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ABSTRACT Using an information theo- 
retic formalism, we optimize classes of amino 
acid substitution to be maximally indicative of 
local protein structure. Our statistically-de- 
rived classes are loosely identifiable with the 
heuristic constructions found in previously 
published work. However, while these other 
methods provide a more rigid idealization of 
physicochemically constrained residue substi- 
tution, our classes provide substantially more 
structural information with many fewer param- 
eters. Moreover, these substitution classes are 
consistent with the paradigmatic view of the se- 
quence-to-structure relationship in globular 
proteins which holds that the three-dimen- 
sional architecture is predominantly deter- 
mined by the arrangement of hydrophobic and 
polar side chains with weak constraints on the 
actual amino acid identities. More specific con- 
straints are imposed on the placement of pro- 
lines, glycines, and  the charged residues. These 
substitution classes have been used in highly 
accurate predictions of residue solvent accessi- 
bility. They could also be used in the identifica- 
tion of homologous proteins, the construction 
and refinement of multiple sequence align- 
ments, and as a means of condensing and cod- 
ifying the information in multiple sequence 
alignments for secondary structure prediction 
and tertiary fold recognition. 
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INTRODUCTION 
Although it is highly desirable to know the de- 

tailed three dimensional structure of a protein un- 
der study, such structures are few in number and 
laboriously determined. In contrast, amino acid se- 
quences are often readily obtainable. When the se- 
quences of homologous proteins are available as 
well, the sets of residue substitutions resulting from 
evolutionary differentiation can provide a rich 
source of information about the protein's function 
and structure. Structural information is contained 
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in these families as a result of the degenerate rela- 
tionship between sequence and structure. During 
evolution, a three-dimensional fold can persist de- 
spite significant divergence of the amino acid se- 
quence~.'-~ In order to preserve the structural or 
functional integrity of the protein, important sites 
in the sequence must either conserve some specific 
characteristics requiring conservation of amino acid 
identity, or preserve some more general property 
such as polarity, charge, or size. Variable sites with 
little or no structural or functional constraints may 
evolve by random fixation of neutral or nearly neu- 
tral  mutation^.^,^ As a result, alignments of homol- 
ogous sequences provide more information about the 
architectural necessities of their commonly-adopted 
fold than do lone sequences, implicitly carrying in- 
formation about the non-local interactions fre- 
quently invoked to explain the apparent 65% accu- 
racy ceiling for secondary structure prediction. 

Various methods have been developed €or extract- 
ing information from multiple sequence alignments. 
The most straightforward approach has been to use 
the multiple members of a protein family in order to  
provide "signal averaging" of structure predictions 
over multiple homologous  sequence^.^-^^ This kind of 
simple averaging, however, does not capture the in- 
formation implicit in structurally characteristic pat- 
terns of side chain variability. Another approach has 
been the construction of consensus or signature 
sequence segments characteristic of particular 
structures, which are often used in database 
~earches . ' "~ '~-~~ By concentrating on the conserved 
residues at  the expense of alignment positions which 
allow side chain variability, these methods lose much 
of the information contained in the multiple align- 
ments, as discussed below. In addition, these partic- 
ular methods create templates specific for each in- 
dividual protein family, and do not give insight into 
the more universal patterns found in proteins. 

Both the profile method of tertiary structure rec- 
ognition developed by Eisenberg and  coworker^"^-"^ 
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and the secondary structure and surface accessibil- 
ity prediction work of Wako and B l ~ n d e 1 1 ~ ~  em- 
ployed environment-dependent mutation matrices 
and tables of structural propensities. A recent hy- 
brid method used similar tables.25 Measures of side 
chain conservation have been used to  weight second- 
ary structure predictions” and to train neural net- 
works, in combination with substitution profiles, to 
predict secondary structure and solvent accessibil- 
ity.26,27 While some of these more quantitative 
methods tend towards general applicability, they do 
not lend themselves to the abstraction of general 
principles relating protein structure and sequence. 
In contrast, Benner and Gerloff have developed 
methods for analyzing patterns of sequence varia- 
tion using heuristic rules which vary as subsets of 
the alignments are manipulated.” While this work 
has claimed certain successes, it lacks quantitative 
rigor and r ep rodu~ ib i l i t y .~~-~~  Benner et al. have 
also pioneered the consideration of correlated muta- 
tions as an approach to structure ~rediction.~’ Such 
efforts are still at a preliminary In spite 
of this work and the more common uses of multiple 
sequence alignments in the biochemical or crystal- 
lographic characterization of proteins, a rigorous 
and generally applicable classification of these 
structurally-constrained sets of residue substitu- 
tions is lacking. 

In this article, we use information theory to con- 
struct sets of residue substitution classes which pro- 
vide maximal information about local protein struc- 
ture, classified into combinatorial categories of 
secondary structure and solvent accessibility. As 
this approach contains no preconceived notions con- 
cerning how the amino acid types should be clus- 
tered, beyond those proclivities present in the orig- 
inal mutation matrices used to construct the 
database of multiple sequence alignments, we have 
introduced no bias toward the development of any 
particular architecture of class membership and 
class linkages. To quantify the correspondence be- 
tween amino acid sequence and local protein struc- 
ture, we employ the concept of “mutual informa- 
tion.” Briefly, mutual information is the amount of 
knowledge obtainable about one random variable by 
knowledge of another; in this case, how much knowl- 
edge of the local structure can be obtained by know- 
ing the substitution class of the alignment position. 
This measure enables us to  search the space of pos- 
sible substitution classes over a database of repre- 
sentative protein structures and their homologs and 
find the set which possesses the strongest correla- 
tions with local structural environments. 

The resulting substitution classes display consis- 
tency with a few well-known trends for patterns of 
amino acid mutations to correlate with the physico- 
chemical properties of those amino acids. In the con- 
text of our substitution classes, however, these rela- 
tionships are not nearly so highly idealized as in the 

hierarchical “Amino Acid Class Covering patterns” 
of Smith and Smith37,38 or the Venn diagrams of 
Taylor.39 This is due to the fact that our methodol- 
ogy contains no ad hoc elements, and allows for the 
unprejudiced identification of structurally informa- 
tive classes of residue substitution. Our substitution 
classes are also conceptually similar to  the clusters 
of “interior-indicating’’ and “surface-indicating’’ 
side chains used by Benner and coworkers in their 
prediction In contrast to their heuristic 
groupings, our classes are derived by a rigorous sta- 
tistical methodology. A similarly rigorous approach 
to  generalizing the patterns of residue substitutions 
found in multiple sequence alignments can be found 
in the work of Haussler and coworkers.40 Their 
work, however, is aimed at developing improved 
methods for multiple sequence alignment and does 
not investigate the relationship between allowed 
substitutions and local protein structure. 

In this article, we report on the set of 28 optimal 
substitution classes which provides close to the max- 
imum resolution of sequence to structure relation- 
ships without significant dataset-dependence. These 
classes provide much more structural information 
than is extractable from single sequences. They also 
convey more structural information with fewer pa- 
rameters than the covering classes developed by 
Smith and Smith or the Venn diagrams constructed 
by Taylor. These classes can be used to address ques- 
tions concerning what, if any, structure-determin- 
ing properties are being conserved, and generate 
qualitative insight into the relationship between se- 
quence and structure. In addition to their use in 
structure predicti01-1,~~ potential applications in- 
clude sequence alignment, detection of homologous 
proteins, and the further generation and refinement 
of biochemical insight. 

Data Encoding 
A significant and often neglected issue is the non- 

uniformity of the databases of known protein se- 
quences; a large probability of a given residue at any 
location may only indicate that that particular res- 
idue is characteristic of a protein subfamily over- 
represented in the database. Such biases can be 
rather extreme: mammals make up 69% of all myo- 
globin sequences found in the SWISS-PROT Data- 
base (release 28).42 In order to  correct for these bi- 
ases, it is necessary to either cull or weight the 
sequences in order to  get a more even distribution, a 
process that involves substantial approximations 
and assumptions. 

We approach the non-uniformity of the database 
in a manner similar to that used in the “Amino Acid 
Class Covering patterns” developed by Smith and 
Smith37,38 and in the “minimal sets” suggested by 
Taylor.39 These methods consider only compatibility 
of various amino-acid residues with a given location, 

METHODS 
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ALIGNMENT 

. . .  LLVMC--- . . .  

. . .  LIVMCSTL . . .  

. . .  IIVMCSTV . . .  

. . .  LIVLCSSV . . .  

. . .  LLVICTVL . . .  

CLASSES 

Fig. 1. Illustrative example of assigning the residue positions 
of a multiple sequence alignment into substitution classes. 

without regard to the number of sequences that con- 
tain any particular amino acid residue. In our work, 
a particular position in a multiple sequence align- 
ment is characterized by the first substitution class 
that is sufficiently general to account for all of the 
side chain types observed at that site. As shown in 
the simplified example of Figure 1, an alignment 
position with a conserved valine would be assigned 
to the substitution class containing only valine, 
while the variable positions that contained any com- 
bination of valine, leucine, or isoleucine would be 
assigned to the second class, and so on. As positions 
are assigned to the first appropriate class, the order 
of classes is significant. For the actual set of classes 
constructed by our method, the first 20 substitution 
classes correspond to the conserved examples of the 
20 amino acid types. The remaining classes increase 
in generality until the last substitution class in- 
cludes all possible amino acid types, so that each 
position in the dataset corresponds to one of the sub- 
stitution classes. There could conceivably be as 
many as 2’l-2 substitution classes corresponding to 
all of the possible combinations of amino acid types, 
and the possibility of a gap. The residues observed at 
each position in the multiple alignments are en- 
coded as a 21-bit binary vector, where each of the 
bits corresponds to the presence or absence of an 
amino acid type or gap at that position. Membership 
in a substitution class can be assigned rapidly using 
logical bit operations. 

Theory 
We perform a search for the optimal set of classes, 

defined as the set that maximizes the information 
about local structure furnished by class member- 
ship. We quantify this approach using concepts bor- 
rowed from information theory. (For a review, see 
reference43; for pioneering examples of the use of 
information theory in prediction efforts see refer- 
e n c e ~ ~ ~ - ~ ~ ) .  Consider the random variable X ,  which 
can take on the possible values {xl,x2 . . . x,}. The 
“Shannon entropy” of the probability distribution of 
X ,  H(X), represents the uncertainty of this random 
~ariable:~’ 

HO = - Cp(xi)ln p(xi). (1) 

where p(xJ is the probability of X having the value 
xi. The joint entropy of two random variables X and 
Y, H(X,Y), is calculated from their joint probability 
distribution: 

i 

H(X,Y) = - Cp(xi,yj)  . .  In P(xiJj). (2) 
ZJ 

The mutual information of these two random vari- 
ables is defined as the difference between the sum of 
the entropies of their respective probability distri- 
butions and the entropy of their joint probability 
distribution. 

M ( X Y )  = H ( X )  + H(Y) - H(X,Y) (3) 
If knowledge of the value of one variable provides 

knowledge about the value of the other variable, 
then the information provided by knowledge of both 
variables will be less than the sum of the knowledge 
of each variable considered independently. Here, the 
mutual information represents how much knowl- 
edge of one variable tells us about the value of the 
other. Clearly, if the variables are independent, and 
knowledge of one provides no information about the 
value of the other, then M + 0. 

For our purposes, we write, 

where {2+) indicates the set of eight local structure 
categories defined below, and {C) is the set of amino 
acid substitution classes being considered. The val- 
ues are multiplied by 100 for ease of comparison. 
The mutual information quantifies how much infor- 
mation about the local structure is contained in 
knowledge of the substitution class. The set of 
classes that maximizes the mutual information is, 
therefore, the best set of classes for extracting infor- 
mation about local protein structure. 

We use a Metropolis algorithm53 with simulated 
annealing to search for optimal sets of substitution 
classes. The searches begin with a set of substitution 
classes with randomly constructed memberships. 
The mutual information is calculated for that set. 
One of the bits of the binary vectors representing 
one of the classes is altered a t  random. Another pos- 
sible move is the random selection and switching of 
two of the substitution classes to rearrange the order 
of the classes. The mutual information of this new 
trial configuration is recalculated. If the new trial 
configuration has a mutual information value 
higher than the current configuration, the change is 
accepted and the trial configuration becomes the 
new current configuration. If the trial configura- 
tion’s mutual information is less than that of the 
current configuration, the change is accepted with 
probability 
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TABLE I. List of 111 Protein Chains by PDB Identifier Code* 

lbaa laak lab2 labmA lak3A lapmE latr 
lbabB lbet lbfg lbmdA lcaj lcauA lcauB lccr 

lcobA lcpcA lcpcB lctm ldlhB leco 1fbaA 
lfha lfkb 1fxiA 1gatA lgdl0 lgplA lhbq 1hdxA 
lcgt 

lhgeA lhgeB lhleA 1hsbA lhunA lhuw lipd 11e4 
llenA llgaA lmctA lmfbH lminA lminB lnbtA lndc 
lnipA lofv lpfkA lpho 1PhP lpk4 1PkP lpoa 
1PPn 
lscmJ3 1scmC 1sltA 1smrA lspa 1tbpA ltfd 1tgxA 
ltie 1tndA ltreA ltys 1wsyB IxyaA 1zaaC 2acq 
2azaA 2btfA 2cas 2cpl 2ctc 2gda 2hmzA 2ihl 
21h2 2mge 2mipA 2plvl 2plv3 2reb 2sn3 2snv 
2tgi 3cla 3Pgm 3rubS 4blmA 4gcr 4mb 4htcI 
5fbpB 5nn9 5p21 8catA 8tlnE 9ldtA 9rnt 

*The fifth letters in the codes of multichain proteins designate the chains used. 

lavhA 

lrla2 lrec lrfbA lrnd l S O l  1sacA 1scmA 

e(‘tral-McumnS’T where T is an empirically defined 
decreasing function of the number of trials. 

Databases 
The dataset of protein chains was selected from 

the October 1994 PDBselect list of representative 
structures sharing less than 25% sequence identity 
between any pair, as compiled by Hobohm and 
Sander.54 Alignments of homologs are extracted 
from “homology derived structures of proteins” 
(HSSP) files.55 Application of a minimum length re- 
quirement of 60 residues for example proteins, of a 
minimum number of 10 homologs per sequence po- 
sition and of a 40% lower bound on sequence identity 
between the example chain and its homologs pro- 
duces the set of 111 protein chains (25,511 residues) 
listed in Table I. This dataset is well-distributed 
over the ranges of % @-strand content and % helical 
content observed in the protein structure databases. 
We do not classify the example proteins into discrete 
categories such as the typical “mostly a,” “mostly p,” 
“mixed alp,” and “irregular” due to the inconsis- 
tency among the various sets of classification crite- 
ria that have been proposed in the l i t e r a t ~ r e . ~ ~  

Structure Definitions 

In the HSSP files, there are three types of gaps: 
end gaps, internal gaps, and insertions. End gaps in 
the homolog sequences are ignored due to the ambi- 
guity regarding whether these regions outside the 
boundaries of the alignment bear any structural 
similarity to the example protein. Insertions in the 
homologous sequences are also discounted because 
they correspond to gaps in the example protein 
where no secondary structure information is avail- 
able. Thus, the only gaps taken into account are 
those within the homolog sequences. 

The local structure of a residue location is as- 
signed as one of eight categorical combinations of 
the four standard secondary structure states: helix, 
strand, turn, and coil; and two solvent accessibility 

states: buried and exposed. Secondary structure and 
solvent accessibility information is taken from the 
“Dictionary of Protein Secondary Structure’’ (DSSP) 
files of Kabsch and Sander57 which were constructed 
based on the coordinates supplied in the Protein 
Data Bank (PDB) files for the  protein^.^',^^ Solvent 
accessibility values reported for single chains of 
multimeric proteins were calculated based on the 
multi-chain complexes. The solvent accessibilities 
are normalized by the values obtained for glycine- 
X-glycine tri-peptides by Shrake and Rupley“ in 
order to  generate fractional exposures. The choice of 
threshold for distinguishing buried and exposed 
states and the classification of non-standard second- 
ary structures into the common four are explained 
in the results section. 

RESULTS 
Our first use of mutual information was in deter- 

mining the optimal definition of the local structure 
categories. The DSSP files contain eight possible 
structural assignments, adding the P-bridge, n-he- 
lix, 3,,-helix, and bend to the canonical a-helix, 
@-strand, turn and coil. It is not obvious how to par- 
tition these additional assignments among the four 
more standard structures. For example, the GOR 
method6, assigns bend and P-bridge locations to  coil 
and .rr-helix and 3,,-helix locations to helix, while 
Rost and Sander group 3,,-helix locations with he- 
lix, and combine P-bridge, turn, bend, and n-helix 
locations into a “loop” category.26 Likewise, there is 
a problem in choosing a surface accessibility thresh- 
old, as noted by other authors.27 

Our solution to these problems was to find the 
solvent accessibility threshold combined with the 
mapping of the four non-standard secondary struc- 
ture types into the standard four which provided the 
maximum mutual information for a set of 40 classes 
(one variable class and one conserved class for each 
amino acid type). We chose to  work with these 
classes for two reasons. One, these classes are “non- 
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adjustable” and, therefore, we avoid the computa- 
tional enormity of simultaneously or iteratively 
searching for a set of optimal substitution classes for 
every possible structural categorization. Two, these 
classes convey information about the residue iden- 
tity and the basic conserved or variable nature of a 
sequence position. For each sequence position in the 
111 protein dataset, the residue identity was taken 
from the example sequence while the conserved or 
variable nature of the position was determined by 
the alignment of the homologs. We exhaustively 
considered every possible secondary structure map- 
ping for solvent accessibility thresholds ranging 
from 15 to 25%. The optimal structure categoriza- 
tion assigned p-bridge locations to p-strand, 3,,-he- 
lix and n-helix locations to helix, and bend locations 
to turn, for a solvent accessibility cutoff of 22%. This 
classified 47% of the 25,511 residues in our 111 pro- 
tein chain dataset as exposed, 34% as helical, 23% as 
strand, 22% as turn, and 21% as coil. This local 
structure categorization was robust to the choice of 
dataset. 

We also used mutual information to determine 
how distant homologs should be included in the mul- 
tiple sequence alignments. Inclusion of more distant 
homologs increases the probability that the range of 
possible amino acid residues that can occupy each 
location is well defined. However, it also increases 
the probability that a rare but possible mutation 
may be included, and given the nature of the sub- 
stitution classes, be accorded as much weight as a 
more likely residue. The accidental inclusion of non- 
homologous sequences becomes a concern as well as 
the general reliability of the multiple sequence 
alignments. Using the same type of search proce- 
dure with non-adjustable classes as before, we found 
that the mutual information plateaued in the range 
of 40-55% sequence identity. We chose to work with 
the dataset produced by the 40% lower bound as it 
provided the largest number of example proteins. 

For all searches for optimal sets of residue substi- 
tution classes, 20 non-adjustable classes were explic- 
itly considered, representing conserved examples of 
each of the 20 amino acid types. While a variable set 
of residues may represent conservation of a generic 
property of side chains associated with a particular 
local protein conformation, conservation of a certain 
side chain type more likely represents a strict func- 
tional constraint which may or may not be coupled 
with a conserved structural feature. Also, the struc- 
tural propensities of conserved positions of a partic- 
ular side chain are likely to  be different than those 
of variable positions which allow that side chain. 
These twenty classes allow for separation of such 
differences without creating any additional com- 
plexity in the optimization searches. 

With a very small number of residue substitution 
classes, only very generic physicochemical properties 
and their correlations with local protein structures 

are resolved. As the number of classes, N,  increas- 
es, more specific residue properties and their come- 
lations with particular local protein conformations 
are distinguished. As can be seen in Figure 2, the 
mutual information begins to saturate in the range 
of a relatively small number of classes. Therefore, the 
insignificant gain in mutual information provided by 
larger sets of optimal substitution classes is obtained 
at  increasingly prohibitive computational costs as 
the number of possible configurations roughly grows 
as 221N. There is also an increasing risk that the 
resulting classes represent memorization of dataset- 
specific sequence to structure correlations. This 
memorization reaches a maximum when each align- 
ment position in the database which has a unique set 
of residues is allowed to be a substitution class itself. 
There were 7,705 such positions in our database of 
alignments. Therefore, the mutual information 
value calculated for these 7,705 classes-86.22-was 
the maximum attainable value for this dataset. Here 
we report on the optimal set of 28 classes. At this 
resolution, many of the well-known relationships be- 
tween generic residue properties and local protein 
structure are distinguished with a consequent large 
initial gain in mutual information. As shown in Fig- 
ure 3, the Metropolis search scheme was capable of 
finding the optimal set of 28 substitution classes in 
a consistent and rapid fashion. 

To address the issue of dataset dependence, we 
first split the database of 111 protein chains into 
subsets of 55 and 56 examples. The optimal sets of 
28 classes derived for each dataset-half could be 
mapped 1 to 1 onto the 28 classes optimized for the 
entire 111 protein dataset. Changes between the 
subset-optimized and globally optimized classes in- 
volved small changes in the residue membership of 
some classes and a shift in the order of classes. For 
the half-dataset classes, 82% of the alignment posi- 
tions were assigned to the same classes as for the 
globally optimal set. This indicates that while the 
exact appearance of the optimal set of classes shows 
some dataset dependence, the relationships between 
sequence and structure represented by these sets of 
substitution classes are relatively robust. 

We separately addressed the possibility of memo- 
rization of particular residue substitution patterns 
by dividing the 111 protein chain dataset into fifths. 
The optimal set of substitution classes was found for 
4/5s of the dataset and a mutual information value 
was calculated over the remaining 1/5 of the dataset 
using these classes. This was done cyclically for all 
permutations of the dataset-fifths, and an average 
mutual information was calculated. Similarly, the 
set of substitution classes optimized for the entire 
111 protein chain database was used to calculate a 
mutual information value over each 1/5 of the data- 
base. These values were also averaged. The differ- 
ences between the two averages were negligible for 
numbers of substitution classes from 21 to 28. This 
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Fig. 3. Five sample searches for 28 optimal residue substitution classes, each seeded with a different random number. 

demonstrated that there was effectively no memori- 
zation occurring at  the resolution of sequence to  
structure correlations represented by the 28 substi- 
tution classes described in this article. In the space 
of possible sets of substitution classes, there are very 
many near-optimal sets forming a large, but broad 
and flat plateau in the mutual information land- 
scape. The small dataset-dependence of the substi- 
tution classes discussed above corresponds to  small 
peaks atop that plateau. Whatever dataset depen- 

dence exists does not substantially affect the infor- 
mation available when the classes are applied to 
other datasets. 

As marked in Figure 2, the mutual information 
value for the 20 amino acid residues taken from the 
sequences of the 111 example proteins only-ne- 
glecting information from homologous sequences- 
was 14.51. The value attained for the optimal set of 
28 classes was 20.32-a clear gain in information 
regarding local protein structure. Another compar- 



34 M.J. THOMPSON AND R.A. GOLDSTEIN 

TABLE 11. Structural likelihood Ratios and Residue Memberships for the Optimal Set of 28 Residue 
Substitution Classes* 

Buried Exposed 
C t C P t a P Class a 

L 
I 
V 
F 
M 
C 
A 
W 
Y 
T 

S 
H 
Q 
N 
E 
D 
K 
R 
P 
G 

-1VFMCA - 
LIVFMCAWYTSH G- 
LIVFMCAWYTSHQNE R - 
LIVFMCAWYTSH D RPG- 
LIVFMC WYTSHQNE KR - 
LIVFMC WYTSHQN DKRPG- 
LIVFMCAWYTSHQNEDKR 
LIVFMCAWYTSHONEDKRPG- 

74 
49 
34 
44 
45 

- 24 
69 
44 
21 

-21 
-9 
30 
15 
0 

17 
- 22 
-28 

21 
- 76 
- 52 

63 
40 
0 

- 30 
- 58 

-131 
- 90 
- 94 

40 
79 
97 
62 
55 
52 
23 
72 
65 
35 
33 
22 
7 
3 

-25 
-2 

-23 
- 16 
-39 

1 
78 
40 

- 28 
-47 
-77 
- 126 
- 139 

22 32 
-6 22 

-23 -10 
53 37 
39 -10 
40 79 
32 0 
78 5 

- 27 34 
52 59 
13 68 
40 55 

-11 21 
25 63 

- 10 -27 
18 68 

- 70 6 
- 17 2 

77 89 
114 51 
- 16 5 

24 20 
0 -20 

19 45 
-55 -81 
-20 -35 

-131 -132 
-182 -72 -67 

- 133 
-91 
- 184 
- 183 
-106 
-97 
-34 

-323 
- 77 

-117 
-73 
-61 
-18 
-73 

44 
- 40 

50 
3 

- 128 
-203 
-160 
- 89 

21 
-49 

56 
-10 
108 
54 

-116 
-180 
-11 
- 90 
- 94 
- 24 
- 108 
- 63 

29 
50 

-41 
-4 
30 

-61 
21 

- 64 
62 
63 

-41 
- 105 
-75 
-38 

33 
- 15 

90 
16 
29 

- 14 

- 159 
- 166 
- 140 
- 147 
- 102 
- 101 
- 109 
- 158 
- 106 
- 86 
-21 
-81 
-67 
- 10 
- 24 
-4 

-29 
-71 
-2 
37 

-181 
- 59 
-11 

27 
0 

83 
22 
76 

- 108 
- 122 
-139 
- 90 
- 20 
-29 

-114 
-114 
-95 
- 18 
- 28 
-87 

11 
6 

- 42 
15 

-11 
-4 
45 

- 37 
- 127 
- 49 

9 
43 
34 
69 
4 

49 
*- indicates gap, CI indicates helix, p indicates strand, t indicates turn, and c indicates coil. 

ative value was obtained by encoding the PIMA tree 
of Smith and Smith3’ as a set of 37 classes and cal- 
culating the mutual information with the eight local 
structure categories over the dataset of 111 protein 
chains. This resulted in a value of 12.49 which is less 
than that achieved by our set of 22 substitution 
classes or even that obtained from single sequence 
information. While the PIMA structure may be use- 
ful in the alignment applications suggested by its 
authors, it is relatively inadequate for structure- 
based applications. Similarly, we coded the 65 “min- 
imal sets” of amino acids proposed by Taylor to  char- 
acterize alignment positions and “ . . . capture 
virtually all the useful information that can be ex- 
tracted from a number of aligned  sequence^"^' with 
20 single-residue classes for the twenty conserved 
amino acids and one class with full amino acid and 
gap membership to account for all those alignment 
positions which failed to fit one of these 85 classes. 
The mutual information calculated for this com- 
bined set of 86 classes was 18.54-less than that 
calculated for our set of 25 substitution classes and 
providing only slightly more information than the 
20 amino acid classes which do not include any in- 
formation from homologous sequences. In compari- 

son to other methods, our classification scheme pro- 
vides more information with fewer parameters. 

We can represent the propensity for various resi- 
dues and substitution classes to exist in any struc- 
tural context through the use of log-likelihood ra- 
tios. L(C,2+), the log-likelihood ratio for class C to  be 
in context Z4, is defined by 

This ratio represents how much more likely it is for 
a given position described by a substitution class C 
to be in local structure Z4, compared with what 
would be expected at  random. A listing of these log 
likelihood ratios and the actual amino acid member- 
ships of the optimal 28 substitution classes can be 
found in Table 11. 

DISCUSSION 
The first 20 classes listed in Table I1 are single- 

residue classes which account for conserved in- 
stances of the 20 amino acids. The structural pro- 
pensities of these 20 classes in the standard four 
secondary structure states are highly correlated with 
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those calculated in the GOR method61 (data not 
shown). Small statistical differences result from our 
use of different categorizations of local protein struc- 
ture and a different dataset. Greater disparities can 
be understood by considering that our classes repre- 
sent only conserved examples of each of the 20 amino 
acids while the GOR method makes no such distinc- 
tion. Thus, while the structural propensities calcu- 
lated by the GOR method follow general trends in 
protein biochemistry, the structural propensities cal- 
culated for our 20 conserved classes reflect more spe- 
cific structural or functional constraints. 

The broad range of acceptable side chains dis- 
played in the eight multi-residue classes is consis- 
tent with conclusions reached in mutagenesis exper- 
iments involving multiple structural locations in 
several  protein^.^',^^ Clearly, most of these classes 
do not display strict conservation of any of the phys- 
icochemical properties often used to typify the 20 
amino acids, such as side-chain flexibility, bulk, or 
polarity. In fact, there are no one-to-one correspon- 
dences between our multi-residue substitution 
classes and the nodes of the PIMA tree of Smith and 
Smith or the “minimal sets” derived from the Venn 
diagram of Taylor. Examination of the eight multi- 
residue substitution classes reveals that they are ap- 
parently built-up as combinations of a few single 
amino acid types and “blocks” of multiple amino ac- 
ids. These “blocks” display a degree of clustering of 
amino acids with similar physicochemical at- 
tributes. For instance, one block which is found in 
all the multi-residue classes consists of leucine, iso- 
leucine, valine, phenylalanine, methionine, and cys- 
teine. Aside from the presence of cysteine, this block 
is similar to the “aliphatic.or.1arge-non-polar” set 
({LIVFM}) defined by Taylor. 

We also find a block of aromatic and short resi- 
dues, including tyrosine, tryptophan, histidine, 
serine, and threonine. In the set-logic nomenclature 
of Taylor, the simplest description would be po- 
lar-aromatic.or.S.or.T. Using a set-logic description 
based on other common physicochemical characters 
not included in Taylor’s Venn diagrams, it would 
perhaps be more illuminating to describe this block 
of residues as hydrogen-bonding-non-charged-non- 
flexible (ignoring the variable charge of histidine). 
The pair of residues, glutamine and asparagine, also 
either appears together or not at all, and could be 
regarded as the hydrogen-bonding-non-charged- 
flexible set-a partial complement to the preceding 

block. The remaining residues, which appear in var- 
ious combinations with one another and the blocks 
of residues just described include the “default”64 
amino acid alanine, the “breakers” of repetitive 
secondary structure proline and glycine, and the 
charged residues aspartic acid, glutamic acid, ly- 
sine, and arginine. 

Due to the broad membership of most of the multi- 
residue classes, the amino acid members of these 

classes do not have high probabilities of pairwise 
mutations amongst themselves as indicated by mu- 
tation matrices.65 Interestingly, there is a general 
lack of preferential mutations between members of 
the smaller constitutive blocks as well. While the 
first block, {LIVFMC}, contains the relatively ex- 
changeable residues {LIVM} with phenylalanine (F) 
near to belonging to this group, cysteine is rather 
distinct and has low probabilities of mutation to sev- 
eral of the other members of this block. No signifi- 
cant pattern can be found in the Dayhoff matrix for 
either of the two remaining blocks (WYTSH} and 

Consideration of the structural propensities of the 
eight multi-residue classes indicates that the first 
two classes are strongly associated with solvent-in- 
accessible structures while the remaining six are 
associated with surface structures. This simple dis- 
tinction, however, is certainly not the limit of infor- 
mation being conveyed by this small number of 
multi-residue classes. As seen in Figure 2, the point 
for 21 classes (20 conserved and one variable) corre- 
sponds to the point where the basic distinction is 
made between conserved and variable alignment po- 
sitions and, hence, between buried and exposed struc- 
ture locations. The mutual information value at  this 
point is 7.57-not particularly high. With the addi- 
tion of a few more multi-residue classes, however, the 
mutual information increases dramatically. This in- 
dicates that these classes which represent general- 
ized patterns of amino acid substitutability are ac- 
counting for very significant correlations between 
amino acid substitution patterns and local protein 
structure. From the curve in Figure 2 we can also 
conclude that, on the whole, the information provided 
by patterns of variability as captured by these multi- 
residue classes is significantly greater than that pro- 
vided by conserved residue locations. 

CONCLUSION 
It is unfortunate that biological systems resist the 

kind of reductionism that would yield “folding rules” 
specifying exact amino acid residue identities re- 
quired for producing exact local protein structures. 
What rules might be set forth are so full of excep- 
tions and caveats that they hardly qualify as rules. 
Instead we must develop descriptions based on pro- 
pensities and inclinations. Such probabilistic de- 
scriptions are the natural province of information 
theory. Here, we have used information theory to 
extract information about protein structure from a 
dataset of multiple sequence alignments for a struc- 
turally representative set of protein chains. This in- 
formation is represented by a set of amino acid res- 
idue substitution classes. 

The structurally indicative residue substitution 
classes obtained by our optimization method do not 
correspond to  the areas of Taylor’s Venn Dia- 
g r a m ~ , 3 ~  the nodes of the PIMA tree of Smith and 

{QND. 
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Smith,38 or the clusters of “surface indicating” and 
“interior indicating” side chains used by Benner and 
coworkers32 in any simple and consistent fashion. 
This is due to the fact that these other groupings of 
amino acids are heuristic idealizations of the residue 
substitution data. In contrast, our substitution 
classes are derived though a rigorous statistical pro- 
cedure that introduces no bias concerning how the 
amino acids “should” be grouped. Therefore, while 
our classes display segregation of the amino acids 
according to some generic physicochemical charac- 
teristics, mostly in the form of the “blocks” of resi- 
dues as discussed above, this segregation is not par- 
ticularly strict or defining. Although there is no 
simple mapping of our structurally-informative 
classes to the sequence-derived Dirichlet mixture 
priors of Haussler and  coworker^,^' the results of 
that statistical approach also display only an em- 
phasis of certain residues or common physicochem- 
ical properties. 

Our results indicate that conserved alignment po- 
sitions, on the whole, are less informative with re- 
gard to local protein structure than are variable 
alignment positions. This suggests that any method 
of sequence profiling of structural motifs should in- 
clude consideration of alignment positions which 
display side chain variability. Since the mutual in- 
formation begins to saturate with a small number of 
substitution classes, any potential application will 
benefit from this small number of parameters 
needed to characterize protein structure as subdi- 
vided into our eight structural categories. 

We have demonstrated the utility of these classes 
in the prediction of solvent ac~essibi l i ty .~~ They 
could also be used in improved methods of multiple 
sequence alignment, in the sequence profiling of 
structural patterns, and in improved secondary 
structure prediction. Such classes of side chain sub- 
stitution could clearly be made increasingly general 
through the use of larger sets of proteins. They could 
also be improved through a self-consistent iterative 
approach wherein they would be used to construct 
better alignments from which more optimal classes 
could be derived. 
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