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ABSTRACT New computational models of
natural site mutations are developed that ac-
count for the different selective pressures act-
ing on different locations in the protein. The
number of adjustable parameters is greatly
reduced by basing the models on the underly-
ing physical-chemical properties of the amino
acids. This allows us to use our method on
small data sets built of specific protein types.
We demonstrate that with this approach we
can represent the evolutionary patternsin HIV
envelope proteins far better than with more
traditional methods. Proteins 32:289-295, 1998.
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INTRODUCTION

There is increasing interest in characterizing pro-
tein evolution. Phylogetic analyses of specific pro-
teins can tell us much about those proteins’ structure
and function. Ancestral protein sequences can be
recreated using statistical methods, expressed in the
laboratory, and characterized by standard biochemi-
cal techniques.'3 Relative mutation rates can pro-
vide insight into the relationship between protein
properties and the characteristics of their constitu-
ent amino acids.* Maybe most importantly, the
greater selective pressures acting on the expressed
proteins at the amino acid level enable delineation of
evolutionary relationships between organisms that
may be too distant to be characterized using DNA
sequences, allowing us to address basic questions of
evolutionary biology.

The standard approach towards modeling natural
site mutations in proteins is with a mutation matrix:
a 20 X 20 array that represents the probability of
any given amino acid changing to any other in a
given length of evolutionary time. Most methods for
deriving these matrices use the approach developed
by Dayhoff, based on an analysis of corresponding
amino acids in closely-related homologous proteins.®
Variations of the original Dayhoff approach have
been developed, including using blocks of aligned
sequences and sequences aligned based on their
three-dimensional structure.5-12 Others have devel-
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oped approaches that encode the tendency for impor-
tant physical-chemical properties of the amino acids
to be conserved during evolution.13-18

There are a number of limitations inherent in the
use of mutation matrices. Their derivation involves
the simultaneous determination of 380 adjustable
parameters representing all possible amino acid
mutations, and thus requires a large data base to set
all of the variables without overfitting. Because of
this, the mutation matrix approach is not well suited
for specific proteins where only small sets of se-
quences are available. Even more importantly, the
mutation-matrix approach assumes that mutations
are a Markovian process, and that the probability of
any given mutation (His — Gly, for example) is the
same for all locations in the protein, whether at a
solvent-exposed site in an alpha helix, in a buried
turn, or even at a dimerization or catalytic site. As
the relative fitness of a given pair of residues (His
and Gly in this example) at these varying types of
locations will be different, so will the mutation rates
between these two types of residues. We partially
addressed this issue in our earlier work by construct-
ing mutation matrices specific for different second-
ary structure and surface accessibility classes.!®
Even this strategy is based on the assumption that
all positions in a particular local environment, such
as buried alpha helices, have the same fitness require-
ments and thus similar mutation rates. As a result,
important deviations within local environments are
averaged out. Also, secondary structure and surface
accessibility are the easiest distinctions for us to
observe; classes based on other characteristics might
be more biologically relevant. Any attempt to treat
the problem of site heterogeneity by simultaneously
optimizing a set of mutation matrices where the

Grant sponsor: College of Literature, Science, and the Arts,
the Program in Protein Structure and Design, the Horace H.
Rackham School of Graduate Studies; Grant sponsor: National
Institutes of Health; Grant numbers: GM08270 and LMO0577;
Grant sponsor: NSF; Grant number: Equipment grant
BIR9512955.

Jeffrey M. Koshi’s present address is Theoretical Biology and
Biophysics Division, Los Alamos National Laboratory, Los
Alamos, NM 87545,

*Correspondence to: Richard A. Goldstein, Biophysics Re-
search Division, University of Michigan, Ann Arbor, M1 48109-
1055.

Received 15 September 1997; Accepted 6 April 1998



290 J.M. KOSHI AND R.A. GOLDSTEIN

different types of locations were not identified a
priori would result in an unacceptably large number
of adjustable parameters.

Because of these issues, we have turned to simpli-
fied models of evolution. Rather than express muta-
tion rates as a function of the identity of the amino
acids, we express these rates as functions of the
corresponding physical-chemical properties of these
residues. The models represent the fitness of any
particular type of amino acid by a simple functional
form dependent on a set of physical-chemical proper-
ties such as hydrophobicity and size. A mutation
matrix is then derived based on a Metropolis scheme,
where upward changes in fitness are accepted at
some maximum rate v, and downward changes at v
times some exponentially decreasing function of the
change in fitness. We can then use the estimation-
maximization methods described in our previous
work to calculate the likelihood that a given fitness
function with its associated mutation matrix would
produce the observed data, and find the optimal
mutational model as a function of the physical-
chemical properties.1®

Because the mutation rates are a function of the
parameters representing the fitness of the various
amino acids, there are orders of magnitude fewer
adjustable parameters than if we were to construct a
traditional mutation matrix as a function of the
amino acid identities. This allows us to extend our
analysis to limited data sets, such as the evolution-
ary patterns of specific proteins. In addition, we can
include site heterogeneity explicitly in the model. We
consider that there are different types of locations,
what we call site classes, each with its distinct
fitness function and corresponding mutation matrix.
While in principle these different site classes might
correspond to locations with different secondary
structures or functional significance, we do not need
to define the nature of these site classes a priori. Nor
do we need to assign different locations in the protein
to specific site classes. Rather, there are adjustable
probabilities that any location can be described by
each site class. These probabilities are optimized
simultaneously with the adjustment of the underly-
ing fitness functions corresponding to the different
site classes.

In order to demonstrate the validity of these
models, it is necessary to show that the model
optimized for one set of training proteins can de-
scribe the evolutionary process of a test set of
proteins whose evolutionary history is completely
disjoint. Fortunately, a convenient example exists in
the proteins of HIV-1 and HIV-2. The simple models
optimized over a HIV-1 envelope protein (env) data
set can represent the evolutionary patterns of the
HIV-1 env data better than a traditional mutation
matrix optimized over the same data, even though

the simple model involves many fewer adjustable
parameters. More significantly, we find that a simple
model optimized over the HIV-1 env data can more
accurately describe the evolutionary events of the
env proteins of HIV-2 than can a single standard
mutation matrix optimized over a more general
protein data set, or even a mutation matrix opti-
mized over only the HIV-1 env proteins. In this case,
the assumptions and approximations involved in the
simple models, including the representation of the
fitness as a simple function of a few physical-
chemical parameters and the use of a Boltzmann and
Metropolis formulations for developing relative mu-
tation rates, are less drastic and more accurate than
the Markovian assumptions implicit in the standard
mutation matrix approach.

THEORY

Our model of site mutations consists of three
different parts: the construction of simple functional
forms that define how the fitness of the various
amino acids depends upon that amino acid’s physical-
chemical properties, the calculation of the correspond-
ing mutation matrices that encode how mutations
would occur given these fitness values, and the
optimization of the various parameters to fit the
observed evolutionary data using estimation maximi-
zation. The presence of site-heterogeneity is incorpo-
rated directly into the theory through the use of
multiple site classes. In contrast to standard muta-
tion matrix approaches which ignore site heterogene-
ity, and our earlier work which divided locations in
the protein into different sites on the basis of second-
ary structure and surface exposure,’® we consider
that each point in the protein is described by one of a
number of different possible site classes, whose
properties are not pre-defined but are rather deter-
mined during the optimization procedure. We do not
assign individual locations to specific site classes,
but instead consider that there is a probability that
any site in the protein corresponds to any of the
particular site classes. These probabilities are adjust-
able parameters of the model, determined during the
optimization procedure. Different site classes corre-
spond to different local evolutionary pressures, and
thus to distinct mutation matrices. This approach
would not be possible if the evolutionary data used in
the optimization contained only pairs of homologous
proteins; in this case, the various site classes would
average. One of the strengths of our optimization
procedure is that it uses arbitrarily large sets of
homologous proteins with their associated phyloge-
netic tree. The optimization procedure can thus be
informed by correlations in the multiple mutations
that occur in the same locations, allowing us to
unravel the various site classes.

We construct simple functional forms that define
how F(A\), the fitness of amino acid A; for any
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location in site class k, depends upon the physical-
chemical parameter of that amino acid. As the
purpose of these models of evolution is to minimize
the number of free parameters, the fitness functions
examined in this paper are simple linear and qua-
dratic forms. Fy | (A), the contributions to the fitness
function for each physical-chemical property I, are of
the form:

Fro (A = a1 (AY) 1)

Fri (A) = o (@i (A) — Qﬂﬁt)21 (2

where q,(A;) represents the value of the physical-
chemical parameter | for amino acid A, and oy and
qﬂf’,‘ are parameters that depend upon the site class k.
(Constants are omitted from the above expressions,
as the mutation rates and relative populations are
only functions of differences in fitness.) The linear
fitness function models those situations where a
physical-chemical parameter would be either fa-
vored or disfavored at a given location. The qua-
dratic fitness function would be appropriate where
there was a “best” parameter value, with fitness
falling for both smaller and larger parameter values,
or a "worst” value, with fitness increasing at both
extremes. The total fitness for the amino acid in any
site is assumed to be a simple sum of the terms
reflecting the various physical-chemical factors

Fo(A) = E. Fr(A). 3)

Choosing what amino acid properties to consider
in our model is not a trivial question, as hundreds of
physical-chemical parameter scales for the 20 natu-
rally occurring amino acids have been measured.20-22
Many of these scales are highly correlated, however,
making inclusion of all of them unnecessary. In
particular, Scheraga and coworkers derived four
orthogonal property indices that contained most of
the variation observed over 180 different amino acid
properties.?® These factors correlated predominantly
with alpha helical and turn propensity («/turn),
bulk-related factors (volume, molecular weight, etc.),
beta sheet propensity, and hydrophobicity. Our study
of evolutionary data was performed using these
orthogonal parameters for the values of q;(A;) in
equations 1 and 2.

We assume that the probability P (A;) of any
given amino acid A, occurring at any location de-
scribed by a site class k is given by a Boltzmann
relation.

EBFK(A)

> eBFKAY)

Pe(A) = (4)

where B is a free parameter, and i’ is an index over
all amino acids types. (As large fitness values are
favorable, the sign of the exponential is opposite to
the normal Boltzmann formula.) Boltzmann-like dis-
tributions of fitnesses have been observed when the
fitness has an energetic interpretation.?4-30 Even in
this case, B can not simply be identified with the
reciprocal of the temperature, but expresses the
distribution of energies among the various possible
conformations.?* An explanation recently presented
for this phenomenon would apply to a wide range of
fitness parameters, including parameters involving
properties that were not strictly energetic in na-
ture.3! Alternatively, we can define the fitness of a
particular amino acid in a given site class as the
logarithm of the probability of that amino acid
existing at that site, plus a normalization constant.
In this case, equation 4 would be true by definition.
As the fitness scale is arbitrary, we can set B in
Equation 4 equal to one.

The evolutionary Kinetics of our model are based
on the Metropolis algorithm. We postulate that
favorable or neutral mutations are accepted and
fixed at some site-class dependent maximal rate v,
and unfavorable mutations are accepted at a rate of
v X exp (AFy), where AFy is the difference in fitness
values associated with the mutation for the given
site class. We ignore differences in attempt rates due
to differences in the number of nucleic-acid base-
pairs necessary for changes at the amino-acid level—
the strong correlation between number of required
base changes and changes in physical chemical
parameters makes the separation of these two effects
problematic. The value of M:j the entry in the
mutation matrix for site class k corresponding to a
mutation from amino acid A; to A, is then:

Mk — Vg | Fd(A) > Fu(AY)
U peFeA-FAn | F(Ay) = F(A).

While the use of Metropolis kinetics is an assump-
tion, we note that the Metropolis scheme is the only
kinetics scheme where all favorable mutations are
accepted at the maximum rate, the Boltzmann distri-
bution of fitnesses is maintained, and detailed bal-
ance is obeyed.

With P (A;) given by equation 4, the set of muta-
tion rates M}j- given by equation 5, a set of values for
P (k) representing the probability of any given loca-
tion actually belonging to site class k, and a phyloge-
netic tree representing the evolutionary relationship
among a set of aligned homologous proteins, we can
calculate the probability of the observed current
sequences resulting through evolution using meth-
ods described in an earlier paper.1® Consider a corre-
sponding location n in an set of four aligned homolo-
gous proteins, related phylogenetically as shown in
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Fig. 1. Example evolutionary relationship between four current
sequences, represented as nodes A, O, I', and Y, and the
sequences of their ancestral proteins, represented by nodes (2, WV,
and ®. dqy represents the evolutionary distance between nodes Q)
and V.

Figure 1. The current residues in the four homologs
at this location are represented by [ A, ', in this case
consisting of two alanines, one glycine, and one
leucine, at nodes A, O, I', and Y, respectively. (The
prime indicates that the set of amino acids only
represents the amino acids at the root of the tree.)
We do not know the identity of amino acids Aq, Ay,
and Ay at this location in the ancestral proteins (),
V¥, and ®. We thus have to consider all possibilities
for these nodes explicitly. The conditional probability
of residues [ A}’ resulting through evolution if loca-
tion n corresponded to site class k with correspond-
ing mutation matrix Mﬁfj can be expressed as

P(A M)
- AQ,AZw,Aqa
X Mi g (Gor)MA | i (@ra)MA | aia (dve)

X M, a, (e, gy [@arIMS, oo(@ay)  (6)

P(Aq)

where M,';“,Aw(dm) is the probability that at such a
location amino acid A, would mutate to Ay in
evolutionary time dgy between nodes () and W,
computed by taking mutation matrix ME‘J to the
appropriate power.

As we do not know which site class k location n
belongs to, and thus which is the appropriate muta-
tion matrix M}, to use, we must calculate P((A,)'
M'ifj) for each of the specific site classes, multiply by
the probability P(k) that the location can be de-

scribed by site class k, and sum over all possible
classes.

P(A.) = g P(A,) IME)P (k) 7

Summing the logarithm of this probability over all
locations provides us with a measure of the log
likelihood for the entire database of sets of homolo-
gous proteins to have arisen given the model.

The model is defined by the various parameters in
the fitness functions, the maximum mutation rate vy,
and the various site-class probabilities P (k). Bayes
theorem can be used to demonstrate that, in the
absence of other information, the most likely value of
the various parameters in a model given a set of data
are the parameters that maximize the likelihood
that the data would be produced by that model. By
adjusting these parameters to maximize the total
probability, we can find the optimal sets of these
parameters. This was performed using a sequential
quadratic programming algorithm3? from the NAG
software package (Numerical Algorithms Group Ltd,
Oxford, UK). The ability of a given model to repre-
sent the data is presented as a Q value, defined by
Q = log [P(Model)] — log [P(Random)], where log
[P(Model)] is the log of the probability that the given
model would produce the data, and log [P(Random)]
is a constant representing the probability that the
data would result from purely neutral drift where all
mutations were equally likely.

RESULTS AND DISCUSSION

We demonstrate our model with the application of
simple evolutionary models to data sets consisting of
env, rev, and tat sequences from HIV-1 and env
sequences from HIV-2. The proteins varied from
approximately 150 residues to over 1000, with the
number of examples ranging from 20 to 100. Best
results were obtained with fitness functions depen-
dent on the hydrophobicity and bulk-related indices.
The fewer number of parameters per site class
allowed us to look at models with up to 11 site classes
(4 linear, 7 quadratic fitness functions) with 57
variables. These models were optimized over several
HIV-1 data sets, as well as over a general protein
data set. The Q values for the various models are
presented in Table 1.

A single traditional mutation matrix optimized
over the 57 HIV-1 env proteins was, unsurprisingly,
better able to model the HIV-1 env proteins than a
similar mutation matrix optimized over a larger and
more comprehensive data set. Interestingly, simple
models with more than 7 different site classes opti-
mized over the HIV-1 env proteins were better able to
model the evolutionary process than a traditional
matrix optimized over the same data set, in spite of
the approximate factor of 10 fewer adjustable param-
eters. In this case, the inclusion of site heterogeneity
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TABLE I. Q Values for Mutation Matrices and Simple Models, Optimized Using
Estimation Maximization*

Number of HIVAL
Optimization Number of adjustable HIV-2
data set site classes parameters ENV REV TAT ENV
Traditional mutation matrices
Gen 1 380 1665 281 201 2179
HIV-1 ENV 1 380 2249 311 222 2578
Dayhoff 1 380 1384 252 174 1858
Simple models
HIV-1 ENV 2 9 1764 120 162 2248
HIV-1 ENV 3 15 2096 184 218 2713
HIV-1 ENV 5 25 2192 250 290 3026
HIV-1 ENV 7 35 2294 249 303 3164
HIV-1 ENV 9 47 2350 276 323 3276
HIV-1 ENV 11 57 2475 267 334 3382
Gen 2 9 642 126 104 796
Gen 3 15 152 40 -8 47
Gen 5 25 1342 189 220 1727
Gen 7 35 1243 154 165 1835

*The matrices and models were optimized either for a comprehensive general protein data set (“Gen”) or
for a data set consisting of the env proteins of HIV-1. Numbers in italics represent those models achieving
better Q scores than the optimized Gen mutation matrix, and bold face numbers represent those models
with Q scores superior to those from the mutation matrix optimized over the HIV-1 env data set. Results
using the Dayhoff PAM 20 matrix (“Dayhoff”) are shown for comparison.? Note that Q scores depend on
the number of homologs in each data set, and thus numbers across columns are not comparable.

in the model more than made up for the limitations
of the simplified assumptions. The use of simple
models optimized over general data sets did not
outperform single mutation matrices, indicating that
the ability to focus on specific proteins is also signifi-
cant.

Also presented in Table 1 are the results of our
simple models optimized for HIV-1 env on the HIV-1
tat and rev proteins. Models optimized over HIV-1
env were better able to describe the HIV-1 tat data
than any traditional mutation matrix. This was not
the case for the HIV-1 rev protein, where even 11 site
models optimized over HIV-1 env were not able to
outperform the mutation matrices. These differing
results for HIV-1 rev and tat might reflect structural
or functional differences between these proteins—
that as far as amino acid fitness is concerned, there
are more similarities between env and tat than
between these proteins and rev.

The ability to represent the evolutionary patterns
of HIV-1 env may represent identification of the
salient patterns, or over-fitting and memorization of
the evolutionary history of this particular data set.
These possibilities can be distinguished by testing
the resulting optimized model on a second data set
with a distinct evolutionary history. The env proteins
of HIV-2 are under similar evolutionary pressures as
the env proteins of HIV-1, yet the post-divergence
evolutionary trajectory of these proteins is com-
pletely different from HIV-2, with these two sets
averaging only 35-45% sequence identity. The muta-

tion matrix optimized over the HIV-1 env proteins
was better able to model the evolutionary data of the
HIV-2 env proteins than were the more generic
matrices. This effect was even more dramatic when
the simple models optimized over the HIV-1 env
proteins were applied to the env proteins of HIV-2,
where the reduced number of parameters lowered
the danger of over-fitting of the data. Even the
simple 3-site model outperformed the HIV-1 env
mutation matrix. This indicates the importance of
including site-heterogeneity in a way impossible
with a single mutation matrix.

The performance of the model optimized and tested
over the HIV-1 env data set should keep improving
as the number of site classes and parameters are
increased. Conversely, the performance of the HIV-1
env optimized model as tested over the disjoint
HIV-2 env data-set should only improve until the
number of adjustable parameters are large enough
for the algorithm to start to memorize patterns
specific to the HIV-1 env proteins. As shown in Table
1, this point has not been reached even with an 11
site model. This suggests that even better results
might be obtained with more complicated models
that are, unfortunately, currently beyond our compu-
tational resources.

CONCLUSIONS

Site heterogeneity has been included in the con-
struction of protein-specific profiles and Hidden
Markov models that encode the relative probability
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of any amino acid occurring at a given location in a
particular family of proteins.34-38 These profile meth-
ods have shown promise in the detection of proteins
that are related either by evolution or structure.
Because the relative rate of change from one amino
acid to another is not included in these approaches,
these profiles are unsuited to answering more spe-
cific questions about evolutionary relationships, such
as phylogenetic or ancestral reconstruction. A profile
for a protein of length N would require, in the most
general sense, the adjustment of 20 X N parameters
(neglecting insertions and deletions.) In contrast, a
location-specific model for mutation matrices would
require the determination of 380 X N parameters,
representing the probability of all possible changes
in all different positions. This much larger number of
adjustable parameters necessitates the types of sim-
plifications described in this paper.

In using a protein-specific data set of HIV pro-
teins, we have demonstrated that our simple model
of evolution can be successfully applied to small data
sets. This was shown by the results of models
optimized for the HIV-1 env protein on the HIV-2 env
protein. All models more complex than 3 site classes
showed a higher probability of producing the data
than any mutation matrix, even one optimized for
the HIV-1 env protein. These results show that the
use of a single mutation matrix is overlooking a very
important factor: site-heterogeneity. Our models,
which can encompass site-heterogeneity, prove more
likely to reproduce the observed data. These models
of evolution also have an advantage in that the
number of adjustable parameters can be tuned to
best balance the needs of specificity and generaliza-
tion.
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