ENGINEERING RESEARCH INSTITUTE
THE UNIVERSITY OF MICHIGAN
ANN ARBOR

THE LOGIC OF AUTOMATA

AFOSR TN-56-539
ASTIA AD-110-358

Project 2512

ATR FORCE OFFICE OF SCIENTIFIC RESEARCH
MATHEMATICS DIVISION, CONTRACT NO. AF 18(603)-72, FILE L4.12
AIR RESEARCH AND DEVELOPMENT COMMAND
WASHINGTON, D. C.

December 1956

<nm

UMREGEE &

1.

2.

The University of Michigan '+ Engineering Research Institute

TABLE OF CONTENTS

LIST OF FIGURES

ABSTRACT

OBJECTIVE

INTRODUCTICN

AUTOMATA AND NETS

2.1 Fixed and Growing Automata

2.2 Characterizing Tables and a Decision Procedure
2.3 Representation by Nets, the Coded Normal Form

TRANSITION MATRICES AND MATRIX FORM NETS
3.1 Transition Matrices
3.2 Matrix Form Nets
3.3 Some Uses of Matrices

CYCLES, NETS, AND QUANTIFIERS
4.1 Decomposing Nets
4.2 Truth Functions and Quantifiers
4.3 Nerve Nets

BIBLIOGRAPHY

DISTRIBUTION LIST

Page

iv

D

11
20

-
£

31
35
33

L5
L5
Lo

2

53
55

57

iii

Figure

The University of Michigan + Engineering Research Institute

LIST OF FIGURES

Normal form net.

Decoded normal form net.
Matrix box of order k.
Matrix form binary counter.
Net of degree 3.

Two simple nets.

Page
22

3L
57
39
L7

53

iv

—— The University of Michigan - Engineering Research Institute

ABSTRACT

Classes of automata are distinguished: fixed and growing, determin-
istic and probabilistic. Then we present methods for analysing and synthesiz-
ing fixed, deterministic automata by four kinds of state tables. Our use of
these tables gives a decision procedure for determining whether or not two
automaton junctions behave the same. Matrix theory is applied to some of the
state tables, and theorems are proved about the resulting matrices and a cor-
responding normal form automaton. Finally, we analyze fixed, deterministic
automaton nets in terms of cycles.

OBJECTIVE

The aim of this paper is to develop systems and techniques of math-
ematical logic which are useful in analyzing the structure and behavior of
automata.

—— The University of Michigan . Engineering Research Institute

1. INTRODUCTION*

We are concerned in this paper with the use of logical systems and
techniques in the analysis of the structure and behavior of automata.

In Section 2 we discuss automata in general. A new kind of automa-
ton is introduced, the growing automaton, of which Turing machines and self-
duplicating automata are special cases. Thereafter we limit the discussion to
fixed, deterministic automata and define their basic features. We give meth-
ods of analyzing these automata in terms of their states. Four kinds of state
tables —complete tables, admissibility trees, characterizing tables, and out-

- put tables—are used for this purpose. These methods provide a decision pro-
cedure for determining whether or not two automaton junctions behave the same.
Finally, a class of well-formed automaton nets is defined, and it is shown
how to pass from nets to state tables and vice versa. A coded normal form for
nets is given.

In Section 5 we show how the information contained in the state
tables can be expressed in matrix form. The (i,j) element of a transition
matrix gives those inputs which cause state S; to produce state Sjo Various
theorems are proved about these matrices and a corresponding normal form (the
decoded normal form or matrix form) for nets is introduced.

In Section 4 we first show how to decompose a net into one or more
subnets which contain cycles but which are not themselves interconnected cy-
clically. We then discuss the relation of cycles in nets to the use of truth
functions and quantifiers for describing nets. We conclude by relating nerve
nets to other automaton nets.

*We wish to thank Irving M. Copi, Calvin C. Elgot, John H. Holland, and espe-

| cially Jesse B. Wright for many helpful suggestions.
1

—— The University of Michigan . Engineering Research Institute

2. AUTOMATA AND NETS

2.1. FIXED AND GROWING AUTOMATA

To begin with we will consider any object or system (e.g., a physi-
cal body, a machine, an animal, or a solar system) that changes its state in
time; it may or may not change its size in time, and it may or may not inter-
act with its environment. When we describe the state of the object at any
arbitrary time, we have in general to take account of: +the time under con-
sideration, the past history of the object, the laws governing the inner ac-
tion of the object or system, the state of the environment (which itself is a
system of objects), and the laws governing the interaction of the object and
its environment. If we choose to, we may refer to all such objects and sys-
tems as automata. The main concern of this paper is with a special class of
these automata: viz., digital computers and nerve nets. To define this class
as a subclass of automata in general, we will introduce various simplifying
and specifying assumptions. It will become clear that in adopting each as-
sumption we are making a deliberate and somewhat arbitrary decision to confine
our attention to a certain subclass of automata. For example, by altering
some of the decisions we arrive at the rather interesting concept of indefi-
nitely growing automata, which include the well-known Turing machines as par-

ticular cases.

A. Discrete Units.—The first decision we make is to use only dis-
crete descriptions; this means that between any two moments and between any
two elements (particles, cells, etc.) there is a finite number of other mo-
ments or elements. This decision is a consequence of our interest in digital
computers. It carries with it a commitment to emphasize discrete mathematics
in the analysis of the systems under investigation: recursive function theory
and symbolic logic. Hence our problems differ from the more common ones in
which time, the elements of a system, the states (color, hardness, etc) of an
element, and the interaction of an object with its environment are all treated
as continuous. When this is done, the emphasis is naturally placed on classi-
cal analysis and its applications. In contrast with digital computers, which
use discrete units, analog computers simulate in a continuous manner, and for
the study of them continuous (nondiscrete) mathematics is especially appro-

priate.

It should be remarked that, though discrete mathematical systems are
generally more useful for the investigation of discrete automata, a very com-
mon (and perhaps at the present time even primary) scientific use of digital
computers is to represent (approximately, of course) continuous mathematics
(e.g., to solve differential equations). In effect, this procedure involves
finding discrete mathematical systems which adequately approximate the

L 2

—— The University of Michigan « Engineering Research Institute

particular continuous system at hand.

B. Deterministic Behavior.—We will not deal with elements capable
of random (nondeterministic) behavior. Rather, we will assume that at each
time the complete state of an object is entirely determined by its past his-
tory, including the effects of its environmment throughout the past. Statis-
tics could be employed to treat deterministic automata containing large num-
bers of elements (cf. the kinetic theory of gases), but we will not do this
here.

C. Finitude of Bases.—We will always exclude an "actual infinity™
of states: each system will contain a finite number of elements at each time,
and each element can be in only one of a finite number of states at any time.
We will reserve for an independent decision the possibility of a "potential
infinity" of elements and states, i.e., whether or not the number of elements
or states of each element may change with time and in particular increase
without bound.

The finitude of time requires separate treatment. The discreteness
condition (A) implies that there are never infinitely many moments between
two given times. But this still leaves open the question as to how many dif-
ferent times are to be considered. TFor a general theory it would be inelegant
to take a definite finite number, say, 1018 or 1027, as an upper bound to the
number of possible moments. It seems desirable to allow time to increase '
indefinitely and to study the behavior of an object through all time. The one
remaining choice is the question of an infinite past. The assumption of an
infinite past has the advantage of making the entire time sequence homogeneous,
thereby destroying a major part of the individuality of each moment of time.
However, in the presence of our deterministic assumption an infinite past
would be inconvenient (for reasons to be given in Section 3.3), so we stipu-
late that there is a first moment of time (zero). The internal state of the
automaton at time zero will be some distinguished state.

Speaking arithmetically, the two alternatives are to represent mo-
ments of time by positive (or nonnegative) integers or by all integers (in-
cluding the negative ones).

(Cl) An infinite future but a finite past: every nonnegative integer
represents a time moment and vice versa; the number zero represents
the beginning of time.

(C2) An infinite future and an infinite past.

Our decision is to adopt the first of these two alternatives.

D. Synchronous Operations.—Some computers contain component cir-
cuits which operate at different speeds according to their function, location,

o

—— The University of Michigan « Engineering Research Institute

the time, or the input at the time. Such circuits are called "asynchronous,"
in contrast to synchronous circuits which work on a uniform time scale (usually
under the direction of a central control clock). There are really two aspects
to asynchronous operation: (1) the actual intervals of time between operations
vary with the time; (2) different parts of the computer pass through their
states at different rates, these rates depending, in general, on the informa-
tion held in the circuits.

We will assume that all elements of a given system (net) operate at
the same rate, and we will call this the "synchronous" mode of operation. In
particular, this means an element may operate at each nonnegative integer t.
This assumption does not imply that all time intervals are equalj e.g., the
interval from time 7 to time 8 can be one microsecond, while the interval from
time 8 to time 9 is 12 hours. Thus our assumption does not exclude possibility
(1) of the preceding paragraph. It involves some restriction with regard to
point (2), but not as much as one might think. For example, we can represent
different parts of an asynchronous machine by subsystems operating at different
rates, interconnecting these with logical represehtations of interlocks. And
Just as discrete systems (e.g., digital computers) can be used to simulate
continuous systems [cf. the second paragraph under the discussion of assump-
tion (A)], so synchronous computers can be used to simulate asynchronous ones.

E. Determination by the Immediate Past and the Present.—The stip-
ulation that the behavior of an automaton at time t+l1 is determined by the
past leaves unsettled the question as to how the remote past influences the
present. We will assume that such influence occurs indirectly through the
states at intermediary time moments, so that to calculate the state of the
automaton at t+l it is not necessary to know its state for any time earlier
than the preceding moment t. Thus we assume that for the present to be influ-
enced by an event which happened in the remote past a record of that event
must have been preserved internally during the intervening time. This postu-~
late corresponds closely to the actual mode of operation of automatic systems.
Of course, a computer with, e.g., a microsecond clock, may have delay lines,
€.g., 500 microseconds long, so that a stored pulse is not accessible to the
arithmetic unit at every clock time, but such a delay line is naturally repre-
sented as a chain of 500 unit (microsecond) delays, with the input and output
of the chain connected to the rest of the computer. Indeed, the assumption
we are now making causes no significant loss in generality, because for each
fixed N such that an automaton A can always remember what happened during the
N immediately preceding moments (but’ not more), we can easily devise an autom-
aton A' which, though capable of directly remembering only the immediate past,
simulates completely the automaton A.

When we think of automata which have unbounded memory or, in parti-
cular, ones which can remember everything that has happened in the past, we
encounter a basically different general situation. In such cases, the

—— The University of Michigan + Engineering Research Institute

~information to be retained increases with time, whence for any automation of
fixed capacity there may come a time beyond which it can no longer hold all
the information accumulated in its life history. Thus, for a machine to re-
member all past history it is necessary and sufficient that it grow in some
suitable fashion. Such growth can be accomplished by the appearance at each
moment of a new delay element for each automaton input. In short, in the
presence of the postulate of determination by the immediate past, the alterna-
tive of remembering all past history is best studied in connection with grow-
ing automata.

Another problem connected with determination by the immediate past
is the role of present inputs in determining the outputs. It would seem
natural to stipulate that the environment at time t+1 cannot influence the
outputs of the automaton at time t+1 but only at time t+2. That is the case
with neural nets, since each neuron has a delay built into it. Strictly speak-
ing, it is true in computer nets, but because the delay in a switch may be
small compared to the unit delay of the system, it is convenient to regard
this switching action as instantaneous. Thus the well-formed nets of Burks
and Wright,l* which will be discussed further in Section 2.3, permit outputs
which are switching functions of the inputs.

F. Automata and Environmment.-—Supposedly the change of state of a
solipsist is independent of the environment, and the environment is not affect-
ed by the solipsist; cf. Leibnitz's concept of a "monad." A "solipsistic"
automation would be one which (1) changed its state independently of any envi-
ronmental changes and (2) whose output did not influence the environment. We
are not primarily interested in such automata. Rather, we will consider how
the environment (the inputs) affects the automaton but not how the output of
an automaton affects its environment.

The last point is related to the ordinary method of representing
inputs and outputs. It is well known that there are significant and useful
logical symbols for the internal action of automata (see Section 2.%). The
standard method of representing inputs and outputs is in terms of the binary
states of input and output wires. This is not directly applicable in simula-
ting such "inputs" as light and sound waves, physical pressures, etc., and
such "outputs" as physical actions. Theoretically, we can, however, just as
well interpret certain standard binary elements as representing these. For
some purposes, we may want to add as new primitives representations of the
lights and keys commonly used on computers (see Burks and Copi,2 p. 306), as
well as symbols representing additional methods of sensing and other methods
of acting on the environment that automata are capable of. Von Neumann has
done some work along this line, but it has not been published (see Shannon,>
p. 1240). It might be suggested that one ought to devise a symbolism for

*References are to the bibliography at the end of the paper.

5

—— The University of Michigan + Engineering Research Institute

magnetic or paper tape input and output to a computer; but that is unnecessary
because such devices are very well represented by net diagrams for a serial
type of storage (see Burks and Copi,2 p. 313, ftn. 9).

We will not here attempt to devise separate notations for the vari-
ous kinds of interactions possible between an automaton and its environment,
but will content ourselves with the customary way of simulating inputs and
outputs by binary states of wires. ZEven subject to this restriction there are
a number of alternatives to consider. The most general case would be to iden-
tify the environment partly or wholly with certain automata so that interaction
occurs among these and the particular automaton under study (cf. the many-body
problem of mechanics). A simple case would be to identify the whole environ-
ment with another automaton (cf. the two-body problem of mechanics). Accord-
ingly, we have the following alternatives.

(FO) An object changes its state automatically, independent of the envi-
ronment.

(F1) An automaton changes its state in accordance with its structure and
the inputs (the environment).

(F2) Different automata interact with one another.

We will be primarily concerned with (F1). In other words, we will
assume that the automaton has no influence over what inputs it receives, and
that in general the inputs do have effects on the internal state (i.e., state
of internal cells) of the automaton. As a consequence, we can define the units
or atoms of which an automaton is compounded into two classes: dinput cells
and internal cells, or input and internal wires, or input and internal Jjunc-
tions.

The situation under (FO) becomes a special case of that under (F1)
when either the number of input cells (or wires) is zero (a limiting case) or
the effects of the inputs are more or less canceled so that the automaton be-~
haves in an input-independent manner. The latter case is exemplified by a
logical element whose output wire is always active regardless of the state of
the input wire. :

(F2) may also be regarded as a special case of (Fl1). Since the in-
puts and outputs of an automaton are wires, two automata may be interconnected
to produce a single (more complex) automaton, of which the original automata
are parts or subsystems. Thus we regard (F2) as a special case of analyzing
a complex machine into interrelated submachines. A common application of this
concept is to be found in the design of a general-purpose computer. Typically
such a computer is divided into Arithmetic Unit, Storage, Input-Output Unit,
and Control (see, for example, Burks and Copi,2 p. 301). The utility of making
such divisions lies partly in the relatively independent functioning of these
units and partly in the (related) fact that it is conceptually easier to under-

—— The University of Michigan . Engineering Research Institute

stand what goes on in terms of these parts. The kind of structuring under
discussion usually occurs at more than one level; e.g., the Parallel Storage
(of Burks and Copi,2 pp. 307-313) divides naturally into a switch and 4096
bins (each storing a word), and the bins are in turn "composed" of cells (each
storing one bit of a word).

G. @xclusion of Growth.—While we have adopted the postulate of
finite bases, we have ygE to decide whether the structure of an automaton,
the number of its cells, or the number of possible states of each cell are to
be allowed to change with time. If changes are permitted but are confined by
a preassigned finite bound, we might as well have used a fixed automaton which
embodies this bound to begin with. Hence the really interesting new case is
that of a growing automaton which has no preassigned finite upper bound on
the possible number of cells or cell states. Structural changes (e.g., re-
wiring a given circuit) do not seem to generate unbounded possibilities, al-
though in special studies, such as investigations into the mode of operation
of the human brain (cf. Rochester et gi.h), the use of a structurally changing
automaton is more illuminating than the use of the corresponding. fixed autom-
aton.

In any case, we can, theoretically, reduce all three kinds of growth
to increase in either the number of cells or the number of possible cell
states: given any growing automaton, we can find another which functions in
the same way but grows only in the number of its cells (or, alternatively,
only in the number of possible states for each cell). For every and all forms
of growth, it seems natural (in the context of our deterministic assumption)
to require that the process be effective (recursive). We will therefore as-
sume once and for all that each definition of a growing automaton determines
an effective method by which we can, for each time t, construct the automaton
and determine its state for that time. An important particular case corres-
ponds to primitive recursive definitions, each of which yields a method by
which we can construct the automaton for t = 0 and, given the automaton and
its state at t, we can construct the automaton at t+l. The growth may not
depend on the state of the inputs, but the possibility of its doing so is pro-
vided for. Moreover, "growth" is taken to include shrinkage as well as expan-
sion. Thus we could have a "growing" computer which expands and contracts as
the computation proceeds, having at each time period just the capacity needed
to store the information existing at that time.

Two types of automata, fixed and growing, can be characterized as
follows:

(G1) The structure and cells of the automaton are fixed once and for
all, and each cell is capable of a fixed number of states.

(G2) The automaton may grow (expand and contract) in time in a pre-
determined effective manner.

—— The University of Michigan « Engineering Research Institute

In this paper we will be concerned entirely with fixed automata,
except for some remarks on growing nets in this subsection. These remarks
are intended to elucidate. the concept of a growing net and to indicate why we
think it is important. But before beginning on them we wish to specify (Gl)
further by stipulating that each cell, junction, or wire is capable of two
states, on and off, firing and quiet; we will later correlate these with one
and zero, and with true and false. We could of course allow each cell to have
any fixed finite number of possible states and different cells to have differ-
ent numbers of states. But it is better to fix the number of states at the
constant two. There are a number of reasons for this. The wires and cells
of many automata and most digital computers do in fact have two significant
states. When this is not the case we can always represent a cell with q pos-
sible states by p two-state cells for any p 2 logs q (e.g., ten of the sixteen
different states of four binary net wires can represent ten discrete electri-
cal states of a single circuit wire), so by adapting our system to the common-
est case we do not lose the power to treat the nonbinary cases. This commit-

- ment to two-valued logic need not blind us to the fact that there may be cases

where multivalued logic is more convenient; the point is that our logic can
handle these cases and we have no interest at the moment in exploiting what-
ever advantages multivalued logic might have here.

We return now to growing nets, mentioning first some special cases
of them already known. A Turing machine (see Turing35 Kleene;6 Wang7,8) may
be regarded as an automaton with a growing tape. Usually the tape is regarded
as infinite, but at any time only a finite amount of information has been
stored on it, so it is essentially a finite but expanding automaton net (of
Burks and Copi,2 p. 313, ftn. 8). If, in a Turing machine, we take as input
cells the squares included on the minimum consecutive tape position which
contains all marked squares at the moment, then the growth consists simply of
the expansion and contraction of the tape. Or if we use the formulation of
Wang7 which eliminates the erasure operation, a Turing machine is a growing
automaton with an even more limited type of growth—namely, an expansion of
the tape. In contrast, a growing automaton may in general grow anywhere, not
only at the periphery but also internally (by having new elements arise be-
tween elements already present).

Though a Turing machine is a special kind of growing automaton, it
has as much mathematical (calculating) ability as any growing automaton; for
every type of computation can be done by some Turing machine, and the mathe-
matical ability of an automaton is limited to computation. In view of this
situation one might wonder why the general concept of a growing net is of
Interest. Its importance can be shown by the following considerations.

John von Neumann has developed some models of self-reproducing
machines (von Neumann;9 Shannon,? p. 1240; Kemeny,lO pp. 64-67). These are
machines which grow until there are two machines, connected together, the

—— The University of Michigan + Engineering Research Institute

original one and a duplicate of it; the two machines may then separate. Hence
they are clearly cases of growing nets.

The basic process to be simulated or modeled in the growth and re-
production of living organisms is the complete process from a fertilized egg
to a developed organism which can produce a fertilized egg. For this purpose
we would need to design a relatively small and simple automaton which would
grow to maturity (given an appropriate environment) and would then produce
as an offspring a new small automaton. Von Neumann's models can be construed
either at the level of cells or at the level of complete organisms, but in
elther case they seem to provide only a partial solution. The process of
cell duplication is only one component of the complete process described above,
and the self-reproduction of a completely developed entity omits the impor-
tant process of development from infancy to maturity. Hence the model we
suggest is-a type of growing automaton not yet covered in the literature.

A second novel type of growing automaton is a generalized Turing
machine in which growth is permitted at points other than at the ends of the
tape. A typical Turing machine, although logically powerful, is clumsy and
slow in its operation. Consequently, to design a special-purpose Turing
machine or to code a program for a universal Turing machine is a complicated
and laborious process (although a completely straightforward one). What
complicates the task is the linear arrangement of information on a single
tape, which requires the tape or reading-head to be moved back and forth to
find the information. That movement may be reduced somewhat by shifting the
old information around to make room for the new information, but this opera-
tion also contributes to the complexity of the whole process. To develop this
point further, we will discuss in more detail the relation between recursive
functions and Turing machines. Turing5 worked in terms of computable numbers;
Kleene® and Wang7:8 work in terms of recursive functions. Since our discus-
sion has been in terms of functions, we will use Kleene's and Wang's works as
our references.

The basic mathematical result underlying the significance of Turing
machines is the following. Mathematicians have rigorously characterized a
set of functions, called partial recursive functions, and this set of func-
tions is in some sense equivalent to what is computable (Kleene,6 Ch. XII).
Each partial recursive function is definable by a finite sequence of defini-
tions, each definition being of one of six possible forms (Kleene,6 pPp. 219 and
279). It is known how to translate each sequence of definitions into a
special-purpose Turing machine and into a program for a general-purpose Turing
machine (Kleene,® Ch. XIII; Wang(). This translation, while rigorous and
straightforward, is often complicated for the reasons, among others, mentioned
in the preceding paragraph. Simpler and more direct translations can be made
by using growing nets in which growth is allowed to occur whenever it simpli-
fies the construction, not just at two places, i.e., at the ends of the tape,

—— The University of Michigan « Engineering Research Institute

where it is allowed to occur in the conventional Turing machine. Such grow-
ing nets will be generalizations of a Turing machine.

We can arrive at a third novel kind of growing automaton by gener-
alizing a general-purpose computer in the way we generalized a Turing machine
in the last paragraph. The usual general-purpose computer consists of a
fixed internal computer together with one or more tapes. As in the Turing
machine, these tapes may be regarded as expanding at the ends whenever needed;
in practice the expansion is handled by an operator replacing tape reels,
using either blank tape or tape reels from a library of tapes. In writing
programs for such a machine, the programmer needs to keep track of two things:

(1) the development of the computation, in terms of the growth of old
blocks of information and the appearance of new blocks of informationj

(2) shifting the information from one kind of storage to another (e.g.,
from a serial to a parallel storage) and moving the information about
within a storage unit.

Both of these components of computation are essential. But (1) seems more
basic for understanding the nature of the computation, and at any rate it is
helpful to be able to study each of the components in isolation. This can be
done with growing nets, for we can eliminate (2) by providing for growth
wherever it is needed to accommodate new information or new connections to
o0ld information. We feel that the study of growing automata would contribute
to the theory of automatic programming. The development of a powerful theory
of automatic programming has so far been impeded by the many details involved
in actual computation; by eliminating (2) we would eliminate many of these
details and would focus attention on the more basic component (1).

We turn now to fixed automata which satisfy the assumptions (A),
(), (c1), (D), (E), (F1), and (Gl). In summary, we arrive at the following
definition of a (finite) automaton:

Definition 1: A (finite) automaton is a fixed finite structure with a
fixed finite number of input Jjunctions and a fixed finite number of in-
ternal junctions such that (1) each junction is capable of two states,
(2) the states of the input junctions at every moment are arbitrary, (3)
the states of the internal Jjunctions at time zero are distinguished,* and
(4) the internal state (i.e., the states of the internal junctions) at the
time t+1 is completely determined by the states of all junctiohs at time
t and the input junctions at time t+l, according to an arbitrary pre-
assigned law (which is embodied in the given structure). An abstract
automaton is obtained from an automaton by allowing an arbitrary initial
internal state.

*This condition applies only to those junctions whose state at a given time
does not depend on the inputs at the same timej cf. condition (h) following.

10

—— The University of Michigan .« Engineering Research Institute

Several aspects of this definition call for comment. In it automata
states have been defined in terms of junction states. This follows Burks and
Wright,l where each wire has the state of the junction to which it is attached,
and the nuclei or cell bodies are not regarded as having states but as real-
izing transformations between junctions or wires. An alternative would be to
define automata states in terms of cell states. Condition (4) places some
restrictions on the way automata elements are to be interconnected, but it
does not completely specify the situation; this will be discussed further in
Section 2.3.

The initial state of the internal junctions also calls for discus-
sion. In the definition of an abstract automaton this is taken more or less
as an additional input which can be changed arbitrarily. As a result, two
abstract automata, to be equivalent, must behave the same for each initial
state picked for the pair of them. On the other hand, for most applications
to actual automata, it is best to assume a single initial state.

The word "structure" in the above definition can be avoided if we
speak exclusively in mathematical terms and consider the transformations real-
ized by automata and abstract automata. We will do so in the next subsection,
returning to a more detailed investigation of the structure of automata in
the following subsection (viz., 2.3).

2.2. CHARACTERIZING TABLES AND A DECISION PROCEDURE

Consider for a moment automata whose internal states are determined
only by the immediate past and hence are not influenced by the present inputs.
Iet there be M possible input states, Io» I1, ..., Iy.y, and N possible in-
ternal states, So, S1, ..., Sy-;- Even though each junction of an automaton
is capable of only two states, we do not require M and N to be powers of two.
For one thing, when an automaton is being defined, the values of M and N are
stipulated and are not necessarily powers of two. Also, when an automaton is
given, not all possible combinations of internal Jjunction states may occur
because of the structure of the automaton, and not all possible combinations
of input junctions may be of interest (because, e.g., the automaton is to be
embedded in a larger automaton where not all of the possible inputs will be
used).

We will assign nonnegative integers to the input and internal states.
Let I and S range over these numbers, respectively. A complete automaton
state is represented by the ordered pair <I,S>. (If the automaton has no in-
puts, then there are no I's and the complete automaton state is just S.)
Let S, be the integer assigned to the distinguished initial internal state;
So will usually be zero, but not always. An abstract automaton differs from
a nonabstract one just in not having a distinguished initial state.

11

—— The University of Michigan . Engineering Research Institute

Since the input states are represented by numbers, a complete histo-~
ry of the inputs is a numerical function from the nonnegative integers O, 1,
2, ... (representing discrete times) to integers of the set {I]. That is,
it is an infinite sequence I(0), I(1), I(2),..., I(t), ...; it may be viewed
as representing the real number {I(O)+[I(l)/K]+[I(2)/K?]+...}, in which K is
the maximum of the set {I}. By our convention that the initial internal state
is S, we have S(0) = So. By the assumption of complete determination by the
immediate past we have for all t

S(t+1) = 7[I(t), s(t)] ,

where T is an arbitrary function from the integer pairs {<I,S>} to the inte-
gers iS}. Or, in other words, as the input function I and the time t are the
independent variables, T is an arbitrary function of two arguments (one rang-
ing .over functions of integers and another ranging over integers) whose values
are integers. It follows by a simple induction that for each infinite sequence
I(0), I(1), ..., I(t), ..., repeated application of the function T yields a
unique infinite sequence S(0), S(1), ..., S(t), ..., with S(0) = S5. Since
for many purposes we are interested not only in the existence of values of the
function T, but also in finding them, we will assume that T is defined effec-
tively, though actually much of our discussion would be valid without this
restriction.

We next broaden our theory so as to include automata whose internal
state at t+1 depends also on the inputs at t+l. To do this we allow P "output"
states Og, O3, ..., Op-3 such that

o(t) = a[I(t), s(¢)] ,

where N\ is again an arbitrary effective function. In general, the complete
state of an automaton at any time is given by the ordered triad <I,S5,0>. 1In
specific cases I, S, or O may be missing.

We can now give an analytic definition of automata and abstract
automata by means of these transformations.

Definition 2: An automaton is in general characterized by two arbitrary
effective transformations (T and \) from pairs of integers to integers.
These integers are drawn from finite sets {i}, {S}, and {C}. {Sz contains
a distinguished integer Sg. The transformations are given by

S(0) = Sg
S(t+l) = t[I(t), S(t)]
o(t) = A[I(t), S(t)]

12

—— The University of Michigan + Engineering Research Institute
If we omit the condition S(0) = Sy, Wwe obtain an abstract automaton.

Thus, speaking analytically, the study of finite automata is essen-
tially an investigation of the rather simple class of transformations T and A
in the above definition. The definition of the class as thus given is super-
ficially very general in allowing T and A to be arbitrary calculable functions.
On account of the very restricted range and domain of these functions, however,
that generality is only apparent. We can find a simple representation of the
class of automaton transformations in the following way.

Since T is effective, and since its domain and range are finite, we
can effectively find for each pair <I,S> the value of T[I(t), S(t)]. Hence
we can produce a table of M x N pairs <<I,8>, S'> such that if <I,S> is part
of the state at t, then S' is part of the state at t+l. We shall call this
set the M-N complete table of the given automaton. Each complete table is a
definition of the function T.

In a similar way we can construct an output table for the automaton,
each row being of the form <I,S>, 0>. Such a table defines the function A.

It is important that the function T and the complete table involve
a time shift, while the function A and the output table do not. Hence for an
investigation of the behavior of an automaton through time the complete table
is basic, the output table derivative. That is, by means of the complete
table we can compute S(1), S(2), S(3), ... from the inputs I(0), I(1), I(2),
... and leave the determination of 0(0), 0(1), and 0(2), ... for later. Note
that to stipulate that the output at time t cannot be influenced by the input
at the same time is to require A to be such that O(t) = A[S(t)]. When this
is the case the states 0(t) and the output table can be dispensed with since
0(t) is completely dependent on S(t). (When the behavior of individual junc-
tions is being investigated, the output table may nevertheless be convenient.)
For these various reasons the state numbers [I} and {S} are more basic than
the state numbers {O}, and the complete table is much more important than the
output table. This being so, we will often concentrate on automata whose
internal states are determined only by the immediate past and ignore the out-
put table,

Since the states S at t are so defined that they do not depend on
the inputs at t, any I can occur with any S, and hence there are M x N pos-
sible pairs <I,5> in the complete table. There are N possible values of S'.
Hence there are MM X N possible complete tables for an M-N automaton.

We will say that two abstract M-N automata, in whatever language
they may be described, are equivalent, just in case they have the same com-
plete table. That this definition is proper can be seen from the following
considerations. If the complete tables are the same, then for the same in-

13

e na et

- ———

—— The University of Michigan . Engineering Research Institute

itial internal state and the same input functions, the initial complete states
in the two automata are the same, and the same complete state at any moment
plus the same input functions always yield the same complete state at the next
moment. On the other hand, if two complete tables are different, there must
be a pair <<I,5>, S'> in one table but not in both, such that by choosing
suitable input functions and a suitable internal state represented by <I,S>,
we can have the complete state represented by <I,S> realized at time Zero,

and yet the complete state at time one will have to differ. Since we can find
effectively the complete table of a given automaton (the details of this proc-
ess will be explained in the next subsection) and compare effectively whether
two complete tables are the same, we have a decision procedure for deciding

of two given abstract M-N automata whether or not they are equivalent.

The situation is more complex with automata which have predetermined
initial internal states, for two M-N automata with different complete tables
may yet behave the same (be equivalent). This is possible because it can
happen that for every pair <<I,S>, S'> which occurs in one table but not in
the other, we can never arrive at the internal state S from the distinguished
initial internal state S,, and hence can never have the complete state <I,S>,
no matter how we choose the input functions. In such a case, two M-N autom-
ata with the same prechosen initial internal state may behave the same under
all input functions, despite the fact that they have different complete tables.
Hence, identity of complete tables is a sufficient but not necessary condition
for equivalence of two automata. To secure a necessary and sufficient con-
dition, it suffices to determine all the internal states which the given in-
itial internal state can yield when combined with arbitrary input words, and
then to repeat this process with the internal states thus found, ete. If the
two complete tables coincide insofar as all the pairs occurring in these de-
terminations are concerned, the two automata are equivalent. To establish
that such determinations will always terminate in a finite time requires an
argument: since there are only finitely many pairs in each complete table,
the process of determination will repeat itself in a finite time.

To describe the procedure exactly, we introduce a few auxiliary
concepts. We can think of a tree with the chosen initial internal state S
as the root. From the root M branches are grown, one for each possible input
word Ii with the corresponding internal state at the next moment Soi at the
end. These M branches can be represented by <<Iy, Sg>, Sgo>; -+.5 <<IM-1, So >,
So,M-1>, which all belong to the complete table. If all the numbers S00y ey
So,M-l are the same as Sy, the tree stops its growth. If not M branches are
grown on each S,4 such that Sy4 % Sg, and such that Spi does not equal any Sop
for which M branches have already been grown, and we arrive at Sgig, ...,
So,i,M-l- If all the numbers Soij (i,J arbitrary) already occur among Sg,
So1s +--; So,M-1, then the tree stops its growth. If not, then M branches
are grown on each Soij such that it does not equal Sy, or any of the Sop:
or any Sopq for which M branches have already been grown. That is, whenever

1k

—— The University of Michigan + Engineering Research Institute

in the construction we come to an S, if it is already on the tree we stop,
else we grow M branches on it, one for each I. This process is continued as
long as some new internal state is introduced at every height. Since there
are altogether only M a priori possible internal states, the height (i.e., the
number of distinct brancih-levels) of the tree cannot exceed M. For any M-N
automaton, we can construct such a tree which will be called the admissibility
tree of the automaton. We can, of course, start with any state S as the
assumed initial state, and this gives us an admissibility tree relative to S
for an abstract automaton.

Those values of S (including SO) which appear in the admissibility
tree are called admissible internal states. All other values of S are inad-
missible,

If we collect together the ordered pairs which represent branches
of the admissibility tree, we obtain a (proper or improper) subset of the
complete table, which we shall call the M-N characterizing table of the autom-
aton. (As in the case of the admissibility tree, it is easy to define the
concept of a characterizing table relative to S for an abstract automaton.)
In order that two M-N automata be equivalent (1 e., behave the same), it is
necessary and sufficient that they have the same characterizing table. Since
there is an effective method of deciding whether two M-N automata have the
same characterizing table, we have a decision procedure for testing whether
two M-N automata are equivalent.

Quite often we are not interested in the whole automaton, but rather
in the transformations which particular cells (junctions, wires) of an autom-
aton realize. To discuss this aspect of the situation we need to correlate
states of automata with states of the elements of automata. We will do this
in two stages; first, by putting state numbers in binary form (in the present
subsection), and, next by correlating zero and one with junction states (in
the next subsection),

The state numbers I and S are nonnegative integers. The binary
representation of states is made simply by putting each state number in binary
form, making all the I the same len:th, and making all the S the same length
(by adding vacuous zeros at the beginning when necessary). ILet m,n be the
number of bits of I,3, respectively, in a characterizing table or complete
table in binary form. Clearly m is the least integer as large as (or larger
than) the logarithm (to the base two) of the maximum I; similarly with n.

Let the bits of I be called Agp, A1, ..., Ap_,5 80 that T = Ay A; ... Ap-; where
the arch signifies concatenaE}oE; §imilarly, let the bits of S be called B,
Bi, ...5, Bp-1, so that S = By B1 ... Bp-;. In the next subsection we will
associate the A's with input junctions and the B's with internal junctioms.

We speak of the characterizing table in binary form as an m-n characterizing
table.

15

A s smm eenme s e amaaa a ~

—— The University of Michigan + Engineering Research Institute

i s T ————-

It follows from our discussion of characterizing tables that the
function T of Definition 2, given by

S(0)
S(t+1)

SO
T{I(t); S(t)] ’

is a rather simple primitive recursive function (with a finite domain) and
that the function S(t) is defined primitive recursively relative to the input
function I(t). If our interest is in the transformation realized by a partic-
ular internal junction, we use another primitive recursive function o such
that oj(n) gives the i-th binary digit of n (i = 0, 1, ...). Hence each such
junction realizes a transformation oi[S(t)] or Bi(t) which is primitive re-
cursive relative to I(t) (Burks and Wright,l Theorem XIV; Kleene,ll Theorem 8).

Since the magnitudes of m and n affect the number of junctions of
the corresponding automaton, it is of interest to obtain a minimal representa-
tion in terms of bits. Given a characterizing table, one can so rewrite the
state numbers as to minimize m and n. That is accomplished by so assigning
the numbers that the largest I is smaller than the least power of 2 greater
than or equal to M, and similarly for S and N. A special case occurs when
the states I, I3, ..., IM-3 are assigned the numbers O, 1, ..., M-1l, respec-
tively, and the states Sy, S, ..., SN-1 are assigned the numbers O, 1, ...,
N-1, respectively (note that the distinguished state Sy is assigned the num-
ber zero). A characterizing table put in this form is said to be in coded
normal form. Automata nets corresponding to this form will be discussed in
the next subsection. (Note that minimizing a complete table does not suffice
here, because the number of inadmissible states may be such as to require
more bits for representing the set of states than for representing the set of
admissible states.)

Another special type of automaton is the decoded normal form autom-
aton; it is of interest in connection with the application of matrices to the
analysis of nets. In a decoded normal form characterizing table the input
words are coded as for the coded normal form, but the internal states Sy, S;,
«e., SN.1 are assigned the numbers 2°, 21, ..., 2N'1; here an N bit word is
needed to represent the N internal states. For six internal states we would
have the numbers 100000, 010000, 001000, 000100, 000010, OO000Ol; notice that
So has a one on the extreme left, i.e., for S,, B, is one and all other Bj
are zero. Automata nets corresponding to decoded normal form characterizing
tables will be presented in Section 3.

Each of the A's and B's (bit positions of the binary representations
of I and S) is a binary variable. Hence the complete table and, more impor-
tantly, the characterizing table are (when put in binary form) kinds of truth
tables. Thus we have to large extent reduced the problem of automata descrip-
tion and analysis to the theory of truth functions. Of course the S' in

16

i e e

—— The University of Michigan « Engineering Research Institute

<<I,3>, 8'> is the state at t+1, while S is the state at t, so we need to

distinguish different times here and hence to use propositional functions (see

Section 4). Nevertheless, as the characterizing table shows, we need only a
very special form of the theory of quantifiers, in which each time step is a
matter of the theory of truth functions. So great is the advantage of this

partial reduction to the theory of truth-function logic that we will hereafter

assume that all characterizing tables are in binary form. Consequently, we
may henceforth use any of the techniques of the theory of truth functions
which are applicable, not merely the (often cumbersome) truth-table technique

We return now to the transformations realized by individual elements

of the automata, which involves considering the bits of S, i.e., the B's.

In the next subsection each B will be associated with an internal junction,
s0 the analysis is also in terms of junctions. The basic problem is to com-
pare the behavior of two bits or junctions, which may or may not belong to
the same automaton or characterizing table.

If the two junctions to be compared belong to the same automaton,
then they realize the same transformation (behave the same) if and only if
the corresponding bits in the S (or S') entries of the characterizing table
are everywhere the same. (The state Sy need not appear in the S' column of
<I,3>, S'>; every other state which is in the S column is in the S' column
and vice versa. Of course, all bits are the same in So.) This is so because
the values of S are the admissible states of the automaton, and at each mo-
ment the internal junctions of the automaton are in just one of these states.
Hence the question as to whether two junctions of an automaton behave the
same can be decided effectively.

If the two junctions are in two different automata, then it is in
general not necessary that the automata have the same number of junctions,

i.e., that the characterizing tables have the same number of columns, for them

to behave the same. Since the transformations depend ultimately only on the
time and the inputs, the number of internal junctions need not be the same;
since the behavior of an internal junction may be independent of some inputs,
even the number of input junctions may be different. Suppose the two junc-
tions belong to an mi-ni and an mz2-n2 automaton. Then a necessary and
sufficient condition for these junctions to realize the same transformation
is that there exist some new mz-nz automaton, with ng = nitnp, my+mp 2

Mg 2' max(mi, mp), which is obtained from the two given automata by connec-
ting a subset of the inputs of one to a subset of inputs of the other in a
one-one fashion, and in which the internal junctions under consideration re-
alize the same transformation. That supplies an effective procedure because
there is only a finite number of inputs to each automaton and hence only a
finite number of ways to interconnect them, and for each way the question of

equivalent behavior can be decided effectively. When the process is conducted

17

-ans e emncnas . & -

—— The University of Michigan + Engineering Research Institute

on the characterizing tables it involves identifying certain of the columns
of the I part of the tables.

It is allowed that the subset of inputs which are interconnected may
be null, in which case mg = m; + mz and the resulting automaton is just the re-
sult of juxtaposing the two original automata. For just as the behavior of
a junction or cell may be independent of one of the inputs, so it may be in-
dependent of all of the inputs. In this case the junction changes from one
state at t to another at t+l1 in a uniform manner independent of the states of
the inputs at t. In other words, it realizes a transformation which is inde-
pendent of the input functions; we will call such a transformation an input-
independent transformation (it was called a "constant transformation" in
Burks and Wright,l P. 1358) and speak of the junction as an input-independent
Junction. The number of internal states of an automaton is finite, and an
automaton is completely determined by the immediate past, hence all input-
independent transformations must be periodic (Burks and Wright,l Theorem I).
Therefore no automaton can realize the simple primitive recursive input-inde-
pendent transformation which has the value one if and only if t is a square
(0, 1, 4, 9, ...) (Burks and Wright,l Theorem II; Kleene,ll Section 13).

A very special type of automaton is one whose internal Jjunctions are
all input-independent junctions. In such a net, which we call an input-
independent net, there may be input junctions, but these cannot influence the
internal state at any time. For each such automaton, complete and character-
izing tables can be found which have no input states.

The admissibility tree provides an effective means for deciding
whether the behavior of an internal junction or cell is independent of a
specified input and hence for deciding whether the behavior of a junction is
independent of all inputs (i.e., realizes an input-independent transformation).
For this purpose it is helpful to identify all occurrences of a given state
on the admissibility tree. Then one can trace the behavior of the automaton
by proceeding in cycles around the tree. We will not describe the procedure
in detail, but will make a few comments about it. By a direct inspection of
the characterizing table we can tell whether a change in an input Jjunction A
at t can make a difference in B at t+l. Repeating this process we can find
all the junctions that A can influence directly, all that these can influence
directly, etec. Since the net is finite, this process will terminate. That
is, because of the finite nature of the net there is an interval of time q
such that if A can influence the behavior of B, it can do it within the time
interval q3 this interval may be determined from the structure of the net.

If no input junction influences Bj, then Bj realizes an input-inde-
pendent transformation, which has been already stated to be periodie. This
special case of input-independence can be discovered directly from the charac-
terizing taple, for a junction Bj realizes an input-independent transformation

18

i o1

—— The University of Michigan + Engineering Research Institute

if and only if for each S there is a unique value of Bj in S', no matter what
I is. The behavior of the input-independent transformation during its initial
phase and during its main period can be found from the admissibility tree.

(The problem of deciding whether or not two junctions Bj and By
realize the same transformation is really a special case of the problem of
deciding whether a Jjunction realizes a particular input-independent trans-
formation; for we can have Bj and By drive an equivalence element, whose out-
put will be the simple input-independent transformation 11111... if and only
if Bj and Bk realize the same transformation. See the next subsection.)

In our discussion we have for some time ignored the output table.
It too can be put in binary form, and since both the O and the S entries refer
to the same time, the result is a straight truth table (in contrast to the
characterizing table, where some columns refer to time t and some to t+1).
Hence the preceding results are easily extended to include the case of output
tables.

We have not yet considered methods of minimizing the labor required
to calculate the admissibility tree and the characterizing table. In many
cases it is convenient to work with the equations describing a net by means
of variables (see the next subsection) rather than with the values of these
variables. 1In some cases one can go directly from such equations to the
characterizing table. It is also possible to decompose many nets so as to
reduce greatly the number of states to be considered (see Section L4.1). Other
methods of simplifying the work will occur to one who is engaged in it and to
one familiar with the methods for simplifying truth-table computation.

Before proceeding further let us briefly summarize the concepts
introduced in this subsection.

Definition 3: An automaton is in general characterized by state numbers
I,5 and O. The complete table of an automaton is the set of all pairs
<<I1,8>, S'> such that, for given I(t) and S(t), S' is the value of S(t+l).
The characterizing table of an automaton is the subset of its complete
table such that each S and S' in it is admissible. A state S is admis-
sible if and only if it is the distinguished initial state S, or it can
be arrived at from the initial state by choosing a suitable finite se-
quence of inputs. An admissibility tree is a graph used in computing
the admissible states, beginning with S, and proceeding systematically.
An output table is a table of pairs <<I,S>, 0>, stating a value O(t) for
given values of I(t) and S(t). An input-independent junction realizes

a transformation whose values are independent of the inputs.

We will conclude this subsection by commenting on the relation of
the decision procedure described above for testing whether two junctions
realize the same transformation to other decision procedures. Recently a

19

amees Mmmas ma—ma

-~an

cmm- .

—— The University of Michigan .« Engineering Research Institute

decision procedure for Church's formulation of computer logic has been an-
nounced.* We are not acquainted with this decision procedure and hence cannot
compare it with ours. However, we can prove the equivalence of Church's

system to ours, from which it follows that the two decision procedures ac-
complish the same result. We do this in two steps. First, the definition of
automata given in Section 2.1 is in all essential respects equivalent to that
of a well-formed net in Burks and Wrightl (this will be shown in the next
subsection). Church's simultaneous recursion is a slight generalization

of the second definition of determinism given in Burks and Wright,l p. 1360;
the difference lies in the fact that Church's "A's" and "B's" are independent
of each other, whereas in the Burks-Wright definition of determinism each Aj
has a certain relation to the corresponding B;. Because of this relation
between the two definitions, it follows directly that every transformation
realized by a well-formed net is definable by a Church recursion. The converse
may be shown by a net construction in which for each i a net is made for Ay
and for By, and the outputs are combined to give Aj for t = 0 and Bj for t > 0.

It is perhaps worth noting that our decision procedure may be ex-
tended to give a method for deciding whether the transformations defined by
a set of equations (Burks and Wright,l p. 1358) are deterministic or not.
This may be done by going through all the states <I,S> and seeing if for each
of these the equations yield a unique S!. If a given S is admissible (by the
admissibility tree) and does not yield a unique S' for each I, then the net
(i.e., the transformations it realizes) is not deterministic. There is, in any
event, only a finite number of cases to consider, so the procedure is effective.

We remark finally that since monadic propositional functions of time
may be used in describing net behavior, it might seem that known decision pro-
cedures for the monadic functional calculus directly apply here. However,
the exact relation between quantifiers and net theory is not known, and in any
event when quantifiers are used they required bounds, which are essentially
dyadic (see Section 4.2).

2.3. REPRESENTATION BY NETS, THE CODED NORMAL FORM

We turn now to the representation of automata by diagrams (called
automata nets) which show the internal structure of automata. For this pur-
pose we need to correlate the binary digits zero and one used in the preced-
ing subsection to the physical states of wires, junctions, or cells. On the
normal interpretation zero and one are associated with the inactive and active

*Joyce Friedman, "Some results in Church's restricted recursive arithmetic,"
The Journal of Symbolic Logic, 21, 219 (June, 1956); this is an abstract of a
paper presented at a meeting of the Association for Symbolic Logic on December

29, 1955.

20

R ———,

—— The University of Michigan + Engineering Research Institute

states, respectively. A dual interpretation (zero to active, one to inactive)
is also possible, and the two interpretations may be interrelated by the well-
known principle of duality.

It is clear from the developments of the preceding subsection that
we need net elements capable of performing two kinds of operations: truth
functions and delays. ZFor these purposes we adopt two distinct kinds of ele-
ments: switching elements for truth-function operations and a delay element
for the delay operation.

Some standard logical connectives of the theory of truth functions
are: *+ ,& (two representations of conjunction, "and"), v (disjunction, "or"),
} ("neither-nor"), | (™ot both"), = ("if and only if"), D("if...then..."),
and —,~, ' (three representations of negation, "not"). Circuits for real-
izing all of these are common. As is well-known, all truth functions may be
constructed from the dagger (l) or from the stroke (|), so we shall in general
assume sufficient primitive switching elements to realize these. Sometimes
it is convenient to have an infinity of primitive switching elements, one for
each truth function. Of course, in practice complicated switching functions
are realized by compounding simple switching elements, but by representing
such circuits by single net elements we can separate the problem of compound-
ing these circuits from other problems in net analysis (see, for example,
Fig. 1).

A switching element consists of a nucleus together with input wires
and an output wire. The termini of these wires are called junctions. Switch-
ing elements may be interconnected in switching nets in ways to be discussed
subsequently. For examples, see Fig. 1 and other figures of this paper.
Propositional variables are associated with each junction of net. Correspond-
ing to each switching element there will be an equation of the theory of truth
functions which describes the behavior of that element. For example, if a
conjunction ("and") element has the variables A, and A, attached to its input
junctions (and wires) and the variable C, attached to its output junction (and
wire), it realizes the equation Co(t) = [Ag(t) & A;(t)], or, more succinctly,
Co = (AO & A;). The theory of switching nets corresponds to the theory of
truth functions and is well developed (see Shannon;12 Burks and Wrightl).

One aspect of the equation Co(t) = [Ag(t) & A;(t)] needs discus-
sion; it is that the value of the output is given at the same time t as the
inputs. In the physical realization of a conjunction this, of course, cannot
happen; the output will occur slightly later than the inputs. This suggests
putting a delay in at the output of each switching element. Such a delay does
in fact exist in each nerve cell. However, for purposes of theoretical analy-
sis it is best to isolate the logical, nontemporal functions of automata from'
the temporal aspects of their behavior. Hence we can first construct the
theory of switches, basing it on the theory of truth functions, and we can
later augment this theory to deal with the additional complications brought in

21

PP PPN

« Engineering Research Institute

The University of Michigan

jJod
uoljisunij)

7

‘49U WIO0J TBWION ‘T 914

15 09
-~ YJjims
1) nding (°L
A
ly
I syndu|
sApjaQg oy
13
1 Yo4IMS
] uol4ISuDJ}
L -403.1Q
0,

22

- PN -—

—— The University of Michigan + Engineering Research Institute

by delays. This organization of the subject has practical bearings as well as
theoretical value, for to a certain extent the design of switches does and
should proceed independently of the design of those parts of computers which
produce the transitions from state to state. Hence our switching nets have no
delays in them. When we come to formulate the rules governing their inter-
connection (formation rules for well-formed nets), we will take this factor

of idealization into account and not permit interconnections that could lead
to trouble because we have ignored it. Hence we will return to this topic at
that time..

The delay element consists of a nucleus with an input and an output
wire; see Fig. 1. It delays an input signal one unit of time; i.e., its input
wire state at time t becomes its output wire state at time t+l. We assume that
its output wire is inactive (in the zero state) at time zero. If A, is the
variable associated with its input and E, the variable associated with its
output, its behavior is defined by the equations.,

Eo(0) = 0O
Eo(t+l) = Ag(t) .
Another way of expressing this is Eg(t) = (£20) & Ao(t:l), where "=" sig-
nifies the primitive recursive pseudosubtraction
Xty = x-y if x2vy
x>y = 0 1if x <y .

Each switching element corresponds to a symbol (or complex of sym-
bols) of the theory of truth functions. We will introduce the symbol ® to
correspond to the delay element. If the input and output to the delay element
are A, and E, as before, then Eq(t) = 8[a,(t)] or, more succinctly,

E, = ©A,. Hence,

5[a, (0)] 0

S[Ao(t+1)] = Ag(t) .

In itself the & operator does not, strictly speaking, take us beyond the theory
of truth functions (see Section 4.2), but the d operator together with a cycle
rule which allows an output of a net to be connected back to an input of the
same net does take us beyond truth-function theory to quantifier theory (see
Section 4).

We need now a set of formation rules such that all nets constructed
by these rules represent automata, and all automata defined by characterizing
tables and output tables may be represented by these nets. We will use the

25

2 Assnadam

—— The University of Michigan « Engineering Research Institute

rules given in Burks and Wright,l p. 1361, extending them to allow an arbitra-
ry set of switching elements .

Definition 4: A combination of figures is a well-formed net (w.f.n.)
relative to the set 2, if and only if it can be constructed by the follow-
ing rules:
(1) A switching element or a delay element is w.f.
(2) Assume N; and Nz are disjoint w.f.n. Then,
(a) the juxtaposition of N; and Ny is w.f.;
(b) the result of joining junctions Fais «+es qu of N; to distinct
input Jjunctions GPl’ ceey Gpsy of Nz is w.f.3
(c) the result of joining input Jjunctions Fp and Fq of N; is w.f.3
(d) if all the wires connected to Fp of N, are delay-element input
wires, then the result of joining any Fq of N3 to Fp is w.f.

The ends of wires which do not impinge on a switching-element circle
or a delay-element rectangle are called junctions. A junction with no output
wires attached to it is called an input junctionj all other Junctions are
called internal junctions (these are sometimes called output Jjunctions).

One can label each Jjunction of a net with a variable. We will usu-

ally use Ay, A;, ... for input junctions, Co, Cy, ... for switch output junc-
tions (junctions driven by switching elements), and Eg, E;, ... for delay out-

put junctions (junctions driven by delay elements). A well-formed net (dia-
gram) with every junction labeled with a variable is called a labeled net.
One can also label the input junctions with functional constants designating
particular input functions (e.g., 000..., 111..., OlOl..., 0LO0O10000100000Ll...),
and the internal junctions with functional constants naming the functions they
actually realize (e.g., if the inputs to a conjunction are labeled with 111...
and 010l0l..., the output should be labeled 01010l...). The result is called
a net history; cf. the concept of a net state in Burks, McNaughton, et EL"15

p. 207.

Consider the net of Fig. 1. Every net of this form (with arbitrary
numbers of delays and switching elements) is well-formed (relative to a suf-
ficiently rich set of switching elements) by our rules. We say that the net
of Fig. 1 is in normal form. A normal form net is organized as follows. It
has a direct-transition switeh, fed by the net inputs and the delay outputs,
and driving the delay inputs. It has an output switch, fed by the delay out-
puts and the net inputs, and not driving any delay elements.

Given a sufficiently rich set of switching elements, we can con=-
struct for each well-formed net a normal form net which behaves the same. We
first place the delays of the original net in an array like that of Fig. 1.
Then, for each delay element Ej, we analyze the original net to determine what
switching element Ti will produce the same result at e€j as is produced by the

2k

—— The University of Michigan - Engineering Research Institute

switching circuitry of the original net. In the same way we find those
switching elements Ty, Ty, ... whose outputs behave the same as the switch
output junctions of the original net, or those switch output junctions we

are particularly interested in. (The latter can be indicated by labeling them
with triangles.) Similarly, given a set of switching elements 2 rich enough
to represent all truth functions, we can translate a normal form net into a
w.f.n. made of those switching elements; e.g., if 2. contains only the stroke
element, we replace each T of Fig. 1 by an equivalent stroke-element switch.
(Note that while a switching element T4 receives inputs from all the net in-
put junctions and all the delay output junctions, its output need not depend
on all of these. For example, if in the original net the input to delay ele-
ment Ep was the net input junction A,, then To has the property that ep(t) =
Ao(t) for all values of A;(t), Eq(t), E;(t), and Ex(t).) (Note also that any
well-formed net can be arranged somewhat in the form of Fig. 1, if we allow
the switches to be of other forms and allow the direction-transition switch
to have junctions which do not drive delay inputs.)

At this point we wish to make two comments about our representation
of switches. The first concerns a topic we have mentioned earlier, the fact
that physically it takes time for information to go from the inputs of a
switch to the output, while in calculating the behavior of a switch we assume
that the output occurs at the same time as the input. The reason for this
assumption is that in many applications the switching time is much less than
the delay time, so the logic of switching is treated separately from the logic
of delay. We wish our theory to accommodate this case. The reader can im-
agine a small delay in the output of each switching element, with extra delays
put in at various places to make the phasing correct. He can then imagine
that each unit delay of Fig. 1 is reduced by the accumulated amount of delay
in the switch driving it, so the total delay from delay output back to delay
output is one unit. (The concept of rank as defined in Burks and Wright,1
p. 1361, is useful here.) The concept of well-formed net has been so defined
as to make this always possible, as is evident from Fig. 1. This way of re-
garding the matter conforms with practice in designing some machines; see
De Turk et gl.l Those automata with delay built into each switching element
(e.g., neural nets) can also be accommodated within our theory; they corres-
pond to special cases of w.f.n. and can be defined by modifying the formation
rules.

The second comment is connected with the fact that our switching
elements represent the flow of information in only one direction; i.e., inputs
and outputs are not interchangeable. There are many devices that permit in-
formation to flow in only one direction (vacuum tubes, transistors, etc.), but
not all do; relays are one notable exception. Relay contacts permit informa-
tion to flow in either direction, and hence bridge circuits can be made from
them. Relays are electromechanical devices and hence are relatively slow.

For this reason they are becoming less important as much faster electronic and

25

- mena s s s adan

—— The University of Michigan « Engineering Research Institute

solid-state devices become available and competitive in price. Further,
because of the combination of a coil and contacts, relay automata present
special problems, and no formation rules for them which take full account of
all the uses that can be made of contacts and coils have been published.
However, a new and promising device, the cryotron, also permits the informa-
tion (in this case, current) to flow in either direction and hence can be used
in bridge circuits (see Buckl5). We will not attempt here to devise formation
rules for all uses of relays, cryotrons, and whatever other devices there may
be which are not unidirectional.

It should be pointed out, however, that every well-formed switching
net can be realized by a relay and by a cryotron circuit. Since every truth
transformation (i.e., every switching function) can be represented by a well-
formed switch and vice versa (Theorem XII of Burks and Wrightl), our diagrams
do represent ways of realizing all truth functions with nonunidirectionsal
elements. Since our diagrams represent a unidirectional flow of information,
it follows that the power of relays and cryotrons to pass information in two
directions does not add to their power to do logic. It does make a difference
in the number of elements needed. Thus a relay bridge circuit may do a cer-
tain job more economically than a relay contact network in the form of a well-
formed switch.

We return now to the problem of correlating w.f.n. and automata. As
a first step we will define a set of state numbers Do, D3, +.., Dg. Each D
will express the states of the delay output junctions. Le%ﬁt@gse Junctions
be labeled Eg, E;, ..., Eq. Then D is the binary number E, E, ..fﬂEq. Since
a delay output is assumed to be zero at time zero, D(0) = O. Let Do be this
initial state, i.e., D(0) = Dg. We wish to justify this decision, but before
doing so we need to discuss a question concerning the identity of an automa-
ton.

We may run a machine from Monday to Friday, turn it off at 5:00 P.M.
Friday and then turn it on again at 8:00 A.M. the following Monday. Should
we regard it as one machine or two? There is a similarity between this and
a human (automaton?) going to sleep at night; however, when a human wakes up
in the morning he still remembers quite a bit of his past history, while often
(though not always) a computer starts a new life every time it is turned on
anew. To preserve the identity of the machine before and after the gap of
inaction, we can think of some simple ad hoc device such as a special input
cell whose sole function is to turn the machine on and off in such a manner
that, when a machine is in operation, stimulating this input cell will put the
machine into a unique initial state; such an operation is often called an in-
itlal clear. In this way we can preserve the identity of a machine through
all the different runs it makes.

26

—— The University of Michigan « Engineering Research Institute

On this assumption there is only one initial state of an automaton,
and we can identify it with the all-off or all-quiet state. ©Such an identi-
fication is natural since neurons, vacuum tubes, etc., are usually inactive
when first turned on, and even if they are not this identification can be
made by a suitable convention without much loss of generality. The situation
is somewhat different if we choose to regard each machine run as a new autom-
aton, but even here there will probably be a single initial state for all runs
and it is convenient to identify it with the all-quiet state. Note that this
does not commit us to identifying Sy with Dy. In fact, we shall not always
do so (the complete decoded net of Section 3.2 is anexample). Hence one can
handle other initial states by identifying D, with some value of S other than
So-

We now proceed to establish the equivalence of w.f.n. and automata.

We show first how to derive a characterizing table and an output table for
each w.f.n. We translate the given net into a normal form net.. Label the
inputs of this normal form net Ay, Ay, ... and let I = AéﬁA;:..; for a two
input net we would have, for example, Io = A, & &, I, = By &A;, I, = Ay & A&,
and Iz = Ay & A;. Label the delay inputs €y, €1, ... and define A = eéahfﬁ\...
Label the delay outputs Eg, E;, ...; then D = Eé\Ezi... Let Ty, T3, ... be

the truth functions realized by the direct-transition switch. Then we have

m
',_J
~~

ot
p—

u

TilAo(t), Ar(t), ...5 Eo(t), Ex(t), ...]

=
'.-l-
e
ct
p—
i

5 e;(t)

for each 1. Finally, we let Dy be Sy and each other D be an S, and thereby
get a complete table. By the use of the admissibility tree we can construct
the characterizing table. This procedure takes care of the transition part
of a normal form net. To complete the analysis, we perform a similar con-
struction for the switching elements of the original net, or for those switch
outputs we are interested in as final outputs. Let Tg, Tp, ... be the truth
functions realized by these outputs. Then we have

Cs(t) TilAx(t), Ar(t), ...;5 Eo(t), Ba(t), ...]
for each j, and this gives us the output table.

A coded normal form net is a normal form net whose characterizing
table is in coded normal form.

When the complete table is derived from a net, there will be a bit
position for each input junction and each delay output Jjunction. In this
case the numbers m and n (of Section 2.1) are the numbers of input and delay

27

e cas aa

certema vm————— -

—— The University of Michigan - Engineering Research Institute

output junctions, respectively. An m-n automaton has then o possible com-
plete states and 28 possible internal states. If all input states are con-
sidered, we then have <2n)(2m+n) different m-n automata complete tables. Many
of these are the same except for the permutation of columns (i.e., of input
and internal cells or junctions). Clearly, there is little significance
whether a particular junction is labeled the 1lst, 2nd, or the m-th. 1In other
words, if we can find a way of identifying one-to-one the input junctions of
two m-n automata so that they behave the same, they are equivalent even though
they may have different characterizing tables. Analogously, permutations
among the labels for the delay output junctions make no essential difference.
It follows that there are actually only (2n)(2m+n)/(m!)(n£) rather than
(gn)(2m+n) distinct abstract m-n automata complete tables. Similarly, charac-
terizing tables which are obtainable from one another by permuting columns are
to be identified. There will be fewer than (20)(2™1)/(mi)(nt) distinct m-n
automata characterizing tables, for some of the distinct complete tables will
differ only with regard to inadmissible states.

In designing the transition part of an automaton it is in general
desirable to maximize the number of admissible internal states (i.e., to min-
imize the number of inadmissible states), since the total number of states is
a rough measure of the parts needed for construction, while the capacity for
doing different things is in general proportional to the number of admissible
states. We will call an automaton complete if all states S are admissible.
(A stronger condition would be that all states S are admissible relative to
every initial state, instead of Jjust the distinguished initial state S,; we
will not give to automata satisfying the stronger condition any special name.)
If the number of admissible states of an automaton is less than 2%71, we can
always replace the automaton by a simpler automaton by using the coded normal
form. In a coded normal form characterizing table n is the least integer as
large as or larger than the logarithm of N to the base two (similarly for m).

For automata with the same number of admissible states, it seems
desirable to maximize the "recoverable" ones. Following Moore,lé p. 1h0, we
shall call an automaton strongly connected if and only if it is possible to go
from every admissible state S; to every admissible state Sj (1 may be equal to
j). An alternative definition can be given in terms of an admissibility tree
in which all occurrences of a given state S; are identified. An automaton is
strongly connected if and only if for any ordered pair of states <S4, Sj>
(1 may be equal to j), we can pass from Si on the tree to Sj on the tree by a
continuous forward route (plus backward jumps from a given state to the same
state located lower on the tree). Since the possibility of repetition is im-
portant for an automaton, any admissible state which cannot be recovered adds
rather little to the capacity of the automaton. Thus it would seem best in
general to design a machine which is both complete and strongly connected.

Hence, from a practical point of view, complete, strongly connected,
and coded normal form automata are the most important. For the theory of

28

—— The University of Michigan « Engineering Research Institute

automata, however, many nets falling outside this class are of interest. 1In
particular, we will find decoded normal form automata nets of interest in
connection with the use of matrices to analyze nets. '

It remains to show how to construct a well-formed net for any given
characterizing table (or complete table) and output table. There are various
ways of doing this, one of which is to identify Sy with Dy (if So is not equal
to zero, its value must be changed to zero) and to let every other S be a value
of D. The general process of going from nets to tables is then Jjust reversed.
There are various ways of constructing the switches needed. Let us consider
the matter with regard to the characterizing table <I,S>, S'>. A single
column of S' is to be identified with a particular E; (and e¢j). Delete all
other columns of the S' part of the table. We then have a truth-table defini-
tion of our function T;, such that

€]’_(t) = Ti[Ao(t): Al(t); e Eo(t)) El(t): '--]

Given sufficient primitives, this can be realized by one switching
element, as in Fig. 1. Given switches for "and,” "or,"” and "not," it can be
realized by using disjuncuivé normal form. Consider each row of the truth
Egple. If €3 is zero, do nothing; if €4 is one, construct an element to sense
I S of that row. The desired switch for €; is obtained by disjoining (using

" "

or" on) all the outputs so obtained.
We have thus established our first theorem.

THEOREM 1: Given a well-formed net, we can construct a complete table,
a characterizing table, and an output table describing its behavior.
Given a complete table, characterizing table, and an output table, we
can construct a well-formed net realizing these tables.

This theorem establishes the equivalence of automata and nets,.and
since nets are idealizedrepresentations of digital computers, it follows that
for most theoretical considerations automata without any special sensing and
acting organs can be viewed as digital computers.

We conclude this section by noting the similarity of well-formed net
diagrams and flow diagrams used in programmihg. This similarity is what one
would expect, since a net diagram describes the structure of a computer, and
a flow diagram describes its behavior during a certain computation, and both
symbolize recursive functions. While a program is stored in a computer, part
of it (the coded representation of the operations) usually remains invariant
through the computation; this means that during the computa©tion not all states
of the computer are used. For each such fixed program one could devise a
special-purpose machine which would perform the same computation. This is a
special case of the general principle that there is a great deal of flexibility
with regard to what a machine is constructed to do versus what it is instructed

29

e mam aemaaa aa

—— The University of Michigan + Engineering Research Institute

to do. This suggests that there should be one unified theory of which the
theory of automata structure and the theory of automata behavior (i.e., the
theory of programming) are parts.

Each program is in effect a definition of a recursive function.
Since there is no effective way of deciding whether two definitions define the
same recursive function, there is no effective way of deciding whether two pro-
grams will produce the same answer. Two different programs, each finite, may
nevertheless produce the same answer because the feedback from the computation
may be different in the two cases.

30

—— The University of Michigan « Engineering Research Institute

3. TRANSITION MATRICES AND MATRIX FORM NETS

5.1. TRANSITION MATRICES

The transition part of a net controls the passage of the net from
state to state and is therefore the heart of the net. In this subsection we
introduce "the transition matrix,” a table which describes a net by showing the
various ways in which it may pass from one delay state to another.

We use a characterizing table with M input (state) words, I, N in-
ternal-state words, S, and M x N rows, each of the form <<I,S>, S'>, to define
N2 direct-transition expressions Iij as follows. Iij is a disjunction of all
those Ix such that <Iy,5i>, S is a row of the characterizing table; if there
are no such Ik, then Ijj is @ ("the false"). That is, I;j is a disjunction
of all those input words (if any) which can cause the net to pass from state
S; at time t to state Sj at time t+l; it is allowed that i equals j. It is
clear that each Iij is a disjunctive normal form expression of the input func-
tion variables.

Note that the direct-transition expression "@" is distinct from the
direct-transition expressions "0," "00," "000," etc.; the former means that no
direct transition between the two states is possible, while the latter mean
that such a transition is brought about by making all the inputs zero.

A direct transition from S; to Sj in a net is a passage from state
Si{ at t to state S; at t+l. Such a transigipn is possible only in the case
where Iij # ¢. We say that <Iyx, S (or Ix Si) at time t directly produces Sj
at time t+l only in the case where the net makes a direct transition from S;
to Sj under the influence of input Iy at t.

A transition from S; to Sj in a net is a passage from state S; at t
to state Sj at t+w (w > 0). Such a transition is possible only where there
exists a sequence of direct-transition expressions, none of which are @, of
the form Ij, 5 Igians +oe» Tonr 3 We say that I ay s, ;(8), I (t+l), .

I, J(t+w -1) produces S; at t+w if and only if there is a tran31tlon from S (%)
to SJ(t+w) under the direction of the listed inputs; this is a transition of W

steps (or, alternatively, a transition of length w).

31

—— The University of Michigan . Engineering Research Institute

It is convenient to arrange the information in an M-N characterizing
table in a direct-transition matrix of order N by arranging the N2 direct-
transition expressions in square arrg§. The following is a direct-transition
matrix schema of order four:

—
Too Toix Ioz Ios

Ioo0 Iz2:1 Ioz Iz

Iso Isx Isz Issj .
It is clear that a direct-transition matrix presents the same information as a
characterizing table, but in a different way. For many purposes this form is
more convenient, because it reflects the fact that the basic behavior of an
automaton consists of a succession of transitions from one state to another.
(Since a transition matrix is equivalent to a characterizing table, the formu-
lae given in Section 2.3 for the number of M-N automaton characterizing tables
apply here also.)

The information contained in a complete table can also be expressed
in matrix form. Since for an abstract automaton the complete table is the
characterizing table, the matrix derived from the complete table is a direct-
transition matrix.

We give an example of a transition matrix. A matrix for a four-
stage cyclic counter is

So S; S8z 83

So | Io I, ¢ ¢
Sy | # I, I, ¢
Sa |8 4 1o I

Ss | I, 8 ¢ IoJ

(We have added the S's as a mnemonic aid, but, given a conventional ordering
of them, they need not be written in.) Thus, an input I, (e.g., O) causes the
counter to stay in its given state, while an input I, (e.g., 1) causes it to
advance to the next state (modulo 4). All other entries are @'s since they
represent cases where direct transitions are impossible.

32

—— The University of Michigan + Engineering Research Institute

3.2. MATRIX FORM NETS

In this subsection we will present a net form closely related to the
transition matrix. Our presentation is in two steps; the first is to con-
struct a decoded normal form net.

Consider for a moment a coded normal form net in relation to its
coded characterizing table. Each S is associated with a D, and in general any
arbitrary number of bits of D may be unity. Consider in contrast a decoded
normal form characterizing table. Exactly one bit of each S is unity, which
suggests associating each state S primarily with a single junction. That can
be done for an N state decoded normal form table as follows: Let S =
Bo Bl . By, as before, and form a net with N delay elements so that D =
E fE ﬁE N-1. Of the oN delay words D, we use only N+1, namely, Dg,

(— OOO...) ~and the N words having exactly one bit which is unity and all other
bits zero (100..., 010..., ete.). We next construct a junction C which is
the output of a disjunctive element ("or") fed by E, and by the input-independ-
ent transformation 100.... Hence,

c(o) = 1

Cc(t) Eo(t), for all t> O

We now assoc1ate Bo w1th.C, and each Bj with Ej for O<i<N; that is, we equate
Bo Bl cen BN 1 and C El . EN 1. Hence we have N junctions (C, E;, ...,

EN—l) such that each state S is associated primarily with one junction;

namely, that junction which is active when the net is in that state. These
Junctions are called the state junctions of the net. See Fig. 2, where the
state junctions are labeled C, E;, and Es, and are also labeled with the states
(So, S1, and Sg) which they "represent."

We now wish to construct a net containing wires C, E,, ..., En-1s
so connected that at each time exactly one of them is active (in state one)
while all others are zero, and with the following inductive property.

(A) Junction C (representing S,) is active at time O.

(B) For any time t, if the junction labeled S; (i.e., C for i = 0, Ey
for 1> 0) is active at time t, the net input at time t is Iy, and <<TIx,S5i>,5 3>
is a row of the characterizing table, then the junction labeled Sj will be
activated at time t+1.

To realize Condition (A), we construct a starter (see Fig. 2) to
produce the input-independent transformation 100.... The starter output is
then disjoined with E5 to produce C. This will insure that ¢ (0) = 1, and that

33

—— The University of Michigan « Engineering Research Institute

Ollvas

Decoded
output switch

lOO-_--) Sov S SOVSZ S|VSZ

Starter

-
lor gloz Q
[:::] EJ(Sﬁ 7 >)
o - -
EIIO Elu EIIZ ()
Ex(Sp) _ .
- - -
20 (8)iz Efzz (a)

Transition part

Fig. 2. Decoded normal form net.

3k

—— The University of Michigan . Engineering Research Institute

C(t) = Eg for t > 0. The starter, which adds another delay element to the net,
may be constructed without a cycle (see Section 4.3).

The realization of (B) is more complicated. Since there is a state
junction for each state (C for Sp, Ei4; for Sit+;), the concept of a direct-
transition word is useful here. At each state junction S; we build N switches
such that:

Iié\si directly produces Sp(i.e., activates C at the next moment of time);
Iif\Si directly produces S;(i.e., activates E; at the next moment of time);

Ii,N_iﬁsi directly produces Sy.; (i.e., activates Ey.; at the next moment of
time).

A net to accomplish this purpose is shown in Fig, 2, which is actually a net
schema rather than a net, since the Iij are not specified.
L)

The boxes labeled with the direct-transition expressions Iij are
called direct-transition switches. (Note that these direct-transition
switches are different from the direct-transition switch of Fig. 1, though
both kinds of switches play the same basic role in a net.) A direct-transi-
tion switch Iij has an output at time t if and only if the input to the net is
represented by a disjunct of Iij- Every such switch can be made of a disjunc-
tion driven by conjunctions of positive and negative inputs. For example, let
I,o be 0101 v 0110 v 1111, which may be written as AoA1BzAs Vv KoAyAsAs v
ApAjA2A3z, and the latter is readily realized by a switch. Of course, the number
of inputs may vary from net to net; we will usually show four inputs in our
figures (as we do in Fig. 2).

If a particular Iij is ¢, the switch Iij and the conjunction it

drives may be deleted. If a net always passes directly from a state S; to a
state Sj, no matter what the inputs are (or because there are no inputs), then
we can run a direct line from the S; junction to the input of the delay ele-
ment driving the Sj Junction. An input-independent net thus becomes a string
of delays (corresponding to the initial part of the input-independent trans-
formation), driven by a starter and driving a cycle of delays (corresponding
to the periodic part of the function);cf. Theorem XIII and the accompanying
figure of Burks and Wright,l p. 1363.

We call a net of the form of Fig. 2 a decoded normal form net. We
will first explain why we call this form "decoded" in contrast to the "coded"
form described earlier, and then discuss the exact relation between decoded
and other nets. The terminology is Jjustified by the fact that in a coded
normal form net the numbers representing delay states (i.e., the D's) appear

- 35

—— The University of Michigan + Engineering Research Institute

in coded form, while in the decoded normal form net the numbers representing
the delay states (the D's, except that Eg is replaced by C at time zero)
appear in decoded form, in the sense in which the terms "coded" and "decoded"
are used in switching theory. A decoding switch is a switch with the same
number of output junctions Cy, ... Cy.; as there are admissible input words
Io, -«.5 IN-1, and so connected that when the input state is I, the output
Junction Cp is active and all other outputs are inactive. (This is a special
case of the nets discussed in Burks, McNaughton, gE_§;°l5) The information
on the inputs is in coded form, while that on the outputs is decoded. In our
coded and decoded normal form nets, however, the coding and decoding applies
to delay outputs rather than to switch outputs.

Given any automaton net, we can construct a decoded normal form net
which models that automaton net in the sense of having junctions which behave
the same. Let us begin with the transition part of the given automaton net.
Suppose it has n delay output junctions Fy, Fy, ..., Fh_; and N admissible
states Sg, S3, ...y SN-1 (N S 20). We next construct the transition part of a
decoded normal form net with’gunctions Cy E3y ooy EN-1, such that the i-th
bit from the left of d?Efq.ou En2; is unity when the original automaton is in
state Sj_.;. Any function Fj is equivalent to a disjunction Sal VSg, VooV
Sgkx of Just those states for which Fj has the value one. Hence by disjoining
the appropriate state junctions of the decoded normal form net we can obtain
a Junction F§ such that Fj(t) = Fj(t) for all t. Figure 2 shows a decoded
output switch which realizes S, v 8,, Sq v Sp, and S; v S5. The “"single-dis-
Junct disjunctions" Sg, S;, and S, are already represented in Fig. 2, and the
input-independent outputs (Sy & S; & S) and (So v S, v S2) (i.e., 000... and
111...) are readily obtained from the net if needed.

This shows how to construct junctions of a decoded normal form net
which behave the same as the delay output junctions of the original net. Any
other junction of the original net whose behavior at time t does not depend
on the state of the inputs at time t can be treated in the same way. For the
remaining junctions we can build an output switch fed both by the decoded out-
put switch and the net inputs. Alternatively, the decoded output switch can
be replaced by a switch driven by the state junctions and the net inputs.
Switches of these various kinds are allowed as parts of decoded normsl form
nets. We can now incorporate these results in a theorem.

THEOREM 2: For any well-formed net with junctions Cy, C,, sc0, ONE cCan
construct a decoded normal form net with junctions Cés Ci, ... such that
Ci(t) = Cc{(t) for all i and t.

The transition part of a decoded normal form net can be drawn in
matrix form to bring out its relation to the transition matrix. In Fig. 3
this is done for a transition matrix of order 4; the result is called a matrix
box. The disjunction elements of Fig. 2 are omitted by the convention that

36

—— The University of Michigan .« Engineering Research Institute

2,
ek

SE
Nabiag

-t

—ud N
—

—t -
—
——
—
—

—_—]
— N
—

»?*
GResE-Grcs
(@)

Fig. 3. Matrix box of order k.

37

B Y PG

—— The University of Michigan « Engineering Research Institute

net. Figure 4 is an example which lacks an output switch.

4 M N

several wires can drive a line (see Burks and Copi,2 P. 307). A normal form
net with the transition part put in matrix-box form is called a matrix form

A particular net of order 4 may be obtained from the schema of Fig.
3 by substituting the appropriate switches for the direct-transition-switch
schemata. We illustrate this with the four-stage cyclic counter whose transi-
tion matrix was given in Section 3.1. If we let input Io = O and input I; =1
(so the counter counts pulses rather than the absence of pulses), we get the
matrix box of Fig. 4. Each Ij; = I, = O so we replace these direct-transition-
switch schemata by negation elements. For each i, j such that j = i+l modulo
four, I3 = 1, so we replace these direct-transition-switch schemata by single
input lines. All other transition-switch schemata correspond to ¢'s in the
transition matrix defining the counter, so these are dropped; e.g., no direct
transition from S to S; is possible, so there is no direct coupling from Ss
to €;. It is manifest from Fig. 4 that the counter stays in its prior stage
when the input is zero, but advances to the next stage (modulo four) when the

input is one.

3.3. SOME USES OF MATRICES

The discovery that matrices may be used to characterize automata nets
opens up a number of interesting lines of investigation. In the present sub-
section we will discuss a few applications of matrices to the analysis of
automata nets.

A direct-transition matrix (whose elements are direct-transition
expressions) characterizes the direct transitions of an automaton. We will
first establish some properties of this matrix, and then generalize the con-
cepts of direct-transition expression and direct-transition matrix to cover
transitions of arbitrary length.

Each row of a direct-transition matrix is a partition of M input words
Io, I1, +++y IM-1 into N columns Sp, S;, ..., SN-1. Hence the disjunction of a
row contains all the admissible input words. If these are all the possible
words, the disjunction of a row is a tautology. If there are inadmissible in-
put words, then the hypothetical whose consequent is the disjunction of the
matrix row and whose antecedent is a disjunction of all the admissible input
words, is a tautology. In this case we can say that the matrix row sums to a
tautology relative to the admissibility conditions, or that it is a tautology
in an extended sense of this word. (Note that this relative sense of "tautol-
ogy" 1s relevant in minimality problems;in minimizinga switchwe are not locking forf
a switch logically equivalent tothe given one, but rather for a switch logically

38

The University of Michigan -« Engineering Research Institute

100..

«—— Starter

Matrix box

Input

Input

€

Input Input
ln If
uf It
Fig. 4. Matrix form binary counter.

e A s ——

39

—— The University of Michigan .+ Engineering Research Institute

equivalent to the given one relative to the admissibility conditions on the
inputs.) A single element j of a row i may be a tautology, in which case all
other elements in the row are ¢; this means that whenever the automaton is in
state Si it makes a direct transition to state 53, no matter what the input is.
No input word can occur more than once in a row, else the automaton would not
be deterministic.

The disjunction of the elements of a column is not in general a
tautology, but cases where it is are of special interest as they are related
to the concept of backward determinism.

Definition 5: An abstract automaton is backwards deterministic if and
only if for each finite sequence I(0), I(1), ..., I(t), S(t+l), there is

a unique sequence S(0), S(1), ..., S(t) satisfying the complete table. A
direct-transition matrix is backwards deterministic if and only if for each
Tk and Sj there is at most one state Sj such that Ikbsi directly produces

Sj.
We give an example of a baékwards-deterministic matrix of order 3.
_IO v I,) I |
) Iov I v Iz)
Is ¢ Io v Iy .

Another example of interest is

L —

Besides being backwards deterministic, this matrix has the property that a
direct transition is possible from any state to any other state. We call such
a matrix directly strongly connected; see Definition 6 below.

THEOREM 3: The disjunction of every column of a direct-transition matrix
is a tautology if and only if that matrix is backwards deterministic. An
abstract automaton is backwards deterministic if and only if its direct-

transition matrix is backwards deterministic.

40

—— The University of Michigan « Engineering Research Institute

We prove first that having every column sum (logically) to a tautol-
ogy is a necessary and sufficient condition for a direct-transition matrix to
be backwards deterministic. If every column sums to a tautology, every input
word must occur at least once in each column. But no input word could occur
twice in a column, because in the N by N matrix every input word must appear
exactly once in a row and there are exactly N occurrences of each input word.
If an input word occurred twice in the same column, then at least one of the
(N-1) remaining columns must miss that word and could not be a tautology.
Hence for a given state S; at time t+l, and a given input word I, at time t,
there is only one state S; which together with Iy could have directly produced
S.. Therefore, having every column sum to a tautology is a sufficient condi-
tion for a direct-transition matrix to be backwards deterministic. The proof
that it is a necessary condition is obtained by reversing the considerations
just used. In a backwards-deterministic matrix no input word can occur twice
in the same column. But each row contains exactly one occurrence of each input
word and there are exactly N occurrences of each input word in the matrix.
Hence, no input word is missing in any column, because otherwise it must occur
twice or more in at least one other column. Therefore, every column must sum
to a tautology.

We show next that if a direct-transition matrix is backwards deter-
ministic, the abstract automaton is backwards deterministic. Consider a fi-
nite sequence I(0), I(1), ..., I(t), S(t+1). It follows from the results of
the preceding paragraph that there is exactly one S(t) which together with
I(t) directly produced S(t+l). Iterating this argument, we see that there is
a unique sequence S(0), S(1), ..., S(t) satisfying the complete table (for the
given I1(0), ..., I(t), S(t+1l)). To prove the second part of the theorem in
the other direction, we note that if a matrix is not backwards deterministic,
there will be some I, and some Sj such that there are two distinct states S,
and Sy, either of which will, together with Iy, directly produce Sj. Hence
for the sequence I(0) = Iy and S(1) = Sj, there are two sequences [namely,
S(0) = S, and S(0) = Sy] satisfying the complete table.

In Section 2.1 we remarked that in the presence of our deterministic
assumption an infinite past would be inconvenient. The first part of Theorem
5 may be used to justify this statement. In order to describe the behavior of
a net over a certain period of time t, t+1, ..., t+w, we would naturally need
to know the inputs I(t), I(t+l), ..., I(t+w) and the internal state S at one of
these times (or perhaps at t+w+l). Now if every net were backwards determin-
istic, it would not matter for which time S was known. But for a net which is
not backwards deterministic we must know S(t) to determine S(t+1), ..., S(t+w).
Hence we might as well pick a time t = O as a standard reference point for our
analysis and always work forward from this time; we therefore allow t to range
over the nonnegative integers only. [We could define backwards deterministic
on the basis of each infinite sequence ..., I(-7), ..., I(0), ..., I(t),
S(t+1) determining an infinite sequence ..., S(-7), ..., S(0), ..., S(t) and

L1

—— The University of Michigan - Engineering Research Institute

conduct the discussion in terms of this definition. Theorem 3 then holds with
the following exception: the direct-transition matrix of a backwards-determin-
istic automaton may fail to be backwards deterministic with regard to states
which cannot be recovered. For example, a backwards-deterministic automaton
can have a transition matrix in which both Sé“Ik and SﬁﬁIk directly produce the
same state S:, but in which no state and input combination directly produces

J,
Sg Or Sy.]

We turn now to the task of generalizing the notion of direct-transi-
tion expression to cover nondirect transitions. Consider an example. Suppose
it is possible to go from state three of an automaton to state seven with
either a sequence I,, Ig, or with Io. We could write this as I,Ig v Io, but
it must be understood that juxtaposition here represents a noncommutative type
of conjunction, since Ig followed by I, may not carry the net from state three
to state seven. We will sometimes use a special operation, called concatenated
conjunction, to express the order-preserving conjunction needed here. Thus
the above may be written I4”~g v Io. However, the concatenated-conjunction
symbol, 7, may be omitted if the context makes clear what is intended. The
noncommutative nature of .concatenated conjunction can be brought out by making
the role of time explicit: I,°Ig is short for I4(t) - Ig(t+l), while Ig™I,
is short for Ig(t) . I4(t+l). Clearly I, (t) . Ig(t+l) is not equivalent to
Ig(t) - Io(t+1).

Concatenated conjunction can be used to build up transition words
from direct-transition expressions. For example, we might have the transition
expression Iz,2%"15,5"Is,7 V Is,7, or, more briefly, Is,oIp,sIs,7 vV Is,7. In
a concrete case it might reduce to the transition expression I,®(Ig v Ig)?Is
v (Is v Ig), or, more briefly, I4(Ig v Ig)Is v (Is v Is), which is of course
equivalent to the transition expression I *Ig%Ig v I,°Ig%I5 v Iz v Ig, or,
more briefly, I,Igls v I4Iglsg v Iz v Ig. For this expansion we use a distri-
bution principle for concatenated conjunction: (p v a)dr vs)= (prvplis v
qQ?r v g7s).

We can now define the general concept of transition expression. A
transition expression is a disjunction of concatenated conjunctions of direct-
transition expressions, provided that if any concatenated conjunction contains
a ¢, it may be replaced by ¢. Thus Io,sls,3 V I2,3 might become (Is v I7)¢¢
v ¢, which would reduce to . We allow direct-transition expressions as
special cases of transition expressions.

Definition 6: A transition matrix of order N is an N by N array whose
elements are transition expressions. Two transition matrices of order N
can be combined by the following operations, where a(a,b), B(a,b) are
transition expressions for transitions from state a to state b.

Matrix disjunction: [a(a,b)] v [B(a,b)] = [a(a,b) v B(a,b)].

L2

The University of Michigan . Engineering Research Institute

Matrix concatenated conjunction: [a(a,b)]?[B(a,b)] = [y(a,b)], where

N-1
y(a,b) =) a(a,i)’:ﬁ(i,b))

where 2, represents disjunction.

Matrix (concatenated) power: MY = M
M = NPTlaM
n 3
Sum of matrix powers: iziMl = MvMv ...vM

The characteristic matrix C(M) of a transition matrix M is obtained by
replacing the elements of M with zeros or ones, according to whether the
elements do or do not reduce to @, i.e., according to whether transitions
from state a to state b are not or are possible by M. A direct-transition
matrix M is directly strongly connected if and only if every element of
C(M) is unity. Inequality between characterizing matrices is defined by
c(M) S C(N) if and only if for each element c(a,b) of C(M) and the corres-
ponding element B(a,b) of C(N), a(a,b) € B(a,b), i.e., @IB.

THEOREM 4: ILet M be a direct-transition matrix of order n. A transition
from state Si to state Sj in exactly w steps is possible if and only if
the element a(i,j) of C(M¥) is one. A transition from Si to Sj in w or
less steps is possible if and only if the element a(i,j) of

W
ol X Mk
=1

is one. A transition from state S; to state Sj is possible if and only if
(a) for i # j, the element a(i,j) of

is one; (b) for i = j, the element a(i,j) of
is one. A net is strongly connected if and only if every element of

n
ol & ME
=1

is unity. If o and B are positive integers, then

L3

—— The University of Michigan -« Engineering Research Institute

[0 oH+B
c({gZ Ml‘> ol T MK
=:l k=l

c<§ ME
k=1

To prove this theorem, we first examine the structure of the elements
of MV, where M is the direct-transition matrix. Each element Q(i,j) is a dis=~
Junction of concatenated conjuncts, each of the form Iig, Iajay --- Iayj-
Clearly a transition from S; to Sj in exactly w steps is possible if and only
if at least one of these concatenated conjunctions does not reduce to @, i.e.,
if and only if the element a(i,J) of C(M') is unity. A matrix

W
5, ME
i=1

WA

1]

n+ol
ol T o) .
=1

has as its elements transition expressions covering transitions in 1, 2, ...,
or w steps, and hence the elements of

(9

are one or zero according to whether a transition from S to SJ can or cannot
be made in w or less steps. It remains for us to show that beyond a certain
power (n for i=j, n-1 for i#j), raising M to a higher power does not add to the
possible transitions that can occur, but only to the way in which they occur.
Consider two distinct states, 5S4 and Sj. There are only n-2 other states to
pass through. The automaton’s being in one of these states Sy for more than
one moment of time does not increase the possibility of getting to Sj fraom 54,
since whatever can be accomplished from a later occurrence of Sy can be accom-
plished from the first occurrence of Sy. The argument is similar for possible
transitions from Si to 84, with the difference that here we must consider n-1
other states.

Ly

—— The University of Michigan . Engineering Research Institute

4. CYCLES, NETS, AND QUANTIFIERS

L.1. DECOMPOSING NETS

In this section we discuss cycles in nets and their bearing on the
application of logic to net analysis. As a first step we discuss the elimin-
ation of unnecessary cycles from nets.

A well-formed net (w.f.n.) may have unused switching-element input
wires. This 1s especially likely to be the case for a coded normal form net
constructed from a characterizing table, for.not all bits of D and I need in-
fluence a given delay input junction. By inspection of the characterizing
table of a w.f.n., we can tell which bits are irrelevant to a switch output
Cy. Aﬁparticular bit Ay of I D is irrelevant to Ci if and only if for each
pair I D identical in every position Aj the value of Cj is the same. Using
this criterion we can eliminate all the unused switch input wires by replacing
the original switching elements with other elements which behave the same for
all inputs and on which every switch input has an influence. The same process
can be applied to an output table and an output switch.

It should be noted that the above process is a minimization tech-
nique, i.e., a technique for producing a simpler net which realizes the same
transformations as the original net. In Section 2.3 we showed how to minimize
the number of delay elements by using a coded normal form. Other minimization
methods are implicit in the results of preceding sections. For example, if
two junctions of a net behave the same (cf. the decision procedure of Section
2.2), one may be eliminated. Note that for these minimization procedures we
can work from complete tables, characterizing tables, and output tables; we
need not refer to the net diagrams at all.

However, our main interest at present is not in minimality in gen-
eral, but in minimality only insofar as it relates to the number and nature of
cycles in a net. For example, every normal form net with at least one delay
element will have cycles, while the corresponding net with no irrelevant
switching-element inputs may have either fewer cycles or perhaps no cycles at
all. For this reason we shall hereafter consider only such nets. Our next
task is to define a measure of the complexity of the cycles of a net.

L5

r—— The University of Michigan « Engineering Research Institute

A sequence of junctions A;, Az, ..., Ay, A; (possibly with repetitians)
constitutes a cycle if and only if each Aj is an input to an element whose out-
put is Ay, where k = j+l modulo n. Thus a junction occurs in a cycle if it is
possible to start at that junction, proceed forward (in the direction of the
arrows) through switching elements and delay elements, and ultimately return
to the junction. A junction which does not oeccur in a cycle has degree zero,
as does an input-independent junction. It should be noted that this definition
assigns degree zero to some Jjunctions occurring in cycles, i.e., to all input-
independent junctions which occur in cycles. The reason will become clear in
the next subsection. For the same reason we require a further modification
of the net before degrees are assigned to the remaining junctions of it. That
modification is to replace all cycles containing both input-independent and
non-input-independent junctions by cycles containing only one of these kinds
of junctions. Let C be an input-independent junction occurring in a cycle with
a non-input-independent junction E. Break the cycle at C by deleting the ele-
ment whose output wire is joined to junction Cj to make the net behave the same ,|
we connect C to the output of a subnet which realizes the input-independent
transformation originally realized by C. Such a subnet may be so.constructed
that it has only one cycle, and such that every junction in it is an input -
independent junction (Burks and Wright,l Theorem XIII, p. 1363). Thus, given
any net N, we can find an equivalent net N' with no more cycles than N and
which has no cycles containing both input-independent and non-input-independent
Junctions. We say that a net with no irrelevant switching-element inputs and
with no cycles containing both input-independent and non~-input-independent
Junctions is in reduced form. We assign degrees to all the junctions of N!
(and hence derivatively to all junctions of N) as follows.

The degree of a non-input-independent junction which occurs in a
cycle is the maximum number of distinet delay elements it is possible to pass
through by traveling around cycles in which the junction occurs. Figure 5
shows a net with the degree of each Junction in parentheses. (We stipulate
that in Fig. 5 the switching functions are so chosen that no Junction is input-
independent, and the net is in reduced form.) Note that in order to get to both
E> and E3 from Co, it is necessary to pass through E; twice.

The degree of a net is the maximum of the degrees of its junctions.
Figure 51s of ;degree 3. A net is entirely connected if and only if its'degree
is greater than zero and the number of delay elements in it is equal to its
degree. This notion should be compared with the analogous notion of "strongly
connected,” defined in Section 2.3. We define directly entirely connected
analogously to the notion "directly strongly connected" of Section 3.3j that
is, in a directly entirely connected net it is possible to start at any delay
output junction and proceed forward to any delay input Junction, passing only
through switching elements. One of these sets of notions concerns statesj the
other set concerns the bits used to represent states.

L6

Engineering Research Institute

ty of Michigan

iversi

The Un

"¢ 99a89p Jo 38N °G 814

€ uby 2 juoy | juoy O juoy
0 9aibag | 931b3Q ¢ d31baqQ 0 93ibag
t 3ugns xop € iduqns xop 2 i3ugns xop | 9ugns xop
p A Y A v A —_— A -~
©) © ¢
<4—
6 _ I / ()3
0 ©0)°3
(1¥3 2 (€ '3 (€)% o'v
)19 (€)°3
o T ©

b7

r— The University of Michigan + Engineering Research Institute

Figure 5 is not entirely connected, but it may be completely decom-
posed into two nets of degree zero (the net A;-E5 and the net E -E;-A;-C3-Eg)
and two entirely connected subnets (EO-CO-El-Az-Cl-Eg-ES and Ey-Cy-E4-Co).

A maximal entirely connected subnet associated with a net junction,
say F, is the net formed of all junctions which occur in a cycle with F, to-
gether with the elements between these Junctions, and the switch ¥nput junctions
of all switches whose output junctions are in a cycle with F. Subnet 2 of Fig.
5 (the net Eq-Co-E;=Ap-C1-Es-Es) is a maximal entirely connected subnet asso-
ciated with the junctions Ep, C;, Co, E;, Es. The part of this subnet which
results by deleting the delay element between E, and E; is an entirely connected
subnet of Fig. 5, but it is not maximal.

Since any two junctions of a net either do or do not occur in the
same cycle, each element of a net either belongs to a subnet of degree zero
(i.e., is not in a cycle) or belongs to a unique, maximal, entirely connected
subnet of the original net. (Note in this connection that "occurring in the
same cycle" is a transitive relation.)b A given net element may belong to
several subnets of degree zeroj; e.g., the delay Cs-Es of Fig. 5 belongs to sub-
net 4 and to the subnet consisting of itself.

There are various ways to group the elements connected to Junctions
of degree zero into maximal subnets, of which we will give one. Iet A be a
Junction of degree zero and B be any other Junction of the net. Proceeding
forward from B to A along a certain path, we can pass through n(n 2 0) maximal
entirely connected subnets before arriving at A. Note that n is bounded, for
if we could pass through a given maximal entirely connected subnet M and then
(always proceeding forward in the direction of the arrows) later come back to
M and pass through it again, it would not be the case that M is maximal. Since
there are a finite number of junctions in the net and a finite number of paths
from each to A, there is a maximum such number N to be associated with A.
Then group into a maximal subnet of degree zero all the elements lying between
Junctions with the same maximal numbers N, together with the input wires of all
switches whose output junctions are assigned the number N. Subnet 4 of Fig. 5

is a maximal subnet of degree zero.

It is by now clear that any net in reduced form can be uniquely and
effectively decomposed into maximal entirely connected subnets and maximal sub-
nets of degree zero, i.e., into maximal subnets of various degrees. Figure 5
is uniquely decomposed into ‘the four subnets shown there. To decompose a net,
one need only find the degrees of the junctions, one by one, remove all input-
independent junctions which occur in cycles with non-input-independent junc-
tions, determine the classes of junctions belonging to the same cycles, and
then determine the maximal subnets of degree zero.

L8

—— The University of Michigan + Engineering Research Institute

A rank can then be assigned to each maximal subnet inductively. A
maximal subnet which has no net inputs or whose only inputs are net inputs is
of rank O. A maximal subnet which has at least one input from another maximal
subnet of rank r and no inputs from maximal subnets or rank greater than r, is
of rank r+l. See Fig. 5 for an example of ranks. There may, of course, be
several maximal subnets of the same rank. It is clear that every maximsl sub-
net has a unique rank, for there cannot be two such subnets drivin% each other,
else they would not be maximal (cf. Theorem IX of Burks and Wright~). It is
worth noting that if each maximal subnet of a net is replaced by a single box
with inputs and outputs, the result is a diagram without cycles. The following
structure theorem summarizes these results.

THEOREM 5: Any net in reduced form may be uniquely decomposed into
(one or more) maximal subnets, each of which has a unique degree and
rank.

We conclude this subsection with a conjecture: For any degree 4,
there is some transformation not realized by any net of degree d. This means
that there is no maximal degree such that any transformation can be realized
by a net of this degree. Our grounds for making this conjecture are as follows.
Consider counters with one input, designed to produce an output modulo m. When
m is a power of two, one can construct a sequence of binary ¢ounters, each of
degree one, each driving its successor, except the last one, which drives
nothing but produces the desired output, and the whole net will be of degree 1.
When m is not a power of two, the standard way of constructing the desired
counter is to take a counter modulo a power of two, sense with a switch when
it reaches m-1, and use that information to clear the counter back to zero.

But such a feedback loop produces a net of arbitrarily high degree. Consider-
ations of this sort lead us to believe that the conjecture is true.

4.2, TRUTH FUNCTIONS AND QUANTIFIERS

We have already indicated (Section 2.2) the close correspondence be-
tween switching nets (switches) and the theory of truth functions (the proposi-
tional calculus, Boolean algebra). That correspondence permits us to assign
variables to switch inputs and to associate with each switch output a truth-
functional expression which is a truth function of the input variables for that
switch. Thus we can represent the output of a switch as an explicit function
(in particular, a truth function) of its inputs.

It is natural to seek analogs for well-formed nets in general. We
will give an analog for nets of degree zero and then discuss the problem fér
nets of arbitrary degree.

Consider first nets with delays but without cycles. For these we can
express each output as an explicit function of the inputs by using the theory
of truth functions enriched with the delay operator 8. Thus in Fig. 5

49

—— The University of Michigan + Engineering Research Institute

Eo = 8A;. That this can always be done for noncyclic nets can be proved from
the formation rules (with rule 5 deleted, of course); the considerations in-
volve generalizations of those connected with the concept of rank in Burks and
wright,t p. 1361 ff.

We next mention two theorems for delay nets without cycles. The
first concerns shifting a delay operator across a logical connectivej for
example, 3(A & B) = A & ®B. To prove this formula, we apply the definition
of & to both sides:

8[A(0) & B(0)] = BA(0) & dB(0) = O
8[A(t+1l) & B(t+1)] = ©SA(t+1l) & 8B(t+l) = A(t) & B(t)
The legitimacy of this operation is connected to the fact that conjunction is
a positive truth function (i.e., has the value zero when all its arguments are

zero). In general, if P is a positive truth function, the following holds:

SP(Ay, Az, +..) P(8A1, SAz, ...)

1]

Both v and # are also positive truth functions. A negative truth function is
one which has the value one when all arguments are zero; ~; |, i, =, and D are
examples. To develop analogous principles for these, we need an operator &'
defined by

1

8'A(0)

S'A(t+1) A(t) .

If N is a negative truth function, we have
8'N(Ay, Az, ...) = N(BA;, BAz, ...)

If the negative function is not tautologous (i.e., not true for all values of
its variables), then

a a
8N(Ay, Az, ...) = N(& YAy, 8 PAz, ...) ,

where each Sai is either & or &'. For example, 8~A =~3'A. Note that two
formulae which are the same except for the absence or presence of primes on
deltas describe two functions which differ only initially; after some fixed
time which is determined by the number of deltas involved they are equivalent.
Shifting deltas across truth-functional connectives is equivalent to shifting
all delay elements to inputs, so the resultant net consists of delays followed
by a switch. This theorem can often be used to simplify'expressions and nets.
For example, consider a net which realizes 5(8A # A) # (BA # A). Applying the

50

g R e

—— The University of Michigan + Engineering Research Institute

theorem, we get (85A ¥ ®A) # (8A # A), which by the theory of truth functions
reduces to 55A ¥ A.

The second theorem concerns input-independent transformations. By a
result of Section 2 every such transformation is periodic, and hence is of the
form ¢7&7i}1 ..., Where ¢ and O are binary words. For example, in
1010100100100... @ is 1010 and @ is 100. We call the length of & in bits the
periodicity of the transformation, assuming that & is of minimum length. The
periodicity of our example is three (not six, or nine, or etc.). The second
theorem states that the class of input-independent transformations realized by
cycle-free nets is equivalent to the class of periodic transformations of
period one. We omit a detailed proof. The essential point in showing that
every input-independent transformation realized by a cycle-free net is of period
one lies in the fact that an automaton without cycles cannot remember anything
for more than a fixed period of time. To show that every periodic transforma-
tion of period one can be realized by a noncyclic net, we can use part of the
construction of the figure for Theorem XIII of Burks and Wright.:L With this
construction we can realize any transformation of the form $0000.... To
realize a transformation of the form V11ll..., we feed Y0000. . . through a
negation element, where ¥ is the bitwise complement of V.

Consider next input-independent nets, i.e., nets all of whose inter-
nal junctions realize input-independent transformations. These nets may have
cycles. Nevertheless, we can express the behavior of a net output as an ex-
plicit function of the inputs (in a vacuous sense) without using quantifiers.
To do so it suffices to state the times at which the junctions are active.
Thus, for F(t) = 11101010l..., we have F(t) = [(t = 1) v (t = O mod 2)]. We
can now let an input of a noncyclic net be driven by an input-independent
Junction, and by making an appropriate substitution still obtain an expression
for the output as an explicit function of the inputs. Thus, given

C(t) = Ao(t) & A(t) ,

we can identify A; with F above and obtain

c(t) A (t) &3[(t =1) v (t = 0 mod 2)]

1l

Bo(t) &[(t=2) v {(t>0) &(t = 1 mod 2)}]

We can further extend out theory of truth functions to include expressions
like those Jjust used. By adding t = a, t > a, (t-a) = ¢ mod b, where t is a
variable and a,b, and c are integers, we can describe any periodic function
(using, of course, the truth-functional connectives). We call the theory

51

—— The University of Michigan - Engineering Research Institute

obtained by adding these symbols and the operator & the extended theory of
truth functions. It is clear from the preceding discussion that the following

theorem holds.

THEOREM 6: For every junction of a net of degree zero, we can effective-
ly construct a formula of the extended theory of truth functions which
describes the behavior of the Jjunction as an explicit function of the
behavior of the inputs.

This theorem provides the motivation for our decision in the pre-
ceding subsection to classify input-~independent Jjunctions occurring in cycles
along with non-input-independent Junctions not occurring in cycles, for both -
can be handled by our extended theory of truth functions. A much more diffi-
cult problem is to find formulae which describe the behavior of Jjunctions of
degree greater than zero as explicit functions of the net inputs. The natural
place to seek such formulae is quantification theory, the next step beyond
truth-function theory in the usual development of symbolic logic.

The theory of quantifiersuses, in addition to the truth-functional
connectives, the quantifiers "(x)" ("all x"), "(dx)" or "(Ex)" ("some x"), etc.
The functional expressions of net theory "A(t)," "B(t+3)," etc., are clearly
monadic propositional functions or predicates. An essential feature of a
deterministic net is that an output C(t) cannot depend on any inputs for times
greater than t; hence the quantifiers used must be bounded These bounds may
be expressed by predicates such as "x < t" and "x Sy < t," which are basi-
cally dyadic (the second is triadic but is easily reduced to dyadic predi-
cates). Hence the required form of quantification theory involves monadic pre-
dicates and bounded quantifiers ranging over the nonnegative integers.

Figure 6A shows a very simple cyclic net; it is described by the
bounded quantifier expression

(k.2-1) E(t) = (Ex):x < t.A(x) ,

which states that E is active at t if and only if A has been active at some
prior time. The slightly more complicated cyclic net shown in Fig. 6B is
described by the quantifier expression

L]

(4.2-2) C(t) (Ex)t:x S toho(x):.(y):x S y € t.DA.(y) ,

which asserts that C 1s active at time t 1f and only if there is some nonlater
time x at which A, was active and such that at that time and all later times

A, was active. It is easy to give examples of quantifier formulae for much
more complicated nets with cycles. Whether or not formulae of this type can
be found for arbitrary w.f.n. is an open question.

52

—— The University of Michigan « Engineering Research Institute

Al

’ T () (O

(A)
(B)

Fig. 6. Two simple nets.

It should be noted that in the above examples the quantifier expres-
sions do describe the output as an explicit function of the inputsj i.e., the
only function variables on the right are input variables. That is analogous
to using a truth-functional expression to describe a switch output as a truth
function of its inputs alone. It stands in contrast to the recursive methods
for describing net behavior used previously, in which the output was expressed
as a function not only of the input junctions of the net but also (in general)
of the internal junctions (at an earlier time). In some cases such a recursive
formulation is the natural way of specifying the behavior of a desired circuit.
On the other hand, it is often simpler and more direct to specify the behavior
of a net in terms of the inputs alone by means of quantifiers and simple arith-
metic predicates like "is odd," "is between m and n;" etc. Hence it is of in-
terest to develop a form of quantification theory that will facilitate this
method of characterizing en autometon and to find both effective (in the purely
theoretical sense) and practical ways of passing from formulae in the calculus
to the corresponding automaton nets and vice versa.

The problem of finding a quantifier formula for a net characterized
recursively may be viewed as one of converting recursive definitions into ex-
plicit ones. As we have remarked in Section 2.2, the transformation realized
by each delay output of a net is primitive recursive relative to the net in-
puts. Theoretically one can use the well-known procedures for converting prim-
itive recursive functions (cf. Hilbert and Bernays,l! pp. 412-421) to obtain
the desired result. As it turns out, however, this method produces quantifier
expressions in which some quantified variables range not over time but over the
history of the states of the delay outputs. The quantifier expressions so ob-
tained are intuitively always no more and actually less transparent than the
corresponding recursive characterization.

4,3 NERVE NETS

We will close this paper with a few remarks about nerve nets and cycles
in nets. A nerve net is a special case of a well-formed automaton net, in which

25

—— The University of Michigan « Engineering Research Institute

each neuron consists of a positive switching element driving a delay element.
Hence our general results apply to nerve nets. Not all transformations realized
by well-formed nets can be realized by nerve nets.

According to Theorem 2, every transformation realized by a w.f.n. can
be realized by a decoded normal form net. By the results of Section 4.1 the
starter of a decoded normal form net may be constructed without cycles. Hence
we can construct a decoded normal form net whose cycles pass through conjunc-
tions and delays only. Hence every transformation realized by a w.f.n. can be
realized by a w.f.n. in which the only positive switches occur in cycles. A
neural net is a net in which only positive switches occur in cycles. It differs
from a decoded normal form net in two basic respects: first, it has no starter,
and second, every switch is combined with a delay. Hence, if a starter is added
to the system of nerve nets, every automaton transformation can be realized by
a nerve net, except that the nerve-net output may be later in time because each
neuron has a delay built into it. Usually the total time lag can be made two,
because a disjunctive normal form expression, e.g., (p-a) v (BZq), is a dis-
Junction of conjuncts (see, for example, Kleene,ll Theorem 3).

Kleenell nhas investigated the logic of nerve nets in some detail. He
analyzes nets in terms of the kinds of events (input histories) they can detect,
and he establishes the result that an event can be detected by a net if and
only if the event is regular (Theorems 3 and 5). The reader is referred to page
22 of Kleenell for a definition of “regular"; we note here merely that an im-
portant ingredient of the notion of regularity is periodicity. For example, an
input of the form ofHP...ofw, with an indefinite number of a's, is regular. It
is easy to construct a net which will be active at time t if and only if the
history of its input is of the form ofbfﬁ..’?iﬁﬂ, for an indefinite number of Q'sj
cf. the discussion of Section 4.2 on periodic transformations.

The pervasiveness and importance of cycles in the analysis of automata
and nerve nets are worth emphasizing. When cycles are permitted in automata
nets, these nets become much more powerful, and, correspondingly, the logic re-
quired to treat them becomes much more complicated. There are many ways in
which nets can involve cycles. We have just noted that by Kleene's results an
important aspect of any input history which can be detected or distinguished by
automata is the periodicity ingredient in its regularity. By our results of the
previous subsection the internal structure of an automaton is analyzable into
cycles; and by earlier results (see Section 2.2) any output which is independent
of the inputs is perlodic, and hence cyclic in character. The relations between
these various cyclic aspects of automata remain to be investigated. It would be
of interest to have a theory which shows how they are lnterconnected.

10.

11.

12.

The University of Michigan + Engineering Research Institute

BIBLIOGRAPHY

Burks, Arthur W., and Jesse B. Wright, "Theory of Logical Nets," Proc.
IRE, 41: 1357-1365 (1953).

Burks, Arthur W., and Irving M. Copi, "The Logical Design of an Idealized
General-Purpose Computer,” J. Franklin Inst., 261: 299-31k4 and 421-L36
(1956).

Shannon, Claude, "Computers and Automata," Proc. IRE, 41: 1234-1241
(1953).

Rochester, N., J. H. Holland, L. H. Haibt, and W. L. Duda, "Tests on a
Cell Assembly Theory of the Action of the Brain, Using a Large Digital
Computer,” IRE Trans. on Information Theory, 1956, pp. 80-93.

Turing, A. M., "On Computable Numbers, with an Application to the Ent-
scheidungsproblem," Proc. London Math. Soc. (Series 2), L2: 230-265
(1936-37), with a correction, ibid., 43: 5kk-546 (1937).

Kleene, S. C. Introduction to Metamathematics. New York: D. Van
Nostrand Company, Inc., 1952.

Wang, Hao, "A Variant to Turing's Theory of Computing Machines" (to be
published in J. Assn. Computing Machinery).

Wang, Hao, "Universal Turing Machines: An Exercise in Coding" (to be
published).

von Neumann, John, "The General and Logical Theory of Automata," pp. 1-41
in Cerebral Mechanisms in Behavior, John Wiley and Sons, 1951.

Kemeny, John G., "Man Viewed as a Machine," Scientific American, 192:

58-67 (1955).

Kleene, S. C., "Representation of Events in Nerve Nets-and Finite Auto-
mata,"” pp. 3-41 in Automata Studies, edited by C. E. Shannon and J. Mc-
carthy, Princeton Univ. Press, 1956.

Shannon, Claude, "A symbolic analysis of relay and switching circuits,”
Trans. AIEE, 57: 713-723 (1938).

55

13.

1h.

15.

16.

17.

i e e

The University of Michigan « Engineering Research Institute

Burks, Arthur W., Robert McNaughton, Carol H. Pollmar, Don W. Warren, and
Jesse B. Wright, "Complete Decoding Nets: General Theory and Minimality,"
J. Soc. Ind. Appl. Math., 2: 201-243% (1954).

De Turk, J. E., A. L. Garner, J. Kautman, A. W. Bethel, and R. E. Hock.
Basic Circuitry of the MIDAC and MIDSAC. Ann Arbor: Univ. of Mich.
Press, 1954.

Buck, D. A., "The Cryotron—A Superconductive Computer Component," Proc.

IRE, 4b: 482-493 (1956).

Moore, Edward F., "Gedanken-Experiments on Sequential Machines," pp. 129-
153 in Automata Studies, edited by C. E. Shannon and J. McCarthy, Prince-
ton Univ. Press, 1956.

Hilbert, D., and P. Bernays. Grundlagen der Mathematik. Vol. 1. Berlin:
Springer, 193kL.

56

The University of Michigan

Alabama

The Air University Libraries
Maxwell Air Force Base, Alabama

California

Applied Mathematics and Statistics
Laboratory

Stanford University

Stanford, California

Department of Mathematics
University of California
Berkeley, California

Commander

Air Force Flight Test Center

Attn: Technical Library

Edwards Air Force Base, California

The Rand Corporation
Technical Library

1700 Main Street

Santa Monica, California

Director, Office for Advanced
Studies, Air Force Office of
Scientific: Research

Post Office Box 2035

Pasadena 2, California

Commander

Western Development Division
Attn: WDSIT

Post Office Box 262
Inglewood, California

Connecticut

Department of Mathematics
Yale University
New Haven, Connecticut

+ Engineering Research Institute

DISTRIBUTION LIST
(One copy unless otherwise noted)

Florida

Commander

Air Force Armament Center
Attn: Technical Library
Eglin Air Force Base, Florida

Commander

Air Force Missile Test Center
Attn: Technical Library
Patrick Air Force Base, Florida

Illinois

Department of Mathematics
Northwestern University
Evanston, Illinois

Institute for Air Weapons Research
Museum of Science and Industry
University of Chicago

Chicago 37, Illinois

Department of Mathematics
University of Chicago
Chicago 37, Illinois

Department of Mathematics
University of Illinois
Urbana, Illinois

Maryland

Institute for Fluid Dynamics and
Applied Mathematics

University of Maryland

College Park, Maryland

Mathematics and Physics Library
The Johns Hopkins University
Baltimore, Maryland

57

The University of Michigan -

T G

‘Engineering Research Institute

DISTRIBUTION LIST (Continued)

Massachusetts

Department of Mathematics
Harvard University
Cambridge 38, Massachusetts

Commander

Air Force Cambridge Research Center
Attn: Geophysics Research Library
L. G. Hanscom Field

Bedford, Massachusetts

Commander .

Air Force Cambridge Research Center
Attn: Electronic Research Library
L. G. Hanscom Field

Bedford, Massachusetts

Michigan

Department of Mathematics
Wayne University

Attn: Dr. Y. W. Chen
Detroit 1, Michigan

Willow Run Research Center
University of Michigan
Ypsilanti, Michigan

Minnesota

Department of Mathematics
Folwell Hall

University of Minnesota
Minneapolis, Minnesota

Department of Mathematics
Institute of Technology
Engineering Building
University of Minnesota
Minneapolis, Minnesota

Missouri

Department of Mathematics
Washington University
St. Louis 5, Missouri

Missouri (Concluded)

Department of Mathematics
University of Missouri
Columbia, Missouri

Linda Hall Library
Attn: Mr. Thomas Gillis
Document Division
5109 Cherry Street
Kansas City 10, Missouri

Nebraska

Commander

Strategic Air Command
Attn: Operations Analysis
Offutt Air Force Base
Omgha, Nebraska

New Jersey

The James Forrestal Research Center
Library

Princeton University

Princeton, New Jersey

Library
Institute for Advanced Study
Princeton, New Jersey

Department of Mathematics
Fine Hall

Princeton University
Princeton, New Jersey

New Mexico

Commander

Holloman Air Development Center
Attn: Technical Library

Holloman Air Force Base, New Mexico

Commander, Air Force Special Weapons
Center, Attn: Technical Library
Kirtland Air Force Base, Albuquerque,

New Mexico

58

The University of Michigan

Engineering Research Institute

DISTRIBUTION LIST (Continued)

New York

Professor J. Wolfowitz
Mathematics Department
White Hall

Cornell University
Ithaca, New York

Department of Mathematics
Syracuse University
Syracuse, New York

Mathematics Research Group
New York University

Attn: Professor M. Kline
45 Astor Place

New York, New York

Department of Mathematics
Columbia University

Attn: Professor B. 0. Koopman
New York 27, New York

Department of Mathematical Statistics
Fayerweather Hall

Attn: Dr. Herbert Robbins

Columbia University

New York 27, New York -

Mr. I. J. Gabelman

Rome Air Development Center
Attn: RCOS

Griffiss Air Force Base
Rome, New York

Commander

Rome Air Development Center
Attn: Technical Library
Griffiss Air Force Base
Rome, New York

Institute for Aeronautical Sciences
2 East 64th Street
New York 21, New York

59

North Carolina

Institute of Statistics

North Carolina State College of
A and E

Raleigh, North Carolina

Department of Mathematics
University of North Carolina
Chapel Hill, North Carolina
Office of Ordnance Research (2)
Box CM

Duke Station

Durham, North Carolina

Department of Mathematics
Duke University

Duke Station

Durham, North Carolina

Ohio

Commander

Air Technical Intelligence Center
Attn: ATIAE-4

Wright-Patterson Air Force Base, Ohio

Commander

Wright Air Development Center

Attn: Technical Library
Wright-Patterson Air Force Base, Ohio

Commander

Wright Air Development Center
Attn: ARL Technical Library, WCRR
Wright-Patterson Air Force Base, Ohio

(2)

Commandant : (2)
USAF Institute of Technology
Attn: Technical Library, MCLI

Wright-Patterson Air Force Base, Ohio

Chief, Document Service Center (10)

Armed Services Technical Information
Agency, Knott Building

Dayton 2, Ohio

r—— The University of Michigan

Pennsylvania

Department of Mathematics
Carnegie Institute of Technology
Pittsburgh, Pennsylvania

Department of Mathematics
University of Pennsylvania
Philadelphia, Pennsylvania

Tennessee

Commander

Arnold Engineering
Development Center

Attn: Technical Library

Tullahoma, Tennessee

Dr. Alston S. Householder

Oak Ridge National Laboratory
Post Office Box P

Oak Ridge, Tennessee

Texas

Defense Research Laboratory
University of Texas
Austin, Texas

Department of Mathematics
Rice Institute
Houston, Texas

Commander

Air Force Personnel and Training
Research Center

Attn: Technical Library

Lackland Air Force Base

San Antonio, Texas

Wisconsin

Department of Mathematics
University of Wisconsin
Madison, Wisconsin

Mathematics Research Center
Attn: R. E. Langer
University of Wisconsin
Madison, Wisconsin

Engineering Research Institute

DISTRIBUTION LIST (Concluded)

Washington, D. C.

Human Factors Operations Research
Laboratories

Air Research and Development Command

Bolling Air Force Base

Washington 25, D. C.

Chief of Naval Research (2)

Department of the Navy

Attn: Code 432

Washington 25, D. C.

Department of Commerce
Office of Technical Services
Washington 25, D. C.

Director of National Security Agency
Attn: Dr. H. H. Campaigne
Washington 25, D, C.

Library
National Bureau of Standards
Washington 25, D. C.

National Applied Mathematics
Laboratories

National Bureau of Standards

Washington 25, D. C.

Headquarters, USAF

Director of Operations

Attn: Operations Analysis Division,
AFOOP

Washington 25, D. C.

Commander (2)

Air Force Office of Scientific
Research, Attn: SROAM

Washington 25, D. C.

Commander

Air Force Office of Scientific
Research, Attn: SRRI

Washington 25, D. C.

Belgium

Commander

European Office, ARDC
60 Rue Ravenstein
Brussels, Belgium

(2)

60

B

