The Leucine Binding Proteins of Escherichia coli as Models for Studying the Relationships Between Protein Structure and Function

Tammy K. Antonucci, Robert Landick, and Dale L. Oxender
Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109

Abstract

The genes encoding the leucine binding proteins in E coli have been cloned and their DNA sequences have been determined. One of the binding proteins (LIVBP) binds leucine, isoleucine, valine, threonine, and alanine, whereas the other (LS-BP) binds only the D- and L-isomers of leucine. These proteins bind their solutes as they enter the periplasm, then interact with three membrane components, livH, livG, and livM, to achieve the translocation of the solute across the bacterial cell membrane. Another feature of the binding proteins is that they must be secreted into the periplasmic space where they carry out their function. The amino acid sequence of the two binding proteins is 80% homologous, indicating that they are the products of an ancestral gene duplication. Because of these characteristics of the leucine binding proteins, we are using them as models for studying the relationships between protein structure and function.

Key words: amino acid transport, binding proteins, secretion, gene duplication, oligonucleotidedirected mutagenesis

There are three major systems operating in Escherichia coli for the transport of the branched-chain amino acids. Two of these systems consist of a binding protein and three membrane components while the third system appears to involve only a single membrane component. In this discussion we will describe the biochemical and genetic properties of the two binding protein-dependent transport systems, emphasizing the multiple functions of the binding protein components of the transport systems and, as a consequence, the value of the binding proteins for understanding the relationship(s) between protein structure and function.

The LIV-I system transports L-leucine, L-isoleucine, and L-valine with K_{d} values of approximately 10^{-6} to $10^{-7} \mu \mathrm{M}[1-4]$. In addition, this system is responsible for the transport of threonine and alanine, but with somewhat lower affinities [2].

Robert Landick's present address is the Department of Biological Sciences, Stanford University, Stanford, CA 94305.

Received June 6, 1985; revised and accepted August 6, 1985.

The other transport system to be considered is the leucine-specific transport system (LS). The LS system transports L-leucine with a K_{d} value of approximately 10^{-6} $\mu \mathrm{M}$; D-leucine is also an acceptable substrate but with a lower affinity [1-4]. All structural genes for the LS and LIV-I transport systems are located at the minute 76 region on the E coli chromosome [4].

The genes encoding the components of the branched-chain amino acid transport systems LIV-I and LS in E coli have been cloned [5]. The gene organization is shown in Figure 1. There are three functional operons with their directions of transcription indicated by the arrows. The livJ and livK gene products are the periplasmic binding proteins, called LIV-BP and LS-BP, respectively. The LIV-BP binds isoleucine, leucine, and valine with high affinity and threonine and alanine with a somewhat lower affinity. The LS-BP binds only isomers of leucine. The livH, livM, and livG genes encode proteins that have been localized to the inner membrane of the bacterial cell [6]. These proteins presumably interact with the BP-amino acid complex to effect the transport of the amino acid into the cytoplasm of the cell. Thus the LIV-I and LS transport systems consist of individual binding proteins that have different substrate specificities yet interact with the same membrane components during the transport process. The livL operon produces a 17 kD protein but its role in transport, if any, has not been determined [7].

CHARACTERISTICS OF THE LIV-BP AND THE LS-BP

The DNA sequence of the livJ and livK genes encoding the two binding proteins has been determined [8] and is shown in Figure 2. A comparison of the coding regions of the two sequences shows that the two binding protein genes are 80% homologous, indicating that they are the products of an ancestral gene duplication [8-11]. While the sequences of the 5^{\prime} flanking regions and coding regions revealed no strong homology with the known ribosome-binding sites, the pattern of codon usage in both genes implies that they are translated with average efficiency.

The amino acid sequence of the LIV-BP has been previously reported [12] and is consistent with the DNA sequence except for two positions [8]. Moreover, the crystal structure of the mature LIV-BP was determined to a resolution of 2.0 A [13]. The crystal structure reveals that the LIV-BP has two domains that fold to form a cleft [13]. One domain of LIV-BP is composed of the N -terminal half of the protein, while the other domain is formed by most of the C terminal portion of the molecule. The secondary structure obtained from the crystallographic analysis shows that each domain is formed by an alternating series of alpha helices and beta sheets [8]. Figure 3 shows the predicted secondary structural features superimposed onto a drawing of the crystal structure. The filled-in dots represent differences in amino acid sequences between the two binding proteins. The two arrows in Figure 2 point out regions where amino acid insertions occur in the LS-BP. A disulfide bridge can be positioned between segments beta-2 and beta- 3 .

Substrate Binding

One of the major functions carried out by the BPs is binding of substrate. As mentioned above, the LIV-BP and the LS-BP have different substrate specificities. Saper and Quiocho [13] have observed that when L-leucine is diffused into crystals

Fig. 1. Organization of the high affinity branched-chain amino acid transport genes in E coli. Arrows represent the directions of transcription for the operons.

 Met Lys Arg Asn Ala Lys Thr lie Ile Ala Gly Met He Ala Leu Ala lle Ser his Thr Ald Met Ala Asp Asp lle Lys Val Ala Val ATG aAA CGG aAt gCg ana act atc arc gCa gGg atg att gca ctg gca att tca cac acc gct atg gct gac gat ait ana gic gcc git
gTG gGC gCa atg tcc gat ccg git gcg cag tac ggt gac cag gag IIt acc gac gca gag cag gcg git gcg gat aic adc gct ana gac Val Gly Ala Met Ser Gly Pro Val Ala Gln Tyr Gily Asp Gin Gilu Phe Thr Gly Ala Glu Gin Ala Val Ala Asp lle Asn Ala Lys Gly Val Gly Ala Met Ser Gly Pro Ile Ala Gin Tro Gly lle Met Glu Phe Asn Gly Ala glu gin Ala lle Lys Asp lle Asn Ala Lys gly gTC gGC geg atg tcc ggc ccg att gcc cag tgg ggc ata atg gat tit anc ggc geg gag cag gcg att aaa gac att aat gcc aaa ggg

 Gly the tys Gly Asp Lys Leu Val Gly Val Glu Tyr Asp Asp Ala Cys Asp Pro Lys gin Ala Val Ald Val Ala Asm Lys lle Val Asn

gac gge ait aad tat gig att ggt cac cti tgit tcc tca tca acg cag cct gcg tcg gat atc tac gaa gac gaa gge att tig atg atc
 Asp Gly He Lys Tyr Val Ile Gly His Leu Cys Ser Ser Ser Thr Gin Pro Ala Ser Asp Ile Tyr Glu Asp Glu Gly the teu Met tle gac ggi att ana tac git att ggi cat ctg tgt tct tct tct acc cag cct gcg tca gac atc tat gaa gac gai gat att cia atg atc acc cca gcg gca acc gcg ccg gag ctg acc gcc cgi ggi tat cag ctg atc ctg cga acc acc gge ing gat tcc gac caa ggg ccg acg Thr Pro Ala Ala Thr Ala Pro Glu Leu Thr Ala Arg Gly Tyr Gin Leu lle Leu Arg $\mathrm{Thr}_{\star} \mathrm{Thr}_{\star}$ Gly Leu Asp Ser Asp Gin Gly Pro Thr Ser Pro Gly Ala Thr Ala Pro Glu Leu Thr Gln Arg Gly Tyr Gln His lle Met Arg Thr Ala Gly Leu Asp Ser Ser Ging Gly Pro Thr icg ccg gga gcg acc gcg ccg gat cta acc cai cgc ggt tat cai cac att atg cgt act gcc ggg ctg gac tct tcc cag ggg cca acg

 Ala Ala Lys Tyr lle Leu Glu Thr Val Lys Pro Gin Arg Ile Ala lle Ile His Asp Lys gin Gin Tyr Gly glu gly Leu Ala Arg Ser

160

170
180
 $\underset{*}{V a l}$ Gin Asp Gly Leu Lys Lys Gly Asn Ala Asn Val Val Phe Phe Asp Gily lile Thr Ala Gly Giu Lys Asp Phe Ser Thr Leu Val Ala Val Gin Asp Gly Leu Lys Ala Ala Asn Ala Asn Val Val Phe Phe Asp Gly lle Thr Ala Gly Glu Lys Asp Phe Ser Ala Leu lie Ala

190 AAA GAG AAT ATC GAC TTC GTT TAC TAC 200
 Arg Leu Lys Lys Glu Asn lle Asp Phe Val Tyr Tyr Gly Gly Tyr His Pro Glu Met Gily Gin Ile Leu Arg Gin Ala Arg Ala Ala Gly Arg Leu Lys Lys glu Asn lle Asp Phe Val Tyr Tyr gly gly Tyr Tyr Pro Glu Met Gly gin Met Leu Arg Gin Ala Arg Ser Val Gly CGC CTG AAA AAA GAA AAC ATC GAC TIC GTT TAC TAC GGC GGT TAC TAC CCG GAA ATG GGG CAG ATG CTG CGC CAG GCC CGT TCC GIT GGC

 Leu Lys Thr Gin phe Met Giy Proglu Gly Val Giy Asri Ala Ser Leu Ser Asn Ile Ala Gly Asp Ala Ala Giu Gly Met Leu Val Thr ctg afa acc cag itt atg ggg ccg gaa ggt gig ggt aft gcg tcg tig tcg afc att gcc ggt gat gcc gcc gai ggi aig tig gic act

250 OAC TAC 260 IT 270
 Lys Pro Lys Asn Tyr Asp Gin Val Pro Ala Asn Lys Pro lle Val Asp Ala lle Lys Ala Lys Lys Gin Asp Pro Ser gly Ala Phe Val
Met Pro Lys Arg Tyr Asp Gin Asp Pro Ala Asn Gin Gly lle Val Asp Ala Leu Lys Ala Asp Lys Lys Asp Pro Ser Gly Pro Tyr Val ATG CCA AAA CGC TAT GAC CAG GAT CCG GCA AAC CAG GGC ATC GTT GAT GCG CTG AAA GCA GAC AAG AAA GAT CCG TCC GGG CCT TAT GTC
 Trp Thr Thr Tyr Ala Ala Leu Gin Ser Leu

CAG GCG GGC CTC AAT CAG Gln Ala Gly leu Asn Gin
ict gac gat ccg gct gaa atc gcc aad tac ctg aas Ser Asp Asp Pro Ala Glu lle Ala Lys Tyr Leu Lys frp lle Thr Tyr Ala Ala Val Gin Ser Leu Ala Thr Ala Leu Glu Arg Thr Gily Ser Asp Glu Pro Leu Ala Leu Val Lys Asp Leu Lys tGG ATC ACC TAC GCG GCG GIG CAA ICT CTG GCG ACI GCC CTT GAG CGT ACC GGC AGC GAT GAG CCG CTG GCG CTG GTG AAA GAt ITA AAA gCg aac tcc gtg gat acc git atg gac ceg ctg acc tgg gat gag aad gac gat ctg ana gac tit gag tic gac gia tit gac tgg cac ${ }_{\star}$ Ala Asn Ser Val Asp Thr Val Met Gly Pro Leu Thr Trp Asp Glu Lys Gly Asp Leu Lys Gly Phe Glu Phe Gly Val Phe Asp Trp His Ala Asn Gly Ald Asn Thr Val lle Gly Pro Leu Asn Trp Asp Glu Lys Gily Asp Leu Lys Gly phe Asp Phe Gly Val Phe Gin Trp his gCt AAC GGT GCA AAC ACC GTG ATT GGG CCG CTG AAC TGG GAT GAA AAA GGC GAT CTT AAG GGA TTT GAT TTT GGT GTG tTC CAG tGG CAC

GCC AAC GGC ACG GCC ACC GAT GCG AAG
Ald Asn Gly Thr Ala Thr Asp Ala Lys
Ala Asp Gly Ser Ser Thr Ala Ala Lys
GCC GAC GGT TCA TCC ACG GCA GCC AAG
LIV-BP

LS-BP

Fig. 2. Nucleotide sequences of the genes encoding LIV-BP and LS-BP. Positive numbering indicates the mature protein sequences, while negative numbering designates the signal sequences. Homologous amino acids are noted by asterisks.

Fig. 3. Structure of the LIV-BP. Predicted secondary structures are superimposed on the threedimensional structure reported by Saper and Quiocho [13]. Filled circles indicate the positions of amino acid differences between the LIV-BP and LS-BP sequences. The two dark arrows indicate the region where a two-amino acid insertion occurs in the LS-BP sequence. A disulfide bridge is indicated between segments beta-2 and beta-3.
of the LIV-BP, it binds to the inside face of the N -terminal domain. It is reasonable to suggest [8] that amino acid differences between the two BP sequences within the cleft between the two domains are responsible for the different substrate specificities of the LIV-BP and LS-BP. Nonhomologous residues are present near the cleft in segments beta-1-alpha-1, beta-4-alpha-4, alpha-9, alpha-10, beta-9, and beta-10. Thus, these areas of the BPs may be involved either in forming the structure of the substrate binding site or in directly interacting with the substrate.

INTERACTION OF BPS WITH MEMBRANE COMPONENTS

Both the LIV-BP-substrate complex and the LS-BP-substrate complex must interact with the same three membrane components to effect the transport of the substrate. Therefore, it is interesting to note that some of the regions of high amino acid sequence conservation include the C terminus of beta-2, alpha-2, beta-3, alpha-3, the C terminus of beta-8, and alpha-8. Because of their sequence conservation and position on the BPs, these regions may function in interactions with the membrane components. It is tempting to speculate that this interaction may be the signal that initiates the membrane translocation process.

SECRETION OF THE BPS INTO THE PERIPLASM

Both the LIV-BP and LS-BP are synthesized as precursors with a 23 -amino acid signal sequence that is processed in association with the BP secretion into the periplasm [7, 10, 14]. Using the rules of Chou and Fasman [15], the secondary structure of the N -terminal portion of the precursor would be predicted to form a helical hairpin structure. These two helices would form from the signal sequence and the mature N -terminal regions and would contain hydrophobic amino acids in the sections that might span the membrane. A model for the secretion of the BPs is shown in Figure

4. In this model, a major role of the membrane potential is suggested for the proper membrane orientation of the proposed helix hairpin formed by the signal sequence and the first segment of the mature portion of the BP [16, 17].

Recent work on the secretion of the BPs has been directed toward identifying the sequences required to achieve secretion. To this end, mutants of LS-BP carrying various deletions or sequence alterations have been constructed [17]. It was found that these altered binding proteins were processed and secreted normally. Moreover, hybrid molecules were constructed between the tryptophan synthetase alpha-subunit and various lengths of the N-terminal portion of the LS-BP [18]. The results showed that almost the entire C-terminal half of the LS-BP can be removed with no adverse effect on processing or secretion of the hybrid protein. Thus, the signal sequence together with a portion of the N -terminal portion of the LS-BP is sufficient to direct its export into the periplasmic space.

THE BPS AS MODELS IN STUDYING STRUCTURE-FUNCTION RELATIONSHIPS

Because the LIV-BP and LS-BP have three known functions in Ecoli, they are proving useful in examining the relationships between protein structure and function. For example, using oligonucleotide-directed mutagenesis, the nonhomologous residues in the clefts of the BPs are being altered. If an alteration corresponds with a change in either substrate affinities or substrate specificities, then knowledge will be gained about the mechanism of substrate binding. Other changes are being directed toward the regions of high amino acid homology on the BPs that are potential regions for interacting with the membrane components. These altered BPs will be especially useful for study when the individual membrane proteins have been isolated. Finally, work in progress also involves analyzing additional LS-BP-trpA hybrid molecules containing larger C -terminal deletions to identify more precisely the N -terminal sequences required for export of the BPs into the periplasmic space. Since the LIVBP and LS-BP are the products of gene duplication, a comparison of their structurefunction relationships should help illuminate the potential constraints placed on their evolutionary divergence.

In conclusion, the leucine binding proteins of E coli have been thoroughly studied by biochemical, genetic, and recombinant DNA approaches. As a consequence, much is already known about their molecular structure and their relationship to each other. Because these proteins must be secreted and interact with the same membrane components yet exhibit divergent substrate specificities, they provide a model system for studying the relationship of protein structure to protein function.

REFERENCES

1. Piperno JR, Oxender DL: J Biol Chem 243:5914-5920, 1968.
2. Rahmanian M. Claus DR, Oxender DL: J Bacteriol 116: 1258-1266, 1973.
3. Wood JM: J Biol Chem 250:4477-4485, 1975.
4. Anderson JJ, Oxender DL: J Bacteriol 136:168-174, 1978.
5. Oxender DL, Anderson JJ, Daniels CJ, Landick R, Gunsalus RP, Zurawski G, Selker E, Yanofsky C: Proc Natl Acad Sci USA 77:1412-1416, 1980.
6. Nazos PN: Ph.D. Thesis, University of Michigan, Ann Arbor, 1984.
7. Landick R: Ph.D. Thesis, University of Michigan, Ann Arbor, 1983.
8. Landick R, Oxender DL: J Biol Chem, 260:8257-8261, 1985.
9. Landick R, Anderson JJ, Mayo MM, Gunsalus RP, Mavromara P, Daniels CJ, Oxender DL: J Supramolec Struct 14:527-537, 1981.
10. Oxender DL, Anderson JJ, Daniels CJ, Landick R, Gunsalus RP, Zurawski G, Yanofsky C: Proc Natl Acad Sci USA 77:2005-2009, 1980.
11. Riley M, Aninlionis A: Annu Rev Microbiol 32:519-560, 1978.
12. Ovchinnikov YA, Aldanova NA, Grinkevich VA, Arzamazova NM, Moroz IN, Nazimov IV: FEBS Lett 78:313-316, 1977.
13. Saper M, Quiocho FA: J Biol Chem 258:11057-11062, 1983.
14. Daniels CJ, Anderson JJ, Landick R, Oxender DL: J Supramolec Struct 14:305-311, 1980.
15. Chou TY, Fasman GD: Annu Rev Biochem 47:251-276, 1978.
16. Daniels CJ, Bole DG, Quay SC, Oxender DL: Proc Natl Acad Sci USA 78:5396-5400, 1981.
17. Landick R, Duncan JR, Copeland BR, Nazos PM, Oxender DL: J Cell Biochem 24:331-344, 1984.
18. Su TZ, Copeland BR, Landick R, Oxender DL: J Biol Chem 1985, (submitted).
