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A Mean-Variance Serial Replacement Decision Model:

The Independent Case

Statement of Contribution

We develop a utility-based replacement model that explicitly considers risk. Previous
replacement models have either assumed deterministic cash flows or a risk-neutral

decision maker. Our contributions include:
1. A dynamic programming procedure that finds all Pareto-optimal solutions.

2. A heuristic that is based, in part, on our observations that the Pareto-optimal

solutions tend to cluster.

3. Computational results that indicate we can solve optimally a wide range of prob-
lems. For problems that can not be solved optimally, the average performance

of the heuristic is within one percent of an upper bound.

The research implications are that risk-averse decision makers now have a flexible, yet
tractable utility-based approach which can be used to find optimal or near-optimal

solutions for serial replacement problems.



A Mean-Variance Serial Replacement Decision Model:

The Independent Case

Abstract

This paper considers a serial replacement problem for a risk-averse decision maker
whose objective is to maximize expected utility, but whose utility function is not
necessarily known in advance. We assume the reward received from installing and
operating an asset over a period of time is normally distributed, and develop a dy-
namic programming procedure that finds all Pareto-optimal solutions. This allows
the decision maker to select the preferred alternative without specifying a utility
function. We also develop a heuristic based on an observed tendency of the Pareto-
optimal solutions to cluster. Finally, we report computational results that indicate
we can solve optimally a wide range of problems, and that for problems that cannot
be solved optimally, the average performance of the heuristic is within one percent of

an upper bound.

KEY WORDS: MACHINE INVESTMENT; STOCHASTIC NETWORKS: LONGEST

PATH PROBLEMS; DECISION MAKING UNDER UNCERTAINTY.

ii



A Mean-Variance Serial Replacement Decision Model:

The Independent Case

1 Introduction

Many types of assets that provide a service or produce a product are replaced over
time. Some examples include machines, tooling, buildings, roads, and bridges. Re-
placement occurs when an asset fails and cannot be repaired, or when the cost of
keeping an asset operational is prohibitive, or when changes in technology make an
asset inferior or obsolete, or simply when a change is desired. From a monetary per-
spective, the objective is to provide the required service over some predetermined
planning horizon in the most economical manner. A solution to this problem speci-
fies the sequence of assets that are replaced over time, including the installation and
replacement times of each asset. The service life of an asset is the time that elapses
between installation and replacement.

We investigate a serial replacement problem for a risk-averse decision maker whose
objective is to maximize expected utility but whose whose utility function is not nec-
essarily known in advance. Serial replacement models assume a single asset replaces
another single asset, or a set of assets replaces another set. The simplest model (see,
for instance, Newnan 1991), assumes an infinite horizon, deterministic cash flows, and
future assets that are identical monetarily to the assets available currently. These as-
sumptions, while making the problem easy to solve, frequently do not model reality

well. A dynamic programming approach which allows future assets to differ mone-



tarily from the assets currently available, but requires a finite horizon, was developed
by Wagner (1975). A more general dynamic programming approach was introduced
by Oakford, Lohmann, and Salazar (1984). While still dealing only with finite hori-
zons, the model allows more than one asset type to be available at each point in
time. This model was extended to the infinite horizon case by Bean, Lohmann, and
Smith (1985). Lohmann (1986) extended the Bean, Lohmann, and Smith model to
allow cash flows to be stochastic by combining simulation and dynamic programming.
However, Lohmann’s model assumes the decision maker desires to maximize expected
value. Thus, despite surveys (see Swalm 1966; Laughhunn, Payne, and Crum 1980;
and MacCrimmon and Wehrung 1990) to indicate the pervasiveness of risk-averse
decision makers, no prior replacement model has directly considered risk.

Our investigation has three objectives. First, we want to develop a solution proce-
dure. In order to develop a tractable procedure, we assume the reward received from
installing and operating an asset over a period of time to be normally distributed.
We note that the solution procedure can also be used directly for a restricted class
of two-parameter distributions such as the lognormal (for a complete list see Hanoch
and Levy 1969; and Kira and Ziemba 1977), and in principle with other distributions.
However, ifx the latter case the computational burden increases dramatically because
all of the convolutions must somehow be stored. Given the assumption of normality,
a decision maker needs only to specify the mean and variance of the reward. Hence,
we refer to our model as the mean-variance (MV) decision model. Our second objec-

tive is to identify what types of problems can be solved optimally. We use dynamic



programming to find all Pareto-optimal solutions, and the resulting state space can
become quite large. Consequently, our third objective is to develop a good heuristic.

The remainder of this paper is organized as follows. We state the assumptions of
the MV decision model and formally define the problem in §2. In §3, we summarize
the shortcomings of some existing solution approaches, and then describe both our
optimal solution approach and a heuristic. In §4, we discuss our computational study,

followed by our conclusions in §5.

2 Assumptions of the MV Decision Model

The major assumptions of the MV decision model are as follows.
o Assets are replaced serially.

¢ The decision maker is uncertain about the monetary reward that would result

from installing and operating an asset.

o The reward for the service provided by an asset is summarized by its after-tax
net present value (NPV) distribution. These rewards can be either positive or

negative.

¢ The NPV of an asset is statistically independent of the NPVs of all other assets
in a sequence. This assumption does not imply that the NPV of an asset is
independent across its possible service lives. For example, the NPV for an asset
providing three periods of service can be correlated with the NPV for the same

asset providing four periods of service. Instead, the assumption applies only



across replacements.

o The NPV of an asset is normally distributed, and hence the NPV of any sequence

of assets will also be normally distributed.
o Each asset has a known, maximum service life beyond which it must be replaced.

o There is a finite number of alternative assets from which to choose at any point

in time.

o The decision maker’s utility function is a continuous, concave, monotonically

increasing function of money (w).

o The decision maker’s objective is to maximize expected utility. The problem then
is find the sequence of assets of highest expected utility (EU = [ U(w)f(w)dw,
where U(w) is the decision maker’s utility function and f(w) is the normal
density function of the NPV for a sequence of assets) over all possible sequences

that provide service from time zero to the finite horizon (H).

3 Solution Approaches

Having now defined the problem, in this section we examine some existing approaches
that are designed to solve related problems. After identifying the shortcomings of
these approaches in solving our problem, we present an optimal solution approach.
Then, we develop a heuristic that can be used when the state space for the opti-

mal approach becomes prohibitively large. Finally, we describe an upper bounding



procedure that we use in our computational study to compute error bounds for the

heuristic.

3.1 Existing Approaches

A variety of solution approaches for replacement problems exist in the literature. We
group these approaches into three classes: traditional, expected value, and certain
monetary equivalent. All are designed to solve problems that are related to, but not
the same, as our problem. Thus, applying any of these approaches to our problem
can result in suboptimal solutions. We evaluate the performance of these approaches
in our computational study.

The traditional approach assumes an infinite horizon and that all future assets
are monetarily identical to those available currently (see Newnan 1991). Such an
approach can be used to model decision makers who treat a replacement problem
as if it were a one-time decision. This may occur when the level of uncertainty
about the NPVs for assets available in the future is so great, that a decision maker
decides to only use the NPVs for assets available currently and simply ignore the
future. The traditional approach replaces each random NPV by its mean and then
selects the asset type and service life pair with the highest expected annual equivalent
value (NPV amortized over the service life). This decision is then repeated forever.
Unless the assumptions are satisfied, which implies a risk-neutral decision maker and
no monetary changes over time (e.g., due to inflation or technological change), the

resulting solution is suboptimal. Bean, Lohmann, and Smith (1985) offer a slightly



more realistic version. In their method, updated NPV forecasts are used at each
replacerhent epoch to select the asset type and service life pair with the highest annual
equfvalent value. However, this method still fails to fully consider monetary changes
over time (since by comparing the expected NPVs of assets with unequal service lives
there is an implied assumption that future assets are monetarily identical to assets
available currently) and continues to assume a risk-neutral decision maker.

While the traditional approach is limited in its ability to model monetary changes
over time, the expected value approach is not. However, by definition, the expected
value approach assumes a risk-neutral decision maker. This approach can be used to
represent decision makers who treat equally monetary gains and losses, such as a large
corporation may do for small investments. The expected value approach substitutes
the mean NPV in place of the NPV distribution, and then finds the sequence of
assets with the highest mean NPV. Oakford, Lohmann, and Salazar (1984) present a
dynamic programming algorithm that can be used to find such a sequence.

The certain monetary equivalent approach goes one step further. This approach
can model both monetary changes over time and a risk-averse decision maker, but
the latter only in a limited manner. Each random NPV is replaced by its certain
monetary equivalent. The certain monetary equivalent (CME) is the constant yielding
the same utility as the random NPV (i.e., U(CME) = EU) The solution is then
obtained by dynamic programming in exactly the same manner as for the expected
value approach. Loui (1983) proved that unless the decision maker’s utility function is

linear or exponential (i.e., the decision maker has constant risk aversion) the dynamic



programming principle of optimality does not hold. Thus, for decision makers with
decreasing risk aversion, the resulting solution may be suboptimal.

In summary, none of the existing approaches is guaranteed to find optimal solutions
for our problem. The traditional approach fails to model both risk and monetary
changes over time. The expected value approach, while accounting for monetary
changes over time, still fails to model risk. The certain monetary equivalent approach
partially models risk, but will only be guaranteed to find optimal solutions for decision
makers with constant risk aversion. We now turn to developing an optimal solution

approach that can model all types of risk-averse decision makers.

3.2 An Optimal Approach

We use a dynamic programming procedure to find all Pareto-optimal solutions (se-
quences of assets). This makes the approach quite general because it requires only
that the decision maker is risk-averse, and not the exact form of the decision maker’s
utility function. The dynamic program differs from those used by the expected value
and certain monetary equivalent approaches in that at each time period (stage), a
Pareto-optimal set of sequences is identified instead of a single best sequence. The
Pareto-optimal set of sequences also is a MV-efficient set of sequences, under the
assumption that the NPV of each asset in a sequence is normally distributed. We
define a MV-efficient sequence in the following proposition.

PROPOSITION 1. Let S; be the set of all sequences providing service from time

zero to time t. Then a sequence s € S, with mean u(s) and variance o2(s) is MV-



efficient if for every s' € Sy, &' # s
u(s) > p(s') and o*(s) = o*(s'), or

u(s) > u(s") and o*(s) < o*(s').

MV-dominance is used to solve problems in finance (see Markowitz 1952, Ziemba and
Vickson 1975, and Levy and Sarnat 1977) as well as in capital budgeting (see Park
and Sharp 1990).

We note that the optimal approach uses a multi-objective dynamic program. (The
objectives are to maximize the mean and to minimize the variance). A review of
the multi-objective optimization literature reveals no approach that finds all Pareto-
optimal solutions. Instead, either a specific criterion (less general than utility max-
imization) is selected a priori (see, for example, Daellenbach and De Kluyver 1980;
Hansen 1980; Sigal, Pritsker, and Solberg 1980; and Henig 1990) or only a subset of
all the Pareto-optimal solutions is identified (see, for example, Henig 1985; and Bard
and Bennett 1991). The most frequently cited reason for using these methods is the
computational burden required to find all Pareto-optimal solutions. The only excep-
tions are for small illustrative problems. Consequently, no existing multi-objective
optimization procedure applied to our problem will be guaranteed to find the optirﬁal
solution. We now turn to the details of the dynamic program used by our optimal
approach.

The dynamic programming algorithm for the optimal approach proceeds in a for-
ward direction, with the stages being the time periods and the states being the asset

type () and time of installation (¢). The objective function values are the NPV
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mean and variance for the sequence. At each point in time, the decisions are what
asset type to install and for what length of service. Let S; C S; be the set of all
MV-efficient sequences providing service from time zero to time ¢, J; be the set of
assets available at time t, and N,(j) be the maximum service life for asset j available

at time t. We can form the set 5’, as follows
Si={su(tt—t):seSpjedut' 20, t—t' =1,2,...,Nuo(5)}

where (j,t',t — t') represents asset type j, installed at time t', for t — t' periods of
service. Expressed differently, S; is the set of all sequences formed by appending one
additional asset, j € Jy, to the end of a MV-efficient sequence providing ¢, ¢’ < t,
periods of service, such that the resulting sequence provides ¢ periods of service. Sy
is then given by

r={se S, : sis MV-efficient}.

The boundary condition is Sj = 0. Once S}; has been formed, the sequence s € S},
of highest expected utility is the optimal sequence (given the decision maker’s utility

function).

3.3 The Cluster Heuristic

Preliminary computational results indicated that some problems could not be solved
optimally due the state space becoming prohibitively large. However, we observed
that the NPVs of the MV-efficient sequences tend to cluster. Figures 1 and 2 are
plots of the NPVs for two example problems. The data for Figure 1 was collected

using a discount rate of 15 percent. Figure 2 plots data for the same problem solved
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using a discount rate of 30 percent. Note that the breaks in the clusters occur in
the variance and that the clustering is more pronounced when the discount rate is 30
percent. We use this clustering phenomenon as the basis for our heuristic approach,

and refer to it as the cluster heuristic.
Figure 1

Figure 2

The cluster heuristic partitions sequences into clusters and identifies one repre-
sentative sequence from each cluster. Sequences are selected for elimination using
a measure based on first order stochastic dominance for truncated normal distribu-
tions. As Levy (1982) notes, for two truncated normal distributions with cumulative
distribution functions Fy(z) and Fy(z), if gy > po and oy > 09, Fi(z) dominates
Fy(z) by first order stochastic dominance if and only if v = (p; — pa) / (01 — 09) > 6,
where 6 denotes the number of standard deviations from the mean at which the dis-
tributions are truncated. (Here, the truncatidn is assumed to be symmetric, although
rules also exist for nonsymmetric truncation.) The rationale for eliminating nodes
using stochastic dominance is to identify the breaks in the variance. Qualitatively,
for two adjacent sequences within the same cluster, y will tend to be large because
the denominator will be close to zero. On the other hand, for two adjacent sequences
in different clusters, 4 will be relatively smaller since the denominator will be much

larger while the numerator stays about the same.
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Once invoked, the cluster heuristic proceeds from the MV-efficient sequence with
the hiéhest NPV mean and variance to the MV-efficient sequence with lowest NPV
meén and variance. The heuristic compares sequentially the NPVs for each sequence
in the MV-efficient set with the next sequence in the set. The comparison involves
computing a value for 4. If ¥ > 6, the latter sequence is eliminated. When v < 6, a
new cluster has been found. The single representative sequence selected by the cluster
heuristic will always be the that with the highest NPV mean and variance within each
cluster. Once the set is processed, if the number of sequences is greater than an upper
limit, 6 is reduced by half and the process repeated until the resulting set is smaller
than the upper limit. For our computational study, we set the upper limit at 200 and
also set the initial value of é at 10 (which usually reduced the number of sequences
below the upper limit in one pass for our problem sets). Thus, the cluster heuristic
keeps only those sequences that could not be eliminated if the NPV distributions were
truncated 6 standard deviations from the mean. The cluster heuristic may eliminate
either all but one sequence or only eliminate enough to remain within the upper limit.

The cluster heuristic uses a dynamic programming procedure that is very similar
to the procedure used by our optimal approach. The key difference is that if the
number of MV-efficient sequences at a given stage exceeds the upper limit, sequences
are climinated as described above. At a given stage, all the MV-efficient sequences
are found before any sequences are eliminated. In this manner, the best subset can
hopefully be identified. Let S* C S} be the subset of all MV-efficient sequences

providing service from time zero to time ¢ found by the cluster heuristic. We can
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form the set S as follows
Sh={su(t,t—t):seSPjetnt >0, t-t=12..., N5}
St is then given by
Sh={se S’fh : s is identified by the cluster heuristic}.

Defining ¢ as the time (stage) at which S; first exceeds the upper limit, the boundary

condition is Stt = S for all t < £.

3.4 An Upper Bounding Procedure

To compute error bounds for the cluster heuristic in our computational study, we
develop an upper bounding procedure. The procedure uses a dynamic programming
algorithm closely related to the procedure used by the cluster heuristic. There are two
key differences, however. First, when two nodes are compared and one is eliminated,
the NPV variance of the remaining node is set equal to the variance of the eliminated
node (which will never be greater) to create a pseudo-node. This pseudo-node MV-
dominates both and hence provides a bound. Second, the value used for é (the number
of standard deviations from the mean to truncate the NPV distributions) is larger.
The rationale for a higher value is to get a tighter bound. At the horizon, if the path
(sequence) of highest expected utility does not pass through any pseudo-nodes, then
the corresponding sequence is optimal. As more nodes are eliminated, the less likely
this is to occur. Let SP be a set of MV-efficient sequences providing service from

time zero to time ¢ found by the upper bounding procedure. Note that some s € Sp*
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may be a pseudo-sequence. We can form the set S;‘b as follows
SW={sU(,t't—t):seS®jelt' >0, t—t = 1,2,...,N:(5)}
S is then given by
St = {s € §* : s is identified by the upper bounding procedure}.

The boundary condition is S** = S} for all t < £. We now turn to our computational

study.

4 Computational Study

The goals of our computational study are (i) to determine what types of problems can
be solved optimally, and (ii) to evaluate the error bound performance of the cluster
heuristic. We use the cluster heuristic only for problems we cannot solve optimally.
Consequently, the results should reflect the maximum error performance of the cluster
heuristic.

A secondary goal of our computational study is to compare the sequences identified
by the traditional (TRAD), expected value (EV), and certain monetary equivalent
(CME) approaches to the sequence identified by either the optimal approach or the
cluster heuristic. This should provide us with an order-of-magnitude estimate of
how frequently each approach finds optimal solutions. We distinguish among the
different sequences by using superscripts (e.g., s”?4P for the sequence identified by
the traditional approach). The sequence identified by the optimal approach or cluster

heuristic is denoted by sY7/L. For purposes of our study, two sequences match if they
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have equal expected utility, since a decision maker is indifferent between the two.

In the remainder of this section, we first define the performance measures for our
study. Then, we discuss how our problem sets are generated. Finally we report
computational results that indicate we can solve optimally a wide range of problems,
and that for problems that cannot be solved optimally, the average performance of

the cluster heuristic is within one percent of an upper bound.

4.1 Performance Measures

We collected four performance measures: (i) the CPU time required by each ap-
proach, (ii) the maximum cardinality of any MV-efficient set of sequences at any
stage required by the optimal approach or cluster heuristic, (iii) the percentage of

sequences found by a given approach that match sY7/L

, which we will refer to as the
matching performance, and (iv) the utility performance of a sequence compared to
sUTIL When computing the last two measures for the UTIL sequence, the values are
set to one unless the cluster heuristic is used, in which case the values are computed
by comparing sYT/L to an upper bound.

We note that the most obvious utility performance measure, EU(s) / EU(sYTIE),
cannot be .used. At best, this fraction is difficult to interpret, and it may even be
undefined. To understand why, recall that our model does not restrict rewards (the
NPVs) to positive values. Consequently, both the NPV and expected utility of a

sequence may be negative, zero, or positive. The resulting range for the EU(s) /

EU(sYTIL) fraction is from negative infinity to positive infinity, rather than the more
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conventional zero to one. To avoid a similar difficulty, Bean, Lohmann, and Smith
(1985) use a random sequence as the benchmark of performance to which all other
approaches are compared. This sequence is identified by randomly selecting the asset
type and service life at each replacement epoch. Adopting a similar strategy for our

computational study, we use

EU(s) — EU(sRAND)
EU(sVTIL) — EU(sRAND)

as the utility performance measure, where s?4N2 denotes the sequence of highest
expected utility out of 100 random sequences. The fraction is set to one if EU(sVT/L)
= EU(s®”4ND) and to zero if EU(s) < EU(s®4ND), We also considered generating
1000 random sequences, but found no significant statistical difference in the results
of a preliminary experiment. (Details appear in Brown 1991). Consequently, we used
a value of 100 to reduce the computational burden.

When we are unable to solve a problem optimally, we use

EU(SUT”’) _ EU(SRAND)
EU(sVB) — EU(sRAND)

as the utility performance measure where sV € S% is the sequence of highest ex-

pected utility found by the upper bounding procedure. The value is set to zero if
EU(sYTIL) < EU(sRAND),
4.2 Test Problem Generation

To generate a broad range of problems, we use a 2° factorial design. The six factors

and their ranges are listed in Table 1. We first draw values for the discount rate,
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Table 1: Ranges of the Factors

Factor Low High
Discount Rate (m) U(0.1,0.2) U(0.2,0.3)
Horizon (H) DU(10,25) DU(25,40)
Risk Aversion (z) U(1.5,5) U(16.5,20)
Service life (N) DU(2,8) DU(8,14)
Coefficient of Variation U(0.1,04) U(0.6,1.2)
Difference U(0.0,0.05) U(0.05,0.1)

U = uniform distribution, DU = discrete uniform distribution

the horizon, the number of asset types available at any point in time (which ranges
from two to seven for our problem sets), and the maximum service life for each asset
type. Then, we generate the NPV means and variances for every possible service life
for each asset type. Finally, we set the decision maker’s risk aversion. We briefly
describe these last two steps below. Details are provided by Brown (1991).

We generate the NPV means and variances by perturbing a base set of values by up
to 10 percent. The base set of values is calculated using three cash flow components:
the initial capital outlay, the annual operating cost (or revenue), and the salvage
value. We draw the mean for each component and then set the variance using the
coefficient of variation factor shown in Table 1. We generate only the NPV means and
variances for the assets available initially (time 0). For assets available in the future,
we model technological improvement by allowing the NPVs to increase geometrically.
Let (7,t,n) represent asset type j, installed at time ¢, for n periods of service. Then

for assets available in the future
NPV(j,t,n) = NPV(5,0,n) x (1 +¢)/(1 + m))’
where g is the rate of technological improvement and m is the discount rate. For
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our problem sets, the base value for g ranges from 0.0 to 0.3. (When the mean NPV
is negative the range for g is -0.3 to 0.0.) This base value is then perturbed by the
difference factor shown in Table 1 to generate g values for each asset type.

We need a specific utility function in order to compute the utility performance
measure. We use three different mathematical forms: (i) the exponential, U(w) =
(1 —e~*¥)/c, reflecting constant risk aversion, r(w) = ¢, (ii) the logarithmic, U(w) =
In(w +b), (w +b) > 0, capturing decreasing risk aversion, r(w) = 1/(w + b), and (iii)
the power, U(w) = (w — wp)?, wy < w for all w, 0 < B < 1, also reflecting decreasing
risk aversion, r(w) = (1 = f)/(w — wy), where r(w) is the risk aversion function.
Brockett and Golden (1987) provide a summary of many utility functions commonly
used for modeling purposes.

To ensure a reasonable basis for comparison, we selected parameters so that all
utility functions would have the same level of risk aversion at the mean NPV of the
sequence identified by the EV approach. The exponential utility function requires
only one parameter, c. Thus, we use it as the basis for setting the parameters for
the other utility functions. To set ¢, we first estimate the range of possible monetary
outcomes for each problem. This is done by truncating the NPV distribution for the
sequence found using the EV approach at £3.5 standard deviations. (The sequence
found by the EV approach always has the greatest mean and variance.) With this
range, say [a,b], we set ¢ = In(z)/maz{|a|,|b]} where z ranges from 1.5 to 20 as
shown in Table 1. The range for z is based on data collected from graduate students

assessing their personal utility (Brown 1991). The resulting ¢ values are consistent
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both with examples in Thompson and Thuesen (1987) and with results in Kallberg
and Ziemba (1983). The parameters for the logarithmic and power utility functions
are then set so that the level of risk aversion is equal across all three functions at
the NPV mean of the sequence identified by the EV approach. This point is selected
because, broadly defined, it represents the middle of range of possible outcomes-and
thus over half the range the decision maker will have higher risk aversion as compared

to ¢, and over the other half, lower risk aversion.

4.3 Results

We randomly generated 320 problems by replicating our 2% design five times. We were
able to find all the Pareto-optimal solutions (S} ) for 228 of the 320 problems, and
used the cluster heuristic to solve the remaining 92 problems. Summary statistics for
the matching and utility performance measures appear in Table 2. The third column
shows the average matching performance. The last four columns show the average,
minimum, maximum, and standard deviation of the utility performance.

For the exponential utility function, the CME approach is optimal and hence the
matching performance and utility performance both equal one. The cluster heuristic
is optimal in all one problem. (That is, the expected utility of the sequence equals the
optimal expected utility as found by the CME approach. Note that since the cluster
heuristic is used, there is no guarantee that S§ contains all the sequences in S3.) The
result is an average utility performance of 0.9997. The EV approach identifies the

optimal sequence about 84 percent of the time, with an average utility performance
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Table 2: Summary Results

Utility Percent Utility Performance
Function Approach | Matching | Average Minimum Maximum Std. Dev.
Exponential
TRAD 46.25% 0.6553 0.00 1.00 0.44
EV 83.75% 0.9181 0.00 1.00 0.26
CME 100.00% 1.0000 1.00 1.00 0.00
UTIL 99.68% 0.9997 0.92 1.00 0.01
Logarithmic
TRAD 46.25% 0.6607 0.00 1.00 0.44
EV 85.93% 0.9420 0.00 1.00 0.22
CME 49.06% 0.7884 0.00 1.00 0.35
UTIL 78.12% 0.9977 0.75 1.00 0.02
Power
TRAD 45.93% 0.6614 0.00 1.00 0.50
EV 85.00% 0.9414 0.00 1.00 0.22
CME 40.31% 0.6854 0.00 1.00 0.44
UTIL 78.43% 0.9977 0.75 1.00 0.02

of 0.9181. The lowest matching and utility performance are for the TRAD approach.

For the logarithmic and power utility functions, the matching performance and
utility performance for the TRAD and EV approaches are similar to those for the
exponential case. However, the CME approach’s performance declines rather dra-
matically. This indicates the CME approach performs poorly for decision makers
with decreasing risk aversion. While the utility performance for the UTIL sequence
remains close to one, the matching performance declines to about 78 percent. This
decline may be due to the fact that in this case, the UTIL sequences are compared to
an upper bound, rather than to the optimal solution as was done for the exponential
case.

The CPU times required by each approach are summarized in Table 3. (Problems
were solved on an Apollo DN4000 workstation.) Both the TRAD and EV approaches

require very little CPU time. The CPU time to identify the random sequence is
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Table 3: CPU Times in Seconds by Approach

CPU Time
Approach | Average Minimum Maximum Std. Dev.
RAND 7.64 1.61 25.02 6.90
TRAD 0.03 0.02 0.27 0.03
EV 0.03 0.02 0.06 0.01
CME 2.51 0.27 7.95 1.62
UTIL 28.01 0.96 661.22 67.96

higher because 100 different sequences must be generated and the expected utility for
each calculated using numerical integration. Similarly, since the expected utility for
each asset available at each point in time has to be found using numerical integration,
the average CPU time for the CME approach is higher than for the TRAD and EV
decision procedures. The average CPU time to identify the UTIL sequence (by using
either the optimal approach or the cluster heuristic) is about 28 CPU seconds, and
no problem required more than about 11 CPU minutes. The average CPU time for
the optimal approach for the 228 problems is 3.99 seconds, while the cluster heuristic
requires an average of 89.77 seconds for the remaining 92 problems (in which the state
space was too large to solve the problem optimally).

We performed an analysis of variance of the CPU times required to obtain the UTIL
sequence to characterize which problems are the most difficult to solve optimally. The
analysis sh‘ows that of the six factors, the horizon and the maximum service life are
significant using an o of 0.025. Neither of these results is surprising, since for longer
horizons and longer service lives, a greater number of possible sequences must be
considered. Somewhat more interesting is that the CPU times are asymptotically

linear for the most difficult problems (those we cannot solve optimally). This occurs
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because the number of sequences maintained by the cluster heuristic is at most the
upper limit. In general, the greater the maximum service life, the greater the slope
of this linear relationship since the dynamic program must reach back further at each
stage.

For the cluster heuristic, we also studied how the limit on the maximum number of
MV-efficient sequences affects the CPU times and utility performance. Using limits of
50 and 100, we resolved the 92 problems that required the cluster heuristic. The utility
performance results are almost identical to those obtained using an upper limit of 200.
Thus, even using an upper limit of 50 results in an average utility performance within
one percent of optimal. By reducing the upper limit from 200 to 50, the average CPU
time falls from 89.77 to 15.32 seconds-only a little more than twice that required to
find the random sequence. The maximum number of MV-efficient sequences at any
stage falls from 459 to 172, on the average. These results suggest that the upper
limit used for the cluster heuristic can be rather small without adversely affecting

performance.

5 Conclusion

Our computational study represents the first instance in the multi-objective optimiza-
~tion literature of solving problems of realistic size by finding all the Pareto-optimal
solutions. The computational results indicate we can solve a wide range of problems
optimally. For those problems we cannot solve optimally, the performance of the

cluster heuristic is within one percent of an upper bound, and the performance is not
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sensitive to the upper limit on the number of MV-efficient sequences maintained at
each stage. CPU times are very reasonable-averaging 3.99 seconds for the optimal
approach and 15.32 seconds for the cluster heuristic (for an upper limit of 50).

One extension to our model would be to relax the assumption that the NPV of
an asset is statistically independent of the NPVs of all other assets in the sequence.
Incorporating correlation may be helpful in modeling the effects of the external envi-
ronment on the NPVs. Another extension would be to modify the optimal approach
to solve other longest path problems, such as a knapsack problem. We are currently

studying these extensions.
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Figure 1: MV-Efficient Sequences, Discount Rate = 15%
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Figure 2: MV-Efficient Sequences, Discount Rate = 30%
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