracting the root atom's 
coordinates and the component of the (normalized) 
bond vector: 

c[ = p; - pFoot - cY;uv' (5) 
where 

= (p; - pFo0J * vr 

The reduced coordinates are used to calculate the 
inertial tensor for each rigid group: 

4 
T' = 2 c;(c;)~ 

i = l  
(7) 

where (.)T denotes vector transpose. The Jacobi 
method" is used to determine all the eigenvalues 
and (normalized) eigenvectors for T'. There may be 
from one to three nonzero eigenvalues for the f i s t  
rigid group. Subsequent rigid groups may have zero 
to two nonzero eigenvalues. The number of nonzero 
eigenvalues defines the dimension of space spanned 
by the reduced coordinates of the atoms of the rigid 
group, and the corresponding eigenvectors form a 
basis set for the space, denoted as the unit vectors 
u; in eq. (1). By construction, the eigenvectors are 
always orthogonal to the bond vector, and adding 
the latter to the basis gives an expanded basis for 
the original coordinates of the atoms in the rigid 
group. Then, the as are simply the atom coordi- 
nates in the rigid group's local basis, and are cal- 
culated by 

(8) 
a!. = c! . uj 
ar. Y = (p[ - pFoot) * uj' 
Y a 

and by eq. (6). 
These unit vectors and as are accurate for rigid 

groups that fully span three dimensions, but for 
those rigid groups that do not, these trial values may 
lead to some large errors. The worst case occurs 
when almost planar or almost linear groups are 
treated. Suppose LINIZE begins with the X-ray crys- 
tal structure of a molecule involving a chain of ar- 
omatic ring systems linked by single bonds. Because 
of small experimental errors and numerical impre- 
cision, a few atoms of the frst rigid group may end 
up just barely out of the plane. LINIZE would give 
a basis set of two vectors, neglecting the third ei- 
genvector because of its very small eigenvalue. Use 
of this basis set results in small errors in the posi- 
tions of some atoms, which may be in turn the parent 
and root atoms for a subsequent nearly planar rigid 
group, etc. If these errors are allowed to propagate 
down a long chain, the errors at the end could be 
substantial. 

To avoid this type of problem, we refine the unit 
vector coordinates and as for each rigid group, in- 
dependently of the others, starting with the first rigid 

group and proceeding in the usual breadth-first or- 
dering. In each case, we minimize a penalty function 
that is just the total squared deviation between the 
calculated atom positions according to eq. (1) and 
the original atom positions. 

n: 

E' = 2 ( ~ ; , c d c  - P;,originaJ2 (9) 
i = l  

For the first rigid group, no adjustment is required 
if it is clearly nonplanar, but if it is planar we perform 
a least-squares fit to find the plane that best de- 
scribes the positions of all atoms in the rigid group. 
Two orthonormal vectors that describe the plane are 
chosen as the fixed unit vectors, and E' is minimized 
with respect to the a$j. For subsequent rigid groups, 
an orthonormal basis set is defined consisting of 
always the normalized bond vector, which is now 
fixed in the refined parent rigid group, and two basis 
vectors calculated by orthogonalization of the ap- 
proximate unit vectors and the bond vector. For a 
nonplanar rigid group, such as a methylene, the two 
refined unit vectors are calculated by 

(10) 
u; = b,'sin 8 + bX cos 8 

u$ = b; cos 8 + b$ sin 8 

in terms of the two basis vectors b; and b j  as a 
function of 8, the angle of rotation about the bond 
vector. (For a planar group, we use only the first of 
these two equations.) This transformation guaran- 
tees that the optimal unit vectors will always be 
orthogonal to the bond vector and to each other. In 
this situation, the variables involved in the minimi- 
zation of E' are the as associated with both the unit 
vectors and the bond vector and 8. For minimiza- 
tions, we used the conjugate gradient algorithm by 
Shanno and Phua." Although this protocol treats 
rigid groups individually, we found it performed 
more reliably than minimizing a more complicated 
penalty function including orthonormality terms 
with respect to all as and all unit vector coordinates 
of all rigid groups at once. 

The full linearized description of the molecule re- 
quires not only the as to go from unit vector coor- 
dinates to atom coordinates according to eq. (1) but 
also the ps for the inverse calculation via eq. (3). 
Although linearized embedding does not require ps ,  
other conformational calculations do, so we describe 
their determination here for completeness. For rigid 

the vector of desired ps for thejth unit vector, let 
ur 3 = (u;,, uIy, ulZ, 0) be the known coordinates of 
the j th  unit vector with a zero appended, and let 

group r, let Pr  = ( P T , ~ ,  . . . , P G ; ~ ,  PFootj, PZ;arent,j> be 

PT,, 
* * * P G I ; > ~  P:oot,z PC;arent,z 

D? = pi,, * . 
~ k h , y  PFoot,y PC;arent>y 

PT,y 
. . * 

~ k ~ , z  PFoot,, PZ;arent,z 
1 1 1 1 . . .  i 
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Clearly, the root and parent entries are not included 
in f3' and D'. Then, solving 

p f 3 r  = y (12) 

determines the P s  for this unit vector in this rigid 
group, along with the side condition that they sum 
to zero to make them unique. Because this is always 
an underdetermined system, we solve it by comput- 
ing the Moore-Penrose generalized inverse13 for D'. 

LINIZE uses eq. (1) to calculate atom coordinates 
from unit vector coordinates because it requires the 
fewest as. However, it does require the full organi- 
zation of the molecule in terms of rigid groups with 
their root and parent atoms and implies that all atom 
coordinates need to be calculated in order of their 
rigid groups. A more convenient form, especially for 
calculating the coordinates of an arbitrary atom i, is 

pi = w + aijuj (13) 
j 

where the indexj  runs over all unit vectors in the 
entire molecule. Similarly, eq. (3) becomes 

uj = c Pij(Pi - w) (14) 
i 

where i runs over all atoms in the whole molecule. 
Clearly, one can convert from eq. (1) to eq. (13) by 
noting that the parent and root atoms for one rigid 
group can be written as a linear combination of as 
and unit vectors from previous rigid groups. Linear- 
ized embedding uses eq. (13), as we shall see. 

Linearized Embedding 

In overview, the linearized embedding algorithm be- 
gins with the linearized form of the molecule and a 
set of explicit interatomic distance constraints. The 
current implementation of the algorithm, the pro- 
gram LE, deals only with intramolecular constraints 
acting on a single, covalently connected molecule, 
although there is no fundamental reason why it could 
not be generalized to handle multiple molecules with 
intermolecular constraints as well. The linearized 
representation itself embodies a number of con- 
straints on certain linear combinations of unit vector 
dot products in order that individual rigid groups of 
atoms are not distorted and so as to maintain the 
rigid valence geometry relative orientations between 
adjacent rigid groups. The explicit distance con- 
straints can be put in a similar form and added to 
the list of implicit constraints. Like the bound 
smoothing step in EMBED, these linear constraints 
imply some generally valid contraction of the ranges 
allowed to some of the metric matrix elements (the 
matrix of all unit vector dot products). This helps in 
choosing a random trial metric matrix, but much 
more important is to adjust the random choices so 
they precisely obey all the linear constraints. Then 

trial unit vector coordinates in W3 are found, but now 
by a new method not involving the eigenvalues of 
the metric matrix. The advantage is that these trial 
coordinates exactly obey all the implicit constraints 
from the rigid valence geometry assumption. These 
trial coordinates are refined by optimizing a penalty 
function of explicit distance and van der Waals con- 
straint violations with respect to the dihedral angles 
of all the rotatable bonds. The outcome is a set of 
Cartesian coordinates for the unit vectors, which can 
be readily converted to atomic coordinates. As usual, 
many different random refined structures can be pro- 
duced by choosing different random trial metric 
matrices. The following paragraphs expand on this 
outline in an attempt to highlight the key equations 
without drowning in programming detail, a matter 
of some 5000 lines of C source code. 

We start with the linearized representation of the 
molecule in terms of nu atoms, nu unit vectors, and 
n, rigid groups, necessarily joined together by n, - 
1 rotatable bonds. Suppose there is an explicit dis- 
tance constraint between atoms a and b of the form 
da,b < z),,~. (Distance lower bounds and equalities 
can be treated in exactly the same way.) Now, be- 
cause the coordinates of these atoms are expressible 
in terms of the unit vector coordinates and the fixed 
coefficients 

then 

d f , b  = llPa - Pb112 
n.. n,. 

(%,j - a b , j ) q  . 9 < V f , b  (16) 

because ut = 1. Other linear constraints on the u, 
. qs  arise from the mutual orthogonality of unit 
vectors belonging to the same rigid group 

ui 9 = 0 V i , j  E same rigid group (17) 

and from the orthogonality of the unit vectors 9 in 
any but the first rigid group to their defining bond 
vector 

where atoms a and b are the parent and root atoms 
defining the bond. A last type of implicit constraint 
comes from the orthogonality of a unit vector 9 to 
its normalized defining bond vector 

nu 
Pa - Pb 

= %b,kUk 
llPa - Pbll k = l  



GENERAL LINEARIZED EMBEDDING ALGORITHM 1267 

and the fixed but not necessarily 90" angle between 
the bond vector and a unit vector u, in the parent 
rigid group, i.e., the group on the other end of the 
a--b bond. Then 

1% * lL1 5 v i T &  (20) 
which is equivalent to saying that q % achieves 
maximal and minimal values at the cis and trans 
conformations given by the sine of the angle between 
u, and the bond vector. 

In EMBED, bound smoothing raises the lower 
bounds and lowers the upper bounds on many of 
the interatomic distances. The equivalent operation 
here is to start with the default limits 

(21) - 1  = A , .  < U, . U. < w,. = 1 
Y - .I - v 

combined with all the linear inequalities enumerated 
above, and successively maximize and minimize 
each ui . % by linear programming. This is the best 
bounds contraction that can be derived from given 
constraints, but the CPU time required is large com- 
pared to the rest of the steps in the algorithm. As 
illustrated in Figure 2, the region of random ui * 3 
sampling later in the algorithm is contracted to some 
hyperrectangle in Rni~, while the actual feasible re- 
gion may be much smaller due to the frequently oc- 
curring equality and near-equality constraints. Con- 
sequently, we use a much faster approximation to 
the linear programming process that still substan- 
tially contracts the bounds of a minority of the metric 
matrix elements while keeping in mind that we will 
have to refer to the original constraints later. The 
smoothing procedure involves choosing one con- 
straint (other than a van der Waals constraint) and 
solving it for a particular ui * 9, resulting in an upper 
bound, for example. 

ui . uj 5 c c,,,u, * u, (22) 
k, 1 

h 
h 

-1 - 
-1 1 

Figure 2. Two variable example of a typical bound 
smoothing situation. The initial bounds of eq. (21) corre- 
spond to the large white box, but the detailed constraints 
allow only the feasible region shown as a dark triangle. 
Bound smoothing can contract only to the lightly shaded 
rectangle, thus still permitting many infeasible choices of 
u; . WS. 

Then, substituting the current limits on the other 
variables 

may produce a tighter upper bound for ui . 9. Sim- 
ilarly, lower bounds can be raised. Repeat for all 
constraints and all u, 9 s  until no further improve- 
ments can be made. In general, the range for most 
u, * 3 s  remains 2 ,  as in eq. (21), but for some the 
range contracts to 1 or less, typically when & and 
9 lie in adjacent rigid groups. On average, we see a 
contraction of only a few percent. This smoothing 
step completes all the preliminary calculations. 

For each conformer to be generated, we cycle 
through this and the following steps. First, choose 
values for all elements of the (symmetric) metric 
matrix by taking independent random numbers uni- 
formly distributed between the corresponding 
bounds. This metric matrix does not in general sat- 
isfy the original list of linear constraints for reasons 
explained above. Suppose there are altogether n, 
linear constraints, of which often nearly half, or n,, 
are equalities. There are ra, = n,(n, - l ) /2  variable 
entries in the random metric matrix, and generally 
n,. % n,. Use the equalities to eliminate n, of the 
variables from the remaining n, - n, linear inequal- 
ity constraints, and solve these by subgradient op- 
timization. Subgradient optimization applied to solv- 
ing a set of inequalities amounts to simply finding 
the worst violated inequality given the current ap- 
proximation to the solution and taking a step along 
its gradient to reduce the violation, according to a 
step size choice given by Sandi.14 For the kinds of 
problems we are trying to solve here, the procedure 
tends to oscillate between two different inequalities 
having nearly opposite gradient vectors and thus 
makes little progress per iteration. In the spirit of 
modifications outlined by Fletcher,15 we average the 
two gradients when this behavior arises. Typically, 
the random metric matrix converges to a trial metric 
matrix accurately satisfying all the linear constraints 
within 10 or 20 iterations, but two features are ab- 
solutely essential for this rapid convergence: the gra- 
dient averaging and using the equalities to eliminate 
variables, rather than including them as explicit con- 
straints during subgradient optimization. 

The trial metric matrix satisfies all the linear con- 
straints, but it does not in general have 3 positive 
and nu - 3 zero eigenvalues, the condition for em- 
beddability in R3. If we generate unit vector coor- 
dinates in the usual way' from the three largest pos- 
itive eigenvalues and their eigenvectors, the local 
constraints, such as unit vector orthonormality 
within rigid groups, are grossly violated. Instead, we 
generate unit vector coordinates in R3 exactly sat- 
isfying all the local constraints, while attempting to 
otherwise agree with the trial metric matrix in a 
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least-squares sense. The procedure is to first place 
the orthonormal unit vectors of the f i s t  rigid group 
in an arbitrary orientation, say parallel to the coor- 
dinate axes. Then, for every subsequent rigid group 
let v be the first unit vector of the group and let 
U = (ui,J be the n x 3 array of the n determined 
unit vectors from previous rigid groups such that the 
dot product of v and each of these fixed unit vectors 
was involved in at least one of the linear constraints. 
(Using all previously determined unit vectors tends 
to dilute the quality of the least-squares fitting of v 
by striving to fit many elements of the trial metric 
matrix that are very random.) The problem is to 

n /  3 \ 2  

minimize 2 (ti - 9 U ~ , ~ Z I ~ )  (24) 
i = l  j = 1  

subject to v . b = 0 

where b is the current rigid group’s defining bond 
vector and t is the vector of desired dot products 
between v and the already determined unit vectors 
of U,  as specified by the trial metric matrix. The 
solution to this constrained optimization problem 
can be found by solving 

where A is the Lagrange multiplier for the orthogo- 
nality constraint. The resulting v must be subse- 
quently normalized. Technically, this is not the same 
as adding a normalization constraint to eq. (24), but 
that would make the problem nonlinear. Given that 
all this is just a heuristic to find promising initial 
coordinates for the unit vectors, knowing full well 
they will not satisfy the original linear constraints, 
dealing with a nonlinear constrained optimization 
hardly seems worth the trouble. There is one special 
case not covered by our calculation of v, namely, 
when it is the fist unit vector in the second rigid 
group and the fist rigid group was planar. Then, 
n = 2, u1 = (1, 0, 0), u2 = (0, 1, 0), the normalized 
bond vector b = (b,, by, 0), and t = (m1,3, m2,3), 

where M = (mi,j) is the trial metric matrix. Then, if 
- 1  I cos 8 = b p , , ,  - b,rnZB 5 1 the optimal 

v = (by cos 8, -b, cos 8, sin 8) (26) 

Otherwise; the solution lies in the plane 

(27) 
(by, -b,, 0) whichever is better v = {  
(-by, b,, 0) 

If the current rigid group is planar, we are done, but 
if not, the second unit vector is just +v x b with 
the sign chosen to give the correct chirality of the 
rigid group. 

The trial unit vector coordinates just calculated 
are certainly in R3 and obey all the local constraints 
of orthonormality within a rigid group, correct local 
chiral centers, and orthogonality to corresponding 
bond vectors. However, they do not necessarily obey 

the linear constraints that the trial metric matrix did, 
not do the implied atom coordinates obey van der 
Waals minimal interatomic distances. The last step 
is to find refined unit vector coordinates and hence 
atom coordinates by minimizing a penalty function, 
starting from the trial coordinates. To maintain the 
precise local geometry, this unconstrained local min- 
imization is carried out with respect to dihedral an- 
gles about the n, - 1 rotatable bonds. We used 
Shanno’s conjugate gradient minimizer with Beale 
restarts12 applied to the error function 

where the sum runs over van der Waals lower bounds 
on 1-4 interatomic distances and beyond, and over 
the explicit interatomic distance constraints. Van der 
Waals and explicit constraints may be weighted dif- 
ferently. For example, we find it improves conver- 
gence to first minimize f with a low weight on van 
der Waals compared to explicit constraints, and then 
follow with a second round of minimization weight- 
ing them equally. The fist pass locates the correct 
overall conformation without massive van der Waals 
violations, and the second pass makes small changes 
to the conformation to relieve interatomic overlaps. 

RESULTS 

Cyclohexane 

The main use of the EMBED algorithm has been to 
determine conformations of small proteins from the 
results of NMR studies. There has been considerable 
concern about the breadth and evenness of sampling 
the allowed conformation space. With such large 
molecules and complicated sets of constraints, it has 
been hard enough to decide whether the constraints 
are mutually consistent, i.e., whether there is any 
allowed set of conformations to sample at all, much 
less whether all major types of conformations have 
been seen and that the sampling was in some sense 
representative. As a test on a relevant, known sys- 
tem, HavelI6 demonstrated agreement between the 
sampling of polyalanine chains generated by his DG- 
I1 program,17 an advanced implementation of 
EMBED, with the distributions expected by polymer 
theory. Here, we initially tested LE with the much 
simpler case of cyclohexane, where the full confor- 
mation space is known analytically, for example, by 
Dress’s interatomic distances derivation,’ or by an 
analysis of the linearized representation.ls Disre- 
garding the hydrogens and insisting on uniform 
C-C bond lengths and uniform tetrahedral 
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C-C-C bond angles, the chair conformation is an 
isolated point in conformation space, the boat and 
skew-boat conformations form a continuous, locally 
one-dimensional closed loop traversed by a single 
degree of pseudorotation freedom, and there are no 
other conformations. 

As we have seen above, calculating the linearized 
representation for even hexane is a nontrivial op- 
eration, so we used the LINIZE program, but this has 
so much chemical knowledge built into it that one 
must start with a chemically correct C6HI4 molecule 
rather than just the carbon skeleton. Consequently, 
we began with the default n-hexane structure gen- 
erated by the commercial Quanta program, which 
happens to give C-C bond lengths of 1.529 A and 
C-C-C bond angles of 112.7" (greater than the 
perfect tetrahedral angle of 109.47"), corresponding 
to a 1-3 distance of 2.546 A. To compare as closely 
as possible with the analytic results, all van der 
Waals radii were set to zero, leaving only the three 
explicit distance constraints: d(C1, C6) = 1.529 A, 
d(C1, C5) = d(C2, C6) = 2.546 A. A total of 100 sets 
of refined coordinates were produced from 100 sets 
of trial coordinates (what we will call a 100/ 100 suc- 
cess ratio) in 0.251 s of CPU time per trial structure 
on a Sun SparcStation 11. The 25 s for the run includes 
both the initial set-up and analysis of the general 
constraints, as well as the 100 repetitions of the steps 
associated with each structure, but the majority of 
the time was in the latter. The maximum violation 
of an explicit distance constraint by any trial struc- 
ture was 3.2 A, although in general it was on the 
order of 0.5 A, indicating that usually even the trial 
structures nearly satisfied the ring closure con- 
straint. Figure 3 shows a scatter plot of the Cl-C2 
vs. C3-C4 dihedral angles. Seven of the structures 
cluster around the chair conformation, 1 is at the 

-20 

-40 

.. . 
-60 

-80 

mirror image chair, and the remaining 92 are dis- 
tributed broadly but not entirely uniformly around 
the boat pseudorotation loop. The maximum allowed 
constraint violation in all these studies was 0.1 A, so 
the clustering of the conformations was a little fuzzy. 
To ensure that this maximal constraint violation 
would always be obeyed, the final minimization of 
the error function with respect to dihedral angles 
had to be carried out to a squared gradient magni- 
tude of 0.005 or less. A perfect cyclohexane chair 
with perfect tetrahedral bond angles would have di- 
hedral angles [?60", T6W, ?60", T60", t60", T60"], 
but due to our greater C-C-C angle and limited 
precision, chair dihedral angles ranged in magnitude 
from 44-56". 

Like LINIZE-LE, the traditional embedding pro- 
gram, DGEOM, deduces its local constraints by start- 
ing with an arbitrary, unconstrained conformation 
of the molecule in question. To make as close a com- 
parison as possible between LE and DGEOM, we 
started the latter with the same n-hexane confor- 
mation including all hydrogens, the same required 
distance accuracy and gradient norm (otherwise the 
default options), the same zero van der Waals con- 
straints, and the same three explicit ring closure con- 
straints. This produced 100/108 structures in 0.51 s 
per trial structure. The eight failures were really due 
to local minima in the error function during the re- 
finement step. It is clear in Figure 4 that DGEOM 
locates only the chair conformation and its mirror 
image, apparently due to its well-known tendency to 
favor conformations having long interatomic dis- 
tances. 

However, in defense of DGEOM, if one starts with 
only six carbon atoms but specifies explicitly all 15 
distance constraints among them (6 fixed bond 
lengths, 6 fiied bond angles, and otherwise zero 

* .  
I *  

f . .:. + 

' *. 

Figure 3. Scatter plot of two dihedral angles for 100 conformers of 
cyclohexane as generated by LE. 
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Figure 4. 
cyclohexane as generated by DGEOM (cf. Fig. 3). 

Scatter plot of two dihedral angles for 100 conformers of 

lower bounds on other intercarbon distances), then 
the sampling is dramatically better. All 100/100 
structures converge, averaging 0.03 s per structure. 
Five are chair conformations and the other 95 uni- 
formly sample the boat pseudorotation, resulting in 
a picture essentially like Figure 3. Why the presence 
of hydrogens, all with zero van der Waals radii, 
should damage the sampling is not yet clear. 

C ycloheptane 

The set of conformations for cycloheptane allowed 
by rigid valence geometry has long been known to 
consist of a continuous one-dimensional boat pseu- 
dorotation loop and a similar chair pseudorotation 
loop. These paths have been mapped out in some 

detail, and no other conformations are known." Pro- 
ceeding as before from the standard heptane struc- 
ture produced by Quanta (without energy minimi- 
zation), and using zero van der Waals radii and the 
same ring closure explicit constraints, LE generates 
500/500 structures in 0.494 s per trial structure. It is 
a little harder to see the two nonintersecting pseu- 
dorotation loops without going to a seven-dimen- 
sional display, but Figure 5 is one of the best choices 
of a pair of dihedral angles. Note that somewhat 
fuzzy curved lines are clearly visible, somewhat un- 
evenly sampled (although the projection from 7 to 
2 dimensions also has the effect of making the sam- 
pling appear heavy in some places), but obviously a 
broad range of conformations has been examined. 
The picture is clearer if we exploit the sevenfold 

c3_c4 

150 

100 

Figure 5. Scatter plot of two dihedral angles for 500 conformers of 
cycloheptane as generated by LE. 
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ers, requiring 0.791 s of CPU per trial structure. The 
scatterplot equivalent to Figure 5 is Figure 7, which 
shows only 10 tight clusters, 2 on the boat pseudo- 
rotation loop and 8 on the chair loop. Although there 
is some diversity in the structures it found, they are 
so tightly clustered that the majority of the allowed 
set of conformations is untouched, giving the erro- 
neous impression that cycloheptane has only a few 
rigid conformations. As in the case of cyclohexane, 
the sampling is much better if only the seven carbons 
are used and all the intercarbon constraints are spec- 
ified explicitly. Then, 500/500 successful conformers 
are produced in 0.682 s per structure, and the sam- 
pling, shown in Figure 8, thoroughly covers the chair 
pseudorotation while missing the boat altogether. 

I , I I 1 DPLPE m 
-180 -90 0 90 1 bo 

Phi 

Figure 6. An enhanced scatter plot with 3500 values of 
two dihedral angles of cycloheptane obtained by cyclic 
permutation of the atom labels for the 500 conformers in 
Figure 5. 

symmetry of the search by superimposing the scat- 
terplot for the Cl-C2 vs. C3-C4 dihedral angles 
onto that for the C2-C3 vs. C4-C5 angles, etc., as 
shown in Figure 6. The outer “double figure eight” 
pattern is the chair pseudorotation one-dimensional 
continuum, while the inner simple elliptical loop is 
the boat pseudorotation. In the full seven dimen- 
sions, the chair path does not actually cross itself 
and does not really touch the boat path. 

Once again, we made a matching run with 
DGEOM, resulting in 5001 1275 successful conform- 

* 

DPLPE is a conformationally restricted opioid re- 
ceptor selective enkephalin analog, [D-Pen2, L- 
Pen‘lenkephalin, Tyr-~ - Pen-Gly-Phe-L-Pen , where 
Pen, penicillamine, is P,P-dimethylcysteine. Quite 
aside from some interesting NMR studies on the so- 
lution conformation of such  molecule^,'^ just the 
constraints of rigid valence geometry, van der Waals 
contacts, and closing the disulfide bridge make this 
a challenging test case. As with the small cyclic al- 
kanes, we required a maximum distance constraint 
violation of 0.1 A instead of the more customary 0.5 
8, for molecules of DPLPE’s size. Van der Waals radii 
were set to 90% of the default values used in DGEOM 
because there appear to be no cyclic conforma- 
tions compatible with full radii. The only explicit 
distance constraints were d(2:SY, 5:SY) = 2.025 A, 
d(2:CP, 5:SY) = 3.08 A, and d(5:CP, 2:SY) = 3.23 A, 
where the number before the colon is the residue 
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Figure 7. Scatter plot of two dihedral angles for 500 conformers of 
cycloheptane as generated by DGEOM starting from the full C7HI6 mol- 
ecule (cf. Fig. 5). 
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Figure 8. Scatter plot of two dihedral angles for 500 conformers of 
cycloheptane as generated by DGEOM starting from the C7 skeleton. 

number and the symbol after is the fairly standard 
amino acid atom label. LE produced 601100 con- 
formers in 27.4 seconds per trial structure. This is 
the f i s t  time the constraint set was challenging 
enough to reduce the success rate down from 100 
to 60%. The equivalent run with DGEOM found 100/ 
607 structures in 50.0 s per trial structure, a success 
ratio of only 16.5%. 

It is harder to comment on the breadth and uni- 
formity of sampling because we have no a priori 
knowledge about what conformations are really al- 
lowed, there are 24 rotatable bonds (peptide bonds 
were held planar and trans), and there were only 
60 structures from LE. To be perfectly equitable, only 
the first 60 of the 100 DGEOM structures were ex- 

amined. LE shows that the 2:Ca--2:CP dihedral is 
-60" or 180°, the 5:Ca-5:CP dihedral is ?60°, the 
disulfide 2:SY-5:SY dihedral falls in the range - 60" 
to + 60°, and the remaining dihedrals seem to scatter 
broadly throughout their full 360" range. Figure 9 
shows, for example, the four clusters of values for 
2:Ca-2:CP vs. 5:Ca-5:CP. In the equivalent plot from 
DGEOM, Figure 10, the tight clusters are spread out 
yet they miss the 2:Ca-2:CP value of - 60" entirely. 
Part of the difference may be due to the way DGEOM 
treats the molecule as 91 independently moveable 
atoms subject only to a maximum interatomic dis- 
tance violation of 0.1 A, while LE views it as 40 unit 
vectors maintaining local orthogonality constraints 
to very high precision. The missing conformations 

CA5-CB5 

150 

100 
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50 
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Figure 9. Scatter plot of two side-chain dihedral angles, x1 of residue 
2 and xI of residue 5 ,  for 60 conformers of DPLPE as generated by LE. 
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Figure 10. Scatter plot of two side-chain dihedral angles, ,yl of residue 
2 and ,yl of residue 5,  for 60 conformers of DPLPE as generated by 
DGEOM. 

may once again be due to DGEOM’s preference for 
the more extended trans conformation of 2:Ca-- 
2:c 0. 

CONCLUSIONS 

Although we have certainly not carried out an ex- 
haustive complexity study for LE, these three ex- 
amples show that it is consistently twice as fast per 
trial structure than DGEOM is, and then for chal- 
lenging sets of constraints the trial structures can 
be as much as four times more likely to refine suc- 
cessfully. Moreover, LE shows a wider and more 
even sampling of the available conformations that 
can even be called roughly satisfactory in the cyclo- 
hexane and cycloheptane tests, where we know what 
the correct sampling should be. This is not to say 
that DGEOM is a bad program. On the contrary, it 
is a mature and robust piece of software that has 
consistently located unanticipated conformations in 
a broad spectrum of situations, including multiple 
molecule problems that our LE program cannot yet 
treat. 

It is interesting to compare these results with 
some work by Havel,17 where he experimented with 
a variation on linearized embedding he calls “angular 
embedding.” He notes that the angles between unit 
vectors can be treated just like the distances be- 
tween points for the purpose of bound smoothing at 
the triangle inequality level, whereas the dot prod- 
ucts between unit vectors cannot be used this way. 
When the results of this operation are converted 
back to bounds on the dot products, we observe only 
a tiny contraction in the bounds, another reason why 
our algorithm solves the linear constraints on the 

dot products explicitly after choosing a random met- 
ric matrix. Thus, we are able to extract more infor- 
mation directly out of the constraints at still a rea- 
sonable cost than the angular embedding method 
could by concentrating on upper and lower bounds. 
Unfortunately, he concludes that “. . . angular embed- 
ding as well as, by inference, Crippen’s linearized 
embedding, are unlikely to be useful in the deter- 
mination of the structures of long-chain polymers 
from NOE distance information.” True, DPLPE is 
only a pentapeptide, but the outlook for bigger prob- 
lems is considerably brighter than that. Despite the 
inherent numerical stability problems associated 
with internal coordinate representations of large 
molecules, such as dihedral angles or linearization, 
preliminary work now in progress shows that LINIZE 
and LE work with 20 residue polypeptides. 
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