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FOREWORD

During the six years that this contract with the Air Force Office of
Scientific Research has been in effect, some spectacular developments in
guantum electronics have taken -place. In 1956, while the first draft of the
technical proposal was in preparation, the term "quantum electronics” had
not yet been coined. The stated purpose of the proposed program was merely
to carry out some basic investigations of chemical and lattice defects in
crystalline solids, using electron spin resonance as the tool.

By the end of 1956, however, Bloembergen's suggestion of the solid-state
maser became very widely known, and a short time later the feasibility of the
suggestion was reported by Scovil, Feher, and Seidel of the Bell Telephone
Leboratories. At the Lincoln Laboratory, McWhorter and Meyer discovered maser
action in chrome cyanide around the middle of 1957, and on December 20, 1957,
the workers at The University of Michigan Willow Run Laboratories observed
maser action in pink ruby.

Development of the ruby maser as a device took place very swiftly. Dur-
ing these months after the discovery of maser action in ruby, Townes and
Giordemaine, using a tested pink ruby crystal that had been supplied by The
Univefsity of Michigan workers, announced the successful operation of the
radiotelescope maser at the Naval Research Laboratory. A similar device was
built later for The University of Michigan radiotelescope. More recently,
the ruby maser was used by the workers at the Jet Propulsion Laboratory for
the precision determination of the Astronomical Unit (149,589,500 Km). At

xi



the same laboratory, a program evaluating the use of ruby masers for satellite
comnunication is in progress, and it is well known, of course, that a ruby
maser is part of the Telstar communication system.

The pink ruby, which previously had been used primarily for phonograph
needles, was very soon found to have another important application in a de-
vice now popularly called the laser. Soon after theoretical suggestions were
offered by Schalow and Townes, T. H. Maiman of the Hughes Research Laboratory
and Collins and his co-workers at the Bell Telephone Laboratories reported
the predicted phenomenon.

The program carried out under this AFOSR contract is a classical example
of the importance of basic research in technological developments. As men-
tioned earlier, our initial objective was merely to explore the uses of elec-
tron spin resonance as a tool to study defects in hard crystalline materials,
to which only limited attention had been paid at that time. It was this pro-
gram that led this principal investigator to examine the merits of such mate-
rials as ZnS, MsO, CaCos, and Alo0s as maser materials, and thus to the ob-
servation of maser action pink ruby.

The technological developments in masers and lasers have in turn already
raised a number of questions, the answers to which can come only from more
intensive basic investigations. One such question is the very old one of en-
ergy transfer and transformation mechanisms in solids. We have noticed that
the mechanism invoked to explain laser action in solids is different from
that needed for luminescence and scintillation phenomena. A program to study

these phenomena has been started, with the hope of gaining deeper insight

xii



to energy conversion processes in solids.

In bringing this contract to a close, I wish to thank Mr. Charles F.
Yost, now of the Advanced Research Projects Agency, and the various members
of the Air Force Office of Scientific Research for the generous support that
made our work on the ruby maser at Willow Run possible, and for the continua-
tion of the program to introduce these solid-state concepts and techniques

into the research programs of the Department of Nuclear Engineering.

Chihiro Kikuchi
December, 1962
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PART T

PROPERTIES OF RUBY AND OTHER SAPPHIRES

by

C. Kikuchi and S. Karavelas






I. INTRODUCTION

For centuries ruby has been highly prized as a gem, but it is only very
recently, since the discovery of maser action in ruby, that the industrial
importance of this material has come to be appreciated. Before 1957, the
Iinde Company was the principal supplier of ruby and sapphires. The so-
called pink ruby was manufactured by this company to make the so-called sap-
phire phonograph needles.

The present surge of interest in ruby and related materials stems from
the fact that ruby has been shown to be useful as a maser and laser material.
Maser, an acronym for Microwave Amplification by Stimulated Emission of Redia-
tion, is a low-noise, high-gain amplifier, for which ruby is the critical
material. The ruby maser was used in the Telstar communication system,l and
at the California Technology Jet Propulsion Laboratory a packaged ruby maser
for satellite tracking stations is under evaluation. In scientific applica-
tion, the ruby maser made possible the precision measurement of the Astro-
nomical Unit, the average distance of the earth from the sun. The precision
value of 149,589,500 + 500 km was obtained by the workers at the Jet Propul-
sion Laboratory, after making careful analysis of the radar echo from Venus.2

Ruby is also used in lasers, a device for the generation of intense
coherent optical radiations, The word Laser is an acronym for Light Ampli-
fication by Stimulated Emission of Radiastion. The industrial and technbw
logical uses of this device are still under research and development. It is

possible that the device will find applications in communication systems
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operating at optical frequencies, and in certain industrial processes such
as micro-cutting, micro-etching, and micro-welding. It also seems to be use-
full as a medical tool—in coagulating a detached retina onto the eyeball,
for example.

A great deal has been said about the usefulness of ruby as a maser and
laser material, but few popular expositions attempt to explain why ruby is
useful. Consequently, it will be the purpose of this discussion to point

out the factors that make ruby behave the way it does.



IT. CRYSTAL STRUCTURE

Chemically, ruby is aluminum oxide which contains a small concentration
of chromium., Aluminum oxide occurs in two forms; the one that concerns us is
known as 0-Als0s. In mineralogy, this form is called corundum, and the com-
mercial name of synthetic corundum is sapphire. The commercial sapphire,
which is clear, transparent, and colorless, should not be confused with the
gem sapphire, which is blue. (In passing, perhaps it should be noted that
the technological importance of sapphire is beginning to be realized. For
example, according to a recent NASA report, sapphire windows will henceforth
be used on satellite solar batteries. Also, sapphire has the very unusual
property of high thermal conductivity but low electrical conductivity, in
contradiction to the Weidemann-Franz law, which asserts that good electrical
conductors are also good thermal conductors. This particular property is
used in the laboratory to provide good thermal contact and good electrical
insulation.)

There are several varieties of rubies, distinguished by their colors.
Gem rubies are deep red, due to the high chromium concentration, whereas the
rubies important for masers and lasers are pink, due to the chromium con-
centration of 0.1% or less.

The crystal structure of sapphire is rather complica:bed.B’h It can be
conveniently éenerated by placing Alo05 molecules at the corners of a cube
and stretching the cube along one of the body diagonals. Another Al-0g,

rotated 180° about the molecular axis with respect to the first molecules, is



placed at the center of this distorted cube. Upon careful examination of
this structure, it will be seen that each Al atom is sandwiched between two

groups of three oxygens, as shown in Fig. 1. The three oxygens are in a

Fig. 1. Coordination of Al atom in Q~Al0gs.

plane about 1.57& from the Al site, and the Al-O distance is about l.98§, mak-
ing an angle of 46°27' with the crystal c-axis. The other three oxygens lie
in a plane 0.80% away; the A1-0 distance is about 1.84} and the angle 64°10'.
The relative orientations of the two oxygen triangles are not quite 180°. If

the oxygens are projected on a horizontal plane, the result shown in Fig. 2

is obtained.



The details of this quantum mechanical calculation is somewhat involved,
but the general qualitative features of the energy-level diagram can be pre-
dicted readily from group theory. We are concerned with what is called the
crystal-field spectra, i.e., the spectrum which arises from electrons making
transitions within the 3d shell. For a cubic field, the energy-level diagram

would be as shown in Fig. 5:5

4Tl
Y
2,
Y
(40004)
4T2 » B
(47508)
2Tl
g
U
(55604)
R
(69%08)
4A2 \ ¥

Fig. 3. Energy=-level diagram for cubic field.

The numerical values given for the wavelengths of the emitted and/or absorbed

2+ IS
radiation are for ruby. For the other two iscelectric ions, V° and Mn§',



ITI. ENERGY-LEVEL DIAGRAM

Our next task is to analyze the effect of the six nearby oxygens when

bt is substituted for Al. These

an impurity ion such as V2+, Cr3+, or Mn
three ions are cited because each has the 5d5 configuration, so that energy-
level diagrams of all three have many qualitative features in common. In
most theoretical analyses, the assumption is made that the ion consists of
an inert inner ion core (the argon core) and that the electronic properties
of the ions are determined by the three electrons in the outer unfilled 3d
shell. The validity of this assumption has been questioned recently, but for
the present discussion we shall assume the existence of such inert inmer
filled electron shells.

Farlier, it was emphasized that the crystal structure of sapphire is
complex. To make theoretical analysis somewhat tractable, it is generally
assumed that the oxygens give rise to a crystalline electric field which has
predominantly cubic symmetry but which also has a small component of tri-
gonal symmetry. Such a crystalline electric field can arise if we first
imagine that the oxygens are placed at the center of the faces of a cube
surrounding the impurity ion, and then imagine a small distortion produced
by stretching the cube along the body diagonal. If these assumptions are
made, we can first take into account the effect of the cubic component of
the crystalline electric field, and later consider the perturbation of the

cubic-field energy levels by the small trigonal field.



The details of this quantum mechanical calculation is somewhat involved,
but the general qualitative features of the energy-level diagram can be pre-
dicted readily from group theory. We are concerned with what is called the
crystal-field spectra, i.e., the spectrum which arises from electrons making

transitions within the 3d shell. For a cubic field, the energy-level diagram

would be as shown in Fig. 3:5

4Tl
2T2
Y
(10003)
4T2 » B
(47508)
2Tl
%R
U
(55604)
R
(69308)
4Ao

Fig. 3. Energy-level diagram for cubic field.

The numerical values given for the wavelengths of the emitted and/or absorbed

‘o )
radiation are for ruby. For the other two isoelectric ioms, V2+ and Mh4+,



the wavelengths would be slightly different.
If we next take the trigonal crystalline electric field into account,6
each of the indicated levels will split into two or more levels. The 2g

level will split into two levels; the separation in ruby, for example, is

about 29 cm™%, as shown in Fig. L.

2E

N\

Ry
Ro (14,418 cm=21)

(14,447 cm-2)

Fig. 4. Split in 2E level by trigonal field.

This results in the splitting of the R line into two components, referred to
in the literature as the R; and Rp lines. The former is the ruby laser line.

The ground state also splits, as indicated in Fig. 5.

Ao / 0.38 cm=1

Fig. 5. ©Split in ground level.
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The separation of the levels in this case is very small, only about l/lOO
that of the °E state. But this very small splitting is important in the

ruby maser.
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IV. PROPERTIES OF OTHER 3d5 IONS

In the preceding section a few of the properties of Cr5+ in sapphire
were described. The next question that arises is whether or not it is pos-
sible to fabricate other materials which have similar properties. To answer

L+

this question, a brief discussion of \/‘2+ and Mn" will be presented. The
results for Mhu+ were published very recently by S. CGeschwind and others at
the Bell Telephone Laboratories.! These results along with properties for

V2t and crot are summarized in Fig. 6.

2+ 3¢ 4+

\'} Cr Mn

4
1 e 80cm”'

|

|

l

l

I ) -1

l : 29cm

? J | 18000¢cm”" 21,000¢m

| .

| 7 ] 14800¢m

| / 14400c¢cm

| /

l /

| / { F___{_ ,___}.

I - . -
—-f—'i——-<:_{..3lcm-' = " 38em . . .39¢cm |

t=2 t=3.4ms t=.8ms

Fig. 6. Properties of V2+, Cr5+, and Mhh+.
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L+ ar

The measured values of Mn e:

Ro = 14,866 cm™t (79°K)
R, = 14,786
2D = -.391k
g ~8 = 1.9937
|A“| = IAJ_| = 70.0 x 1074 cm™?

There are several interesting facts to note. 1In the first place, the R; lines
are very nearly equal. Another very remarkable fact is that the results for

L+

Mnh+ in sapphire are very close to those of Mn™" in lithium titanate, 1In a
paper by Lorenz and Prener® the values A = 67908 (14,700 cm™!) and t = 1.1 ms
are reported. The values for the ground-state splitting are not known, be-
cause the measurements were made on a powder. The very close agreement of
the numerical values for sapphire and lithium titanate, despite the apparent
differences in the host crystal material, stems from the fact that coordina-
tion for Mnl‘L+ is octahedral; i.e., in both cases the Mhh+ ion is bonded to
six nearby oxygens.

The work on V¥ in sapphire was started in our laboratory when it was
noticed that V2+ is produced by X-rays.9 Our experiments showed that normally
vanadium in sapphire is present as V5+, but that after irradiation, part of
this converted to V2+. The chemical impurity responsible for the stabiliza-
tion of V2+ is not yet known. For Mnh+ in both sapphire and lithium tetanate,
the presence of Mg impurity is needed.

Vanadium is a favorable system to investigate because it is essentially

1
100% V5 , and because its nuclear magnetic moment is rather large, due to

13



the fact that vanadium has an odd-proton-even-neutron nucleus. The nuclear
magnetic moment can then be used as a signature to identify vanadium, and for
this reason vanadium can be quite easily identified in the different oxida-
tion states in sapphire.

With these preliminary remarks, let us return to the ruby energy-level
diagrams given in Section III. As mentioned before, the paramagnetic ion in
ruby is Cr5+, whose electron shell structure is 1522522p65525p65d5. The three
3d electrons in the last unfilled shell are the electrons responsible for the
interesting microwave and optical properties of Cr5+. (It should be noted
that V2+ and Mnu+ have the same electron shell structure, so that the com-

+ + +
ments about to be made are applicable to the three ions V2 s Cr3 , and MnlL .

)

It was mentioned earlier that the chromium ions, occupying the Al sub-
stitutional sites, are surrounded by six oxygens. The question we now wish
to answer is: What effect will these oxygens have upon the Cr3+ energy levels?
Since the actual arrangement of the oxygens is quite complex, to make the
analysis more tractable we shall first assume that the effects of the oxygens
come predominantly from the octahedral arrangement of the oxygens. In other
words, for the first step in the analysis we shall assume that, with the Cr5+
ion at the origin of the coordinate system, the oxygens are located along the
coordinate axes at the éame distance from the origin. Later we shall con-
sider the effects of a small distortion along the body diagonal.

Perhaps the graphical representation in Fig. 7 will make the physical

problem clearer.
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b e

Fig. 7. Octahedral coordination.

Electrons 1, 2, and 3 are moving in the spherically symmetric coulomb
field of +6 e. Each electron has orbital and spin angular momentum 1i and si
respectively. There are mutual coulomb repulsive forces among the electrons,
and the negative charges located along the coordinate axes will also have an
important influence on the motion of the electrons.

The problem indicated here is a complicated one; consequently it will be
necessary for us to make a series of approximations. In order to avoid the
complexities of theoretical arguments, we shall first consider the case of a
single 3d electron, and shall then show how additional factors have to be
brought into the analyses as we proceed to the 5d2 and the 3d5 cases.

The case of the single 3d electron will be dealt with in great detail in

order to bring out many features of the theoretical techniques. The single
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3d electron is in the central spherical symmetric coulomb field, but its orb-
ital motion is profoundly affected by the oxygens surrounding it. Further-
more, the electron has orbital and spin angular momentum, so that the coup-
ling of these vectors will affect the electron energy level. The Schroedinger

equation we need to solve is

By = By (4-1)
with
7> 3
= -5 V2 4 V(r) + Fo(x*+yt+zt- 5 r?) + Fi(xy+yz+zx) + M - s (L-2a)
. . . . 10
The full trigonal part of the Hamiltonian up to fourth power is
1 1l 5
Vir = Fr(xytyztex) + Flxyz(x+y+z) - 7T (xy+yz+zx) ]
+ Fg(x+y+z) + Fjg xyz + F;,'[X3+y3+z3- -g— r2(x+y+z) ] (L4-2b)
. e 5+ 3+ o .
if the approximation is made that the symmetry of the A1™ or Cr~ site is

Cay. This is equivalent to neglecting the angle of 4°22' shown in Fig. 2.
In the following discussion we restrict ourselves to the form (4-2a) for the
sake of simplicity. However, one important characteristic of (4-2b) must be
kept in mind, namely, that it has no center of inversion. This is important
when selection rules for electric dipole transitions are examined.

There are three steps to the Schroedinger equation, as follows:

f].2

I. VE + V(r) + Fo(x*+y*+z*- 2 r?)
2m 5
n° s 3
II. -5 V7 + Y(r) + Fo(x*+y*+z%- g rt) + Fy(xy+tyz+zx)
III ﬁvg+v()+F(4+4+z4é4)+F(++)+1z-
© T om r o (XFHY - r Xy +tyz+zx A S
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The purpose of Step I will be to show how the symmetry properties of the
Hamiltonian can be exploited to construct wave functions, and also to point
out the physical reasons for the importance of group theory in attacking these

problems. Consider then the first three terms in (L-2a), i.e.,
B 4.4, 4. D L4
= - — V2 + V(r) + Fo(x*+y*+z%- = r?) (L4-3)
o em 5

We notice that the first two terms are invariant under all rotations, finite
or infinitesimal. Consequently, as is well known, if the last term were
absent, the solution of the Schroedinger equation could be represented by the
spherical harmonics. The corresponding energy levels are called the s, p, d,
etc., states. The mathematical significance of this remark is that the wave
functions belonging to a particular energy level can be represented by poly-
nomials of x, y, and z which transform among themselves under infinitesimal
rotations. For example, the wave functions for fhe d-electron can be repre-
sented either by the set of spherical harmonics of degree 2-—Yg, m =0, %1,
t2—or by the polynomials xy, yz, zx, x2-y2, 32z2-rc.

But what happens if the symmetry of the Hamiltonian is lower? Ior ex-
ample, in (4-3), the Hemiltonian is invariant under the simple substitution
of #x, *y, *z among themselves, but not under infinitesimal rotations. In
the latter case,

X —3 X - €Y
Yy— ¥V tey (h-L)

and polynomials in mixed bowers of x and y are generated.

17



However, the Hamiltonian is invariant under a group of transformations
called the cubic group. This is the group of operations that carry a cube
into itself. Let us see how we can make use of the Hamiltonians invariance
under the cubic group to generate wave functions belonging to the same energy
level. For this, we need to recall that if ¥ is a wave function belonging
to the energy level E of

B = By (L4-1)
and if Rg is one of a group of transformations that leaves the Hamiltonian un-

changed, i.e.,

Rg(Hy) = H(RgV) (4-5)

| then the set of functions ng generated by the group of operations Rg are
also solutions belonging to the same energy level E. To illustrate the phys-
ical significance of this result, let us examine the effect of the cubic
crystalline electric field upon the 3d electrons. As mentioned earlier, the
3d wave functions can be represented by the five linearly independent mon-
omials of the second degree: xy, yz, 2zX, x2-y2, and 3z2-r2, C(onsequently,
let us suppose that

f(r)xy (4-6a)
is a solution of (L4-1) belonging to E. Since f(r) is a function independent
of the angle, in order to exhibit the angular dependence hereafter we shall
write simply

Xy (4-6D)

instead of f(r)xy. According to the comment made earlier, if Rg is an opera-

18



tion of the group then other solutions can be generated by the operation. For

example, (4-3) does not change if the substitution

X —3 X
y—> 2

2 —>-y (4-72)

is carried out. Geometrically, this corresponds to a 90° rotation about the

x-axis. Carrying out this substitution on (4-6b) we obtain

Xz (L4-6c)
Another possible substitution is
X —> 2
y—7v
z— X (L-7v)

Geometrically, this represents a reflection on a diagonal plane passing through
the y-axis. Applied to (4-6b) this operation yields

vz (L-6a)
which along with xy and zx belong to the same energy level E. Also, it is
clear that for the rest of the substitutions that carry a cube into itself,
the functions xy, yz, and zx, will transform among themselves, but that at
no time will they transform into x2-y2 and 3z2-r2. But since these last two
polynomials will transform among themselves, they belong to another energy

level.
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V. TRIGONAL FIELD AND SPIN-ORBIT COUPLING

In the last section it was shown how symmetry properties can be used to
show that the 3d electron will split into two energy levels, with 2- and 3-
fold degeneracy respectively. In order to bring out other properties, we
shall consider the trigonal case in detail. A detailed discussion of this
case 1s possible because there are only six operations involved.

As mentioned earlier, the six oxygens in sapphire form a distorted cube.
This can be realized by distorting the cube along one of the body diagonals.
If this is done along the [111] body diagonal (see Fig. 8), the additional
term Fy(xy+yz+zx) shown in (L-2a) appears in the Hamiltonian. What effect
will this term have upon the energy levels? In particular, we shall consider
the effect of such a distortion upon the energy level associated with the
functions xy, yz, and zx, or some suitable linear combination of these func-

tions.

(111 ]

Fig. 8. Cube with [111] body diagonal.

According to the above comments, we need to look for the group of sub-

stitutions or operations that leaves the Hamiltonian unchanged. Clearly the
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Hamiltonian

- = VE 4 U(r) + Fo(xt+ytezt- % r4) + Fy(xytyz+ex) (5-1)

will be invariant for substitutions that leave Fy(xy+yz+zx) unchanged; and

these will be:

X—3 ¥

Z—3 X

X —3 X
y—> 2 Oy

z2—> Y

X—3X
Yy—> 7

Z—> Z

X—7Z
y—">7

72— X

(2)

X—3z

y— X

Z—>Y

(5-22)

(5-2b)

X—3 ¥

y—> x
(5-2c)
Z——-QZ

Substitution (5-2a) is the identity operation; substitutions (5-2b) represent

120° and 240° rotations about the [111] body diagonal, and substitutions

(5-2c) represent reflections in the three face diagonal planes.

From the set of functions xy, yz, and zx we note that the function

can be constructed.
under the operations indicated in (5-2).

the three functions will split off due to this trigonal field.

Xy + yz + 2x

(5-3)

Clearly, this function transforms always into itself

Physically this means that one of

To construct

the remaining two linearly independent functions consider the geometrical

procedure shown in Fig. Qa.
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yZ +2X + Xy

-~ 2y

ilx) ys
(a) (b)

Fig. 9. Geometric constructions of linearly independent
functions (simplified).

The plane normal to the vector i+j+k intersects the xy plane along AB, so that

a vector in this direction can be written

-1+ ] (5-4)

Referring to Fig. 9b, this suggests the corresponding function

-yz + zx (5-5)

The vector normael to -i+j and i+j+k is given by

-if}\\\ ’,%'vq
| \

\

/

o\ (i+i-2K)

Fig. 10. Geometric constructions of linearly independent functions.
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|+
|e.
1=

-1 1 0= 1+J-2 (5-6)

so that the combination

Yz + zX - 2xy (5-7)
is suggested. We shall now verify that the functions of (5-5) and (5-7) trans-
form among themselves for the substitutions (5-2) and we shall furthermore

construct the matrices representing the operations of (5-2). If we let

f, = -yz + 2zx

fs = yz + zx - 2xy (5-8)

then E carries f, into fy and fs into fs. Consequently the representative

matrix is

M(E) = (5-9)

Consider next Cgl). In this case

fi—y=-2zx+xy = = % £, - é o
3 1
fo— 352X + Xy - 2yz = —2-f1 --2—f2 (5-10)

so that the matrix representation is

@) <

23

1
-2

1 ;
"3 (5-11)
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Similarly,

f1—> + L £+ L f L L
1 -Xytyz = - 513 t 5 12 -3
2 2 o 2 2
of?) ; . M(c(a)) S J-1za)
+yZ- = - = - = -= - =
fo — xytyz-22x > fy 5 fo 5 5
1 1
f1—> -zytyx =5 f1 - 5 T2 5 -3
(V. M(e() = (5-12b)
oy ' : , 3 . 1 . oy 3 1
+yx= = -2 - = -= - =
fo—> zytyx-2cXxz o2 +1 5 2 5 5
1 1 1 1
f1—y xy+xz == f; + 5 f = =
(2) % v p it te @@ (F 0 ZY (i
v 3 1 V) Tl 1 omiee
fo—y xy+x2-2y2 = = £; - = 5 Z .=
e 2 2 2
f1— -xz+yz = -, -1 O
o3, M @,BD - (5-124)
fop—p x2+yz-2%y = fo 0o 1

Farlier we showed that when a suitable linear combination of xy, yz, and
ZX, namely

Xy + yz + zx (5-3)

is taken, this function is such that it always transforms into itself under
the operations of (5-2). The following question now arises: Is it possible
to construct some linear combination of f; and fo of (5-8)—say g; and go—
such that g, will always transform into itself and go into itself? The
answer to this question is no; it is provided by group theory and stems from
the fact that the set of numbers obtained by taking the diagonal sum of the
matrices is identical to the row of numbers in the group character table.

The character table for the Csy group, with which we are concerned here,

is as follows:
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E 2C5 30y
Ay 1 1 1
Ao 1 1 -1
E 2 -1 0

The symbols appearing at the top of the column represent the symmetry opera-
tions, and the numbers in the column below give the trace or the diagonal sum
of the representative matrix. The numbers under E give the dimensionality
for the so-called irreducible representations A;, As, and E. (The maxtrix
representing the symmetry operations A; and A, are l-x-1 matrices, whereas
those for E are 2-x-2 matrices.)

Clearly, then,

Xy + yz + zx (5-3)

transforms like A,.

If, next, the last term in (L-2a) is taken into account, the transforma-
tion properties of the spin functions have to be considered. The appropriate

character table is the one for the double Cay group, which is as follows:

E R 2Cs 2CaR 30y 30vR
Ay 1 1 1 1 1 1
Ao 1 1 1 1 -1 -1
E 2 2 -1 -1 0 0
E 2 -2 1 -1 0 0
1 -1 - -
3 R S

25



It can be shown that the spin functions for S = 1/2 transforms like E. Figure
11 shows how the energy levels split upon introducing the perturbations in

(4-2a) in succession in the indicated order.

Spherical Cubic Trigonal Spin-Orbit

) (2) ___(2)E - 2R

-

-~

/ T
/
/
/
/
/
/
3y
\
\ Al -—
\\ ///’ E
\ pd
) )
“~~_  (E _ _-~ E
T~ 2k

Fig. 11. ©Split in energy levels upon introduction of perturbations.
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VI. CHARACTER TABLE

In the previous section, we mentioned such terms as character table, ir-
reducible representations, etc., without adequate explanation. Here we shall
discuss these concepts in greater detail, with particular reference to the
cubic group. A clear-cut understanding of the character table is necessary
before we can proceed to the two-electron 5d2 and three-electron 3d5 config-
urations. We shall present a discussion of what is meant by the character
table, point out some of the important properties, and show how this table
can be used. Perhaps it should be emphasized that the character table is
somewhat like the multiplication table; if we know how to use the table, we
can use it to work out multiplication problems!

Consider, then, the group character table for the cubic grouwp :

3 8Cs 3Co 6C2 6Cq

A, 1 1 1 1 1
Ao 1 1 1 -1 -1
E 2 -1 2 0 0
T 3 0 -1 -1 1
T2 3 0 -1 1 -1

The symbols across the top of the table represent the different classes of
symmetry operations and the number in front of the symbols gives the number
of operations belonging to that class. A "class" of operations is a set of

similar operations and can often be obtained more or less intuitively. For
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exanple, for the group of operations that carry a sphere into a sphere, all
rotations of a given angle independent of the axis of rotation belong to the
same class. For the cubic group, there are the set of rotations about the
body diagonals. The two rotations of 120° and 240° about a body diagonal
will carry a cube into a cube. Since there is a total of four body diagonals,
we might intuitively guess that all eight such operations belong to the same
class. In the above table, the rotations about the body diagonals are in the
class Cs. As another example, consider Cs, the class of 180° rotations about
the coordinate axes. Since there are three axes, we should expect three op-
erations in class Cp, as indicated in the table. (Class Cs comprises the set
of 180° rotations about the face diagonals, and C, the class of 90° rotations
about the coordinate axes.

Mathematically, the set of similar operations belonging to a given class

is generated by the similarity transformation

Re = RgRcRz' (6-1)

If all symmetry operations Rg belonging to the group are used, a set of dis-
tinct operations R; will be generated. This is the set belonging to the
class C.
For the cubic group, there are five classes, and the total number of
symmetry operations is
1+8+3+6+6 = 24 (6-2)
The symbols A;, Ay, E,, Ty, To are the different irreducible representa-

tions of the cubic group. In order to see what is meant by this, consider a
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set of polynomials of degree [. There are, as is well known, 2[+1 linearly
independent such polynomials. Suppose these polynomials are represented by
¢1,¢2 cer Pioees én in which n = 24+1. If, now, some operation Rg of the
cubic group—and these operations are simple linear substitutions—is applied
to any one of the functions @i(x,y,z), the new function will be a polynomial
of x,y,z of the same degree [; therefore the new function can be written as

a linear combination of the original set of functions. Thus

Ry(h1) = ZMij<Rg)¢j (6-3)

and the operation Rg, operating on the set {ﬁ}, can be represented by the
matrix

M(Rg) (6-L)
The dimension of this matrix is clearly (2f+1) x (2{+l). Also, since there
are 24 operations in the cubic group there will be 24 such matrices, one
corresponding to each operation Rg. This set of matrices is said to be a
representation of the cubic group because the symmetry operations of the group
and the matrix representing the operation can be set into one-to-one corre-

spondence; 1.e., if Rj, Rj, and Ry are any three operations such that

RiRj = Ry (6-5a)
and if
Ri ¢—> M(Ri)
Rj ¢— M(Rj)
Rk ¢—> M(Rk) (6-5b)
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then

M(Ri)M(Rj) = M(Ry) (6-5¢c)

This group of matrices may have one of two possible forms. It is possible

that all the matrices in the set will simultaneously have the form

000 0
0 0 0
) 0 0

< =

(6-6)

S &
(-

or can be put into it. In this form the non-zero blocks occur along the
diagonal only. If the matrices have or can be put into this form, the group
is said to be reducible; if not, it is said to be irreducible. For example,
for the 3d electron case discussed earlier, [ = 2, the linearly independent
functions are xy, yz, zx, x2-y2, and 522-r2, so that 24 operations of the
cubic group will generate 24 5-x-5 matrices. Furthermore, each of the 2k

matrices will have the form
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y

I
|
|
|
|
-+ —-—_———
l
|
|
|
(

2 x 2

()

Thus the 24 5-x-5 matrices constitute a reducible representation of the cubic
group.

Suppose, now, we consider the group of 2L matrices generated by Rg operat-
ing on the set xy, yz, and zx. The matrices will be 3-x-3, as shown earlier.
It will be seen that all the matrices cannot be partitioned into the form
(6-6). The next question is: By taking a suitable linearly independent,
linear combination of xy, yz, and zx, is it possible to generate a set of

matrices, all of which will have one of the forms in (6-8)?

|
()
I

2x2 |
I
I

_______ l__—-_--._> ‘l x 1

1x1

1x1 (6-8)

Group theory guarantées us that this is impossible. The set of numbers ob-

tained by taking the diagonal sum of the representative matrices will always
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be identical to the set To.

The symbols A;, Ao, E;, Ty, and To stand for a set of matrices that are
in one-to-one correspondence with the symmetry operations of the cubic group.
These five sets of 24 matrices are irreducible in that the matrices of each
set cannot all be put into the form (6-6) simultaneously. Furthermore, group
theory assures us that whatever its dimension, any set of 24 matrices which
represents the cubic group operations can be decomposed or reduced to a linear
combination of the five irreducible representations. For example, for poly-
nomials of degree 100, there will be 201 linearly independent polynomials;
the cubic operations will generate a set of 24 matrices of rank 201. But
the rank of the highest sub-matrix cannot be more than three.

However, if we were to select a set of matrices from the original 24
such that the selected set satisfies the group property, then this set could
possibly be reducible. For example, consider the rotations about a body

diagonal. If the axis of rotation is the (111) direction, then

X—3 X Xy —> Xy 1 0 O
E: y—>7VY ¥z —> yz ME) = 0 1 O© (6-9a)
Z—> 2 ZX —> ZX O 0 1
X—y Xy —yz 60 1 O
cgl) : y—>2 yZ —> 2X M @,1)) = 0 0 1 | (6-9b)
z—X ZX —3 XY 1 0 O
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X—> 2 Xy——) ZX 0O 0 1\

C:(32): y—3 X Yz — Xy M@ggb ={1 0 O (6-9c)
z —3y ZX —>YZ 0 1 0
1 0 O
MGQ")M(C&QD ={ 0 1 0 |= ME) (6-94d)
0 o0 1

The above symmetry operations constitute the group Cs, whose character table

is as follows:

E 2Ca
A 1 1
E 2 -1
XY ,¥%Z,2X 3 0 = A+E

Mathematically, this means that if an appropriate linear combination of xy,
yz, and zx is taken, the three matrices can be reduced. As indicated earlier,

the appropriate linear combinations are

fo = xy +yz + 2zx

f, = =yz + zx

fa = yz + 2x - zXy
Cgl)fo—;fo
Cgl)fl_-_)-zx+xy = -%‘fl-gf2
Cgl)fg——azx + xy - 2yz = '27 fy - % )
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so that

) _l _____ O_ L _O_ .
M(Cgl)> = 0 E -% -% (6-10)
0 E -g— -.;_
and for ng) we obtain
ARSI
W) - | o -4 (61
o -2 b
Since
|
T e
ME) = 0 E 1 0 (6-9a)
0 ; 0 1

all three matrices can be partitioned as indicated by the dotted lines.
The characters, or the traces, satisfy the vertical and horizontal or-
thogonality relations. Let
x(Ci, T) (6-12)
represent the character, or the trace, of the matrix which represents opera-
tion Rg in class Ci for the irreducible representation I'. Then the vertical

orthogonality relation states that

Z X(Ci,T)X(C4,T) =
r

n(gi) B1j (6-13)
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in which G is the order of the group, or the number of symmetry operations of
the group, and n(Ci) represents the number of symmetry operations in class
Ci. For example, if the numbers in the column 3Cy are multiplied by the cor-

responding numbers in 6C, and added, we find
1-1 + 1(-1) +2(0) + (-1)(1) + (-1)(-1) = o0 (6-1L4)

On the other hand, taking the sum of the squares of the characters in 3Cs, we
find

12+12+2%8 4+ (-1)%+ (-1)2 = 8 (6-15)
which is 2#/5. This orthogonality relation applied to the class E gives
12 +12 + 22 + 32 + 32 = 24 (6-16)

which states that the sum of the squares of the degrees of the irreducible
representations is equal to the order of the group.

The horizontal orthogonality relation states that

Z n(Ci)X(Ci,Pa)X(Ci,FB) = GBop (6-17)

i

For example, if we take the representations A, and Ts we find
1(1)(3) +8(1)(0) + 3(1)(-1) +6 (-1)(1) +6(-1)(-1) = 0  (6-18)
On the other hand, taking the square of Ts, we find

1.32 +8.02% + 3(-1)2 + 6(1)2 + 6(-1)2 = 2k (6-19)
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This theorem is important in determining the irreducible components of a re-
ducible representation. Suppose that X(CiD) is the character of the matrix
of an operation in class C; for some representation D of the cubic group. If
the latter is reducible, its characters are given by the sum of the irreduc-
ible components. Thus, if a(I') represents the number of times the irreducible
representation I' is contained in D, then

X(Ci,D) = Za(ra)x(ci,ra) (6-20)

a

If we multiply this equation by n(Ci)X(Ci,PB) and sum over classes, we obtain

zn<ci)x(ci:D)X(Ci:F3) = Zn(Ci)X(Ci:PB)a(Foz)X(Ci;Fo:)

i a,i

= ZG&O[B a(l"a) = Ga(l“f,)
a
therefore
1
a(PB) = gz n(ci)x(ci,D)x(ci,rB) (6-21)
i

In many instances, the irreducible representations can be determined by in-
spection.

Another important theorem is concerned with the reduction of a product
representation. For example, this problem will arise when we consider the
two- and three-electron cases. Since the wave functions will be products of
wave functions of the individual electrons, we shall be concerned with the
transformation properties of such product functions. The theorem simply

states that
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X(Ci,Tplp) = X(Ci,Te)X(Cy,Tp) (6-22)

and the reduction of this is carried out by the recipe stated earlier. This
theorem is useful in determining the condition under which certain integrals
can be expected to vanish. In the calculation of the energy levels, we need

the integrals

f qTdi;de (6-23)

The perturbation potential is invariant under the symmetry operation, and so
in the case of the cubic group it belongs to the identity representation A,.
Now it can be verified that

ATy = T4 (6-2k)
where I'y is Ay, Ap, E;, Ty, or Tp. Furthermore, it can be shown that TiI';
for i # j does not contain A;. Now ij contains Fj but the integral will
contain A; only if i = j; furthermore, the integral will be automatically
zero if A; is not contained in the product representation. This, then, tells
us that in the perturbation calculation we need to calculate only those in-
tegrals which connect states belonging to the same representation.

The theorem given in (6-22) is also useful in determining the selection

rules for electric dipole transitions. For this the relevant integral is

f Vivar (6-25)

in which 1 and j are the two states involved in the transition. Now r trans-
forms like T; so that the integral will be zero, unless the product of V3 and

Wj (or more precisely, PiFj) contains T,. Using the cubic group character
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table, we find

AT,

ASE

ASTo

T,Ts

The allowed transitions then are

=3
‘_l
+

Ay +E+ Ty + T

=5
’_l
+

A+ E+ Ty +Ts

Ao ¢— T2
E—T
E<— T2
T, T
To ¢— Tz
T, &> T2

Ao + E

E+ Ty + Ts

(6-26)

(6-27)

We see, then, that the levels E and To brought about by the splitting of the

3d levels can give rise to an allowed transition, despite the fact that AL = O!

Of course this is true for the cubic group O, which has no center of

symmetry. For the cubic group Op, the levels derived from the 3d orbitals be-
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long to the even (gerade) representations Eg and Tpg, whereas r transforms
according to the odd (ungerade) representation Tiy, so that integrals of the

form
¥ d
f Yir) = Vi(mag) "

vanish identically and electric dipole transitions are not allowed between

states of these levels.
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VII. THE 5d2 CONFIGURATION

Farlier we indicated that the 3d-electron energy level is split into
levels belonging to the cubic irreducible representations E and To. In our
notation henceforth we shall speak of the to or the e electron depending upon
whether the electron occupies one of the Ts or E orbitals. Since there are
three To and two E orbitals, it is clear that there can be all together
2 x 3 = 6 electrons occupying the To orbitals, and 2 x 2 = 4 electrons oc-
cupying the E orbitals. Consequently, we may speak of the t, and the e sub-
shells of the d-electron shell. As in atomic spectroscopy, we shall con-
sider next the possible electron configuration arising from two equivalent
to electrons.

The basic Schroedinger equation

B = By (k-1)
we wish to solve is such that
e2
H = H +HL+—— (7-1)
T2
in which
Hi = = @E V2 4 V(rs) + F.(xb+yt+zs 2 ri) (7-2)
i = om ry e\ Xty +zs- 5 i -

The method of attack is to expand the solution in terms of product functions
of the two electrons. For the t3 configuration, there are nine product func-
tions obtained by multiplying the set (xy)i,(yz)i,(2x); into (xy)a2,(yz)2,

(zx)2. The indices 1 and 2 refer to the two to electrons. Earlier, the

Lo



symmetry properties of the Hamiltonian were exploited to obtain information
about the nature of energy levels and wave functions. The Hamiltonian (7-1)
is invariant under the operations of the cubic group, so that some of the
previous arguments can be used.

However, we note that the Hamiltonian exhibits an additional symmetry
property of being invariant when the indices 1 and 2 are permuted. This
means that the solutions of (L4-1) must constitute the basis functions for
the symmetric group Spo. For this group, there are only two operations: the
identity operation, represented by the permutation (1) (2), and the operation
exchanging the indices 1 and 2, represented by (12). Clearly, then, there
are only two irreducible representations, and the character table is as fol-

lows:

(1) (2) <—— Class
(1)(2) (12)
S 1 1
A 1 -1
9 3 = 6S + 3A

This table shows that the irreducible representations are one-dimensional,
i.e., the basis functions are such that each transforms into itself or into
its negative upon permutation of the indices 1 and 2. These are the familiar
symnetric and antisymmetric representations. Consider now the effect of

these operations upon the nine product functions:
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(vz) 1(y2) 2 (zx)1(y2) 2 (xy) 1(y2) 2
(yz) 1(2x) 2 (zx)1(2%) 2 (xy) 1(2x) 2 (7-3)

(yz) 1(xy)2 (zx) 1(xy)2 (xy) 1(x¥) 2

The two permutations are represented by 9-x-9 matrices. The character, or the
trace, is simply equal to the number of functions that are not affected by
the permutations. Consequently for the class (12) the character is 9, since
none of the functions change when left alone. For the permutation (12) only
three functions—(yz),(yz)2, (2x).(2x)2, and (xy).(xy)s—transform into them-
selves. Consequently the character for class (2) is 3. By inspection (there
is no need here to appeal to the general theorem enunciated earlier!) it is
seen that the reducible representation contains six symmetric and three anti-
symmetric irreducible representations. Since these representations are one-
dimensional, the nine functions of (7-3) can be grouped into six symmetric and

three antisymmetric functions. The symmetric functions are

(vz) 1(y2) 2 (yz) 1(2x)2 + (yz)2(2x),
(2zx)1(2x) 2 (vz) 1(xy)2 + (y2z)2(xy) 1 (7-4)
(xy) 1(xy) 2 (zx) 1(xy) 2 + (2x)2(xy) 1

and the antisymmetric functions are

(vz)1(2x)2 - (y2z)2(2x),
(zx) 2(xy) 2 - (2x)2(xy) 1 (7-5)

(xy) 1(yz) 2 - (xy)2(yz):1
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Next consider transformations induced by the operations of the cubic group.
For (7-4) we shall obtain 24 6-x-6 matrices and for (7-5) 24 3-x-3 matrices.
Our task is to decompose these into a sum of irreducible representations.
The calculation of the characters would be rather tedious if we had to carry
out the linear substitutions mentioned earlier. Fortunately, however, by

using the result

N+

X(R,8)

{IX(R) 1+ X(RZ)} (7-6a)

and

X(R,A)

o I

{FX(R)]Z - X(Rgi} (7-6b)

the necessary decomposition can be readily carried through (see, for example,

Ref. 12, p. 134). From the cubic character table we have

8C3 30 605 6C,

T2 3 0 -1 1 -1

T3 9 0 1 1 1
X(R®) 3 0 3 3 -1

To the characters of TS, we need to add or subtract those of X(R®). 1In so

doing, we note that

EF = E
5 = Cs
2 = E
? = E
g = 3



giving the set of numbers indicated in the row X(R®). Consequently, char-

acters for the symmetric and antisymmetric representations are

8Cs 3Cs 6Co 6C4
S 6 0 2 2 0
A 3 0 -1 -1 1
so that
S = AL +E+ 17 (7-7)
and
A = T, (7-8)
As & check, we note that
(To)° = A, +E+T, +To = S+ A (7-9)

According to Paul's principle the overall wave function, including both
orbit and spin, must be antisymmetric in the indices 1 and 2, Therefore if
the orbital function is symmetric, the spin functions must be antisymmetric,
and vice versa., The symmetric and antisymmetric spin functions have spins 1
and O, respectively. Consequently, we obtain the allowed states

Ay + TE o+ Mg (7-10a)

o1y (7-11a)
in agreement with the result obtained by other procedures.
For future use, we shall restate our results in terms of Young tableaux

(see Refs. 12 and 13). Using this notation we have shown that
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h, ¢ 'E+ T, (7-10b)

= °my (7-11b)

We shall need these results to determine the allowed states for the 5d5 con-

figurations.
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VIII. THE 5d5 CONFIGURATION

The aim of this section will be to present a number of arguments to make
the Orgel-Sugano-Tanabe diagram of Cr5+ understandable. As has been pointed
out already, the cubic crystalline electric field will lead to the splitting
of free ion energy levels. The Orgel-Sugano-Tanabe diagrams show how the

energy~level splittings are affected by the strength of the crystalline field,

as shown in Fig. 12.

y=450
Criv: 3d°(°F14S*F ~113 B=9I8

Fig. 12. Splitting of states of the 5d5 configuration

by an octahedral field (Ref. 5, Fig. 2).
To develop the qualitative ideas, on the basis of symmetry arguments we shall
first consider the case of weak crystalline field and then the case of the
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strong crystalline electric field.

To carry out this program we shall make frequent reference to the group
character table and to the reduction of reducibility representations. For
the sake of convenience the group character table, the characters of the re-
ducibility representation, and their irreducible components are presented in

the following cubic character table:

E 8Cs 30z 6Ca 6Cy
Ay 1 1 1 1 1
As 1 1 1 -1 -1
E 2 -1 2 0 0
Ty 3 0 -1 -1 1
To 3 0 -1 1 -1
P 3 0 -1 -1 1 T,
D 5 -1 1 1 -1 E+T5
F 7 1 -1 -1 -1 AotTy+To
G 9 0 1 1 1 A +E+T,+T5
H 11 -1 -1 -1 1 E+2T,+T5
As x As 1 1 1 1 1 A,y
A> X E 2 -1 2 0 0 E
Ao x Ty 3 0 -1 1 -1 T
As x To 3 0 -1 -1 1 T,
ExE L 1 L 0 0 A +As+E
ExT, 6 0 -2 0 0 T1+To
ExTs 6 0 -2 0 0 T,+T5
Ty x Ty 9 0 1 1 1 A +E+T,+T5
Ty x Tp 9 0 1 -1 -1 Ap+E+T 1 +T5
Ts x Tp 9 0 1 1 1 A +E+T; +T5
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The terms for the Bd5 electron configuration (see, for example, Ref. 12,

p. L23) are 2P, (°D)2, 2F, G, ®H, *D, and *F. According to the Atomic Energy

Ta‘bles,6’lh these levels are arranged as follows:

) 36490
2 - = - - - 21078

8D - - - - - 20218
2 - - - - - 15064
S 14185
P - 1L072
P - 0

(The numerical indicates the term value for the lowest J value of the multi-
plet.)

When this 3-electron system is placed in an electric field having cubic
symmetry, the above atomic energy levels will split, as indicated by the

character table, For example, since
F = Ao+To+ T,

the *F ground state will split into three levels, as shown in Fig. 13.
The splitting will be similar for other levels. The complete splitting
scheme of the terms arising from the 5d5 configuration is given in Fig.

14,
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Fig. 13. Splitting of *F ground states.
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Fig. 1l4. Complete splitting scheme of the terms arising
from the 3d- configuration.
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Group theory does not give the sequence of terms shown in Fig. 1k. However,
provided the constant b, is positive, detailed calculations of the sequence
can be obtained from pages 13 and 17 of Ref. 15.

The scheme gives an explanation of the left-hand side of the OST diagram.
It should perhaps be noted that Sugano and Tanabe5 have indicated the split-
tings only of states %F, *P, 3G, and 2F.

Consider next the right-hand side of Fig. 14. To understand how these
levels came about, let us first recall an earlier remark that the effect of
the cubic crystalline field is to remove the equivalency of some of the d-
electrons. In a spherically symmetric electric field and d-shell can accom-
modate as many as ten equivalent electrons. On the other hand, in a cubic
field six electrons will be affected differently from the remaining four, so
that often the terms to-subshell and e-subshell are introduced. The elec-
trons in the to-subshell will be equivalent to one another, but not to those
in the e-subshell. It is easy to see, then, that the possible electron con-
figurations are

(t2)2, (t2)%e, to(e)?, (e)®
The right superscript, as in atomic spectroscopy, represents the number of
electrons with the indicated orbital. For example, tg(e)2 means that there
is one electron occupying the to level, and two electrons occupying the e
- levels, We shall discuss the allowed states associated with each configura-
tion,

Consider first the configuration t3. The Hamiltonian will be invariant

under the permutation of the indices 1, 2, and 3, so that the wave functions
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must constitute the basis for the irreducible representations of the symmetric
group Ss. This group consists of six permutations, belonging to three classes

as indicated below:

Classes (13) (2,1) (3)

Permutation E (12) (123)
(13) (132)
(23)

There are, accordingly, three irreducible representations of degrees 1, 2,
and 1, respectively. These representations will be denoted by the symbols
(3], [2,1], and [1®] respectively. The group character table (see, for

example, Ref., 12) is

(1