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A Mean-Variance Serial Replacement Decision Model:

The Correlated Case

Abstract

An optimal approach for solving serial replacement problems with uncertain rewards
and a risk-averse decision maker was previously introduced by Brown. In this note,
we extend Brown’s model to allow rewards to be correlated across replacements.
Correlation may be useful in modeling the effects of the external environment on the
rewards. However, total enumeration appears to be the only method to find optimal
solutions when rewards are correlated. Thus, we develop a heuristic and compare it
to several existing solution approaches. Computational results indicate that, on the
average, our heuristic outperforms the other solution approaches by at least 8 percent

for positive correlation and 17 percent for negative correlation.

KEY WORDS: MACHINE INVESTMENT; STOCHASTIC NETWORKS: LONGEST
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A Mean-Variance Serial Replacement Decision Model:

The Correlated Case

1 Introduction

A dynamic programming procedure to find all Pareto-optimal solutions for serial
replacement problems with uncertain rewards and a risk-averse decision maker was
previously introduced by Brown [3]. A solution specifies the sequence of assets that
are replaced over time, including the installation and replacement times of each asset.
The service life of an asset is the time that elapses between installation and replace-
ment. In this note, we extend Brown'’s model to allow rewards to be correlated across
replacements, referring to this as the correlated case (as opposed to independent case).
We emphasize that the correlation being modeled is across replacements, and we dif-
ferentiate this type of correlation from that across different service lives for the same
asset (e.g., the reward for an asset providing three periods of service being correlated
with the reward for the same asset providing four periods of service). Correlation of
this latter type can be included in both Brown’s model and our extension.
Correlation across replacements may be useful in modeling the effects of the exter-
nal environment on the rewards. For example, consider a decision maker forecasting
the operating expenses of a delivery vehicle, who is uncertain about the route and
associated road surface conditions for the vehicle. To reflect this uncertainty, the
decision maker specifies a range to cover all reasonable outcomes. However, once the

vehicle is placed in service, the decision maker expects the route and conditions to



remain relatively constant over time. Thus, the operating expenses of a future vehicle
will be correlated with the current vehicle that it will replace.

Our investigation has two research objectives. First, we want to develop a solution
procedure. When correlation is considered, the resulting problem structure is such
that total enumeration appears to be the only optimal solution approach. Thus, our
solution procedure is a heuristic. Second, we want to compare our heuristic both to
an upper bound and to several existing solution approaches.

The remainder of this paper is organized as follows. In Section 2, we state the
assumptions of our model. We describe our heuristic and two different error bounding
procedures in Section 3. In Section 4, we discuss our computational study, and

summarize our findings in Section 5.

2 Assumptions of the MV Decision Model

The major assumptions of the MV decision model are as follows.
o Assets are replaced serially.

¢ The decision maker is uncertain about the monetary reward that would result

from installing and operating an asset.

¢ The reward for the service provided by an asset is summarized by its after-tax
net present value (NPV) distribution. These rewards can be either positive or

negative.



e The NPV of an asset being appended to a partial sequence is correlated only
with the NPV of the immediately preceding asset in the sequence. Correlation
is limited to first order effects because it captures the major effects and a more
elaborate model would require a decision maker to forecast all the higher orders

of correlation, which may quite difficult.

o The NPV of an asset is normally distributed, and hence the NPV of any sequence

of assets will also be normally distributed.
¢ Each asset has a known, maximum service life beyond which it must be replaced.

o There is a finite number of alternative assets from which to choose at any point

in time.

o The decision maker’s utility function is a continuous, concave, monotonically

increasing function of money (w).

o The decision maker’s objective is to maximize expected utility. The problem then
is find the sequence of assets of highest expected utility (EU = [ U(w)f(w)dw,
where U(w) is the decision maker’s utility function and f(w) is the normal
density function of the NPV for a sequence of assets) over all possible sequences

that provide service from time zero to the finite horizon (H).

3 Solution Approaches

When rewards are correlated across replacements the dynamic programming principal

of optimality does not hold because the optimal solution does not necessarily consist



of optimal partial solutions. We provide an example below. Consequently, we cannot
identify optimal solutions using dynamic programming. The only method to find
optimal solutions appears to be total enumeration (see Bard and Bennett [1]; and
Loui [4]), and the associated computational burden can be prohibitive. Consider a
problem with five asset types available at each point in time, and with each asset
having a maximum service life of just one period. For a planning horizon of 20
periods, the total number of solutions is 9.54F + 13. If the maximum service life
increases to two periods, the total number of solutions increases to 1.95F + 15.
Given the difficultly of obtaining optimal solutions for the correlated case, we de-
velop a heuristic. Our heuristic is an extension of the dynamic programming approach
Brown [3] uses for the independent case. In the remainder of this section, we sum-
marize Brown’s approach, then we present our heuristic, and finally we describe the

two error bounding procedures that we use in our computational study.

3.1 Brown’s Approach for the Independent Case

The approach of Brown [3] uses dynamic programming to find all Pareto-optimal
solutions (sequences of assets). At each time period (stage), a Pareto-optimal set of
sequences is identified. The Pareto-optimal set of sequences also is a MV-efficient
set of sequences, under the assumption that the NPV of each asset in a sequence is
normally distributed. Letting S, be the set of all sequences pr'oviding service from

time zero to time ¢, a sequence s € S; with mean p(s) and variance o2(s) is MV-



efficient if for every s’ € Sy, s’ # s,

u(s) > p(s') and o?(s) = o?(s'), or

u(s) 2 u(s") and o*(s) < o*(s").

The dynamic programming algorithm proceeds in a forward direction, with the
stages being the time periods and the states being the asset type (j) and time of
installation (t). The objective function values are the NPV mean and variance of a
given sequence. At each point in time, the decisions are what asset type to install
and for what length of service. Let S; C S; be the set of all MV-efficient sequences
providing service from time zero to time ¢, J; be the set of assets available at time ¢,
and N,(j) be the maximum service life for asset j available at time ¢. The set S, can

be formed as follows
Si={su(,t,t=t):seSsjedut >0, t—t'=12,..., No(j)}

where (j,t',t — t') represents asset type j, installed at time #', for ¢t — ¢’ periods of
service. Expressed differently, S, is the set of all sequences formed by appending one
additional asset, j € Jy, to the end of a MV-efficient sequence providing ¢, ¢’ < t,
periods of service, such that the resulting sequence provides ¢ periods of service. S}
is then given by

Sr={s€S,: sis MV-efficient}.

The boundary condition is Sj = 0.
Brown (3] notes that some problems cannot not be solved optimally due the state

space becoming prohibitively large. In these cases, Brown uses a heuristic called the



cluster heuristic. The cluster heuristic identifies a subset of Pareto-optimal solutions
by keeping only those sequences that are not stochastically dominated if the NPV dis-
tributions are truncated § standard deviations from the mean, where § is a parameter

adjusted by the heuristic.

3.2 A Heuristic for the Correlated Case

The heuristic we develop for the correlated case is a slight modification of Brown’s
optimal approach. The modification involves adding the covariance term to the vari-
ance. For example, if j is the asset to be appended to a partial sequence and it
follows asset ¢, then the variance term is given by 032- + 2pijoi0;, where p;; is the
correlation coefficient for j following ¢. The approach is a heuristic because it will
fail to identify the optimal solution if the optimal path is not MV-efficient at each
replacement epoch. To illustrate why, consider the following example with a horizon
of two periods. At time zero, two assets, ¢ and j, are available, both with identical
one period service lives. At time one, only asset k is available and only for one period
of service. Let y; = p;, o = 64, 0]2 =81, 02 = 100, pix = 0.5, and pjr = 0.1. For this
example, there are two possible sequences: (i) asset ¢ followed by asset k, [1, k], and
(i) asset j followed by asset k, [j,k]. In comparing these two sequences the means
are identical and thus can be ignored. For [i, k], the sequence variance is 64 + 100
+ 2(0.5)(8)(10) = 244. For [j, k], the sequence variance is 81 + 100 + 2(0.1)(9)(10)
= 199. Thus, the optimal sequence is [j,k]. However, our approach will select [¢, k]

because at time 1, (y;,07) MV-dominates (u;,0%).



We also modify Brown'’s cluster heuristic to use for problems in which the state
space becomes prohibitively large. Again, the modification involves adding the covari-
ance term to the variance. Otherwise, the procedure is exactly the same, including
the method for selecting which sequences to eliminate. We report the number of
times we use the cluster heuristic modification for the problem sets considered in our

computational study.

3.3 Bounding Procedures

Given total enumeration appears to be the only method to identify optimal solutions
and such an approach can be computationally prohibitive, we decided to compare
the solutions obtained by our heuristic to an upper bound. However, obtaining a
tight bound on the optimal solution is also a difficult problem. Consequently, we use
two different bounding procedures in our computational study, selecting the smaller
(tighter) of the two bounds. The first procedure computes a bound using the maxi-
mum mean and a lower bound on the variance across all sequences. We will refer to
this procedure as the minimum variance bounding procedure. The maximum mean
and minimum variance will MV-dominate all other sequences and hence the resulting
expected utility of the sequence will be an upper bound. To find the maximum mean,
we solve a longest path problem using dynamic programming to find the sequence of
assets with the highest mean NPV.

We find a lower bound on the variance by solving a shortest path problem, again

using dynamic programming. The dynamic program proceeds in a forward direction,



with the stages being the time periods, and the states being the last asset type in
the partial sequence and the last asset’s minimum and maximum standard deviation
for any service life. The optimal value function, SeqV ar*(t), is a lower bound on the
variance for any sequence providing service for the first ¢ periods. The key is to find
a tight lower bound on the covariance. To do this, at each stage for each asset type j,
a lower bound on the variance is found for any sequence in which the last asset is of
type j. Let SeqVar*(j,t) be this lower bound, StdMin(j,t) be the minimum possible
and StdMaz(j,t) be the maximum possible standard deviation for asset type j in any
sequence providing ¢ periods of service for which j is the last asset, and o(j,t',t —t')
be the standard deviation for asset type 7, installed at time ¢, providing ¢ — ¢’ periods

periods of service. Then:
StdMin(j,t) = Min{o(j,t',t =¢'): t=t' =1,2,...,Nu(j), t' >0}
StdMaz(j,t) = Maz{a(5,t',t =t'): t =t =1,2,...,Nu(j), ¢’ > 0}
and the functional equation is
SeqVar*(j,t) = Min{SeqVar*(j',t') + o*(j, ¢, t — t') +
2p;;StdMin(j',t )o (4,1, t = '),
SeqVar*(j/,t) + *(j,t',t = t') +
2pj;StdMaz(j' t)o(j, ¢t = 1) :
t—t'=1,2,...,Nu(j), ¥' 20, j € Ju}

At each stage, SeqVar*(t) = Min;{SeqVar*(j,t)}. At the horizon, if SeqVar*(H)

< 0, a minimum variance of zero is used. The boundary conditions are SeqVar*(j,0)



= 0 for all 5.

The second bounding procedure is only used for problems in which all the corre-
lation coefficients are nonnegative. In this case, the variance of any given sequence
assuming independence will always be less than or equal to the actual variance, and
the associated expected utility for the independent sequence will always be greater
than or equal to the expected utility for the same sequence when the covariance is
included. Thus, an upper bound can be found by solving the problem assuming

independence. We will refer to this procedure as the independent bounding procedure.

4 Computational Experiments

The goals of our computational experiments are (i) to evaluate the error bound perfor-
mance of our heuristic, and (ii) compare the sequence identified by our heuristic to the
sequences identified using three existing solution approaches. (The same three Brown
[3] uses for the independent case.) These approaches are the traditional (TRAD) ap-
proach, the expected value (EV) approach, and certain monetary equivalent (CME)
approach. Each is designed to solve a problem that is related to, but not the same,
as our problem. We distinguish among the different sequences by using superscripts
(e.g., sTRAD for the sequence identified by the traditional approach). We denote the
sequence identified by our heuristic as sVT/L.

The traditional (TRAD) approach assumes an infinite horizon and that all future

assets are monetarily identical to those available currently (see Newnan [5]). This

approach replaces each random NPV by its mean and then selects the asset type and



service life pair with the highest expected annual equivalent value (NPV amortized
over the service life). This decision is then repeated forever.

The expected value (EV) approach substitutes the mean NPV in place of the
NPV distribution, and then finds the sequence of assets with the highest mean NPV.
Oakford, Lohmann, and Salazar [6] present a dynamic programming algorithm that
can be used to find such a sequence.

The certain monetary equivalent (CME) approach replaces each random NPV by
its certain monetary equivalent. The certain monetary equivalent is the constant (k)
yielding the same utility as the random NPV (i.e., U(k) = EU). The solution is then
obtained by dynamic programming in exactly the same manner as for the expected
value approach.

In the remainder of this section, we first define the performance measures for
our study. Then, we discuss how our problem sets are generated. We note that the
performance measures and test problem generation process are identical to those used
by Brown [3] for the independent case, except that we add a procedure to generate
the correlation coefficients. Finally we report computational results which indicate
that, on the average, our heuristic outperforms the other three solution approaches

by at least 8 percent for positive correlation and 17 percent for negative correlation.

4.1 Performance Measures

We collected four performance measures: (i) the CPU time required by each approach,

(i1) the maximum cardinality of any MV-efficient set of sequences at any stage required

10



by the optimal approach or cluster heuristic, (iii) the percentage of sequences found

) SUTIL

by a given approach that match (have expected utility equal to , which we will

refer to as the matching performance, and (iv) the utility performance of a sequence

UTIL

compared to s , which is given by

EU(s) — EU(s"AND)
EU(sVTIL) — EU(sRAND)

where sf4ND denotes the sequence of highest expected utility out of 100 random
sequences. The fraction is set to one if EU(sYT'Y) = EU(sRAND), and to zero if
EU(s) < EU(s®AND) We note that the most obvious utility performance measure,
EU(s) | EU(sYTIL), cannot be used. At best, this fraction is difficult to interpret, and
it may even be undefined because both the NPV and expected utility of a sequence
may be negative, zero, or positive. By using a random sequence as a benchmark of
performance, the resulting performance measure ranges from zero to one. Random
sequences are formed by randomly selecting the asset type and service life at each
replacement epoch.

For our heuristic, the last two measures are computed by comparing sY7’~ to an

upper bound. The resulting utility performance is given by

EU(SUTIL) _ EU(.S‘RAND)
EU(sVUB) — EU(sRAND)

where sUZ is the sequence of highest expected utility found by the upper bounding

procedure. The value is set to zero if EU(sYT!L) < EU(sRAND),
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Table 1: Parameter Ranges

Parameter Low High
Discount Rate U(0.1,0.2)  U(0.2,0.3)
Horizon DU(10,25) DU(25,40)
Service life DU(2,8) DU(8,14)
Coefficient of Variation U(0.1,0.4)  U(0.6,1.2)
Difference U(0.0,0.05) U(0.05,0.1)
Risk Aversion U(1.5,5) U(16.5,20)

U = uniform distribution, DU = discrete uniform distribution

4.2 Test Problem Generation

To generate a broad range of problems, we use a 25 factorial design. The six factors
and their ranges are listed in Table 1. We first draw values for the discount rate,
the horizon, the number of asset types available at any point in time (which ranges
from two to seven for our problem sets), and the maximum service life for each
asset type. Second, we generate the NPV means and variances for every possible
service life for each asset type, using the coefficient of variation and difference factors.
Third, we set the decision maker’s risk aversion, continuing to use the same three
mathematical forms for the utility function that are used in the independent case: (i)
the exponential, U(w) = (1 — e™*")/c, reflecting constant risk aversion, r(w) = ¢, (ii)
the logarithmic, U(w) = In(w +b), (w + b) > 0, capturing decreasing risk aversion,
r(w) = 1/(w +b), and (iii) the power, U(w) = (w — wy)?, wy < w for all w, 0 < B
< 1, also reflecting decreasing risk aversion, r(w) = (1 — 8)/(w — wy), where r(w) is
the risk aversion function. Finally, we generate the correlation coefficients.

We restrict the correlation coefficients to be equal across all possible service lives

for a given asset type (i.e., the correlation coefficient for asset j following asset 1,
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pij, is independent of the service life of either ¢ or j) to simplify the generation
process. However, note that in practice our heuristic can be used for any level of detail
specified by the decision maker. In modeling correlation across replacements, positive
correlation typically arises more frequently than negative correlation (since situations
in which there is some substitution effect are less common). Consequently, we study
two cases: positive correlation and negative correlation. For positive correlation, all
the coefficients generated are nonnegative. Let u(a,b) represent a random draw from
a uniform distribution with endpoints a and b. The coefficient for sequential assets
of the same type is set equal to u(0,1). The remaining values for the coefficients for
the current asset type followed by an asset of a different type are set by multiplying
u(0,1) times the coefficient just set for sequential assets of the same type.

For negative correlation, the coefficient for sequential assets of the same type is
set equal to zero. The remaining values for the coefficients for the current asset type
followed by an asset of a different type are set equal to u(0,0.5), with the sign set based
on the observation that all the coefficients cannot logically be negative (for more than
two assets). As an illustration, consider three assets. If the first and second assets
are negatively correlated, and the second and third assets negatively correlated, then
it does not make sense for the first and third assets to also be negatively correlated.

Therefore, the negative case is actually a mixture of positive and negative values.

13



Table 2: Utility Performance by Utility Function-Positive Correlation

Utility Decision Percent Utility Performance
Function Procedure | Matching | Average Minimum Maximum Std. Dev.
Exponential
TRAD 34.37% 0.5308 0.00 1.00 0.46
EV 63.75% 0.7720 0.00 1.00 0.39
CME 84.06% 0.9230 0.00 1.00 0.26
UTIL 1.56% 0.7428 0.00 1.00 0.29
Logarithmic
TRAD 35.00% 0.5557 0.00 1.00 0.46
EV 66.25% 0.8079 0.00 1.00 0.37
CME 39.06% 0.7079 0.00 1.00 0.40
UTIL 3.43% 0.7740 0.00 1.00 0.28
Power
TRAD 34.68% 0.5593 0.00 1.00 0.46
EV 65.00% 0.8058 0.00 1.00 0.37
CME 31.87% 0.6073 0.00 1.00 0.46
UTIL 3.43% 0.7717 0.00 1.00 0.28

4.3 Results

We randomly generated 640 problems-320 with positive correlation and 320 with
negative correlation-by replicating our 26 design five times. For positive correlation,
118 problems required the cluster heuristic modification, while for negative correla-
tion, 141 problems required it. Broadly speaking, these results indicate problems
with negative correlation are more difficult to solve, primarily because negative cor-
relation drives the variance towards zero which makes it more difficult to distinguish
among the different assets. Both are higher than the 92 times the cluster heuristic
was required for the independent case. Summary statistics for the matching and
utility performance measures appear in Tables 2 and 3. The third column shows the
average matching performance. The last four columns show the utility performance
average, minimum, maximum, and standard deviation. While it may appear that

our heuristic (UTIL) is outperformed by at least one other approach for each utility
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Table 3: Utility Performance by Utility Function-Negative Correlation

Utility Decision Percent Utility Performance
Function Procedure | Matching | Average Minimum Maximum Std. Dev.
Exponential
TRAD 35.00% 0.5460 0.00 1.00 0.46
EV 66.56% 0.7966 0.00 1.00 0.37
CME 79.06% 0.8942 0.00 1.00 0.29
UTIL 4.06% 0.6051 0.00 1.00 0.35
Logarithmic
TRAD 35.93% 0.5670 0.00 1.00 0.46
EV 70.00% 0.8381 0.00 1.00 0.34
CME 27.81% 0.6682 0.00 1.00 0.39
UTIL 4.06% 0.6193 0.00 1.00 0.34
Power
TRAD 36.25% 0.5666 0.00 1.00 0.46
EV 69.37% 0.8367 0.00 1.00 0.35
CME 21.56% 0.5827 0.00 1.00 0.45
UTIL 4.06% 0.6201 0.00 1.00 0.36

function, in fact our heuristic outperforms them all. Recall that both the matching
and utility performance use the UTIL sequence as the basis of comparison when com-
puting statistics for the TRAD, EV, and CME approaches. In this way the measures
will tend to highlight any differences in the sequences found. If however, an upper
bound is used as the basis for comparison (as is the case when the UTIL performance
measures are calculated), the difference across the solution approaches would be more
difficult to recognize unless the bound is tight.

The average utility performance for the UTIL sequence is lower for negative cor-
relation than for positive correlation. Generating tight bounds is especially difficult
in the former case. However, since positive correlation will typically arise more fre-
quently, the importance of obtaining tight bounds is reduced. Tighter bounds are
obtained for positive correlation because the independent bounding procedure can

also be used. For our problem set with positive correlation, the independent bound-
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ing procedure produces a tighter bound 77.2 percent of the time for the exponential
utility function, 76.9 percent of the time for the logarithmic function, and 68.8 per-
cent of the time for the power function. However for negative correlation, only the
minimum variance bounding procedure can be used, and the resulting variance can
be zero. In fact, for our problem set with negative correlation, the upper bound
was computed using a variance of zero (i.e., at the horizon SeqVar*(H) < 0) 18.8
percent of the time for the exponential utility function, and 15.9 percent of time for
the both the logarithmic and power functions. Because of the negative coefficients,
the lower bound for the minimum variance is driven down towards zero, potentially
underestimating the true variance by a significant amount and resulting in a looser
bound.

The TRAD and EV approaches require 0.3 CPU seconds, on the average (using an
Apollo DSP-4000 workstation), to identify a solution. The CME approach requires
about 3 CPU seconds, while the random approach requires about 8 CPU seconds
(due to the fact that 100 sequences are generated and the expected utility for each
computed using numerical integration). The average CPU time for our heuristic
is about 9 CPU seconds, and no problem requires more than 150 CPU seconds.
These results suggest that our heuristic can solve a wide range of problems in a
computationally efficient manner.

An analysis of variance of the CPU times required by our heuristic shows that,
for both positive and negative correlation, two factors are significant (at o = 0.10):

(i) the horizon, and (ii) the maximum asset service life. More CPU time is required

16



when the horizon is high or the maximum asset service life is high. These findings

are identical to the independent case.

5 Conclusion

The computational results indicate our heuristic can solve a wide range of correlated
problems in a very reasonable amount of CPU time. The results also indicate that,
on the average, our heuristic outperforms the other solution approaches by at least 8
percent for positive correlation and 17 percent for negative correlation. However, the
average utility performance of our heuristic as compared to an upper bound is not
especially good, and is worse for negative correlation. We believe this is a result of
the upper bounds being loose, and thus consider our results to be very conservative.
An interesting question is whether a bounding procedure can be developed that will

yield tighter bounds.
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