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PRELIMINARY STUDY OF THE APPLICATION OF
ELECTRONIC DIFFERENTIAL ANALYZERS
TO AEROELASTIC PROBLEMS

1. Introduction

In recent years the aero-elastic properties of wing
structures have proved to be a major factor in aircraft structural design
and analysis[1] .* ‘The procedure of replacing time-dependent loads by
static loads with a "suitable factor of safety" leads to inefficient struc-
tures. This is due to the implied assumption that the stress distribution
is the same for static and dynamic problems. .Furthermore, the term
"suitable factor of safety" is itself nebulous, since the selection of any
given factor can only be based on previous experience and therefore is
useless when one deals with wings structures of a new type or shape.

It seems more logical to express minimum requirements in
terms of the dynamic characteristics of the structure in such a way that
the structural weight can be safely reduced to a minimum. One of the
more important problems in aeroelasticityu is the determination of the
‘response of a wing to gusts of given profile and intensity. This problem
is the subject of the report.

-2, .Summary and Purpose

The purpose of this investigation is to determine whether the
guét response problem can be solved conveniently by means of an elec-
tronic differential analyzer. Since the greatest difficulty encountered in
the problem is a suitable representation of the unsteady aerodynamic
forces, it was decided to consider only a simplified problem as far as the
elastic representation of the wing is concerned but to investigate thoroughly
the representation of all the aerodynamic terms.

The wing was represented by a simple cantilever beam and
only flexural oscillations were considered. In the actual case, of course,
the wing should be considered as a free-free beam or piate with a'large

* Numbers in brackets refer to the bibliography
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mass concentrated at the center (representing the fuselage); both bending
and twisting should be allowed, together with the rigid-body modes of
motion [ 2] . It is expected, however, that the actual problem will not
present any more fundamental difficulties than the simplified problem
considered here.

3. Equations .of Motion

Consider a tapered cantilever beam of length b/2 which is
subjected to a lift load L(x, t) per unit length of its span. The equation of

motion for this beam is [ 3]

0 @i+ 23 - L@y (1)
9x 9x ot
where
U(x,t) = lateral displacement of the beam
X = distance along the span
EI = stiffness of wing cross-section
t = time

b /2 = semi-span length
L (%,t)
Yy = mass per unit length of wing

lift per unit span of wing

It will be convenient to put Equation (1) in dimensionless form. Because
of the form of the lift functions [1] to be explained later, the new dimen-

sionless time variable is defined as

s = = Ut ‘ (2)

where

¢, = mean chord of wing

U = airplane velocity.

It is clear from Equation (2) that s is the distance traveled by the wing
in unit time expressed in terms of the half-chord. The following addi-
tional dimensionless variables are defined:
= X/(b/2)
= u/(b/2)

2

X
u
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Substituting the

chord of wing at any spanwise position
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= mass per unit length of wing at the mean chord

EI/EI o

stiffness of wing cross-section at the mean chord.

above expressions in Equation (1) gives

2 2 2 azu

1 S [¢ 3%u bU ;
1 0.(x) :] + 2 Y. (x) = L(x,s)
(b/2)° ax? LT %% ;;z o "m'™ 52
or, dividing by EI_/(b/2)’
2 2 2 3
9 9°u 2 3"u _ (b/2)” .,
0. (x) ——-] + AT 0 _(x) = - L{x, s)
;;2 f .axz . m as‘z .EI0
h 2
whnere L [b]4 U ‘Yo
A = 4| = -.__._.z.
2 EIO CO

The boundary conditions for a cantilever wing are

and the initial conditions are

u(0,s) = 2%(0,5) = 0 )
ax
2 2 g
88 s = &2 (1,s) = 0
ax ax J
u(x, 0) = f(x)

34 (x,0) = glx)
ds

4, The Aerodynamic L.oads on the Wing

(3)

(5)

(6)

The aerodynamic loads on the wing can bé divided into two

parts [ 1]

L(x,s8) = Lg*(x, s) + Lm(x,-s)
3
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where Lg(x, s) is the lift on the wing due to a gust of given intensity and
profile and L m(x, s) = lift due to disturbed motion of the wing. The
change in lift coefficient due to sharp-edge (i.e., step-function) gust of
intensity w is [ 4]

AC; = 2w w Us) (8)
g U

where |(s) is the Karman~Sears function which is approximated by

s) = 1-1 (701308, 675 (9)

From Equation (8) it is €lear that the lift per unit span due to a sharp-
edge gust is
1 2
-~ pUc AC
ig 2 L g

-
1

7 p Ucw y(s)

n

For a gust of variable intensity w(s) the lift per unit span is therefore

L, = wpUc f: ¥'(o) ¢(s-o) do (10)
The lift due to disturbed motion Lm is the sum of three effects: the
apparent mass effect due to motion of a certain volume of air induced by
the wing motion, the so-called quasi-steady effect which is due to the
change in apparent angle of attack caused by the wing motion, and the
effect of the wake reaching back on the wing, ‘The wake effect is not
important unless the frequency of motion is high. The lift due to dis-
turbed motion is [ 5]

| 22— s

2 a8 2 v
L, = = U° =g 23 +mpU% [ #(s-0)a'(c)do (11)
c 2s [
where
a{s) = angle of attack
§ (s) = the Wagner function which represents the quasi-steady

and wake terms for a step change in angle of attack.
4



The Wagner function is represented to sufficient accuracy by

-0. 04558 e-0.3008

fls) = 1-0.165¢€ - 0.335 (12)

The apparent angle of attack due to wing motion is

hence 5
u

and therefore the total lift due to disturbed motion of the wing is

2— » S 2—
Lm = =mp U2 cz _6__121_ - 2mp U2 c f ¢(s.-w)'34% do
as o) do

In terms of the dimensionless variables

2 s 2
L= -m UZ‘[E-J %2 (x) i‘% - 2mp U [E:‘ B o(x) | Bis-o) 9’% do (13)
2 ds’ 2 o el

o,

The total aerodynamic force acting on the wing is therefore

s ~ 2
L(x,s) = mwp Uz ¢, ¢c('xv) f w'(e) Y (s-¢)de ~wp U2 [-g:l (bcz..(x) cg—-%

o S

_ s 2 (14)
- 2mp U2 [E] ﬁc(’x) f  (s~v) §_% de
2 o : a0
where _
w(o) = wlo) . dimensionless gust intensity (15)
U

The right-hand side of Equation (3) then becomes

3 S
{b/2)” L(x,s) = 2 9. (x) f Y{s-o) w'(c) do
EI R e

o

- 2 s 2
6 2 0 u 9 u
2 © =) as ¢ * £ (e G)..au ’

Substituting this expression in Equation (3) gives for the equation of
motion



2 2. ‘ ‘ T a2
i’—-'[esf(x) 9_‘1] S ISCREERY 2<x>]-a-3
2 2 : m C 2
ax ax 2 s
(16)
6
- Bolx) £, (s) + 60 (x) L (s)
where s
1 4s) = [ wis-o)w(c)do, (17)
g o)
S 2
£ (s) = - [ B(s-0) 28 do, (18)
o] a0
2, 104
. 2mpUT(b/2)” (19
EI_
and b
R = T - aspect ratio (19a)
o)

The solution of Equation (10) together with the proper boundary and
initial conditions (Equations (5) and (6))will yield the lateral motion of
the wing under the unsteady aerodynamic forces.

5. Analytical Solution for Untapered Wing

The solution of Equation (16) is in general impossible to
carry out for any case of practical interest such as a tapered wing. In
view of the complexity of the wing structure, it is necessary to resort
to some approximate method of solution or to make use of automatic
computation facilities. However, it will be of some interest to examine
and solve the special case of an untapered beam as its solution will
bring out an interesting property of Equation (16). For an untapered

wing

and Equation (16) reduces to

4 T el s s 2

fu +-[x2+§]?—“ -5 [ ys-o)wiio)de - 6 [ Bs-0)2 % do

,ax4 2 _E)s2 R ° ° 30‘2
(20)



Taking the Laplace transform of Equation (20) with respect to the time
variable s gives

*
d4u 6

2+ 2 60 pu” = L opp™e (0 8 60) [ptlx) + glx]
dx4 2 R 2

(21)
where the starred quantities indicate the Laplace transform of a function

which is defined as
00

x*(p) - L{x) = [ eP°xX(s)ds (22)
(o)

If we now consider the problem of a similar wing subjected to the same
gust but with the unsteady aerodynamic forces neglected, the equation to
be solved is | |

84111 2 azul & .8
=+ N —= = = [ Ys-o)w'(c) do . (23)

ax4 asz R °

and the Laplace transform is
4
diu;* * 8y
1 + )\zpzul = —py W (24)
dx4 | R

‘Comparison between Equation (21) and (24) reveals that these equations
are identical except for the parameter \ 2 which is replaced by A 2 +
§/2+80* in Equation (21). Since the quantity ()\2 +8/2+607) is not a
function of x, it simply plays the role of a parameter in Equation (21).
Thus, if we know a solution of Equation (21) subject to given boundary
conditions, we can obtain the corresponding solution of ﬂquation (24) by
simply replacing )\2 by (X 2 +8/2 + 6¢5*) in this solution. Then we can
obtain the solution including the unsteady aerodynamic terms for the
wing by modifying the classical solution for a beam subjected to an
arbitrary load. This is done by 1) taking the Laplace transform of
the classical solution with respect to time, 2) replacing xz by

(xz +8/2 + 60 *) in this transform and 3) performing the inverse
Laplace transformation.



- For the present case, the classical solution would be

o E
ull(x,s) -0 Xn(x)'[ Dn cos w 8 +-2 sin w, 8
n=1 w
n
(25)
s s _
+ Cn f cos w, (s-0) f B(o-T1) W(T)deO‘]
o o
~where
Xn(x) = coshunx - cosa X - ﬁn(sinh a X - sin qnx)
5 - Asinh a, - Sina,
n
cosh L + cos a,
D=z [ HE)X(6)d
l .
By =2 ) eb) X 6)a
1
&
c =2 [ x(£)dt
n o p o N
. °n4
W 2 T e
n 2
A
and a p are characteristic numbers determined from the equation
1 +cosh a COSa = 0
The Laplace transform of Equation (25) is
00
*. - : p , 1 P * ¥
u (xp) = Z? Xn(x){Dn-'z__—'z- tEy 50— tC 3 2 vow ]
n=]1 p +tw p +tw p tw
n n n
(27)

Since the parameter \ 2 appears only in wnz = d‘;/ A 2, we modify this
quantity by defining |
a t
G (p) = i , (28)
n NC+6l2 480"

so that the transform of the solution including the unsteady forces is

o0
* 1
w(x,p) = 2 X(x)[D R
n=1 ©° Rl G, (p) n pz + G (p)
p~ + G (p)
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Hence the solution will clearly be of the form

o0
ulx,s) = 2 Xn(x)“[Dn F (s) +E_H (s)
n=1 (29)
S S
+Cnf _Fn(s-tr)f va(cr--r)W(T)deO‘]
o) (o] )

where

F_(s) = 7! [____p____}
! p® + G, (o),

-] 1 &
H (s) = L 7 F (c)d
! {p2+Gn(p)} [3 ot

(30)

With the function @ (s) defined by Equation (12) the expression
in Equation (30) turns out to be the quotient of two polynomials in p and
the inverse Laplace transform of such a function is easily obtained by
the use of the Heavyside partial fraction expansion. ‘

It is interesting to 'ﬁote that the unsteady aerodynamic loads,
which represent a special type of damping, do not affect the mode shapes
of the vibration. This is due to the fact that the aerodynamic loads were
calculated from a strip theory which neglects the finite wing aerodynamic
effects. Even though this assumption is most likely in error, the results
of this analysis constitute an approximate solution which may be of value
in obtaining rough estimates of response characteristics for design pur-
poses. For a more accurate analysis it is believed that the only prac-
tical method of solution is by the use of some automatic computation
method.

6. Representation of the Unsteady Airloads for Solution by

the Electronic Differential Analyzer

The solution of classical beam vibration problems on the
electronic differential analyzer has been taken up in previous studies
[6, 7]. In the present case the flexural beam equations are satisfied
in exactly the same manner as in this previous work, namely, by
dividing the beam into stations spanwise and by replacing x derivatives
by finite differences. The main difficulty in the present problem is to
find a suitable method of computing the unsteady airloads. Only the

9



approximate strip theory will be considered here. It is in general
difficult to mechanize directly an analog computation of convolution
integrals such as those appearing in Equations (10) and (11). For this
reason it is convenient to derive differential equations having as their
solutions the convolution integrals in Equations (10) and (11). The
first term in Equation (11) presents no difficulty since it simply plays
the role of an additional inertia term which simply increases the effec-
tive mass per unit length of‘,i"the beam. The second term on the right-
hand side of Equation (16), which involvies the Wagner function, is
defined in Equation (18) and can be computed in the following manner:
substituting for § from Eduation (12) and taking Laplace transforms
with respect to the time variad%gle s gives

(32)

‘1* _ [1 ©0.165 _ 0.335 ]pzu*

m p  p+0.0455 p+0.30

where l*m is the Laplace transform of £ m- Note that Equation (32)
assumes that the initial deflection and velocity of the beam are identically
zero, This is per}nissible since under a steady lift the velocity will
actually be zero and this initial deflected position can be chosen as a new
origin for deflection. _

It should be remembered, however, that when the values for
bending moments and stresses are calculated, the constant values due to
the steady flight loads must be added to the values resulting from the
present analysis.

Equation {32) can easily be put in the form

%
[p3 40,3455 pZ + 0. 01365p] $F = [l p? +0.2808p + 0. 01365]p2u
2

Applying the inverse Laplace transformation now yields

d3zm d% a oty a3y 8%y
' +0.3455 — M4 001365 2 [o 5 40,2808 — + 0. 01365 _]
ds> da? ds st 9s°> 8s?
(33)

Equation (33) is an ordinary differential equation with £ m &8 the unknown
and a forcing function depending on quantities related to the beam displace-

ment. This equation can be solved with a differential analyzer circuit
10



having as voltage inputs the displacement quantities available from
another analyzer circuit representing the beam equations of motion. It
will be necessary to have a separate lift-computing circuit for each
station of the beam.

For convenience in establishing the computer circuit, Equa-
tion {33) is integrated three times with respect to s with the result

g +0.3455 [4 ds+0.01365 [[1_dsds

| (34)
= - [0.5 84 4 0.2808 u + 0.01365 f.uds]

as

Rearranging the terms gives

L= f[— 0.34554 = 0.01365 u - 0, 01365 fzm ds] ds (35)

- 0.52% _ 0,2808 u
as
The equation is now in convenient form for solution by the electronic
differential analyzer,

The first term on the right-hand side of Equation (16), which
involves the gust velocity profile and the Karman-Sears function, can be
computed in a similar manner. Applying the Laplace transformation and
substituting for § gives

.l*= _l.-l 1 ’l 1__' pW* (36)
€ |p 2p+0.13 2p+1

which can be put in the form

3 2 % : . £
(p” +1.13p" + 0.13p) lg‘ i=‘[0.565p+0.13:| pw
2 * *
or (p~ +1.13p + 0. 13p)'£g = [0.565p + 0. 1‘3:] \ (37)
Applying to this last expression the inverse Laplace transformation gives
2
d~e de
—£ +1,13 & 10, 13,1g = [0.565 dw +0.13 W] (38)
ds? ds ds

11



Integrating Equation (38) with respect to the time variable gives

ds
0.565w - 1.13 1 --—g-=0,13-f[£ -w] ds (39)
€  4s g
which, again, is now in convenient form for solution by the electronic
differential analyzer. Before examining the analyzer circuits for solving
the complete gust-response problem, i.e., Equations (16), (35), and 39),
let us consider briefly the basic theory of the electronic differential
analyzer.

7. Principles of Operation of the Electronic Differential

Analyzer

For the reader unfamiliar with the basic operating principles
of the electronic differential analyzer we have included here a brief
description. Those who wish to become more familiar with this type
of computer are directed to other references [8, 9] .

The basic unit of the electronic differential analyzer is the
operational amplifier, which consists of a high-gain dc amplifier having
a feedback impedance Zf and an input impedance Zi’ as shown in Figure
la. To a high degree of approximation the output voltage e, of the opera-
tional amplifier is equal to the input voltage multiplied by the ratio of
feedback to input impedance, with a reversal of sign. If several input
resistors are used, the output voltage is proportional to the sum of the
input voltages (Figure 1b). If an input resistor and feedback capacitor
are used, the output voltage is proportional to the time integral of the
input voltage (Figure lc).

The operational amplifiers shown in Figure 1 can therefore
be used to multiple a voltage by a constant factor, invert signs, sum
voltages, and integrate a voltage with respect to time. These are the
only functions necessary to solve ordinary linear differential equations
with constant coefficients. Thus voltages are the physical quantities
representing input functions and dependent variables in solving equa-
tions with this type of computer, while time represents the independent
variable. The way in which operational amplifiers are connected to-
gether to actually solve differential equations will become clear from
the schematic circuit diagrams in the following sections.

12
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Figure 1. Operational Amplifiers
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8. Electronic Differential Analyzer Circuit for Solving

the Beam Equation

We have already seen from (16) that the equation representing
transverse motion of a beam (and hence, we assume, transverse motion

of the aircraft wing) is given by

2 r 2 1 2
0 9 u 2 ) 2 du _ &

(40) .
Here u is the dimensionless transverse displacement of the wing, x is
dimensionless distance along the wing, and s is dimensionless time.
.Equation (40) above is a partial differential equation, and if we are going
to solve it with the electronic differential analyzer, we must convert it
to one or more ordinary differential equations. This can be done by
measuring the wing displacement u(x, s) not at all values of x along the
wing but just at certain stations along x, as shown in Figure 2. Let
ul(s) equal the displacement at the first x station, uz(s) equal the displace-
ment at the second x station, etc. Furthermore, let the separation be-
tween stations be a constant Ax. Clearly a good approximation to

9u/98x at the n + 1/2 station can be written as

_3_2 1
0x

-u) (41)
n+1/2

-0 3

.

Figure 2. Wing Divided into Stations
14



In fact, in the limit of infinitely small A x this is just the definition
of 8u/dx. Similarly, at the nth station

ﬂ iz;l% _ 1 -'81,1 _3u ]
¢ = | %Y gu
dx AX WX piaje ¥ poa)2
lor ¢ 8‘2‘“ Sl 6. fu -2u_+u '
f ;'X? - (Ax)z foln+tl n' n-1 (42)
n

Using the same difference approximation we can write from

Equation (40) the force equilibrium equation at the nth station. Thus

2 5 2] @ _ 1 [, 8% 8%u
[x b +=2 6 } iy = [ﬁ - 29
m c 2 2 f 2 f 2
2 n ds (Ax) ax n+l ax
azu ) ¢ w
+ 0y —5 ] + = L (s)+ 6 L (s) (43)
! 9x n-1 R °n &n h ™n

~Equations (42) and (43) are iterated for each station. Note that u, is a
function only of the time variable s. Thus we have converted the original
partial differential Equation (40) into a set of simultaneously second-order
ordinary differential equations which can be solved by the analyzer. Note
that Ax = 1/N, where N is the number of stations into which the beam is
divided.

Equation (43) can be rewritten as

5, L LI LA
——ie = =M +2m_-m + L+ 4
dn dsz n+l n n-1 RN® Sn &n N c, m,
(44)

where
_ 1 2 & 42
by = I [\2o, 2 ]
n N 2
n
Here m n is proportional to the bending moment at the nth station and is
given by

m_ = (Df‘, (u
n

n+1'2un+un=1) (45)
The built-in boundary condition at x = 0 requires that

u(0,s) = 8u/8x(0,s) = 0. For the cellular beam this implies that
15



u_ = u, = 0 where the actual built-in end occurs at the 1/2 station.

o] 1
‘Similarly at the free end the bending moment and shear force vanish.

For the cellular beam this implies that my = 0, where the

m
N+1

actual free end of an N-cell beam occurs at the N + 1/2 station.
For the 4-cell beam shown in Figure (2) and considered in

this report, the following equations are used.

g, & ¢ Ly’
— = -m, +2m, - m, +——yp L+ - ]
d, " 42 3 2 L g, &.T c, 'm,
¢5d2u3=2m=m+601+5¢1 (46)
d;  4g? 3 72 pn% ey gy NE ey Tmy
" g 5 g 5 g
= -m, + 1+ 4
dy gl 37 RNE C4 84 N C4 My
where
m, = ﬁfl u,
m, = 0f (u3 - Zuz) (47)

The electronic differential analyzer circuit for solving these equations is
shown in Figure 3. Note that only 9 operational amplifiers are required
and that voltage inputs and outputs represent the aerodynamic lifting
force and wing displacement u, respectively, at each station.

Although only 4-cells may seem like too crude an approxima-
tion to the wing, theoretical solutions for a uniform 4-cell cantilever
beam have shown that the mode shapes and frequencies for the first two
normal modes of vibration agree within several percent with the exact
solutions for a continuous cantilever beam [6,7] . Note in Figure 3 that
there is a one-to-one correspondence between resistor values in the
circuit and mass and stiffness coefficients at each station. Thus it is
extremely easy to change the wing characteristics on the computer

representation. For example, to simulate the effect of a wing-tip tank

16



ﬂm4 . i —¢d E.l_lﬁ
4 ds

Initial-Condition and Ground Connections Omitted for Clarity.
All Resistors are Megohms
All Capacitors are Microfarads

Figure 3. Analyzer Circuit for Solving the 4-Cell
Cantilever Beam.
17



one need only change by the appropriate amount the resistor 0y, 4> Which
represents the mass at station 4.
9. Electronic Differential Analyzer Circuit for Computing
the Unsteady Airloads
Equation (35) gives the lift term Em due to transverse wing-

displacement u. The electronic differential analyzer circuit for solving
this equation is shown in Figure 4. Voltage inputs to the circuit are the
wing displacement u and velocity # d du/8s. The voltage output is Eme
.This circuit must be repeated at each station for the cellular wing repre-
sentation.

Equation (39) gives the lift term £_ due to the normalized gust

velocity w. The analyzer circuit for solving t%lis equation is shown in
Figure 5. Voltage input is the gust velocity w and voltage output is £ g
If we assume that the gust velocity w is independent of the spanwise
coordinate x (a reasonable assumption), then the single circuit in Figure

5 .can be used for computing .ﬁg at all stations.

It will be remembered that the Karman-Sears function is the
change in lift coefficient corresponding to a step function in gust intensity,
while the Wagner function represents the change in lift coefficient due to
a step change in angle of attack (or in 8u/ds).

Therefore the accuracy of the circuit in Figure 4 can be veri-
fied by supplying as an input a step function for 8u/ds and a ramp function
for u. The output £ m should then be the Wagner function. In the same
manner, if a step function in w is imposed at the input of the circuit of
‘Figure 5, the output of the circuit should be the Karman=-Sears function.
The results of these verifications are shown in Figures 6 and 7. Compari-
son of these curves with the actual curves of the Karman-Shear and Wagner
functions given in Equations (9) and (12) shows excellent agreement.

10, Electronic Differential Analyzer Circuit for the

‘Complete, Gust-Response Problem

The analyzer circuit for the 4-cell cantilever beam repre-
senting the aircraft wing is shown in Figure 3. Inputs to this circuit at
the nth station are the lift terms ﬂgn and Imn, Outputs of the circuit
are the wing displacement u, and velocity dun/ ds. These outputs are
used as inputs to the Wagner-function circuit at the nth station (see Figure
4), The output lmn of the Wagner-function circuit is, in turn, fed back

18
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9

W

1 i
— vt
2,53
AN
34551, dd 0. 1365( ff1_dsds - [uds) .
%7. 32
_¢ ou
d 3s
u 1

-0.281u + 0.3455 [4p, ds

‘Figure 4, Analyzer Circuit for Computing the Lift

!

m

as a Function of Wing-Displacement u.

Figure 5. Analyzer Circuit for Computing the Lift

fg as a Function of Gust-Velocity w.
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Figure 6. Analyzer Solution for the Karman-Sears

Function

u

e
=
I

Figure 7. Analyzer Solution for the Wagner Function
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to the corresponding input connection on the beam circuit. Also fed

into the beam circuit at each station is the lift term 4 o éompu,ted by the
Karmen-Sears function circuit in Figure 5, where w is the gust-velocity
input.

The entire representation of the gust-response problem, as
defined here, requires 9 operational amplifiers for the 4-cell cantilever-
beam representation of the aircraft wing, 3 x 4 or 12 operational ampli-
fiers for the representation of the wake induced lift terms at each station,
and 3 operational amplifiers for the lift caused by the gust itself. Thus
the total number of amplifiers is 24.

11, .Example Solutions of the Gust Response of a Tapered

As an example problem an aircraft wing with a 2:1 taper

ratio in chord and thickness and a fundamental bending-mode frequency of
14 cycles per second was set up on the electronic differential analyzer.
An aircraft velocity of 500 feet per second and an altitude of sea level
were used in the aerodynamic representation. Step functions of gust
velocity of 30 feet per second magnitude were applied and the wing
response as computed by the electronic differential analyzer was re-
corded. Figure 8 shows the dimensionless wing displacement near the
tip {uy) as ‘a-fEmction of dimensionless time s, along with the velocity
duZ/ ds near the wing root. . Note how the fundamental bending mode is
damped by the aerodynamic wake effect in the u 4 recording; note also
how the higher modes show up in the wing velocity near the root.

-Similar response curves for 30 feet per second step-gust
inputs are shown in Figure 9, where a wing tip tank equal to one ~half
the weight of the half-wing has been added to the circuit. This was ac-
complished merely by increasing the resistor labeled fy 4 in Figure 3
by the appropriate amount. The longer period of the response curves is
clearly evident. '

In Figure 10 is shown the wing response to a unit-sinusoidal
gust input of 100 semi-chord lengths in period. Again the response has
been computed both with and without the tip tank.,
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Discussion

It is realized that the problem treated in this report does
-not represent a practical case, principally because of the elastic
representation chosen. In the solution of an actual problem it would
be necessary to allow bending and twisting of the wing together with
rigid body pitching and plunging motions.

In the case of a straight wing this problem would not present
additional difficulties and the mechanization of the equations would simply
require more amplifiers. It is probable that finite wing aerodynamic
corrections can be incorporated into the appropriate circuits.

In the case of swept and delta wings the elastic representation
of the wing structure must be modified because of the elastic coupling
between bending and torsion present in swept wings and also because
delta wingsbehave more like a plate than a beam.

-For the low aspect ratio swept or delta wing it will probably
be necessary to use plate representation. The equations of motion for
plates of variable thickness are very complex and it will be necessary
to resort to approxirmate representations such as those suggested by

‘Stein[10] or Sechler, Williams and Fung [11] . ‘

It has been found that in delta wings of low aspect ratio the
chordwise bending deflection is not negligible compared to the other
deformations [12] . Hence it will be necessary to include in the aero-
dynamic terms the effect of this change of camber.

It should be emphasized that the method of solution suggested
here by means of an electronic differential analyzer has useful applications
in the preliminary design of aircraft wings. Dynamic aeroelastic problems
are in general so complex that it does not seem practical to use the avail-
able analytical solutions to obtain design estimates. The computer repre-
sentation suggested here has the advantage that once the circuits are
connected up, it is extremely easy to change the mass and stiffness
distribution of the wing and to investigate the effect of such changes on
the gust response. The differential analyzer used is of a type in common
use in the aircraft industry.

Considerable aeroelastic analysis has been carried out on the
Caltech analog computer using similar equations[13]. Here the beam and
torsional difference equations are represented by passive circuits.
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