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INTRODUCTION

Research under Contract No. DA-36-039-SC-78057 began in July, 1958, and
ended in October, 1960. Eight Quarterly Summary Reports and seven Technical
Reports were prepared and distributed to the U.S. Army Signal Corps. The in-
terested reader is referred to the Technical Reports for the details of the

research.

l.

7.

These reports are as follows:

Decision Problems of Finite Automata Design and Related Arithmetics,

by Calvin C. Elgot, June, 1959, 50 pp.

Cycles in Iogical Nets, by John H. Holland, August, 1959, 61 pp.

Weak Second-Order Arithmetic and Finite Automata, by J. Richard

Buchi, September, 1959, 45 pp.

Regular Canonical Systems and Finite Automata, by J. Richard Buchi,

December, 1959, 25 pp.

A Universal Computer Capable of Executing an Arbitrary Number of
Sub- -Programs Simultaneously, by John H. Holland February, 1960,

22 pp.

Tterative Circuit Computers, by John H. Holland, May, 1960, 1L pp.

On a Problem of Tarski, by J. Richard Buchi, July, 1960, & pp.

Four major automata research areas were investigated:

(8

(B)

(C)

(D)

Automata design algorithms in formal systems of logic (explicated
principally in items 1, 3, and 7 above).

Extensims and alternative formulations of Kleene automata theory
(explicated principally in items 1, 3, and 4 above).

The role of "cycle-complexity" in nets and finite automata (item 2
above) .

Systems of theoretical computers with iterative structure and highly
parallel action (items 5and 6 above).






A, AUTOMATA DESIGN ALGORITHMS IN FORMAL SYSTEMS OF LOGIC

Formel languages, such as the various predicate calculi, can be employed
to set down expressions for the structure and the behavior of automata. A
formal language is "suitable" for this purpose if it has within its "vocabulary"
means by which (at a minimum) junctions, states of junctions at various times,
and relstions between junctions can be expressed. In general, the larger the
"vocabulary," the easier it is for the designer to set down the automata condi-
tions he wishes to have satisfied.

Explication of the exact relationships between expressions for automata
behavior and expressions for automata structure is important for the theory
of the mechanical design of computing machinery. Several important questions
arise: (1) Is there an algorithm such that, given an automaton behavior
condition expression, it can be determined whether there is an expression for
an sutomaton satisfying the condition? (Solvability Problem.) (2) Is there an
algorithm such that, given expressions for an automaton behavior condition and
for an automaton structure, it can be determined whether the automaton satis-
fies the condition? (Solution Problem.) (3) Is there an algorithm such that,
given a behavior condition, an automaton satisfying the condition can be pro-
duced (providing such an automaton exists)? (Synthesis Problem.)

If these three questions could be answered affirmatively, the process of
the design of computing machinery could be much improved. For instance, a
designer might begin by setting down some condition he wishes a computer circuit
to satisfy. The Solvability result would tell him whether the condition can
be satisfied by an automaton. If the answer is "yves," the designer could ap-
ply the Synthesis result to the condition and obtain the specifications for an
sutomaton satisfying the desired condition.

If the designer had a condition to be satisfied and also a tentative auto-
maton solution, he might apply the Solution result, to determine whether indeed
the automaton does satisfy the condition. It can be shown that the existence
of the Solvability result implies the existence of the Solution result, which
in turn implies the existence of the Synthesis result [Buchi, Elgot, and Wright,
"The Non-Existence of Certain Algorithms of Finite Automata Theory," Abstract:
Notices of the American Mathematical Society, 3, 98 (February, 1958) 1.

This question of the existence of the Solvability, Solution, and Synthesis
results can be shown to be bound up with the question of the existence of a
decision procedure for the formal language in which the automata and automata
condition are expressed., (A decision procedure is a mechanical means of deter-
mining the truth or falsity of the expressions of the language.) It can be
shown that the existence of a Decision procedure for the formal language im-
plies the existence of the Solution result (Buchi, Elgot, and Wright, op. cit.).



Disgremmatically expressed, the algorithms are related in the following fashion,

Decision

Solvebility =—————————> Solution =—————— Synthesis

Thus, the Decision and the Solvability results are the "strongest,” while
the Synthesis result is the'weakest."

One attack on the problem of the mechanical design of computing machinery
is thus seen to be the examination of "suitable" formal languages, ascertaining
whether there is a decision procedure., If there is such a procedure, then the
existence of Solution and Synthesis algorithms follows immediately. For many
potentially useful formal languages, the question of the existence of a decision
procedure is still open, and solution of this problem itself becomes a central
goal of research.

Now, it is generally the case that the "stronger" a language (the langer
its basic vocabulary and the broader the assertions that can be made in it)
the more likely it is that there will be no purely mechanical method of deciding
the truth or falsity of expressions in _ the | language; such a language is said to
be undecidable. Consequently, the researcher's problem becomes this: to show
the existence of a decision procedure for the strongest possible language suit-
able for expressing automata and conditions on automata.

The record of the earlier research by the logic of Computers Group on
automata languages and their decision procedures is contained in the two techni-
cal reports, Decision Problems of Finite Aitomata Design and Related Arithmetics,
by Calvin C. Elgot (June, 1959) and Weak Second-Order Arithmetics and Finite
AMutomata, by J. R. Buchi (sept., 1959). 1In these papers, many potentially use-
ful automata languages are considered and their properties evaluated. For sev-
eral of these languages the desired algorithms can be shown to exist. Thus,
in these papers it is shown that there are mechanical procedures for the design
of some automata, for example, the so-called "Kleene behavior" automata along
with some other classes of automata. Unfortunately, none of the languages con-
sidered is strong enough to allow general automata behavior conditions to be
expressed, and, most unfortunately, conditions involving infinite automata be-
havior cannot.be expressed The search for a language which would allow general
conditions on automata to be expressed, including conditions involving infinite
behavior led to a consideration of the "Sequential Calculus." This language
had been examined by A, Tarski and also by R. M, Robinson in his "Restricted
Set-Theoretical Definitions in Arithmetic," Proc. Am. Math. Soc., 9, 238-2k42
(1958)., The question of the existence of a decision procedure for the Sequential
Calculus was open. This question was answered in the affirmative by J. R.

Buchi in April of 1960 (see the Technical Note On a Problem of Tarski, July,
1960)., From the existence of the decision procedure, the existence of the




Solution gnd Synthesis algorithms follows immediately.

The Sequential Calculus, interpreted for automata design, has the follow-
ing "vocabulary":

1. Monadic predicate varisble symbols denoting (arbitrary sets of natural
numbers or) automata junctions.

2. Individual variable symbols denoting (natural numbers or) the times
at which the junctions are in certain states.

3, An individual constant "O" standing (for the number zero or) for zero
time.

non

4, The connectives ("and," "or," "not," "implies," "if-and-only-if") of

propositional. calculus,

5. The equality relation between individuals.

6. The "less than" relation between individuals.,

Ommec———

7. The "successor" function to be applied to individual variable (and to
the individual constant). '

8. Quantifiers ("all," "for every") to be applied to both predicate and
individual variables.

M exanple of a condition expressed in the Sequential Calculus is given
below: ‘

(4R) (Vt) Hs(t) = [I(t) &~ J(t) & R(t)]\/ [~I(t) &~ J(t) & R(t) ] \/
() & 3(t) &~ R(6)T) & [R(E) = [I(t)) &~ 3(t%) &~ R(t) 1V
C[MI(tY) & J(tY) &PR(T) )N/ [MI(t) &~ J(t') & R(t') I\ [I(t) & J(t) & R(t) ]ﬂ &

3(Q) (78) {la(t)> ~ 1(6)] & (7) (86) [x <t & ()]

This example may be read (in part): "There is an automaton junction R
such that for every instant of time t the output junction S at time t will be
on if and only if the input junction T is on at t, and the input J is not on,
and R is also not On,.sucosss-00ans0.and there is a junction Q such that for
every time t, if Q is on at t, then input I is not on, and, for every time x,
there is a time t such that x is less than t and Q is on at time t."



Several important problems remain in this area of research.

1.

Although the existence of a decision procedure for the Sequential
Calculus implies the existence of Solution and Synthesis algorithms
for autometa design, the question of the existence of a Solvebility
elgorithm for conditions expressed in the Sequential Calculus is

still open.

The "vocabulary" of the Sequential Calculus should be extended by
means of additional operstions and relations defined in terms of the
original primitives.

The usefulness of the Sequential Calculus may be extended by taking
as individuals, not single numbers, but strings of numbers and re-
placing the succesgor function by an "initial segment" relation (viz,
for strings x, y and z, x is an initial segment of y if and only if
there is a z such that x followed by z is equal to y). The question
of the decidability of this new language is open.



B. KLEENE AUTOMATA THEORY

In his paper "Representation of Events in Nerve Nets and Finite Automata”
(RAND RM-T04, 1951, and in Automsta Studies, ed. Shannon and McCarthy, 1956) ,
S, C. Kleene describes a class of finite automata with binary output. He shows
that the classes of sequences which can be "detected" by such automata can be
represented by "regular expressions." (An automaton is said to "detect" a
sequence just in case the output is "on" after the sequence has been applied
to the automaton input.) Kleene then shows how one can pass from a regular
expression to an automaton (Synthesis theorem) and from an sutomaton to a
regular expression (Analysis theorem) ,

- gimplifications and extensions of Kleene's results have been provided by
Copi, Elgot, and Wright ("Realization of Events by Logical Nets," JACM, 5, 181-
199, 1958), John Myhill ("Finite Automata and the Representation of Events,"
WADC Report TR 57-62L, Fundemental Concepts in the Theory of Systems, Oct,,
1957), Rabin and Scott ("Finite Automata and Their Decision Problems," IBM
Journal, April, 1959, 114-125), I. T. Medvedev (On A Class of Events Represent-
able in a Finite Automaton, MIT Lincoln Laboratory Group Report 3L4-T73, trans,
from the Russian by J. Schorr-Kon, June 30, 1958) and McNaughton and Yemada
("Regular Expressions and State Graphs for Automata," IRE, Trans. on Electronic
Computers, Vol. EC-9, No, 1, March, 1960, pp. 39-48).

Although Kleene's Synthesis result provides a means by which a computer
designer can obtain descriptions of finite automata satisfying desired automata
behavior expressible in terms of regular expressions, the process is not en-
tirely satisfactory, It is, for instance, difficult to set down, in terms of a
regular expression, the behavior desired by an automaton.

Tn the research conducted by the Logic of Computers Group, an investiga-
tion has been made of alternative means of expressing the behavior of finite
automata with binary output, that is, of expressing the sets which are defined
by Kleene regular expressions.

Buchi and Elgot have investigated extensively a formal system of logic
which closely resembles the Sequential Calculus described in the previous
section., This language, a "wesk second-order arithmetic,” is identical to the
Sequential Calculus except that the values that the predicate symbols may take
on are restricted to finite sets of natural numbers (instead of arbitrary sets
of netural numbers). Buchi and Elgot have shown that, for every formula of
this language without free individual variables, there is a corresponding
Kleene regular expression, (Decision Problems of Finite Automata Design and
Related Arithmetics, by Calvin Elgot, June 19, 1959, Weak Second-Order Arith-
metic and Finite Automata, by J. R. Buchi, September, 1959.)




Pursuing an alternative line of research, J. R, Blichi has shown (in
Regular Canonical Systems and Finite Automata, Dec.,.1959) that "Post produc-
tion" systems can be employed to define precisely the set of sequences thet is
defined by Kleene regular expressions, Rules of the form ax -+ bx or xa > xb,
for instance, generate just the set of words detectable by a finite automaton,
These results have suggested an investigation of production rules which are
essentially stronger than these and thus describe the behavior of larger clas-
ses of automata.




C., NET CYCLE-COMPLEXITY

Cycles in an automaton have a profound effect on the automaton's behavior,
It is not always simple, however, to see just what conditions the presence of
cycles imposes on the behavior of an automaton. This sort of analysis problem
for automata may be attacked by defining precisely the nature of the systems
to be considered so that statements about automata (gtructure) logically imply
statements about system behavior. John Holland (in Cycles in Logical Nets,
Migust, 1959) uses the theory of nets and automata developeE—By Burks and Wright
and Burks and Wang ["Theory of Logical Nets," Proc. IRE, 41, 1357-1365 (1953)
and "The Logic of Automata,” JACM, 4, 193-218, T279-297 (1957)] to provide precise
definitions of systems with cycles, Several problems are then formulated and
theorems proved.

1. Since a logical net with a periodic input sequence produces a periodic
output sequence, can the spectrum of periodic outputs be related to
the level of cycle complexity?

2, Is there a level of complexity such that any behavior possible for a
fixed logical net can be realized by a logical net constructed only
of cycles of this degree or less?

Holland provides partial answers to both these questions, showing the re-
lation that exists between outputs and cycle complexity for nets having a partic-
ular cycle complexity, and showing that for nets with cycles of a particular sort
there is no maximal degree of cycle complexity.

These notions of net and cycle complexity can be investigated further,
One area of possible future research is the further ranking and classifying of
finite automata by means of measures of cycle and net complexity.






D. ITERATIVE CIRCUIT COMPUTERS

There is an increasing need for improved computing machinery--machinery
which is faster, more compact, lower in cost, more reliable, and which has
larger capacity. There have been multiple attacks on these problems: increased
pulse rate, greater use of parallel action and asynchrony, research into micro-
circuitry and the machine manufacture of components. What also may be required
is a radically different all-over computer design which can take maximum advantage
of these separate advances.

John Holland, in A Universal Computer Capable of Executing an Arbitrary
Number of Sub-Programs Simultaneously (Feb., l960);j5roposes a computer having
a 2-dimensional modular structure so that efficient use could be made of high
element density and "template" techniques being developed in research on micro-
miniature elements. Also, this proposed computer design would allow subprograms
to be spatially organized and acted upon simultaneously. In addition, this
"highly parallel" system can be made the basis for theoretical studies of machines
that "grow" and "adapt."

More detailed consideration of the use of computers with iterative structure
as the mathematical frame for research into growing automata is given in Ttera-
tive Circuit Computers (May, 1960), also by John Holland. It is indicated how
the mathematical characterizations of classes of these iterative circuit com-
puters might be employed in developing a theory of machine-adaptive systems.

11






DECISION PROBLEMS OF FINITE AUTOMATA DESIGN AND RELATED ARITHMETICS

(Technical Report 2755-6-T, June, 1959)
Calvin C,. Elgot
Abstract

Certain formal arithmetics may be employed as design languages for finite
automata design conditions, the notion of automaton, and the notion of an au-
tomaton satisfying a condition are expressible in these arithmetics. An auto-
meton satisfies a condition if a certain formula of the arithmetic is valid.

For certain arithmetics, algorithms are produced which enable one to de-
cide

(1) whether a given automaton satisfies a given condition,

(2) whether an automaton exists satisfying a given condition (and if
there is one, producing one),

(3) whether at most one automaton exists satisfying a given condition,
L) whether a given sentence is true.
( g

These results make use of a theorem (5.3) which characterizes finite automata
behavior by means of formulas of an arithmetic. The following corollary is
typical of the side results obtained. If a natural number is identified with
the set of natural numbers less than it, then the first-order theory of quasi-
finite (finite or finite complement) sets of natural numbers based upon the
Boolean set operations and the property of being a natural number is decidable.

For certain other arithmetics, it is shown that algorithms of the type
indicated above fail to exist,

(This paper was printed and distributed as Technical Report 2755-6-T,
June, 1959, It is to be published in the Transactionsigg the /merican

Mathematical Society,)
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CYCLES IN LOGICAL NETS

(Technical Report 2794-4-T, Aigust, 1959)
John Holland
Abstract

The relation between the complexity of cycles in a logical net and the
complexity of the behavior that results is investigated. Two problems are
considered.

(1) A logical net with a periodic input sequence produces a periodic out-
put sequence; how is the spectrum of periodic outputs related to the
level of cycle complexity?

(2) Is there a level of complexity ¢ such that any behavior possible for
a fixed logical net can be realized by a logical net constructed only
of cycles of complexity c' < c?

The first question is answered for the case of nets with cycles having a
feedback coefficient r = 1, The second question is answered in the negative
for individual cycles, and it is conjectured that this will be true for nets
in general.

[This paper was printed and distributed as Technical Report 2794-L-T,
August, 1959, It was published in the Journal of the Franklin Institute, 270,
202-226 (1960).]

1k



WEAK SECOND-ORDER ARITHMETIC AND FINITE AUTOMATA

(Technical Report 2794-6-T, Sept., 1959)
J. Richard Buchi
Mpstract

In essence, this paper states that a certain formal language, a weak second-
order arithmetic (de51gnated throughout this paper as W.2. A,, and in Elgot,
Decision Problems of Finite Automata De81gn and Related Arithmetics, as Ll) can
be used in place of f the formalism of regular expressions (developed by S. C.
Kleene in his paper "Representation of Events in Nerve Nets and Finite Auto-
mata," in Automata Studies, Princeton University Press, 1956). in denoting the
behavior of finite automata. The important Kleene Synthesis and Analysis theorems
can 8lso be obtained in this new formulation. (Synthesis: For every formula
of W.2.A, one can construct an automaton with special output, such that the be=-
havior of the automaton is just the set of predicates which satisfy the given
formulas. AMnalysis: For every automaton with special output one can obtain
a formula of W.2.A. such that the formula denotes the behavior of the automaton. )
This result is of particular value because formulas of W.2.A. seem to be more
convenient than regular expressions for formalizing conditions on the behavior
of automata, Important additional results in pure logic are also obtaineds
the synthesis and analysis theorems yield valuable information on the strength
of W.2.A, snd related formslisms. [For expositions of Kleene's theory of re-
gularity see Copi, Elgot, and Wright, "Realization of Events by Logical Nets,"
JACM, 5, 181-196 (1958) ; Rebin and Scott, "Finite Automata and Their Decision
Problems," IBM Journal, 11L4-125 (April, 1959); and Myhill, "Finite Automata
and Representation of Events," WADC Report TR 57-624, Fundemental Concepts in
the Theory of gystems, October, 1957, pp. 1ll2- 137 ]

(This paper was printed and distributed as Technical Report 2794-6-T,
September, 1959. It was published in 1960 in the Zeitschrift fir Mathematische
Togik und Grundlagen der Mathematik, 6, 66-92.)
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REGULAR CANONICAL SYSTEMS AND FINITE AUTOMATA

(Technical Report 2794-T7-T, Dec., 1959)
J. Richard Buchi
Abstract

A special type of canonical system, called normal systems and containing
rules of production of form ax -+ xb only, plays a role in Post's theory of
effectiveness, One's attention is therefore naturally drawn to another type
of canonical system, whose rules of production are of similar form, ax + bx.
We shall call these the regular systems.

Normal systems are of interest for their surprising strength; Post has
shown that they produce all canonical (i.e., recursively generable) sets of
words. . Regular systems are interesting for the opposite reason. Tt is not
difficult to see that they can produce only recursive sets of words, and there-
fore not even all recursive sets of words (diagonal argument). More surpris-
ing is our main result which says that only a very simple kind of set of words
is generable by regular systems, namely, the regular sets or behaviors of fi-
nite automata.

To a finite automaton with binary output one can quite naturally adjoin
a system & of regular productions and an axiom U in such a way that an input
word x 1s detected by the output of the automaton just in case x is ¢-de-
ducible from U, i.e,, the set of words generated by & from U is the behavior
of the finite automaton with binary output. Our main result is the following
converse assertion, The set B of words genersted by, any regular system Y, from
a finite set of axioms is the behavior of some finite automaton with binary
-output, Consequently, regular systems produce exactly the regular sets of
words in the sense of Kleene; Copi, Elgot, and Wright; and Myhill.

(This paper was printed and distributed as Technical Report 279L4-T7-T,
Dec,, 1959. It was prepared for delivery to the Cambridge, Mass., meeting
of the American Mathematical Society, October, 1959. The abstract appeared in
the Notices of the American Mathematical Soc1ety, é Nov., 1959. Some of these
results are also to be published in the Proceedings of the Berlin Mathematical

Society.)
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A UNIVERSAL COMPUTER CAPABLE OF EXECUTING
AN ARBITRARY NUMBER OF SUB-PROGRAMS SIMULTANEOUSLY

(Technical Report 2794-10-T, Feb., 1960)
John Holland
Mpstract

This paper describes a universal computer capable of simultaneously execut-
ing an arbitrary number of sub-programs, the number of. such sub-programs vary-
ing as a function of time under program control or as directed by input to the
computer. Three features of the computer are:

(1) The structure of the computer is a 2-dimensional modular (or iterative)
network so that, if it were constructed, efficient use could be made
of the high element density and "template" techniques now being con-
sidered in research on microminiature elements,

(2) Sub-programs can be spatially organized and can act simultaneously,
thus facilitating the simulation or direct comtrol of "highly-parallel”
systems with many points or parts interacting simultaneously (e.g.,
magneto-hydrodynamic problems or pattern recognition) .

(3) The computer's structure and behavior cam, with simple generalizations,
be formulated in a way that provides a formal basis for theoretical
study of automata with changing structure (cf. the relation between
Turing machines and computable numbers) .

The computer presented here is one example of a broad class of universal com-
puters which might be called universal iterative circuits. This class can be
rigorously characterized and formally studied, The present formulation is in-
tended as an abstract prototype which, if current component research is suc-
cessful, could lead to a practical computer.

(This paper was printed and distributed as Technical Report 2794-10-T,
Feb., 1960, It was published in the Proc. 1959 Eastern Joint Computer Confer-
ence, )
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ITERATTIVE CIRCUIT COMPUTERS

(Technical Report 2794-12-T, May, 1960)
John H, Holland
Abstract

A mathemetical characterization is given of broad class of computers
which are iterative or modular in structure (which allows efficient use of
template techniques in construction), and which can process arbitrarily many
words of stored datae at the same time, each by a different sub-program if de-
sired. This class of computer includes representatives structurally and be-
haviorally equivalent to Turing machines, "tessellation" automatas of von Neumeann
and E. F. Moore, Burks and Wang "growing logical nets," and the "potentially
infinite automata" of A. Church.

In this characterization, a computer can be considered to be composed
of modules arranged in a 2-dimensional rectangular grid; the computer is
homogeneous (or iterative) in the sense that each of the modules can be repre-
sented by the same fixed logical network. The modules are synchronously timed
and time for the computer can be considered as occurring in discrete steps,
t=0,1, 2, ...

Basically each module consists of a binary storage register together with
associated circuitry and some auxiliary registers. At each time-step a module
may be either active or inactive, An active module, in effect, interprets the
number in its storage register as an instruction and proceeds to execute it,
There is no restriction (other than the size of the computer) on the number of
active modules at any given time.

(This paper was prepared and distributed as Technical Report 2794-12-1,
May, 1960, Tt was published in the Proceedings of the Western Joint Computer
Conference, May, 1960.)
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ON A PROBLEM OF TARSKI

(Technical Note 2794-13-T, July, 1960)
J. Richard Buchi

Mpstract

I. On a Hierarchy of Monadic Predicate Quantifiers

Let X, Xy, Xo,... D€ variables ranging over natural numbers, and let i,,
is, 13y... be variables ranging over monadic predicate (sets) of natural
numbers, let 1, J denote k-tuples of i's. The hierarchy ZmJTﬁ of predicates
P( on predlcates is defined thus: 2o = all predicates P(_) definable by for=
mulas K[i(o) ] v (ax) H[i(x), i(s + 1)] v (vx) U[i(x)], whereby K,H,U are truth
functions in the indicated comstituents,[m = (~P|Pely}, dm + 1= {(J) PIPéﬂh},
A k-tuple i of monadic predicates may be considered to be an infinite sequence
i(o) i(1) 2(2),,&$ whose elements are drawn from the finite alphabet consisting
of all k-tuples of truth-values. Let u, v,.“. denote finite words on this al-
phabét, let u v denote concatenation, Def: P( 1s of finite rank if there
is a -congruence relation u~v on words, with finite partltlon, and such that

vqklmplles P(d; Ng »..) = - P(v; Vo v..). Theorem: The follow1ng are equiv-
alent conditions on P(i): (1) Pe Yo, (2) P is of finite rank, (3) P = Pa_... Py

whereby each P, is of the form K éﬂéﬁéﬂ:ae, R and S being regular sets of finite
words, This is established by using basic facts from automata-theory (regulari-
ty) , the fan theorem (Konig's 1nf1n1ty lemma) , and Ramsey's theorem [Proc. London
Math, Soc., (2), 50, 264-286 (1930) 1. Clearly P is of finite rank if “and only
if ~ P is; therefore Corollary: Xo ~T1é and therefore Jy =|1p = Yo for n z 2.

IT. On a Problem of Tarski

Let SC be the interpreted system containing variables x ranging over
natural numbers, variables i ranging over monadic predicates on natural numbers,
the successor function, propositional connectives, and quantifiers for both
types of variables. Using the theorem and definition of the preceeding section
one obtains: Theorem 1: The predicates P(i;,---,1k) definable in SC are exact-
ly those belonging to Yo. TFor example: exactly the ultimately periodic sets of
nstural numbers are definable in SC. Theorem 2: Truth of sentences in SC is
decidable. This answérs a question of Tarski [see R. M. Robinson, Proc. Am.
Math. Soc., 9, 238-2h2 (1958)], and seems to be a rather strong result since

19



essential assertions about infinity can be stated in SC(parts of the fan-
theorem and Ramsey's theorem). By interpreting predicates i as binary ex-
pansions of real numbers, theorem 2 may be stated thus: Theorem 2': The
first-order theory of [Re, +, Nn, Pw] is decidsble, Here Re is the set of
real numbers > O, Nn is the set of natural numbers and Pw is the set of in-
tegral powers of 2, (Compare this result with Tarski's decidability of
>Re, +, .].) Let SCper e like SC, except that the variables i range over
ultimately periodic predicates. Theorem 3: A sentence is true in SC er 1T
and only if it is true in SC. i.e., [Re, +, Nn, Pw] and [R, +, Nn, Pw] are
arithmetically equivalent, Here R stands for the set of rational numbers,

[Two papers were prepared for the Missoula, Montana, meeting of the Amer-
ican Mathematical Society in June, 1960. The sbstracts were published in the
Notices of the American Mathematical Society, 7, 381-2 (June, 1960); the Techni-
cal Note presenting these results was printed and distributed in July, 1960,
These results, under the title "A Decision Method for Restricted Set Theory,"
were presented at the International Congress for Logic, Methodology, and
Philosophy of Science, Stanford, Cal., 1960, and will be published in the
Proceedings of the Congress, ]
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