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ABSTRACT

The analog computer has been used to obtain solutions to the diffusion
equation for the case of a continuous point source aloft. The basic model
used is that of a source located between an inversion and the ground where
the wind speed and eddy diffusivity are constant over the diffusing region.
Solutions were also obtained with several speciai features added to the basic
model: an increase of lateral diffusivity over the vertical; representation
of the eddy diffusivity as a function of plume dimensions or as a function of
distance downstream; presence of wind direction shear in the diffusing layers;
and the presence of large-scale eddies which cause the meandering of the

plume.

The solutions are presented as deviations from the reference solution,
that solution derived from the basic model, to show graphically the effects

of each parameter change.
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1. INTRODUCTION

Turbulent diffusion from an elevated point source is of primary concern
in air-pollution meteorology. Although such diffusion is the central compo-
nent of a common problem, if is by no means a well-understood phenomenon.
This results in part from the lack of a sufficiently general mathematical
model with a complete set of solutions. No matter how well diffusion is
documented in the field, it cannot be completely and compactly expressed
and understood except in reference to such a model. But atmospheric diffu-
sion is such an intricate mechanism that no one model is ever likely to
satisfy all damands.

One model which is perhaps sufficiently general is the parabolic dif-

fusion equation

dy ) X d Y ) ox
T - &[Kx“&]fsy mﬂ&‘[ﬂ (1)
where
ox. _Ox _ ox _ ox ox
Er R i v-Eg VSt
and
X = average concentration
X,¥,2 = space coordinates
E,V,G = average wind components
Ky = coefficient of eddy diffusivity in the i-direction
t = time



This model has two main shortcomings: it yields only average concentration,
and a complete set of solutions has not been found. In fact, such analyti-
cal solutions as are available apply only to special cases of limited appli-
cation.,l’2 Another deficiency is that the model implies an infinite diffus-
ing velocity, but in cases where this is important, the hyperbolic diffusion
equation can be usedu5 In the case of steady-state diffusion, the velocity
of diffusion is not important.

The validity of the application of the parabolic diffusion equation to
atmospheric diffusion has been questioned,5 but the lack of adequate solutions
has made verification difficult. The use of electronic computing machines
makes solutions available for any type of parameter variation but here an-
other difficulty arises. Since analytical solutions are not readily avail-
able, the functionai dependence of some of the parameters has not 5een de-
termined. For example, Riclrlz':xrdsonLF has suggested that the coefficient of
eddy diffusivity be a function of plume size, but the exact form of this
function has not been indicated.

The purpose of this paper is to show how the diffusion equation may be
implemented on the electronic analog computer and to show the qualitative
nature of the solutions. Means for obfaining improved solution accuracy are
also indicated:. The reasons for using the analog computer in this applica-
tion are that it is easy to program and that it presents the solution in
graphical form.

The problems chosen for solution are based upon the case of diffusion

in the steady-state from a point source located half-way between the surface



of the ground and the base of an inversion. The special cases considered
here were selected from the many problems of interest described else=
where.6-8 The methods outlined are perfectly general, however, and with an
analog computer of sufficient capacity, a similar analysis may be made for
nearly any meteorological conditions Added to thé basic model are several
functions of the average wind components and the coefficients of eddy dif-
fusivity so as to consider increased lateral over vertical diffusivity, the
case of a plume passing from one turbulent regime to another, the theoretical
question of making the diffusivity a function of cloud size, the case of
wind direction shear with height in the diffusing region, and the case of
the meandering plume. The model is arranged so that the origin is at the
source, the x-axis oriented downwind, the y-axis crosswind, and the z-axis
vertical The basic model includes no provision for variations in the wind

speed with height or in the eddy diffusivity in the y- or z-directions. This

can be readily provided9 but the emphasis here is on special techniques.

2. FINITE DIFFERENCE MODEL

The model presented in Eq. (1) can be simplified by deleting the terms

that do not apply, to

_ 9 A Fy -2
iy - Kygé+KZBZ—é-v—;( (2)

where the diffusion term in x was neglected in comparison to the transport

term in x . The boundary conditions are



X * o as Xy¥y2 > ©

KZ S; >0 as 7 > -

where H 1s the height above ground of the base of the inversion layer,
These conditions state that the concentration is infinite at the source
and that the ground and the inversion are impervious to the diffusing sub-

stance. The continuity condition is

) +—g _
u x(x,y,2z) dz dy = @Q (3)
) o )3

for x >0

where Q 1s the rate of emission from the source. It is convenient to

state (2) in nondimensional form:

2 2
5K ¥s Fs "

X K, or°  az° dY
where
5 = x/x,
Y = y/H
Z = z/H

X = H®W x/K,

<
]

H V/K,

and the symbol X 1is reserved for later use. The constant % will be de-

fined later.



The mathematical model to be used, Eq. (4), must be put in a form suit-
able for programming on the analog computer. Since the computer can integrate
only with respect to one independent variable, computer time, two of the in-
dependent variables must be replaced with finite differences. The deriva-

tives in Y and Z will be expressed as finite differences as follows:

¥ 1 [Sw1-Sy Su-Spr | B Sp - Sp
. - -
oY . (8Y),, (AY)m+_21_ (AY)m_% Y . 2(AY),
325 _ Spy1 - 28y + Sy
a2 i pz) 2
. (82),

The expressions for the second derivatives in Y and Z are different be=-
cause, in all the cases studied here, uniform differences are taken in Z but
nonuniform differences are taken in Y . If uniform differences were taken
both ways, the two expressions would be identical. Equation (4) may now be

stated as a set simultaneous, ordinary differential equations:

EE Eﬁ L Sm+l,n B Sm,n _ szn - Sm—l,n
dx K, (8Y) (8Y) .1 (aY) 1
m,n 2 2
Sm,n+l - ESm,n + Sm,n-l - sm+l,n ” Sm-l,n (6)
(82),° 2(AY)p

where the subscripts m and n refer to discrete values in Y and Z ,
respectively. The physical model corresponding to Eq. (6) is shown in Fig.
1. This is the particular model that will be used in the section on compu-

tation in connection with the isotropic diffusion case. It consists of an
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Fig. 1. The 8l-cell, finite difference model of isotropic diffusion

from a point source.




array of cells of rectangular cross section with width AY , height AZ , and
with one end at X = O and the other at x = o . The cells are stacked
vertically from the ground to the inversion base and horizontally from = o
to + © ., The number of cells in Y is finite since the end cells have width
AY = ©» ., The source cell is in the center of the array and is designated 0,0.
All the properties of each cell are lumped in the center of the cross
section so .that the model is an array of rods with one end at X =0 and the
other at X = » . The source is no longer a point source but a vertical area
source. In this model, the continuity Eq. (3) holds for all values of X s

and by evaluating it at x =0 , we can define x4 .

Yo 2o
Q = j; S/ H® S x, dZ dY
7R

The integration at X =0 is carried over the source cell only, and in a
given cell all the parameters in the integrand are constant. Since the value

of S at x=0 1in the source set at unity,
= g2 T
Q = H° U &)(AY)O (Az)O

and therefore

Q
T H® (8Y), (2),

Xo

The solutions that will be obtained with this model will be the average con-
centration over the cross section of a cell as a function of its length, or

distance downwind.



3. ANALOG MODELS

In analog computation, it is helpful to realize that there exists a
correspondence between the components of the circuit set up to solve Eq.
(6) and the physical model shown in Fig. 1. This can be shown by con-
structing on paper a passive network analog as shown in Fig. 2. In this
circuit, there is a capacitor for each cell and a network of resistors con-
necting them. In this analog, the voltage at each node is a function of
time and corresponds to the concentration as a function of distance down-

stream. The current into each capacitor is given by

av - dx
i = ¢c— = uldybAz —
dt dx
and c = UAy Az
1 Ay 1 Az
R, = —=%, R, = =22,
y Ky Az ’ Tz K, Ay

In this circuit the boundary conditions are implemented directly.
Since there must be no flux through the ground or the inversion, the counter-
part of flux, current; is made zero by simply making no connections across
the boundaries. The initial concentration (voltage) in the source cell is
provided by disconnecting the capacitor for that cell; charging it to ar-
bitrary voltage, and switching it back into the network at x (time)
equals zero. Since the end cells in y are infiﬁite, the concentration
(voltage) is always zero there so these nodes are connected to ground

Provision for variation of the parameters K s U, Ay, and Az as

a function of y and z is made by assigning appropriate values to the re=-

8
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GROUND

Fig. 2. The passive network analog of diffusion from a point source.
The center cell is the source cell and its capacitor is initially
changed to represent the source concentration.



sistors and capacitors involved. If any of these parameters are a function
of x , then they must be made to change in time. This is not readily ac-
complished and constitutes one of the disadvantages of the passive network.
In general, the passive network is much less flexible than the active cir-
cuit.

An electronic analog circuit will be shown later for each case. They
are constructed by assigning to each component a mathematical operation and
these are connected so as to satisfy the governing set of differential equa-
tions. Identical circuits can be derived by simulating the passive network
analog; thus each circuit has a dual nature. It is a series of mathematical
operations designed to solve an equation and it is also an analogy of the
system being studied where components and voltages represent physical parts
of the atmospheric diffusion model. Both the active and the passive analogs
are physical systems designed to behave like another, idealized physical sys-

tem. The electronic analog circuits will be explored as they appear.

L. COMPUTATION AND RESULTS

Since each of the cases considered is quite different, the form of Eq.
(6) appropriate to each will be given along with the computing circuit and

the results.

A. ISOTROPIC DIFFUSION WITH AN 84-CELL MODEL
The first case is diffusion from the point source in isotropic condi-
tions, that is, the wind speed and eddy diffusivity are constant over the

region. The 84-cell model used is shown in Fig. 1. It is symmetrical about

10



the coordinate axis so only the cells in the first quadrant need be simu-
lated and of these, the ones in the outer column, m = 3 , are always zero
so that there are only 14 active cells in the simulation. In this case, Eg.

(6) becomes

as - 1 Sm+l,n B Smln _ Sm,n - Sm-l,n
S N O (AY)m+% (AY)nb%

Sm,m+1 = 25m,n + Sm,n-1
196 (Az)°

where X = 196 x and the boundary conditions are
Sl,n = S-l,n

Sm,l

Sm, -1
Sl,l(o) = 1.00
83:n =0

Sm,? = Sm,8

The factor 196 was inserted to make the coefficients more convenient. The
cell boundaries given in Table I show that the spacing in the vertical is
linear whereas the spacing in the horizontal is exponential and the source

cell has a square cross section.

11



TABLIE I

CELL BOUNDARIES IN THE HORIZONTAL AND THE VERTICAL
FOR THE FIRST QUADRANT OF THE 84-CELL MODEL

Y =y/H Z = z/H

0 0
0.071k 0.0714
0.1934 0.1428
® 0.2142
0.2856
0.3570
0.4284
0.5000

Since AZ 1is a constant for each cell, Eq. (7) can be conveniently ex-
pressed as two sets of difference-differential equations for the columns

used.

as
ax | . = 0.8228(Sp - 8y ) + (Sy pyy - 28 p + 8y pp)
1,n
ds
o0 © 0.4957 8, , - 0.7410 S
+ (Sp,n41 = 282 + Sp po1) (8)

The computer circuit for Eq. (8) which is shown in Fig. % has one ampli-
fier for each of the 1L differential equations represented by (8). The fop
row of amplifiers simulates the first column of cellé and the top equation in
(8). The bottom equation is solved by the lower row of amplifiers. The Sl,l
amplifier in the top row represents the source cell and has an initial condition
of S =1.00 at computer time (distance in X) t = O . The basic unit of
computation is the integrating amplifier as shown in Fig. 4. for a fypical cell._

12
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Fig. 4. Typical cell from the circuit of Fig. 3 showing the connections
to the integrating amplifier. Nonunity equation coefficients are set on
the coefficient potentiometers provided.
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Solution curves for the first row of cells are shown in Figs. 5 and 6.

B. ISOTROPIC DIFFUSION WITH A 56-CELL MODEL

To facilitate the simulation, the number of cells can be reduced. In
this case, only 4 cells in Y are to be used instead of six. The purpose
of this reduction is that more involved problems to be treated are more readily
handled with a simpler basic model. Not so much equipment is needed in this
case but the reduction in the number of cells imposes a severe accuracy pen-
alty. Before introducing the more interesting cases, the magnitude of the
error introduced can be shown by solving the same problem employing the
same techniques.

Cell boundaries in Y for the 56-cell model are Y =0 , 0.0714 , o ;
while the cell boundaries in Z are as stated in Table I. In the first
quadrant, there are still 7 active cells in Z but only 1 in Y ; thus there

is 1 active column and Eq. (8) simplifies to

das
& ||, = 072208 (S1,p41 = 251, + S n-1) (9)
b

where X = 196 X and the boundary conditions are

57.1(0) = 1.00
SE,n =0
51,7 = 51,8

The computer circuit for Eq. (9) is shown in Fig. 7. As in Fig. 3, there is

15
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one integrating amplifier for each active cell. The solutions for the
source cell obtained from the 56-cell and the 8L-cell models are compared
in Fig. 8. Evidently the approximations are not bad for small values of

X . For all the following work, the absolute error for values of X >1 is
large, the objective is to show deviations from the reference solutions in

each case.

C. NONISOTROPIC DIFFUSION

Changing the ratio of the eddy diffusivity in the Y-direction to that
in the Z-direction produces a very marked alteration in the solutions. As
an example, set Ky = 10 K, in the 56=-cell model. Equation (9) may now be

written

das 250 S 51,n+1 = 251,n + 51 n-1
ax 1n = = 0.7220 l,n + 10
J

(10)

where X = 1960 X and the boundary conditions are

Sl,n = S-l,n
Sl,l = Sl,-l
31,1(0) = 1.00
Spp = O
Si,7 © 51,8

The -computer circuit for Eq. (10) is identical to the one shown in Fig. 7
except that the coefficient potentiometers are set to the values indicated
in Eq. (lo). Solutions for the cases Ky = K, and KY = 10 K, are plotted

in Fig. 9. It shows that increasing the lateral diffusivity in this model

19
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has a pronounced effect. The magnitude of the effect is enhanced by the

limited vertical diffusion due to the presence of the inversion.

D. EDDY DIFFUSIVITY RELATED TO PLUME DIMENSIONS

Plume dimensions may influence the magnitude of the effective eddy dif-
fusivity acting on the plume since, as the cloud grows, larger eddies are
able to operate to diffuse the materials. The eddy diffusivity might be
made a function of the plume size and of the power spectrum of eddies pres-
ent. In the usual parabolic diffusion equation, the plume has no easily de-
fined boundaries except those imposed upon it, such as the surface of the
ground. Therefore the diffusivity cannot be related directly to plume size
but must be specified in some arbitrary manner. For example, it could be
made proportional to the standard deviation of the concentration distribution
taken perpendicular to the plume axis. If this distribution is normal, the
standard deviation is inversely proportional to :the central maxima or axial
concentration, so that the diffusivity can be set inversely proportional to
the éxial plume concentration. Since the power spectra would never be con-
tinuous indefinitely, theAdiffusivity could not become infinite as the axial
concentration went to zero but would reach some finite value and remain con-
stant. In the finite difference model, the source is finite so that the dif-
fusivity woiilld increase from one small finite value to a larger one inversely
as the concentration in the cell containing the source. Represent the dif-
fusivity as @(S))K where K 1is the diffusivity for infinite plume dimen-

sions and ¢(Sl) is a function of the axial concentration such that

0< @g(sy) < 1.00
20



For example, set
g(sy) = 1-0.78 3 (11)

since 1.00 2 Sl,l 20

Setting Ky =K, , Eq. (9) becomes

ds
= LT ¢(31)(31,n+1 - 28+ sl,n_l) - 0.7220 #(8;) 81,n (12)
J

with the same boundary conditions as before. The computing circuit, shown
partially in Fig. 10, is similar to that of Fig. 7 in principle. This one uses
3 amplifiers, one integrator and two summers, per cell to isolate all the in-
puts to the integrating amplifier. With this configuration, it is only neces-
sary to introduce the modifying parameter ¢(Sl) once per cell.

Since ¢(Sl) is a function of the axial concentration, its form is de-
termined by a feedback look defined by Egs. (11) and (13). The function ¢(Sl)
is generated as the solution proceeds.,

The computing circuits used in this problem are virtually identical with
those of the next section. Therefore the description of the additional com-
ponents required for the generation of ¢(Sl) and the presentatibn of the

solutions will be deferred to that section.

E. DIFFUSION IN TRANSITIONAL STATES

A problem of special interest arises when the trajectory of the diffusing
plume crosses the boundary from one turbulent regime to another. The physical
model consists of a source located over land not far from the shore of a lake.

The wind blows from the land out over the lake and the mechanical and perhaps

23



the thermal turbulence decrease markedly as it does so. The associated dif-
fusion is referred to in this research as diffusion in a transitional state;

10 is the result of a corresponding time transi-

the inversion breakup fumigation
tion in diffusion.

In the mathematical model, a change in the eddy diffusivity accompanies
the transition from one turbulent regime to the other. This will be implemented
by applying another modifying parameter @(X) to the constant K . Then @(X)
will be unity in the first regime and fall to some lesser value in the second.
For the present préliminary study, this function was simulated directly on the
computer to conform to an intuitive impression of what it should be without

using a mathematical expression. It is possible to contrive a mathematical

description, which is:

B(x) = 0.52 +0.48{[1 - n(x - x1)]
+ cos(X - x1) [n(X - X1) - n(x - x3 - x) ]} (13)
where h(a) 1is the unit step function which has the following properties:

h(a) = 0, a<o0

and X; is the value of X where the turbulence starts to decrease.

The diffusion equation is just Eq. (12) with ¢(Sl) replaced with @(X)
The computing circuit is also that of Fig. 10 and the circuit for generation
of @(S1) and @(X) is shown in Fig. 11.

The plysical problems discussed in this section and in the previous one

ok



INTEGRATING AMPLIFIER

,SUMMWG AMPLIFIER

¢(SI)X)

SERVO
MULTIPLIER
#2

MECHANICAL LINKAGE TO
FOLLOW-UP POTENTIOMETERS
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coefficients were a function of plume size and in the case of diffusion in
transitional states. The dotted lines indicate mechanical connections.
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are different despite a somewhat deceptive similarity in the governing
equation used. The differences between the problems are indicated in the
form of the modifying parameter ¢ . It is only because of the similar way
in which ¢ is implemented that the problems are handled together.

It is possible to introduce ooth effects in the problems. In this case,
a new parameter will be defined such that @(S1,X) = g(s1) B(X) . Figure 11
shows how each of three function$ is generated. When switch 1 is on =100
and switch 2 is closed, the output of amplifier 4 is @(S;) as defined by
Eq. (11) and it passes through seérvomultiplier 1 unchanged to control servo-
multiplier 2. When switch 1 is dn ¢(X) and switch 2 is open, the function
@(X) , generated by amplifiers 1. 2, and 3, controls servomultiplier 2. The
function @(S1,X) is generated when switch 1 is on B(X) and switch 2 is
closed. The functions @(S;), #(x) and #(51,X) are plotted in Fig. 12 as
they were generated by the computer.

Solutions for 8y ; , 51,0 and 5y 3 are presented in Figs. 13, 1k, and
15, respectively, for 4 cases: @ =1, @ =0(S]) , ¢ =¢(X) and ¢ = #(87,X%) .
fhe case ¢ =1 is the reference solution. Each modifying parameter acts to
change the scale in X , that is, the new solutions can be found by transla-
tion in X from the reference solution. This is shown best in Figs. 14 and
15 where the maxima have been translated and expanded but the value of the
maxima remains the same. The fir$t modifying parameter ¢(Sl) is signifi-
cantly different from unity only for small values of X so the greatest .-
effect on the solutions should oc¢ur there. Each solution shows large trans-
lation for small values of X . The net effect of coupling the eddy diffu-

sivity to cloud dimensions is to increase the concentration values for small X
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Fig. 12. Plot of the modifying parameters of the coefficient of eddy dif-
fusivity. @(S1) is a function of plume size while @(X) represents trans-
ition from one turbulent regime to another. @(S1,X) is a simple multipli-
cative combination of @(X ) and @(X) .
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Fig. 13. Plot of the concentrations in the source cell as a function of
the modifying parameter used.

29



CONCENTRATION S, ,

A6

o
T

o
|

o
@
|

# (S, X)
8(5,)

#(X)

.04

10
021

| ] ] ] ] ]

0 I 2 3 4 5 6
DISTANCE DOWNWIND X
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modifying parameter used.

30



.09

O7F

CONCENTRATION Sy, 3

02

o
N
I

o
(8]
T

o
D
T

¢ (S/,X}

4(1) #(X)
Ol #(5,)

1 ] 1 | ] 1

0 I 2 3 4 5 6
DISTANCE DOWNWIND X

Fig. 15. Plot of the concentration in cell 1, 3 as a function of the
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along the plume axis and to delay the occurrence of the maxima off the axis.
The solutions for @(1) and ¢(Sl) do not converge for large X but reach
a constant translation in X . But since the gradient is small for large X )
the absolute value of the differences between the solutions is small.

Since the function @(X) can be determined independently, the solution
could be found from the reference solution by plotting it on a new scale de-

fined by

The observed effect corresponds to this point of view in that ¢(X) has no
effect on the solution for X < 1 but acts to translate the solution for

X >1.

F. WIND DIRECTION SHEAR

The presence of wind direction shear in the diffusing layers causes
the plume cross section to be skewed, and the amount of skewness can be de-
termined by inserting terms in the diffusion equation for cross-wind components.
Equation (6) contains the nondimensional parameter V = H v/K for these
cross-wind components. Since the diffusion pattern is not symmetrical, it
will not suffice to simulate only the first quadrant. In the interest of
simplicity, a new 25-cell model is used as shown in Fig. 16. The source
cell is 0,3 and there are 15 active cells. Figure 17 shows v(Z) , which is
an exponential function of height, in the finite difference model in relation
to the downwind component H U/K . The exponential function was chosen as an

approximation to the lower part of the Ekman spiral. Equation (6) may be
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written

as _ 1 Sm+1,n = Sm,n . Sm,n = Sm-1,n
X |y, 25(AY) (AY)m% (AY)m__Ql_ ]
v
" 50 (Zi)mlzsm*l’n - Sn-1,n] * [Sm,nel = %m0 + Sn,n-1] (14)

where X =25 X% and the boundary conditions are

Sop = O
Sop = O
Sm,O = Sm,l
Sp,5 = Sm,6

8p,3(0) = 1.00

The computing curcuit is shown in Fig. 18 and the solutions are in Figs.
20, 21, and 22. Each solution is compared to the reference solution, where
V(Z) = 0 . We can compare the concentrations in the cells for two cases at
some distance downstream, say at X =1 .*¥ The results, as shown in Fig. 19,
indicate that the wind direction shear produces a marked skewness in the
plume. The skewed plume is to be expected but a more interesting question
is whether the average concentrations in the plume are reduced because of the

skewness. Figures 20, 21, and 22 indicate that the concentrations.are reduced,

*In making this comparison, note that changes in wind direction were provided
by adding Vv components while holding u constant which increased the mag-
nite of the total vector by an average 1.6%. Since X is a function of 1 )
we can compensate for this by evaluating the concentrations when V # 0 at
X=1 and when V=0 at X = 1.016 .
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Fig. 19. Cross section of the plume at X = 1 showing lines of constant
concentration in arbitrary units. This figure shows the reference solution
(a) and solution in the presence of wind direction shear with height (b).
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Fig. 20. Comparison of the concentration plots for cells to the right and
the left of the source cell in the presence of wind shear. The solid line
is the reference solution for both cells.
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Fig. 21. Concentration plots for some cells in the 25-cell model in the
presence of wind shear. The solid lines are reference solutions.
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by about 4% in the center of the plume at X = 1 . The integrated concentra-
tion over the plume at X = 1 was reduced about 2%. Thus it seems valid to
conclude that wind direction shear does increase the diffusing propetties of
the atmosphere. It is planned to analyze the influence of wind direction shear
in concentrations downwind from a continuous point source using an analog com-

puter of much greater capacity.

G. LARGE-SCALE EDDIES
The presence of large-scale eddies or, since we are considering the
steady state, a standing wave in the horizontal wind components can be repre-
sented as a sinusoid V = a sin bx . A stationary plume might be an example
of this kind of process. The small-scale .eddies which operate to diffuse
the plume are represented by the coefficient of eddy diffusivity, whereas
the large-scale eddies act only to transport the plume in the y-direction.
Equipment limitations at the time of the research dictated the choice
of a more coarse finite difference model as shawn in Fig. 23. The mathem-

atical model, based on Eq. (6), is

Smtl,n * Sp-1,n * Sm,n+l * Smyn-1 - usm,n

m,n

V(X)
" I8(aY) [Sm+l,n - Sm-l,ﬁ] (15)
Ha
where V(X) = | 'sin BX and the boundary conditions are

Soon = S.o,n=0

]

=
o
o

50?5(0)
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Sm,5 = Sm,k4

and AY = AZ for the active cells. If we set 5A = Ha(AZ)/2K , (15) becomes

16

1 .
- IBl:sm’n'l - U8y + (1 - 5A sin BX) Spyp

m,n

+ (1 -+ 5A sin BX) Sm_l,ﬁj (16)

where X = 90 X . The computing circuit is shown in Figs. 24 and 25, and a
typical cell is shown in Fig. 26. The solutions are plotted in Figs. 27, 28,
and 29 along with the reference solution.

This system exhibits a phenomena like resonance in a forced -second-order
system. It is not puré resonance but the sytem does respond markedly to
changes in frequency of the cross-wind component. Changes in amplitude do
not affect the qualitative nature of the solution.

The plume meander lags behind the cross-wind components. The point at
which the plume axis crosses the middle cell can be found by noting the point
where the concentration of opposite pairs of cells is equal. This occurs for
X = 1.506, 2.448, and 3.531 , while the cross-wind goes to zero at X = 1.0k47,
2.094, and 3.141. The phase lage is not constant for the above three points
but is 78.9 deg, 60.9 deg, and 67.1 deg, respectively.

It is of interest to compare the concentrations in the plume, for samp-
ling periods short enough to avoid plume shifting, when it meanders with when
it does not. At an arbitrary point downwind, at X = 1.6 , the total concen-

traion reported in the case with no meander was 16% higher than in the case
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Fig. 27. Plot of the concentrations for cells 0,2, 0,3, and 0,4 in the
presence of large-scale eddies. The solid line is the reference solution.
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Fig. 28. Plot of the concentration for cells -1,3 and +1,3 in the presence
of large-scale eddies. The solid line is the reference solution.
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in the presence of large-scale eddies. The solid line is the reference
solution.
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where the plume meanders. As shown in the appendix, this decrease in concen-
tration in the meandering plume is due entirely to the longer path length
followed by the plume.

If one knew the total concentration across a straight plume as a function
of distance downwind, one could then compute the long-term concentration at a
station subjected to a plume in meandering but otherwise identical conditions.
The calculations may be so tedious as to be impractical since they would in-
volve computing the length of the trajectories over the given interval, ad-
Justing the concentration and integrating them.

It would still be of interest to perform this calculation on the computer
using random large-scale eddies, and it is intended that this topic will be

the subject of a future report.

H. A POSSIBLE COMBINATION OF TWO OF THE MODELS

Two of the models presented above are related to some extent. The model
in which eddy diffusivity increases with the plume dimensions can be related
to that including large-scale eddies. In the first case, the complete spec-
trum of eddies can be included and the effect on the plume partially deter-
mined. The solution is partially complete in that, while the diffusing ef-
fects of all the eddies are included, the transport due to eddies much larger
than the plume dimensions is neglected. The model simply ignores eddies of
a given scale until the plume dimensions grow to that scale. The transport
phenomenon is shown in the latter model where the large-scale eddies are
treated as a wind component, but here they contribute nothingto the diffusion

process no matter how large the cloud becomes.
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A combination of the two models might be an improvement. Let the wind
components represent eddies larger than the plume while all smaller eddies
act through the eddy diffusivity. The wind components would become smaller
with distance downstream whereas the eddy diffusivity would increase, The
wind components incorporated in the model are defined as averages which
raises the question of how much they should be allowed to fluctuate or to
possess time - or distance-variant properties. An averaged wind speed could
be defined as the average or mean value obtained by the use of a sampling time
Just large enough to exclude all the turbulent eddies which contribute to
the diffusion process. If we allow the assumption that the scale of eddies
involved depends upon the scale of the plume, then the sampling time in the
above definition would depend upon the plume size also. The wind-speed
components could be represented as a Fourier series whose higher-frequency
components are gradually eliminated as the plume grows, and conversely, the
coefficient of eddy diffusivity would increase as more turbulent eddies were
added to its domain. This is a rather involved model even for analog computa-

tion and no attempt as yet has been made to set it up.

5. SUMMARY AND CONCLUSIONS

As the model has become more complicated, it has been necessary to use
fewer cells and to tolerate greater error. The amount of equipment needed
is proportional to the number of cells and to the complexity of the model,
and all the research described here was done on one machine with a very

limited amount of computing equipment The direct way to reduce error, then,
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is to use a larger machine which would permit simulation of more cells. The
errors are proportional to the fourth partial space derivative so that the
error can be reduced by solving for a function related to the solution which
possesses a smaller fourth derivative. Such a function could be found by per-
turbation techniques.

The parabolic diffusion equation has been shown to be of general utility
in the variety of problems covered. It is a model which is well adapted to
analog computation. With sufficient equipment the actual programming seldom
presents any difficulty even in the most involved problems discussed here.

The trapping situation was used throughout this report to limit the
scope of the research,and to facilitate handling the problems on a computer
of given size. Extension of these methods to nontrapping situations can be

readily done using the technique reported earlier.l
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APPENDIX

In the case where the meandering plume was treated, there were two pos-
sible mechanisms which could affect the diffusion of the plume. The one noted
in the main body of the report was the increased path length of the trajectory.
The other is that large-scale eddies might change the shape of the plume,
thereby influencing the diffusion process. An attempt was made to evaluate
this mechanism by correcting for the first one.

When there is a cross-wind which causes meandering, the magnitude of the
total wind vector and the path length along the plume axis, as shown in Fig.
30, has been increased. To compensate for this, the concentration for no
cross-wind should be taken at a point further downstream in inverse propor-
tion to the relative decrease in the magnitude of the wind vector. Taking the

first zero crossing, at X; = 1.506 , the compensating factor is

where

—— X

1 1 1

sin® BX = EI S/ sin® BY dX = Eggzr[ﬁxl - sin BXj cox BXi] = 0.47%
0

Then X, = 1.506 /1.479 = 1.831. The following table gives the concentration

in both cases.
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TABLE A-I

COMPARISON OF PLUME CONCENTRATIONS
FOR THE MEANDERING PLUME AND THE STRAIGHT PLUME

Cell Straight Plume Meandering Plume
X = 1.831 X = 1.506

0,2 0.0595 0.0599
0,3 0.0596 0.0617
0,k 0.0595 0.0599
-1,2 0.0k12 0.0k406
-1,3 0.0k22 0.0420
-1,k 0.0k412 0.0L06
+1,2 0.0412 0.0406
+1,3 0.0422 0.0420
+1,k4 0.0412 0.0406
Total concentration 0.4278 0.4279

Evidently the plume shape is a little different since the individual cells do
not report identical concentrations, but the sume of the concentrations for all

the cells is not significantly different.
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