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Abstract

This paper investigates inspection strategies for a finite state continuous-time Markovian
deteriorating system. Two inspection strategies are considered : sequential inspection strategy
and continuous inspection strategy. Unlike many previous efforts, the inspection times for the
sequential inspection strategy are assumed to be non-negligible. The replacement times and
costs for both strategies are non-negligible and state dependent. Our objective here is to min-
imize the expected long run cost rate. Iterative algorithms are provided to derive the optimal
policies for both strategies. The structures of these optimal policies and their corresponding
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1 Introduction

Inspection and replacement models for deteriorating systems have been widely studied in the lit-
erature. The papers by Barlow and Proschan [1], McCall [3], Pierskalla and Voelker [7], and
Valdez-Flores and Feldman [11] are excellent reviews of the models investigated in this area. Be-

sides these surveys, bibliographies for inspection and replacement models are given in Sherif and

Smith [10], and Osaki and Nakagawa [6].

In this paper, we consider a finite state continuous-time Markovian model with one absorbing
state for deteriorating systems. The absorbing state represents the failure state of the system. The
intermediate states reflect the different degrees of deterioration. A similar model for deteriorating
systems has been considered before by Luss [2] except he assumed that the transition rates to higher
states are all identical, the inspection and replacement are instantaneous, and the costs are state
independent. Sengupta [9] considered the same model but he allowed the replacement cost to be an
increasing function of the deteriorating states. The model and the sequential inspection strategy
considered in this paper are closely related to that studied by Ohnishi et al. [5] except we assume
the inspection and replacement times are both non-negligible. Furthermore, the replacement times
are also state dependent. Note that the model and the optimal inspection and replacement policy

investigated by Mine and Kawai [4] are special cases of our model.

For the sequential inspection strategy, we provide an iterative algorithm to derive the optimal
policy which minimizes the expected long run cost rate. We also show that under reasonable
assumptions on the time and cost parameters, a control limit type rule holds for replacement, and
the optimal time interval between successive inspections is a decreasing function of the state. That

is, as the system deteriorates, we would like to inspect more frequently.

In this paper, we also consider a continuous inspection strategy for deteriorating systems. The
system is continuously monitored and the current state of the system is always known with certainty.
Again, we derive the optimal policy which minimizes the expected long run cost rate and we show
that the optimal policy can be computed efficiently under reasonable assumptions on the time and

cost parameters.



With the advance in automation and control technology, the sequential and continuous inspec-
tion strategies have become widely available. Obviously, there is a cost tradeoff between the two
approaches. Usually, continuous monitoring involves a substantial amount of initial investment
and the system may be replaced more frequently which may result in a higher total replacement
cost. However, the total operating cost of the system can be reduced under continuous monitoring
since there is no delay in detecting the system in undesirable states. It is therefore unclear which
of the two strategies is better in minimizing the expected long run cost rate. Comparison of the
continuous and periodic inspection policies has been considered before by Rosenblatt and Lee [8].
However, they assumed that the system is in one of two states - in control or out of control. In this
paper, we present a comparative study of the sequential and continuous inspection strategies for a

multi-state model.

This paper is organized as follows. In section 2, we describe a finite state continuous-time
Markovian model for deteriorating systems. The sequential and continuous inspection strategies
are introduced and they are discussed in detail in Sections 3 and 4, respectively. Finally, in Section 5,

we compare the optimal policies of the sequential and continuous inspection strategies.

2 System Description

Consider a system whose deterioration at any point of time can be classified into one of a finite
number of states 0,1, --,n,n+1. State 0 represents the system before any deterioration takes place.
State n + 1 represents the terminal state (failure) of the deteriorating process. The intermediate
states 1,2,.--,n are ordered to reflect their relative degree of deterioration (in ascending order).
The transition from one state to another is assumed to follow a continuous-time Markovian process
with an absorbing state n+ 1. From state , a direct transition can occur either to state i + 1 with
a transition rate §; (B, = 0) or to state n + 1 with a transition rate @;. The total transition rate

out of state 7 is therefore \; = o; + f3;.

Under a sequential inspection strategy, inspection is performed from time to time to identify
the current state of the system. The inspection time is assumed to be non-negligible and random

with a distribution function Q(t) and a mean value g. Each inspection incurs a fixed cost M. After



each inspection, the current state of the system is revealed with certainty. Let E; represent the
time instant when the system is identified to be in state i. At E;, one of the following decisions
is selected: R, replace the system immediately, or I(¢;), 0 < t; < oo, inspect the system ¢; units
of time later with I(oco) interpreted as the limit as t; — oo of I(¢;). I(oo) is therefore the decision
to operate the system without inspection until it fails. If the system fails before time ¢;, it can
be detected immediately without inspection and it should be replaced. When the time intervals
between successive inspections are state independent, i.e., ¢ = ¢t; = - - - = t,,, a sequential inspection

strategy reduces to a periodic inspection strategy.

Under a continuous inspection strategy, the deteriorating system is monitored continuously and
the current state of the system is therefore always known. Once the system enters state %, the
decision is either to replace the system or to continue monitoring (CM). For both sequential and
continuous inspection strategies, we assume that the replacement costs and times are non-negligible
and state dependent. When the system is in state ¢, the replacement cost is C; and the replacement
time follows a distribution function R;(t) with a mean value r;. Furthermore, after the completion
of each replacement, the system is renewed (back to state 0). During an inspection or a replacement,
it is assumed that the system is neither operating nor deteriorating and this incurs a loss of m per

unit time. When the system is operating, the operating cost is a; per unit time in state 3.

The following notations are used throughout this paper.

S The set of all states of the system, § = {0,1,---,n + 1}.

R The set of all real numbers.

P;j(t) The probability that the system presently in state  will be in state j after ¢ units of time.
Fi(t) The failure time distribution of t’l‘le system starting from state i. Note that F(t) =

Pinia(t) and Fi(t) = 1- F(t) = ) Py(t).

j=t
Qij(t) The expected time that the system spent in state j during [0, t] given that it starts from
t
state 1, Q;;(t) = / P;j(u) du.
0
Ai(t) The expected operating cost of the system during [0,] given that it starts from state 1,
n

Ai(t) = ) a;Qi5(2).

=



Yy (i)
X5(1)

Y5 (4)

[ <]
The expected time to failure given that the system starts from state 4, u; = / Fi(u) du.
0

A sequence of decisions selected at the time instants E;, i = 0,1,---,n + 1.

The decision at the time instant E; under the policy 6. In particular, we restrict ourselves
to Ds(n + 1) = R for both strategies.

The set of all policies, §, under the sequential inspection strategy with Dg(n + 1)=R.
The expected time from E; to the next replacement under the policy & of the sequential
inspection strategy.

The expected cost from E; to the next replacement under the policy § of the sequential
inspection strategy.

The expected time from E; to the next replacement under the policy & of the continuous
inspection strategy.

The expected cost from E; to the next replacement under the policy § of the continuous

inspection strategy.

Our objectives here are to derive and to compare the optimal policies of the sequential and the

continuous inspection strategies based on minimizing the expected long run cost rate.

3 Sequential Inspection Strategy

In this section, we first formulate the optimization problem under the sequential inspection strategy.

A policy improvement algorithm is presented to derive the optimal policy. The properties of the

optimal policy are also discussed. Since the model considered here is a direct extension of that

considered by Ohnishi et al. [5], the same techniques used in their paper can be applied to derive

the results given in this section. The proofs of these results are therefore omitted.

For the sequential inspection strategies, given any t; € [0, 00], X#() and Y(3) can be calculated

respectively by using Equations (3.1) and (3.2) below.

n+1

i) < [ R du+ o VLRWTG)  HDO=16)
T if Dg(i)= R



and
n+1

m i3 ( if Dg(3) = I(¢;)
veti) = Ai(ti) + (M + mq)F, +ZP 2(5) if Dg(d) I(t), 62

R; if Dg(i) = R
where R; = C;+mr; forall i € S. Since the system is renewed upon the completion of a replacement,
the expected long run cost rate of the system under a policy § is therefore equal to Y,/(0)/X2(0).
Here we want to find an optimal inspection and replacement policy 6§ € A, such that

Ldef ., Y2(0)  Y5i(0)
g, = inf ==L =
25, %30) = X300

where gj is the optimal expected long run cost rate. The following Policy Improvement Algorithm
(PIA) can be used to derive &} and g}.

Step I: [Initial Criteria]
Select a tolerance limit € > 0. Set k¥ = 0 and choose an initial value for gg.
Step II: [Policy Improvement Routine]
Use g to construct a policy 6x4; as follows.
Set Vs,,,(n + 1,9k) = Cay1 + (M — gk)rny1 and Ds,,,(n+1) = R.
Fori=n,n-1,---,1,0,

find N El(Itl)f )Gg,. +1(4, gk, t;) Where

Goups s 9o ts) = '1'%.-(1:.-){‘4‘“‘) +M +(m - gu)a] Fi(t)
n+l1

ti _
+ Z P‘J Ifsh-f-l. Jagk) gk‘/‘; F.(u)du}

j=i+1

Set V&),.H(i’gk) = min I; el(lz‘)fw)Gdh+1( 1 Jky b ) Ci+ (m gk) ]

I V.s,.“(i,gk) = G5k+1(3’gk: &)= t'el(ltl)foo) G5h+1( » Gy i), then D6h+1( i) = I(t}).

If Voy,, (3, 9k) = Ci + (m — gi)ri, then D, ., (i) = R.
Step III: [Stopping Criterion]
If | Vs,,,(0,9%) |< €, then set 6; = 6x41 and g} = gx. STOP.
Step IV: [Value Determination Routine]
Set gr41 =Yy, (0)/X}, . (0), k =k + 1 and GOTO step II.

The following theorem shows that under some assumptions on the time and cost parameters,

6



the optimal policy for the sequential inspection strategy derived from PIA is of control limit type.
Also, the optimal time interval between inspections becomes shorter and shorter as the system

deteriorates.
Theorem 3.1 Ds:(n) € {I(00), R}. Under the following assumptions,

(A1) 0< A<M << A< 00,
(A2) 0<ap< oy <---<ap < oo,

(A8) 0Smo<m <o <ra < Topr — 4,

CO+MSCI+MS“'SC"+1+MS0ﬂ+1;
To+q ™ +q Tn+1 + ¢ Tntl

—R'm

(A4) 0<

(A5) 2 -Re< R _Ri<. <
Ao /\1

n
there ezists a critical state k) € S such that

Dy()) = R ik <i<n+l,
Dg(i) = I(8}) #0<i<k,

and o0 > t§ >t} > ---Zt,::_l > 0 wheret!, i=0,1,---,k} — 1, are derived from PIA.

The result Dss(n) € {I(0c0), R} tells us that once the system is identified to be in state n, the
optimal decision is either to replace the system immediately or to operate the system until it fails.
Assumptions (A1) and (A2) in the theorem above are reasonable since a deteriorating system is
more likely to make a transition to a higher state and the terminal state as the system deteriorates.
Assumptions (A8) and (A4) respectively imply that the system becomes more time consuming and
expensive for repla,cemént with the deterioration. Assumption (A5) indicates that the difference
between the expected operation cost and the expected replacement cost in each state is increasing
as the system deteriorates. Note that assumption (A 2) given here is weaker than assumption (A 2)
in [5]. Assumptions (AS3) to (A5) here extend the assumptions (A8) to (A4) in [5] to take into

consideration the non-negligible inspection and replacement times.



4 Continuous Inspection Strategy

In this section, we formulate the optimization problem and discuss the properties of the optimal
policy under the continuous inspection strategy. For this strategy, since the current state of the
system is always known to us, it is sufficient to consider the set of all policies § such that Dg(i) = R
if k<i<n+1,and Dg(i) = CM if 0 < ¢ < k for some k € §. For easier interpretation,
let X§(i) = Xg(¢) and Y5(3) = Y5(é). These can be calculated recursively using the following

equations.
1 o Bs . . )
— 4+ =t +—Xi(1+1) f0<i<k<n+1
Xg6) = { A N TN i+1) ) (4.1)
and 8
a; aq $ e . .
— 4+ —Ro1 +=YS(i+1) if0<i<k<n+1
ch(i) _ Ai A,’ +1 Ai k( ) ) (42)
): ifi=k

For notation simplicity, define Xg = X(0) and Y;{ = Y;$(0). Obviously, X§ = rg and Y§ = R,.
Define g(k) = Y;$/X;. We want to find an optimal critical state k} € S such that

o def . LY Y
= k) = —_ = —=
9 = jnf o(k) = nf 5. X;,

where g? is the optimal expected long run cost rate for the continuous inspection strategy. Since
there is only a finite number of states, it is obvious that both g% and k! exist, and they can be
obtained by searching for a k € S such that g(k) is minimal. Furthermore, we have g(0) = m+Co/ro
and g(n + 1) = [Ao(o0) + Rn+1]/ (Ho + Tnt1), and they are both finite. Therefore, the value of g?
is finite and bounded above by the minimum of ¢g(0) and g(n + 1).

Let Z() be the marginal expected cost rate which is defined as follows. For all i € S\ {n + 1},

2= T =¥
Xic+1 - Xf.

From Equations (4.1) and (4.2), Z(3) can be expressed explicitly as,

& % Bi, o
Z(:‘) —_ },:f-l(z) - Y,C(Z) _ A_t + -A—I‘.R'H-l + X:RH.I R'
CX5 () -Xf(3) 1 Bi .

% + /\—iTn+1 + A{"i+1 - Ti




In the theorem below, we show that when Z(i) and ; are nonincreasing in i, the optimal critical

state k} is the smallest state such that g(¢) starts to increase. This result facilitates the search for

*
k.

Theorem 4.1 Assume Z(i) is non-decreasing in 1 € S \ {n + 1} and r; is non-decreasing in
i € S. If there ezists a k € S\ {n + 1} such that g(k + 1) > g(k), then g() is non-decreasing in
i€ {kk+1,---,n+1}.

Proof. If r; is non-decreasing in ¢ € S, then by repeat substitution

k-1
c c Bi 1 Q Br
Xep1 — X = (H x (:\:'i' 'A:Tn+1+rkrk+1 “Tk)

(lﬁl f—) G; R r,,) > 0. (4.3)

1=0

v

If g(k + 1) > g(k) for some k € S\ {n + 1}, using Equation (4.3), we have

Yl:+1 -Yr Y, Xg
- = - = - > 0. .
Z(k) - g(k+1) Xe, —X: X,  \Xi, - X: l9(k+1) - g(k)] 20 (4.4)

Since Z(3) is non-decreasing in i € S \ {n + 1}, Equation (4.4) implies that Z(k + 1) > g(k + 1).
By the definition of g(k + 1), we have Y, — g(k+ 1)X{,; = 0. Hence,

I

[9(k+2) — g(k + 1)) Xg12

Vi —9(k+ )X — Y — 9(k+ 1)XE ]
[Z(k+1) - g(k+1)] (XEp2 - X£4q) 0.

Obviously, Xg,, is strictly positive since all the transition rates of the underlying continuous-time
Markov process are assumed to be strictly positive. It follows that g(k + 2) > g(k + 1). The
same argument can now be repeated to show that g(k+3) > g(k + 2), g(k+4) > g(k+3), -+,
g(n+ 1) > g(n). Therefore g(i) is non-decreasing in i € {k,k+1,---,n+ 1}. O

The following two theorems show that under the same assumptions given in Theorem 4.1, if
there exists a k € S such that Z(k — 1) < g(k) < Z(k), then k = k.
Theorem 4.2 If Z(i) is non-decreasing in 1 € S\ {n + 1} and r; is non-decreasing in i € S, then
there ezists a k € S such that Z(3) > g(k) for all i > k, and Z(3) < g(k) for all i < k.

9



Proof. Consider k = k. For all 1 > kg,

) . . . Yoy —9c X
Z(z)—gczz(kc)—gc = : =

— 2 0. (4.5)
li;+1 - Xk;

Equation (4.5) holds by definition of g} and k?, and Equation (4.3) above. Similarly, for i < k?,

=Y+ 92 X§.
k-1 T JeAgrq <0

s~ Xie

This completes the proof. ]

Theorem 4.3 If there ezists a k € S such that Z(i) > g(k) for alli > k, Z(i) < g(k) for all i < k,

and r; 18 non-decreasing in i € S, then k = k.

Proof. Observe that foralli> k+1

i-1
c D (Vi —Y)+ Y
N _ Y; _ u=k
9()= 3¢ =5 -
3
Z( w1 — X))+ Xi

u=k

Since Z(u) > g(k) for all u > k, it is now obvious that g(i) > g(k). A similar argument can be
used to show that g(¢) < g(k) for all ¢ < k. Hence k = k. O

5 Comparison of Inspection Strategies

In this section, we compare the optimal expected long run cost rates and the structures of the
optimal policies under the sequential and continuous inspection strategies. We investigate sufficient
conditions such that the continuous inspection strategy is preferred to the sequential inspection
strategy and show that the optimal critical state for replacement under the periodic inspection

strategy is smaller than the optimal critical state under the continuous inspection strategy.

Recall that g} is the optimal expected long run cost rate under the continuous inspection
strategy. Intuitively, g* should be less than or equal to g} since there is no delay in detecting or

replacing an undesirable system. However, if the inspection cost rate m + M/q is strictly less than

10



g:, then we have

. M Co Ao(o0) +
q To Mot Tnil
where gg is the optimal expected long run cost rate under the periodic inspection strategy. This
means that when the inspection cost rate is relatively small, then the sequential inspection strategy

is preferred.

In the case when the inspection cost rate is greater than or equal to g7, it is unclear which of
the two strategies gives a smaller expected cost rate. From Theorem 3.1, when Assumptions (A1)
to (A5) are satisfied, the optimal policy 6; is of control limit type. Therefore, only the control
limit type policies for the sequential inspection strategy are considered in our comparison here. Let
A, represent the class of the control limit type policies and define

oo & inf Y;(0)
U7 senae X2(0)

The following theorem provides sufficient conditions such that the continuous inspection strategy

is preferred to the sequential inspection strategy. The proof is given in the appendix.

Theorem 5.1 Under the following sufficient conditions: (1) Z(i) is non-decreasingini € S\ {n+
1}, (2) r; is non-decreasingin i € S, and (3) m+ M/q > g% or M = q¢=0. Then, g}, > g:.

Let kg, be the optimal critical state for replacement under the periodic inspection strategy.
Theorem 5.2 below shows that under sufficient conditions, k., is smaller than or equal to the
optimal critical state k?. This means that the system is allowed to operate in higher states under

the continuous inspection strategy since the condition of the system is always known with certainty.

Theorem 5.2 Under the following sufficient conditions: (1) Z(i) is non-decreasingini € S\ {n+
1}, (2) r; is non-decreasingini€ S, (3) M = q = 0. Then, kp, < k.

The proof of the theorem is again given in the appendix.
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Appendix

Before giving the proofs of Theorems 5.1 and 5.2, let us define the following notations. For all
1,7 € S and t € [0, 00], define

_Pj(t) iy = 2iQi(t)
mO=har O oA

fi(t) = Din4a(t), and fi(2) Ep., . Also let

=t
Skl“‘{ (70)711 171'):70:0’7,1'-—1<7ja7j€{1a2,""k}7j€{1’23""i}}

for all i < k. Given j,k€ S,t; €[0,00] and i € S\ {n + 1}, let

k [ 1 7
Z Z Hp"lu—l'Yu(t’Yu-l) ii(t)s

|=0 '! ES,“- Llu=1

Qk;

x | ]
Prk+r1 = Z Z Hp‘Yu—l‘Yu t'Yu—l) Prik+1(ty ),

1=0 'Z GS,"' Lu=1

and

k 1
Fr = Z Z [Hp-vu_nu(t‘yu-x)] Fri(t),

0
with [H Prva—tve By )} = 1. Note that Qk; = Q-1 ; whenever k > j and Qo; = goj(to). Using
u=1

Kolmogorov’s forward and backward equations [5], properties (P1) to (P4) below can be verified
easily.
(P1) Forallie S\ {n+1}and t€[0,00], gii(t) = 1.
(P2) Forall 0<i<j<mn-1landte€][0,00], %q;j(t) = gij+1(t) + i j+1(2).
i

(P3) Forallie § \ {n + 1} and t € [01 OO], fi(t) = pi,n+1(t) ::J q”(t)

J"l

(P4) For each t € [0, 0], g;(t) is totally positive of order 2 (TP;) in 4 and j, 1,5 € S\ {n + 1}.

Properties (P5) and (P6) can be derived using (P1) to (P3).
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(P5) Givenie S\{n+1},j€S,k€ S\ {0},and t; € [0,00], Quj = Pi_y aqe;(ts) + Qk-1,; and
Fi = Prorkfi(te) + Fia.

k-1 k i
(P6) Forall ke S\ {0,n+ 1}, H % = Qkk = z Z I:H ij_nj(t'rj—x)} Gk (ty;)-

i=0 "t =0 YeS [J=1

Proof of Theorem 5.1:
Using Kolmogorov’s forward equations, Properties (P1) to (P3), and recalling that Ds(n+1) = R,

Equations (3.1) and (3.2) can be rewritten as

4 n 1 a. ﬂ . ]
> @i(t) [X—- + X’f"n+1 + XJ‘_Xs(J +1) - Xg(J)J
j=i+1 i Aj j
LI 1 1 t v 7 . .
Xii) = { + [; + %rm + %Xs(w 1| +qfi(t:) if Ds(3) = I(t;)
\ ’I‘,', lf D5(2) = R
and
[+ 4 o Bivre, - o
Z gi5(t:) T ar+1 + S‘TY5 (G+1)-Y7(5)
J=i+1 J J J
Y6 = ¢ + [-f\— + %&H + %Y;(i + 1) + (M +mq)fi(t:) if Ds(i) = I(t;) - (A1)
1 13 ]
{ R; if Dg(3) = R.
: x_1 .9 B; Yy _% % B;
Forjes§ \ {n + 1}, let ZJ = X—- + r'l‘,ﬂ.l + rrj+1 =T and Zj = -A— + TR"‘H + TRH-I - Rj.
i Aj 3 i Ad J
By repeat substitution, we have
k-1 k-1
Xi=) QijZf +r0  and Yi=) Q,;ZY + R, (A2)
j=0 3=0

Let § € A, be a control limit type policy with critical state k, i.e., Ds(i) = Rif k < i < n+1, and
Ds(3) = I(t;), t; € [0,00), if 0 < i < k. For easier interpretation, let X{(3) = X{(3;t0, 1, -+ the1)
and Yy'(s) = Y(4; to, t1, - -, tk—1). Note that X(i;to,t1,+ -+, k1) = 7; and Yo (5t th, oy tee) =
R; whenever i > k. By repeat substitution in Equation (A.1) and using Property (P2), we have
forall ke S\ {0,n+1},

Yin(Oitotr, -+, tk) = Y (0o, 11,y the1) = Phoa | awi(te) 2 + (M + mg) fu(th)| . (A.3)
i=k
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A similar result holds for Xi1(0ito,t1, -+, tk) — X2(0;t0, b1, -+, tk—1). Next observe that for all
ke S\{0}and i€ S,

n -1
Y (Oito,t1, s thee1) = Y =) Q152 + Y (Qerj— Qi) Z¥ + Faca(M +mg)  (A4)

Jj=i i=k

where the second term on the right hand side of Equation (A.4) is zero whenever k > i. Result (A.4)
can be readily verified by mathematical induction as follows. Using Equations (A.1) and (A.2), we
have forall 1 € S,

Y'(0i%0) - Y

[¥1’(0;t0) — Ro] - (Y" - Ro)

n -1
D wi(t)Z] + Y [q0i(to) — Qi1 Z) + (M + ma)fo(t).  (A.5)

i=i i=1

I

Note that goj(to) = Qoj and fo(to) = Fo, hence Equation (A.5) is the same as Equation (A.4) when
k =1. Assume that result (A.4) holds for k =7 € §\ {0,n + 1}. Now consider

Y7a(05t0,t, 0o tr) = Y F

= [Y‘r‘+1(0;t0at1,"')tf)"Y:(O;thtl:""tf-l)]+[Yr‘(0;t0’t1:"':tr—1)_Ys‘c]' (A'G)

Applying Equations (A.3) and (A.4), and Properties (P5), Equation (A.6) can again be written in
the form of (A.4) with k = 7 4 1. A similar result holds for X}(0;29,%1,--,tk_1) — X¢. To show
that g%, > g2, we only need to verify that

| Yl:(o; tO’tla . ',tk—l) - X,:(O;to,t]_, o '1tk—1)g: 2 0
for all t; € [0,00],0 < i < k and k € S. Obviously,

When k € S\ {0}, we have

Y (050,81, -« tkm1) — X£(0; 20,1, -, the1)g

= [R(0ito,tr, k) - Y| - [Xi(05totr, -y tees) - b AP (A.7)

Note that Q¢ — Qjj < 0 for all j > k and Z(j) = 2} /Z¥ for j € S\ {n + 1}. Under the

assumptions given in the theorem, we know from Theorem 4.2 that Z(i) > g? for all 1 > k% and
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Z(i) < gz for all i < k!. Using Equations (A.4) and (A.7), and the assumptions stated in the
theorem, the result follows. O

Proof of Theorem 5.2:
Given j,k € S and t € [0, 00], define
k 1 k
%i=2 X [II pn._m(t)] ilth aad Fi=3 3 [H Pru-im ] F ()
1=0 'ZES,"' u=1 1=0 'ZGS,“ u=1
Using Property (P4), it is clear that gx;(t)Qks—1,u — Qku(t)Qks—1,; > O0forall n > 5 > u > k > k?
and fixed ¢ € [0, 00]. Recall that under the assumptions given in the theorem, Z(i) > g(k?) for all
i 2 k and Z(3) < g(k?) if i < k7. We can now conclude that for all ¢ € [0, 00] and k > k?,

o] (B ) [t (£ ]

k-1

= Y w0 ZF2X(20) - Z(u)

=k u=k

ﬁl

n j-1

+ 30 Dolawi()Qhs 10 — ara(t) Q1,127 2X(2(5) - Z(w)] 2 0.

J=k+1u=k
Let Y*(0;¢) = Y*(0;¢t,---,t) and X?(0;t) = X2(0;¢,---,t). Given any i > k?, we have from
Equations (A.3) and (A.4)

Y20, 8) X, (05 8) — XJ(0;¢)Yi(0; 2)

-1
= 3 {Ha(051) - Y012, (058) - [X24a(08) - XE(0;0)]3(0;0))

k=k?
= E'Pk lk{LZ qk;(t)Z; (X,:. +E Q1,2 ) ZQI:; ZX} (Yk' +Z Qhks-1,;Z; )}
k=k; =k i=k i=k?

which is obviously nonnegative. That is,

Y2 (0;t) N Y. (0;1)
X:0;t) T XE.(05t)

for all i > k? and ¢ € [0, 00]. This implies that

of Yo(0it)
te(0,00) X2(0;t) ~ uG(Ooo)Xk.(O u)

and K, < K. O
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