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PREFACE

The present monograph aims to formalize the relation
between two-valued logic and digital computing circuits. It
will be followed by another in which a detailed application of
the present theory will be given.

An informal introduction is included for the benefit
of those who are not specialists in the field of symbolic logic.

The aputhors wish to thank Carl H, Pollmar for many
helpful suggestions and Paul Henle for suggesting the basic idea
of Theorem 5-5.

Arthur W. Burks

Jegse B. Wright

Engineering Research Institute
University of Michigan
December 23, 1952
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INFORMAL INTRODUCTION

The present monograph deals with some of the theoretical aspects of
the application of two-valued symbolic logic to digital computing circuits.

The basic entities of any formal theory are of two kinds: the con-
cepts which constitute the subject matter of the theory, and the principles
involving these concepts. We may illustrate this distinction with the example
of a two-valued propositional logic, one of the logics studied in this report.
The concepts of this logical theory are: propositions which are true (have
the value 1 ) or false (have the value O ); variables ranging over these
propositions ( P, 4, ', ... ); the logical connectives negation (not, symbol-
ized by ~), inclusive disjunction (either p or gq or both, or p v q ),
exclusive disjunction (either p or q but not both, or p # q ), conjunc-
tion (and, or =+« ), implication (if p then q , or p Dq ), and equivalence
( p if and only if gq , O D = q ). The principles of the theory are such
statements as, for all values of p, P v~p ; for all values of p, q, r, s,

Mpvaqvrvs) s (vp-ng o~ oo o~g)

The application of a formal theory involves interpreting the basic
concepts of the theory so that the principles of the theory become applicable.
We will illustrate the application of a two-valued propositional legic to
electronic digital computing circuits with reference to the static units of
the Burroughs Pulse Control Equipment. Suppose we have a Type 1603A Mixer
driving a Type 1901A Inverter. Assign to each signal wire of the circuit a
distinct variable; e.g., assign a, b, c, d to the input wires of the Mixer,
f to the output wire of the Mixer (which is also the input wire of the In-
verter), and g to the output wire of the Inverter. Let the value 1 of
a variable mean that the wire it represents is at ground potential and let
the value 0 mean that the wire it represeats is at -23 volts. Then the
Mixer realizes (corresponds to) a four-variable inclusive disjunction, for
its behavior is characterized by the equation f=(avbvevd). Simi-
larly, the Inverter 1s a representation of negation, for its behavior is
characterized by the equation g = ~f . The relation between the inputs of
the circuit and its output is then expressed by g=~(a vbvecvd) . Since
we have characterized the behavior of the Mixer and Inverter by means of the
logical concepts of ~ and v we may apply the principles of our logic to
the analysis of the circuit. Applying the principle that ~(pvqvr v s)
= (vp c~q - Ar - ~g) we find that g = (va *~b * ~c * ~d) , i.e., that
the output is at ground potential if and only if all inputs are at -23 volts.

Sheffer showed that all the connectives of the two-valued proposi-
tional logic could be defined in terms of a single one, the stroke function
(~p v~q) . In constructing our theory we found it simpler to work with one
connective than with many, so we took as our basic logical element a stroke

: element,vsymbolized'by g r , where r = (vp v~q) . Nets of stroke

‘elements can be constructed to represent any expression composed of p, q,
etc., and the logical connectives of the two-valued propositional calcu-
lus. For example, r = (p v q) is represented by
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=z p

= (va v~b) and substituting for a and b we have T = ~{(vp VD) VA~

o~

~Q V ~q) ; by the principle of logic that ~(p v q) = (™ -+ ~q) we have r
~NAD * ~vap) ¥V (~~g ¢ ~~g) . Using the principle of double negation, we

have r = (p'p) v (q-q) and hence by the principle that p = (p-p) we have

r=(pvgq) . Nets like these are investigated in the present monograph under

the name "stroke nets".

A stroke net has no capacity to store or remember information. For
this purpose we introduce another element, the delay element g —[ }—>7f .
It represents a circuit which receives a standard pulse and gives out a stand-
ard pulse after a standard delay; this is normally accomplished by means of
delay lines and circuits synchronized by means of uniformly spaced standard
pulses produced by a "clock". We may represent the behavior of a delay element
by the equations, f5 =0, fi 1 %8¢, where t ranges over the discrete
time points O, 1, 2, ..., and f;, g¢, etc. take on the values 0 or 1
(e.g., if the wire f has a pulse at t , then fi =1 ; otherwise fy =0 ).
The logical theory.of these functions is an extension of two-valued proposi-
tional logic, a form of what is called two-valued functional logic. In the
present monograph we work mainly with the two-valued logic of these time func-
tions fy, g¢, etc., and treat the propositional logic as a subcase of this
more general logic. This logic is applied to nets made of stroke and delay
elements in much the same way the propositional logic is applied to stroke
nets. Given a net N we label its junctions with fy, g, etc. and write
for each stroke element an equation of the form f = Sgh (abbreviating fy =
~gt Vv ~hy ) and for each delay element an equation of the form f = Dg (ab-
breviating fo =0, fi, = g4 ). We then study the net by studying the logi-
cal properties of its associated equations.

One of the main questions investigated in this monograph by means of
symbolic logic is: To what class of nets do digital computing circuits corre-
spond? We shall summarize briefly our answer to this question. There are nets
which are not even logically well-behaved, i.e., whose equations do not have
logically consistent and unique solutions. Since no net whose logical behavior
is inconsistent or nonunique can be physically realized, we define a class of
well-behaved nets (Section 3) which excludes all such cases. However, not all
well-behaved nets are physically realizable, so further narrowing of the class
of nets is required before we reach a class which corresponds to physical cir-
cuits. There are well-behaved nets containing delay elements such that the
input state of the delay element at t 1is determined by its output state at
time t+1 ; hence we define a class of deterministic nets (Section L4) which
excludes these cases. Finally, there are deterministic nets in which there
is a backward passage of causal influence through stroke elements; a class of
well-formed nets is defined (Section 5) so as to exclude these. We thus arrive
at a class of nets which corresponds very closely to the class of digital com-
puting circuits. The exact correspondence is discussed in Section 6; it is
roughly as follows. There are some nets not well-formed which can be physically



realized. But for any such net Nj , there is a well-formed net No which can
perform all the logical operations of N; and which in many cases is at least
as small as Ny .

A second major question investigated in the present monograph is:

What kinds of logical operations can be performed by various kinds of nets?
An answer for each kind of net is given in the corresponding section.
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THEORY OF LOGICAL NETS

1. INTRODUCTION

It has been shown by Shannon® and McCulloch and Pitts** how two-valued#
symbolic logic may be employed to characterize the behavior of digital computing
circuits; e.g., relay circuits,ft digital electronic computing machines, neuron
nets. The purpose of the present paper is to help place the application of two-
valued logic to. such circuits on a formal and rigorous basis,

‘We are concerned with two kinds of entities, logical nets and digital
computing circuits. A net N usefully represents a circuit C (alternatively,
C physically realizes N ) when the physical behavior of C 1is mirrored in an
idealized but nevertheless useful way by the logical behavior of N . To realize
the purpose mentioned in the preceding paragraph, we will define various kinds of
nets, study their formal properties, and discuss the extent to which they can be
physically realized.

1 Claude E. Shannon, "A Symbolic Analysis of Relay and Switching Circuits,”
Transactions g£ the American Institute 9£ Electrical Engineers éz, T13-723%
(1938). ’

1

Warren L. McCulloch and Walter Pitts, "A Logical Calculus of the Ideas Immanent
in Neuron Activity," Bulletin of Mathematical Biophysics 5-6, 115-133 (19L3-Lk).
The diagrams we use are similar to John von Neumsnn's modification of the dia-
grams in the above article; cf. Douglas R. Hartree, Calculating Instruments and
Machines, pp. 97-11l1.

¥ Though the present paper is concerned exclusively with two-valued logic, its
results are to a certain extent applicable to circuits containing wires having
more than two significant states. This application can be made by allowing

" gseveral wires of a logical net to correspond to a single wire of a physical
circuit. E.g., ten of the sixteen different states of four binary net wires
can represent tén-discrete electrical-states of 'a single eircuit wire.

F¥The theory developed here is directed mainly to electronic computer circuits,
though it is to a degree applicable to relay circuits.



2. PRIMITIVE ELEMENTS

Since the physical components used in digital computing circuits per-
form either a logical function or a memory# function (or both), the logical
analysis of these circuits is facilitated by employing distinct primjitive ele-
ments for these two functions. Moreover, a single primitive is sufficient for
each function, so only two primitive elements are required: +the stroke element
and the delay element.

A stroke element consists of a nucleus with two inggt wires and an
output wire and is symbolized by ::ji:}——> . Each (net) wire has one of two
states (0, 1) at each discrete point of time 0, 1, 2, 3, ... . Moreover,
for each time point t the output wire of a stroke element is in the state O
if and only if both input wires are in the state 1 ; cf. Shéffer's stroke func-
tion. A delay element consists of a nucleus, an input wire, and an output wire,
and is symbolized by —> }—> . Each of its wires has one of two states (0,
1) at each discrete point of time, as in the case of the stroke element. The
output wire of a delay element is in state O at t = 0 , and thereafter it
possesses the state possessed by the input wire at the prior point of time.

A net is a finite array of elements interconnected so that only the
free ends of wires are connected. A junction (of a net) is a point common to
one or more ends of wires. If there is no arrowhead at a junction it is an
input’ junction; otherwise it is an output junction. An output junction all of
whose output wires are stroke element output wires is a sfroke‘output Junction;
otherwise it is a delay output junction'.

We have chosen these primitives because they possess all the following
three properties: (1) nets of them are very useful in studying the behavior of
digital computing circuits, (2) they are sufficiently simple to permit convenient
logical analysis, and (3) small nets of them correspond to the physical compon-
ents of digital computers. There are, of course, logically equivalent sets of
primitives. The stroke element may be replaced by a conjunctive element and a
negative element or by a disjunctive element and a negative element. The stroke
element may also be replaced by a material implication element, the equivalent

of . Material implication is not by itself a sufficient basis

for the propositional calculus, but it and the constant falsehood are;**\the lat-
ter may be realized by [:fEEE;:jf in our system, since f(t) = 0 for all +t .

¥ The British "storage" is better than the American "memory" here, since what we
call memory components do not by themselves recall or associate information,
but only store it.

ttor. Alonzo Church, Introduction to Mathematical Logic, Part I, p. 3.
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Finally, the delay element may be replaced (in the presence of the
stroke element) by a binary counter with an input for counting and an output
in the state O or 1 according to the state of the counter, or by a flip-
flop with a set input, a reset input, and an output. It is not difficult to
show that the equivalent of a delay element can be constructed from either of
these and the stroke element.



3. WELL-BEHAVED NETS

For a net N to usefully represent a circuit C there must be a
correlation between some of the wires (or sets of wires) of N and some of
the wires (or sets of wires) of C such that the states of the designated
wires (or sets of wires) of C are represented by the states of the corres-
ponding wires (or sets of wires) of N . DNow in any well-behaved circuit
the state of every wire at every time +t is determinate, and, moreover, all
wires joined to the same junction are in the same state. Consequently, we
are interested only in nets in which (1) the state of every wire is uniquely
determined by the defining properties of the primitive elements and (2) the
states of all wires attached to a given junction are the same. We shall

call such nets well-behaved (w.b.).F C<§C:F“9f§3[:Ffj is not well-behaved

because it does not meet the first requirement,‘hhile ' is not well-

behaved because of the second requirement. - Physical circuits composed -of
components which in isolation realize stroke elements and which are connected
according to these diagrams would, of course, have some definite behavior (e.
g., the wires of such a circuit might oscillate between two states), but this
behavior would be controlled by factors we have deliberately omitted from our
idealization and would not mirror the logical behavior of the nets.

Tn this section we shall define precisely the class of well-behaved
nets. We begin by correlating to each net a set of logical equations descrip-
tive (in a way to be made clear) of its behavior. Any propositiomal function
of one variable which ranges over the natural numbers and whose values are O
(false) and 1 (true) will be called (simply) a function. We associate with
each junction of a net a distinct function variable. (Thesé variables will
also be used to name the junction and each of its wires.) A variable is an
input, output, stroke outpuf, or delay output variable sccording as its Jjunc-
tion is an input, output,'stroke output, or delay»output junctioh. ‘Finally,
we associate with each net N a set of equations E(N) obtained as follows.
For each stroke element with input wires g and h and output wire f write
the stroke equation f = Sgh , and for each delay element with input wire g
and output wire f write the delay equation f = Dg . .In accord with the in-
terpretation of our primitives, the first equation is equivalent to ft =
~gV~hy and the latter is equivalent to fo = 0 and ft+1 =8 s where ¢t
ranges over the natural numbers. It is sometimes convenient to have an infin-
ite sequence En(N), ..., E (N), ... of sets of equations derived from E(N)
as follows: Eg(N) is the result of replacing each stroke equation f = Sgh

*It is worth noting that a circuit might be well-behaved for a certain combina-
tion of inputs and not for others. This suggests defining a concept of well-
behavedness for nets which is relative to a certain class of input: sequences.
However, it is simpler to work with an absolute sense of well-behaved net and
this is what we will do here.
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of E(N) by fy = Sgghy and each delay equation f = Dg of E(N) by £,
- 20, while E{(N) (for each t > 0 ) is the result of replacing each f =
Sgh by fy = Sgghy and each f =Dg by fy =gy ; ‘

Given any set of (delay and stroke) equations, a net with which this
set is associated may be constructed as follows. Make a junction for each vari-
able occurring in the given set of equations and label it with that variable.
For each stroke equation f = Sgh ‘place a stroke element from g and h to
f and for each delay equation f = Dg place a delay element from g to f .
‘We shall make the correspondence between nets and sets of equations one-one by
arbitrarily identifying all sets of equations differing only with respect to
the variables used and with respect to the order of the variables following a
stroke operator.

The concept of a well-behaved net introduced informally in the first
paragraph of this section may be precisely defined in terms of the uniqueness
of the solution of the associated set of equations. A net N with input junc-

tions al, ceoy ad  and output Junctions bl, ceey bK  is well-behaved if and
only if for each sequence of functions al, ceey ad (J = 0) there exists a

unique sequence of functions bl, ..., oK (K > 0) such that the ad's nand
bE's satisfy E(N) .. (Here and hereafter when I = O , el ..., I is to
be interpreted as denoting the null sequence.)

. Some auxiliary notions, of use later, will now be defined. Let T
be any transformation or mapping from a sequence of functions fl, ..., fJ
(J=0) toa function g .¥ If g is-the same for all sequences, T 1is a
constant transformation. (Note that the values of the function g itself are

not necessarily the same; e.g., there is a constant transformation to the se-
quence 01010l... .) A transformation may be regarded as an operation on zero
or more denumerable sequences of binary digits ( 0's and 1's ), the values

of the corresponding functions for t =0, 1, ... . Thus the delay transforma-
tion D shifts the sequence it operates on one position to the right and places
a zero at its beginning. A junction g of a well-behaved net N realizes a
transformation T of I arguments (I = 0) if and only if among the input
junctions al, ..., aJ of N there are I of them (abl, ..., aPI) guch that
for each gequence of functions al, cee ad  the g which satisfies E(N) is
equal to T(ahl, cevs aPI) . A junction which realizes a constant transforma-
tion is called a constant Junction.

A constant transformation to g 1is periodic if and only if there are
integers x and y such that for every integer n , Stenx+y = St+y - .The
following theorem shows something concerning the logical power of well-behaved
nets.

#If a transformation T of I arguments (I = 0) and a transformation To
of J arguments (J > I) are such that there exists a sequence of numbers
i1 < ip < ... < i such that for all f%, ..., £J T(f'1, ..., £1I) =
Tg(fl, ceey fJ), then we shall call T; and T, the same transformation.
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Theorem 3-1: Every constant transformation realized by a well-
behaved net is periodic.

Proof: Consider a w.b.n: .:N fwith junctions gl, ey gK yhere gl is a con-
stent junction. Form N From it (with each gE becoming: 8% ) by connecting
to all input junctions of N . .Since gl realizes a constant trans-

formation, gl realizes the same transformation. Since every junction of i
is a constant junction, there is a single matrix M satisfying E(ﬁ) s Where
the rows of the matrix give the solution for the gk's and the columns mg,,
my, ... give the state of ‘¥ for times 0, 1, ... respectively. N has at
most 2K states, and hence for some x and y, m, = Myyy Form.a new ma-
trix M' such that for t< x, mf = my and for 2 x , m% = mti . We
will prove that g' is periodic by showing that M = M" . Any matrix satis-
fies E(N) if and only if (1) the first column satisfies Eo(N) and (2) for
every t greater than 0 the t-1st and t'th columns satisfy Et(ﬁ) . But if
t] and tp are both greater than zero, Ey (N) and Bt (W) differ only in
their arguments. Hence, condition (2) is eqiivalent to all pairs of adjacent
columns, relabelled for t =0 and t =1 , satisfying El(ﬁ) . Now any pair
m{ 1 and m{ (t> 0) satisfies E1(N) in this way, for all pairs m__; and
my satisfied El(ﬁj in this way, and my_y, my is the same pair as My 75 My
(since my = ).~ Since El is periodic, gl is also. Q.E.D.

it ok

My+y

A transformation T from al, ..., aJ to g (J=0) is primitive
recursive whenever g can be defined by the operations of primitive recursion
and substitution-from the successor function, the constant fumctions, the iden-
tity functions, and al, ceey ad .¥ Something concerning the class of trans-
formations realized by well-behaved nets is given by:

Theorem 3-2: There are primitive recursive transformations not
realized by well-behaved nets.

For example, the constant transformation to fy =1 for t a perfect square,
fy = 0 otherwise (i.e., 110010000l...) is clearly a primitive recursive trans-
formation, yet it is a constant transformation which is not periodic and hence
by Theorem 3-1 it cannot be realized by any well-behaved net. It is worth not-
ing in this connection that becauge of its infinite tape a Turing_machine** is
not a net in our sense. !

t See, e.g., S.C. Kleene, "Recursive Predicates and Quantifiers," Transactions
of the American Mathematical Society 53, 42 (1943).

Note that in this definition "function™ is used in a sense broader than that
defined earlier in this section, since it includes any single-valued function
-of one or more natural numbers whose values are natural numbers.

for. A. M. Turing, "On Computable Numbers, with an Application to the Entscheid-
ungs-Problem," Proceedings of the London Mathematical Society 42, 230-265 (1936-
37).
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4, DETERMINISTIC NETS

Not all well-behaved nets are physically realizable. Consider Ny :

m

It is well-behaved, with cy =1 (for all t ) and hence bp =0, by =
ayy1 end finally dg = ayyq . Thus, junction d "anticipates" the future
state of input junction a , and the delay element db performs a kind of in-
verse delay or predictive operation. Obviously no circuit can perform such a
predictive function, for there is no circuit component which can mirror the be-
havior of the delay element db . More generally, delay elements are intended
to represent mechanisms in which signals on input wires cause signals to appear,
after a suitable delay, on output wires, and we are interested primarily in nets
which allow this interpretation. In other words, we are interested in nets in
which all delay elements perform a memory or storage, rather than anticipatory
or predictive function. We will call nets of this kind deterministic nets.

_ Consider next No , formed from N; by joining a and e . Ng is
well-behaved, with eg =0, ey =1, by =et, and dy =1 . Though the
(constant) transformation to d can, in this case, be realized by a well-formed
net which can in turn be physically realized (cf. Theorem 5-T), it is neverthe-
less the case that the delay element db performs in Np a predictive rather
than a memory function, and that hence Npo 1is not deterministic. That db
does behave in this way may be seen by examining Eqy(Np) , E(Np) , etc.

Eo(N2) does not determine a unique value of do ; rather, both dy =1 and

dy = 0 satisfy Eg(Np) . It is only vhen E;(Np) is considered that the pos-
sibility of d = 0 is excluded. This analysis. leads directly to one definition
of deterministic net. Let N have input junctions al, ceey ad (F=0) and
output junctions bl, vesy bK . First definition: N is deterministic if and
only if for each sequence a%, ey ag; ves a%, cesy a% (t 2 0) there exists
a unique sequence b%, ceey b% satisfying the union of Equ(N), ..., E4(N) .

Where a net with input junctions is involved, this definition means
roughly that the states of the input junctions for the past and the present de-
termine the states of the output junctions for the present. An alternative con-
ception of determinism is that of the state of the net at the immediate past (t-1)
and the state of the input junctions at the present (t) determining the state
of the output junctions at the present. Since this conception is also useful,
we will give a second definition of determinism and then prove that the two

T



definitions are equivalent. Second definition: N _is deterministic if and
bnly if both of the following hold: (1) for each aé, ceey a% there exigts a
unique b%, ceey b% such that a%, ceuy ag; b%, ceey b% satisfies EO(N) H
and (2) if t > 0 then for each a%, vees Y5 eee; a%_l, ceey a%_l and b%,

R R b%_l, vens b%_l satisfying the union of E,(N), ..., Ei_1(N)
and each a% ...y 8¢ , there exists a unique b%, ..., by such that a%_l,
oo 8l qs 8t wes 8l pEg, o, YE 5 of, Lo, B satisfies Ey(N) . (If
J = 0 various of the sequences involved are to be taken to be the null sequence
as before.)

Theorem 4-1: The two definitions of "determinism" are equivalent.

Proof: That the second definition implies the first may be shown by a simple
induction. The proof that the first definition implies the second is ag follows.
Let N be deterministic by the first definition. Then af, ..., af; ...; af_q,
ceey a%_l determines a unique b%, cees b%; cee b%_l, ey b%_l satigfying the
union of En(N), ..., Ex_1(N) ; and both of these sequences plus a%, cee a% de-
termine a unique b%, cens b% satisfying the union of Eo(N), veey By_1(N) plus
E.(N) . But since Eg(N) involves only the al's and bX's at t-1 and t,
it follows that the a%_l, ceey a%_l; a%, ceny a%; b%_l, veey b%-l determines a
unique b%, cees b% satisfying E4(N). Q.E.D. This last argument makes use of
the fact that long-term memory (i.e., memory lasting more than one unit of time)
in a net is the result of a succession of unit delays. This would not be the
case, for example, if we had an additional two-wire primitiwve .element cap--

able of n units of delay, n > 1 ; if that were the case the two definitions
would not be equivalent.

The class of deterministic nets is a subclass of the class of well-
behaved nets:

Theorem L-2: Every deterministic net is well-behaved.
The proof of this is obvious from the definitions.

We shall next define some concepts which will be of use in characteriz-
ing nondeterministic as well as other kinds of w.b.n. Any junction to which two
or more output wires are connected is a multiple junction. A junction f directly
drives a junction g if and only if f is the input of a stroke element whose
output is g . (Note that the input of a delay element does not directly drive
its output.) f drives g if and only if there exists a sequence fl, f2, ceey
£l such that fl is f ) I is g , and fl directly drives i+l for i<
I . Note that the driving relation is transitive: if f drives g and g
drives h then f drives h . A stroke cycle is a sequence of junctions f£O,

, fI-1 guch that fi Mod I girectly drives f(i+l) Mod I |

It will be observed that N; and N, contain multiple junctions,
stroke cycles, and delay elements. Not every nondeterministic w.b.n. contains

8



a multiple junction, however, as the following net proves:

where the circle with the equivalence sign in it represents a net (construct-
able from stroke_elements) realizing b" = (b5 =a) . bﬁ = 1 and hence bt+1
= 1 and also bg = 1 . These two equations 1mp1g that bf,7 = 0 , which in
turn implies that bY,; = ~ay,, . Since bf =12 , it follovs that by =
~at,1 », and so the net is nondeterministic. On the other hand,

Theorem 4-3: Every nondeterministic w.b.n. contains a stroke cycle
and a delay element.

Tt will be simpler to give the proof of the first part in the next
section (immediately following the proof of Theorem 5-1). The second half may
be stated alternatively: every w.b. stroke net (a net constructed exclusively
of stroke elements) is deterministic. The proof of it is as follows. Let N
be a w.b. stroke net with input junctions al, ey ad  and output Jjunctions
bl, ..., b€ . Then E(N) contains no delay equations, all functions in E(N)
have t as an argument (never +t-1 ), and hence the state of the net at t
cannot place any restrictions on the state of the net at t-1 (and vice versa).
Therefore, for each a%, ey a% there is a wmique b%, ooy b% satisfying
Et(N) [ﬁince for each al, cesy aJ there is a unique bl, ..., b* satisfying
E(N)]. Q.E.D. The basic idea of this proof can be employed to prove a stronger
result concerning w.b. stroke nets, namely:

Theorem L4-k: All tfansformations realized by w.b. stroke nets are
truth-transformations.

The concept of truth-transformation is defined as follows. Some transformations
T (from al, ceey ad ) to g are equivalent to a sequence of mappings Tg, Ty,
.., each T, being from a sequence of J. truth-values to a single truth-value
(0,1) . If all Ty are identical, T is sald to be a truth-transformation.
The result that all transformations realized by w.b. stroke nets are truth-
transformations is a Jjustification of an earlier statement (Section 2) that the
stroke element performs only a logical function; a w.b. stroke net has no memory,
its state at a given time never depends on its state at a prior time and never
influences its state at a later time,




2. WELL-FORMED NETS

We referred earlier (Section 2) to physical components which perform
a logical rather than memory function and have represented these in our system
by stroke nets. 1In actual fact, these components function much the same as the
components realizing delay elements in that signals on their input wires cause
signals to appear, after a certain delay, on output wires. The differences be-
tween the temporal lag inherent in a logical component and that in a memory com-
ponent are that the former 'is generally smaller than the latter and generally
serves no useful purpose. On this account, and in the interest of logical sim-
plicity, our theory includes a temporal delay only in the delay element. As a
consequence, however, we should not expect the requirement of determinism to
eliminate all nets in which there is a backward passage of causal influence
through stroke elements. Thus in the w.b.n.

a

information "flows" from the output to the inputs of the stroke element Dc ,
yet this net is deterministic, with ay = ~cy = by . Since no component can
mirror the logical behavior of the, stroke element be (though of course the
transformation it realizes is easily realized physically), not all stroke ele-
ments in deterministic nets perform functions which can be duplicated by physi-
cal components.

In the present section we will define a class of nets, called well-
formed nets (w.f.n.), which excludes the example just discussed. For reasons
given in the next section, this is the most useful class of nets for the study
of the behavior of digital computing circuits. There are w.f.n. representing,
with various degrees of utility and directness, systems of neurons (in which
the time intervals are of the order of one millisecond), some systems of elec-
tromechanical relays (in which the time intervals are of the order of milli-
seconds), and many electronic computing machines composed of vacuum tubes,
crystal rectifiers, acoustic delay lines, and electrostatic storage tubes.

In particular, w.f.n. characterize very closely the behavior of that type of
electronic digital computer whose action is governed by a "clock" which is
the source of equally-wide equally-spaced standard pulses (with the time in-
terval between pulses being of the order of one microsecond).* In fact, our
theory is especially directed towards such computers. In this case, a 1

Fcf. Hartree, op. cit.
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represents the occurrence of a pulse and a O the absence of a pulse, or vice
versa.

The class of well-formed nets is defined recursively as follows, with
the understanding that no net is w.f. unless its being so follows from these
rules,

(1) (a) [Stroke rule:] A stroke element is w.f.
(b) [ﬁelay rule] A delay element is w.f.

(2) Assume Nl and Np are disjoint w.f.n. with junctiohs fl, cesy
£ and gl, ceey gK respectively.

(a) [ﬁuxtaposition rule] The juxtaposition of N; and Ny is
w.T.

(b) [Cascade rule | The result of joining jupctions fil, ...,
% of N, to distinct input junctions g"t, ..., g’ of
Ny regpectively is w.f.

(c) [Input connection rule] The result of joining input Jjunc-
tions fP and %4 of N; is w.f.

(a) [Cycle rule] If all the wires connected to fP of Ny are
delay element input wires, then the result of joining any
f9 *of N; to fP is w.f.

A w.f.n. N may conveniently be studied by means of E(N) . E(N)
is unitary if and only if no variable has more than one left-hand occurrence
(i.e., to the left of the equivalence sign in a stroke or delay equation) in
E(N) . E(N) is regular if and only if there is an ordering (called a regu-
lar ordering) of E(N) such that for all f if f has a right-hand stroke
equation occurrence in E(N) then there is no left-hand occurrence of f in
that or any later equation. The regular ordering of a regular set of equations
can be obtained by using the concept of rank. Ranks may be assigned to certain
of the junctions and corresponding equations of any net as follows. First, as-
sign the rank 0O to all input junctions and all delay output junctions to which
no stroke element output wires are connected. Then iterate as long as possible
the general step: Assign the rank r to all junctions f such that some junc-
tion directly driving f has rank r-1 and every junétion directly driving f
has a rank =< r-1 . Finally, to every equation f = —— which is such that the
junction f has a rank assign the rank of f .

Theorem 5-1: N possesses no multiple junctions if and only if E(N)
is unitary; and N contains no stroke cycle if and only if E(N) is
regular,

Proof: The first half is obvious. The "only if" part of the second half fol-
lows from the fact that the set of equations for a stroke cycle is not regular
and hence any set of equations containing them is not regular. That E(N) is
regular if N contains no stroke cycles may now be proved as follows. We
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prove first that since N contains no stroke cycles every Jjunction of N is
assigned a rank. Assume some junction f of N has no rank. Then there must
be a Jjunction gl which directly drives it which has no rank. In turn, there
must be a g2 directly driving gl and without rank, ad infinitum. But there
are only a flnlte number of Jjunctions in N , so some variable gi in the se-
quence g P g 5 ... must occur twice in this sequence. Hence N contains a
gtroke cycle, contrary to our assumption. Since every junction of N is as-
signed a rank, every equation of E(N) is assigned a rank, and these equations
may be arranged in order of ascending rank. We prove finally that this order-
ing is regular. Consider any equation of the form f = Sgh , where g is of
rank r . Then f 1is of rank = r+l ; any equation of the form g = — is
of rank r and hence must precede f = Sgh . Q.E.D.

Hl e

We next prove

Theorem 5-2: N is w.f. if and only if E(N) is both unitary and
regular,

Proof: We prove first that if N 1is w.f. it contains no multiple junctions
and no stroke cycles. A stroke element or delay element by itself (cf. the
stroke and delay rules) contains no multiple junctions or stroke cycles. More-
over, if Ny and No contain no multiple junctions or stroke cycles, the re-
sult of combining them by any of the four rules of combination will not contain
any multiple junctions or stroke cycles. It follows by Theorem 5-1 that if N
is w.f., E(N) is both unitary and regular. We will prove the converse by giv-
ing a stepwise process for constructing N on the basis of S , a regular or-
dering of E(N) . Let S; be that subsequence of S which consists of the
first 1 equations of S . The net associated with Sy 1is w.f. (by rules 1,
2c, and 2d) since E(N) is regular. Assume now that Nj is formed from S;_;
and is w.f. and consider the i'th equation of S . The element associated with
1t may have two input wires which are paired or not; in the former case use the
input connection rule to get N2 ; in the latter case take the element itself
to be Né . Ng may have no input wire connected to a Junctlon of N in N
Or one Or more such, in the former case juxtapose N2 and Nt ;5 in the latter
case cascade Nl onto N2 . Finally, consider the output f of N2 . Since
81 1is regularly ordered and unitary, the only occurrences of f other than
the left-hand occurrence in the last equation of S; are right-hand delay
equation occurrences in the equations of Si . Hence the output of N% can

be connected into the net (if necessary) by the cycle rule. Q.E.D.

Theorem 5-3: E(N) is regular if and only if every junction off N
has a rank.

Proof: 1In Theorem 5-1 it was shown that if every junction of N has a rank
then E(N) is regular; and also that if E(N) is regular, then N contains
no stroke cycles and that if N contains no stroke cycles then every junction
of N has a rank. Q.E.D.
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Thus the following four properties of N are equivalent: (1) N
is w.f., (2) N has no multiple junctions and no stroke cycles, (3) N has
fo multiple junctions and every junction of N has a rank, and (L) E(N)
is both unitary and regular, and any one may be employed as a criterion of
a w.f.n. The formation rules are naturally and simply applied when a net is
being constructed. Given a complicated net, however, it may be difficult to
determine whether or not it can be constructed by the rules. In this case
a test procedure based on criterion (5) is useful. Label all junctions of
rank O , stopping if any are multiple junctions (since then N is not w.f.).
Then iterate the following step as long as possible: label all junctions of
rank r , stopping if any are multiple junctions. If this procedure termin-
ates without a multiple junction being discovered, the N is w.f. if and only
if all junctions have been assigned ranks (by Theorem 5-3).

Theorem 5-4: Every w.f.n. is deterministic, and hence well-behaved.

(Note that the example given at the beginning of this section shows that the
converse does not hold.)

Proof: The determinism of a w.f.n. follows from the fact that (in the pres-
ence of unitariness) regularity is stronger than determinism, allowing not
only sequential computation with respect to time but also sequential computa-
tion at a given time. For each t the state of a w.f. N may be computed by
proceeding through a regular ordering S of E(N) as follows. If the equa-
tion at hand is a delay equation f = Dg , then for t =0, f5=0 and for
t>0, fy =841 where gi_7 is known from the state of the net at t-1 .
If the equation at hand is a stroke equation f = Sgh , then, since § 1is in
regular order, g and h have no left-hand occurrences in that or any later
equations of S . Hence g (h) either has a left-hand occurrence in an ear-
lier equation of S , in which case gt (ht) is already known from the pre-
ceding computation; or g (h) has no left-hand occurrence in any equation,

in which case it is an input variable and g (ht) is given. Since E(N)

is unitary, this procedure gives a unique value for each fy . Hence N is
deterministic and by Theorem 4-2 it is also w.b. Q.E.D. An alternative way
of looking at the computation is in terms of rank: the states of all junc-
tions of rank O may be determined, then those for rank 1 , etc.

By a procedure similar to that just used, we will now prove the
first half of Theorem 4-3, namely that every nondeterministic w.b.n. contains
a stroke cycle. This may be stated alternatively as: Every w.b.n. containing
no stroke cycles is deterministic. The proof is as follows. Let N be a
w.b.n. with no stroke cycles. By Theorem 5-1 E(N) is regular. Hence the
behavior of N can be computed in the manner indicated in the last paragraph,
and since N 1is w.b. the result will be unique.

We prove next a theorem concerning the nature of the subnets of a
w.f.n. Ny 1is a subnet of N if and only if Ny may be formed from N by
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a succession (perhaps null) of the following operations: (1) separating a wire
from a junction, and (2) deleting an element.

Theorem 5-5: N is w.f. if and only if all the subnets of N are
w.b. '

Proof: If N isg w.f., it contains no multiple Jjunctions or stroke cycles, and
hence neither do any of its subnets. Therefore each of its subnets is w.f. and
hence w.b. We prove next that if N is not w.f. it contains a subnet which is
not w.b. There are two cases to consider, according to whether N contains a
multiple junction or not. (1) Suppose N contains a multiple junction f such
that f = — and f = ... are in E(N) . Separate the input wires of the ele-
ments associated with each of the equations from their junctions. The result is
not w.b. (2) Suppose N contains no multiple junctions but does contain-a
stroke cycle fO, ..., L= | we may assume without loss of generality that the
associated sequence of equations is pl-1 = SfI'2 gI’Q, coss 0 = gri-1 gI"l_.
If any of these equations is of the form p = 599 , separate one of the input
wires of the corresponding stroke element from its junction, making it a net
input. Then if any gi input wire of an element corresponding to one of these
equations is connected to an output junction, separate it from that junction so
that it is a net input. The result is not w.b., as may be shown by applying

1's to all input junctions. Q.E.D.

We next state some theorems concerning the transformationsirealized by
w.f.n.

Theorem 5-6: A transformation is realizable by a w.f.istroke net ifnand
only if it is a truth-transformation.

Proof: We have already proved (Theorem 4-4) that all transformations realized
by w.b. (and hence by w.f.) stroke nets are truth-transformations, so it need
only be proved that all truth-transformations can be realized by w.f. stroke
nets., .Since Sheffer's stroke function is a sufficient primitive for defining
all truth-functions (in the logical sense), it is a sufficient primitive for
defining all truth-transformations. The process of definition involves sub-
stitution and the use of the same variable in more than one argument place;
these are mirrored by the cascade rule and the input connection rule, respec-
tively. Q.E.D. The last half of the theorem shows that (in the presence of
the formation rules) a stroke element is a sufficient primitive for our pur-
poses. It follows from the definition of truth-transformation that there are
only two constant truth-transformations: g =1 and its negation h{ =0 .

The former is realized by ﬁhe w.f.n. o > ¢ whith is df interest

Because it is a realization in cur system of a "eYock". (Note the fact—men-
tioned earlier in this section—that our theory is especially applicable to -
circuits synchronized by pulses from a standard clock.)

Theorem 5-T7: A constant transformation is realized by a w.f.n. if
and only if it is periodic.
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Proof: The "only if" part of this theorem follows from Theorems 3-1 and_5-h.
We prove the converse by showing how to construct a net realizing any g such

that 8tinx+y B Bty The net

from certain c's

(-;-'*/W dx-l

from certain adrg

g

1.

is a schematic construction of the desired net, where iJi:;(:>—€> represents
a J-input disjunctive net, readily constructed from stroke elements. Note that
co =1, Cg+l = 0, and in general ct =1 if and only if t =1 , while 'd%

=1 if and only if t = j+nx+y . For a particular constant transformation
to g this schema may be converted into a net realizing this transformation as
follows. If g = 1 for any t 1less than y , connect ¢t to one of the in-
puts of the disjunctive net whose output is g ; if g =1 for any t as
large as y and less than x+y , connect dt +to one of the inputs of the dis-
junctive net whose output is g . g 1is the desired junction. Q.E.D.

Theorem,5-8: Every transformation realized by a w.f.n. is primitive
recursive.

The proof is too long to be included here (it is given in the appendix), but
the essential idea is as follows. Let N be w.f. with input junctions a-,

.y ad  and output junctions bl, ceey K . gince the behavior of N can
be computed in the manner indicated in the proof of Theorem 5-l, it is pos-
sible to define a mathematical function F (from natural numbers to natural
numbers) which is primitive recursive with respect to the ad's and is such
that

1 2 K-1 K 1 K-1 K
bo bo bQ bo b1 bl bl
F 0 - 2 . o e X . . oo 0 .
(0) 3 Pl Py Prel Pok-1 p2K
2 3 K 1 2 K 1
F(l) = 2bo ° 5b0 o pbo . pbl . ‘pbl o pbl . pb2
K-1 K K+1 2K-1 oKk’

etc., where py is the k-th prime, in order of magnitude. Each bk can

then be defined primitive recursively in terms of F as follows: b% equals
the first exponent of F(tK + k - 1) ..
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é. W.F.N. AND DIGITAL COMPUTING CIRCUITS

In this section we will discuss the realization of w.f.n. by digital
computing circuits. Consider first the fact that both the delay element and
the stroke element (or small nets of it) are realized by physical components in
which the input wire state(s) causally determine the output wire state. The
output of the physical realization of a delay or stroke element in isolation
has the property that its state can be causally determined by the state(s) of
its input wire(s) and the formation rules for w.f.n. are such that every out-
put wire of a circuit realizing a w.f.n. has this property. Thus the backward
passage of causal influence through stroke elements (cf. the first net dis-
cussed in the preceding section) never occurs in a w.f.n. Hence, as far as
these considerations are concerned every w.f.n. is physically realizable.

There are, however, certain aspects of our idealization of a stroke element
which require this conclusion to be restricted. In particular, though the de-
lay of a component realizing a simple stroke net is generally small compared

to the basgic unit of time of the system, the same does not hold for circuits
composed of such components. A practical way of dealing with this point is to
construct circuits which perform fairly simple logical transformations and then
feed the result into a delay line (as well as into power amplifying and retiming
circuits), the temporal lag of the line being such that the total delay is one
or a few units of time. This involves placing an upper limit on the allowable
rank of a Jjunction and on the number of Junctions which drive a given junction.
These restrictions could be removed from the net theory by taking as a primi-
tive element, e.g., a stroke element driving a delay element, but the additional
complications would not be worth the gain. In any event, there is an overall
gize limitation on the realizability of w.f.n.

The discussion of Section 4 showed that if a circuit is represented
by a well-behaved net that net is deterministic. Consider now the question:
Are there any circuits represented by deterministic nets which could not be
adequately represented by w.f. nets? To keep the range of application of the
logic of nets as broad as possible, we have left the concept of representation
(and its converse, realization) somewhat indefinite. It is sufficiently broad
that some so-called "static" circuits and some mixed static and pulse circuits,
as well as some pulse ("dynamic") circuits can under suitable limitations be
represented by w.f.n. The answer to the above question depends on the particu-
lar interpretation made and hence we will not attempt to give a general answer
here; we will, however, make a few relevant comments. Engineers sometimes con-
nect the outputs of two or more physical components together; this is a way of
realizing logical disjunction and is better represented in our system by stroke
nets realizing logical disjunction than by nets containing multiple junctions.
Also, feedback loops are sometimes employed for memory purposes (as in the "flip-
flop"), but these are better represented in our system by means of delay
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elements rather than by stroke cycles.*

On the other hand, consider the following example of a deterministic
net not w.f. which may be physically realized in one sense of physical realiza-
tion, Start with a single physical component realizing f = (g* ~h) and con-
nect its inputs together so that f = (g-~g) =0 . Its physical behavior
would probably be unaffected by connecting its output back to its input. Note,
however, that this connection, which introduces a stroke cycle in the corre-
sponding net, is pointless, since it neither increases the number of trans-
formations realized nor decreases the number of elements in the net. Thus
this example gives rise to the following two theoretical questions which are
worth investigating: (I) Can deterministic nets not w.f. realize transforma-
tions not realized by w.f.n.? and (II) Can they realize some transformations
more efficiently? The answer with regard to (I) is given Dy:

Theorem 6-1: Every transformation realized by a deterministic net

is realized by a w.f.n. |
Proof: ILet N be deterministic with input junctions al, ceay al , delay
output Jjunctions bl, cney bJ , and stroke output junctions cl, ceey K
and let N Dbe the desired w.f.n. whose junctions include the corresponding
junctions at, ..., al ; DB, ..., BJ ; and L, ..., X . We define a se-
quence of truth-values (0,1) xj, ..., X3 to be admissible Erelative to
E(N) ] if and only if it satisfies either of the following two conditions
(cf. the second definition of determinism): (1) it consists of all 0O's ,
and (2) there is some t > O and some sequence &g, ..., a%; b%, oeey bg;
c%, ceey c%;; ceed} a%, ceey a%; b%, ceey b%; c%, ey c% satisfying the
union of Eg(N), ..., E¢(N) and such that for each J, by = xy . Let
E(N) consist of all equations of E¢(N) of the form c% = — (i.e., of
the form c% =8 ... ). Since N 1is deterministic it then follows that for
each a%, cooy a% and each admissible b%, ceey b% there is a unique c%,
vo., cf such that af, ..., al; v}, ..., v ef, ..., f satisfies EE(N) .
Now define for each c¢i a mapping Tt as follows: for each at, ..., ag
and each admissible bg, ..., b% T%(a%, ceey a%; b%, ceesy b%) is that
value of c% which satisfies E{(N) ; for each ag, ..., a% and each non-
admissible b%, cee b% T%(a%, cen a%; b%, cee b%) = 0 . Since each
Ef(N) is of the same form (i.e., a difference in t involves only a dif-
ference in the arguments), we may define for every ck  a truth-transforma-
tion TX equivalent to the sequence of mappings $%, T%, ... . The net
N may now be constructed as follows. For each Y pick an equation of
E(N) of the form bd = Df and connect a delay element from f to BJ in

#By altering the defining equations of a stroke-element we can obtain a
"stroke net" which performs a memory function. For example, a net with
inputs s (set) and r (reset) and junctions f and g such that f =
(~s°*~g) and g = [«4f'(~vr V's)] is a representation of a flip-flop
under the stipulation that if sy =ry =0 then (1) if t =0 , then
£, 50 and (2) if t >0, then fy = fy_j .
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N . For each X of ¥ construct a w.f. stroke net (cf. Theorem 5-6) from
the a's and Dbd's realizing TX . The transformations realized by the
d's and cE's in N are the transformations realized by the bd's and
cK's of N respectively, and since no stroke cycles and no multiple junc-

tions were created in the formation of N , N is w.f. Q.E.D.

Consider now question (II). This involves the concept of simplicity.
For nets composed of stroke and delay elements a rough measure of simplicity is
given by the number of each. Some results concerning this rough measure will
now be stated. ILet us arbitrarily define N; to be as simple as N, whenever
Ny . hag no more stroke elements and no more delay elements than does N> . It
should be remembered that logically equivalent primitives are not necessarily
equivalent where simplicity is involved, so our subsequent theorems on simplic-
ity do not necessarily hold for alternative sets of primitive elements logically
equivalent to the set consisting of the stroke and delay elements (see Section
2). Question (II) can now be more precisely stated: Given a deterministic net
N not w.f., is there a w.f.n. as simple as N which realizes the same trans-
formations as N ?

The answer is in the negative, for:
Theorem 6-2: There is a deterministic net N such that no w.f.n.
realizing all the transformations realized by N is as simple as

N.

Proof: ILet N be:

4%

N contains the gtroke cycle bl, b2, b3, bu and hence is not w.f., but by
Theorem 4-2 it is deterministic. It is easily verified that N realizes the
distinct transformations

bl = (rval v a))

132 = (~a2 v al ~ad)
b3 = alva?

bLL = ~ad v ~al'va
b5 = ~al
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Consider now & w.f.n. N; with (at least) junctions bl B2, b3, ¥, and b7,
‘realizing the corresponding transformations. For each b~ , 1 <k =5 there
must be exactly one equation in E(Nl) of the form bk = 3 — . Replace b
=S — by v = salal ; this modification of N; does not change the total
number of stroke elements in N; nor the number of transformations realized by
N, . Let the minimal rank of b, b2, b3, b* of N} be R and let bX be
one of the junctions bl, b2, b3, b* of N, of this minimal rank. None of
the transformations bl, b2, b5, o is equivalent to Sfg where f and g
are al, a2, ad or b’ , and hence Db* cannot be realized from al, ag, a5,
b2 by less than two stroke elements. Consequently, there is a junction b
directly driving b* which is different from al, 32’ a5, and 1bJ . b6 is
of rank less than R and hence realizes a transformation different from those
realized by bl, b2, b5, and ok . But N; contains five other junctions
realizing bl, be, b5, bt and b , and so Ny contains at least six stroke
elements. Q.E.D. The set got from E(N) Dby replacing bl = Salbl‘L by bl =
Salb and b° = Sadad is associated with a six-stroke-element w.f.n. that
realizes all the transformations realized by N .

Because Theorem 6-2 holds it is of interest to find necessary and
sufficient conditions for a deterministic net to have the property that there
exists as simple a w.f.n. realizing the same transformations. We have obtained
a sufficient condition for this property involving the concept of a properly
driven net.

Any junction of a net N 1is defined to be a properly driven junction
of N if and only if it belongs to the smallest class satisfying the following
rules:

(1) ‘each input junction and each delay output junction is properly
driven, and

(2) if g and h are properly driven and f = Sgh , then f is
properly driven.

A properly driven net (p.d.n.) is then defined to be a w.b.n. in which every
junction is properly driven. The key theorem concerning p.d.n. is formulated
in terms of the following concept. A set of equations E'(N) is a complete
subset of E(N) if and only if for each output junction f of N E'(N)
contains at least one equation of E(N) of the form f = __ . This key
theorem is:

Theorem 6-3: If N is p.d. E(N) contains a complete subset
E'(N) which is unitary and regular.

Proof: E'(N) may be constructed as follows. For each delay output junction
f of N selectocne equation of the form f =D — . Then iterate the follow-
ing step: Add to E'(N) any equation f = Sgh of E(N) satisfying the fol-
lowing conditions: (1) there is no equation of the form f = — already in
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E'(N) ; (2) both g and h satisfy the condition of having a left-hand occur-
rence in an equation of E'(N) or being an input variable. It is obvious from
its mode of construction that E'(N) ‘is unitary and regular, and it follows
from the definition of a properly driven junction (since the above procedure

- will catch every properly driven junction and hence every junction of the net)
that E'(N) is a complete subset of E(N) . Q.E.D.

We can now prove;

Theorem 6-4: If N is p.d., there is a w.f.n. as simple as N
realizing all the transformations realized by N .

Proof: The required w.f.n. is any subnet of N +to which is associated a com-
plete subset of E(N) which is both unitary and regular. Q.E.D. Theorem 6-3
also leads directly to:

Theorem 6-5: Every p.d.n. is deterministic.

-~

A characteristic distinguishing p.d.n. from deterministic nets is given by:

Theorem 6-6: Every stroke cycle of a p.d.n. contains at least
one multiple Jjunction.

Proof: For if N 1is p.d. and contains a stroke cycle which has no multiple

Junctions, any complete subset of E(N) must contain the equations of this
stroke cycle and hence cannot be regular. Q.E.D.
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APPENDIX

In this appendix Theorem 5-8 concerning primitive”recursive functions
will be proved. This will be done in two steps; first a .lemma concerning prim-
itive recursive functions? will be established and then the lemma will be used
to prove the theorem.

A function A 1is said to be primitive recursive with respect to the
functions Bl’ .+.y By whenever A can be defined by the operations of prim-
itive recursion and by substitution from the successor function, the constant
functions, the identity functions, and By, ..., By . If By oeey By is the
null sequence, A 1is simply said to be primitive recursive,¥¥

The lemma we will first establish is:

Lemma A-l: If A is definable by the schema: A(0) = yg, ...,
A(M) = yy , vwhere ¥y, ..., Yy are natural numbers; A(n+M+1) =
C[A(n), ..., A(n#M)7]] , vhere C is primitive recursive with re-
spect to By, ..., BI ; then A is primitive recursive with re-
spect to By, ..., By .

Proof: Let Py denote the y'th prime number in order of magnitude (pO = 0,
p1 =2, ... ) [p. 13} 4n intgger X ENB is said to be in Gbdel form when-
ever it is in the form py™ * P " Py where each zEf is a natural num-
ber and py 1is the largest prime factor of x ; e.g., 2c - 50 : 51 is the
¢odel form of 20 . L(x) is the number of exponents (counting the zero ex-
ponents, if any) of the ngel form of x and nGlx is the n'th exponent

+

In this appendix "function" is used in a broader sense than that defined in
Section 3, since it here covers functions with any finite number of argu-
ments and with any natural number as value. -

¥ See Kleene, op. cit., p. 42 and "On Undecidable Propositions of Formal
Mathematical Systems," notes on lectures by Kurt Godel, Institute for Ad-
vanced Study, Princeton, New Jersey, 1934, p. 2ff.

We will assume the contents of the latter work throughout this appendix
and will give page references to it in brackets. Alternative references
are:

Kurt Godel, "ber formal unentscheidbare Sitze der Principia Mathematica
und Vervandter Systeme I," Monatshefte fur Mathematik und Physik 38 (1931),
17%-198. |

S.C. Kleene, "General Recursive Functions of Natural Numbers," Mathemat-
ische Annalen 112 (1936), T727-Thi2.
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(counting from the left) of the G8del form of x (if x <2 then L(x) = nGlx
=0 and if n > L(x) then nGlx = 0 ) [p. 15]. We next define a shifting
function Sh(x) which, if L(x) > 1 denotes the result of deleting the left-
most exponent and the rightmost prime of the Godel form of x and shifting all
exponents one place to the left:

p2G1x . 5361x ... L(x)Glx

sh(x) CPLx)l

i1f L(x) €1 then Sh(x) =1 . E.g., Sh(2 -39 .50 . 70 =29 .30 .58
and Sh(22) =1 . The functions p, L, GL , multiplication, and exponentiation

are primitive recursive [pp. 3, lj], and hence Sh 1is,

We next define a function U by primitive recursion as follows:

Yo J1 M
u(o = 2V e
(0) 3 L
c 161U(n), ..., (M+1)GLU(n)
U(n+l) = sWU(n)] - L a ()]
+l
Since C 1is primitive recursive with respect to the B; and since &h ,
multiplication, and exponentiation are primitive recur81ve*, it follows that
U is primitive recursive with respect to the B; . Now the first exponent of

the Godel form of U(n) is A(n) ; i.e.,
A(n) = 161 U(n)
We shall prove this by showing that
A(n+m) = (m+l) G1 U(n) 0O£m=M

This obviously holds for U(0) . We shall assume it for U(n) and prove it
for U(n+l) . By the definitions of U and Sh
2G1U(n M+1)GLlU ¢l 1G1U(n e M+1)GlU(n
ey o PO L 000G (), .. (G100

and hence by the inductive assumption

Ulnsl) = 2A(n+1) g A(n+M) SE% voey A(ntM)]

But by the definition of A in the lemma, the exponent of py,; equals
A(n+M+1) , and hence

A(n+1l+m) (m+l) Gl U(n+l) 0O€mesM .

#Actually it is required that these functions be primitive recursive with
respect to the Bi's , but this is also the case.
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"Since A(n) =16l U(n) , Gl 1is primitive recursive, and U is primitive re-.
cursive with respect to the B;j's , A is primitive recursive with respect to
the Bij's , and the lemma is proven. Q.E.D.

Consider now:

Theorem 5-8: Every transformation realized by a w.f.n. is primitive
recursive.

Proof: Iet N be w.f. with input Jjunctions al, ceuy ad (J = 0) and output
junctions bl, ..., YK (K > 0) in regular order. If J = O every transforma-
tion realized by N 1is constant and periodic and the theorem is trivial, so we
will assume J > O .

?he concept of a transformation being primitive recursive was defined
as follows in Section 3: A transformation T from al, ceey ad  to T(al, ceoy
ad) (J = 0) is primitive recursive whenever T(al, ..., aJ) can be defined by
the operations of primitive recursion and substitution from the successor func-
tion, the constant functions, the identity functions, and al, ..., aJ . In
the terminology that has been introduced this is equivalent to requiring that

T(al, veey aJ) be primitive recursive with respect to al, ey ad . The proof
of the theorem will consist in showing that each bk ig primitive recursive with
1 J

regpect to a*, ..., a

A function W , which will correspond to the function A of Lemma A-1,
which will have values by, ...,.bg; by, ..., b%; ..., and which is primitive
recursive with respect to the ad's , will be defined next. Let x = y Mod z
be a propositional function having the value 1 when the relation holds and O
otherwise, let ~x have the value 1 when x =0 and O otherwise, let
X vy = Maximum (x,y) , let x =y denote x -y if x = y and otherwise
0 , and let x¥*y denote the integral part of the quotient x/y ; all of these
functions are primitive recursive [cf. pp. 3, k4, lM]. W is now defined:

1 K 1 K
Ww(0) = by, ..., W(EK-1) = bg; W(K) = b, ..., W(EK-1) = b
Wn+K) = (n=0ModK)wy + ... + (n= [kLl:]Mod K)wg

where the W, are defined in the cases considered below. Note that for a given
value of n all the coefficients on the right-hand side of the previous equa-
tion are O except one.

bk is a stroke output variable.

Suppose that bX = sb¥lad , where k; < k since the b
are in regular order. Then w, abbreviates 'vW(n+[2Klk]
+kl) v ~«a€ If the rightmost two variables of

Case 1:
k

n+2K )*K *
bk = SbklaJ are commuted, or they are both input variables
or both output variables, the definition of wy 1s similar.
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Case 2: & is a dﬁlay output variable.
If b =Dbl, w abbreviates W(n#K:klrki) ; while if

vk = Dad , Ww,_ abbreviates a%

k n+K)*¥K °

. We will prove that W 1is primitive recursive with respect to the
ad's by showing that it satisfies the hypothesis of Lemma A-1. Since the b¥
are in regular order, each of the values W(0), ..., W(M) , where M = 2K-1 ,
can be determined from E(N) . Hence W(0), ..., W(M) satisfy the conditions
imposed by Lemma A-1 on Yos co0s Y - Since x =y Mod z, =, *, +, *, Vv, and
~ are all primitive recursive functions, the second line of the definition of
W accords with the schema of Lemma A-1 provided that all occurrences of W
on the right-hand side have arguments in the range n, ..., n+t2K-1 . As be-
fore, there are two cases to consider.

k k
Case 1: If vk = sb lf or b¥=sfb L , then we have 1
k) =K , and k7 < k , and hence O € [2Kak]4-kl
If bk

IN IN

2K-1 .

SaJlaj2 , then wp does not contain W .

Case 2: If ok = Dbkl , then we have 1 €k , ki €K , and hence
0 € [Kek]+k, £ 2K-1 . If b =Dad, w, does not con-
tain W .

Hence W 1is primitive recursive with respect to the aj's .

K We prove finally that the values of W are bé, ey bo; bl’ ceey
bl; ... by showing that

by = WK+ [k:l]) .

That this holds for tK + [kli] =0, ..., 2K-1 1is readily verified. We assume

that it holds for tK + [kal] =0, 1, ..., 2z where z = 2K-1 and prove that

it holds for tK + [kll] = 741 where (since z+1 = 2K ) t= 2 , Since t 22
W(tK + [k:1]) = WL(£22)K + (k1) + 2K

and hence by the schema defining W

W(tK + [k*1]) = (n=0ModK)w; + ... + (n-= [X-1] Mod K)wg
where n = (t:2)K + (k1) . But then n = (k:1) Mod K and W(tK+[k:1]) = w_ .
The result may now be established by proving that Wi = b% . Two cases are con-
sidered.

Case 1l: Suppose ¥ = SbklaJ . Then wy = ~W(n+[2K=k]4-kl) v
~a?n+2K)*K . But since n = (t:2)K+(k*l) and 1€k €K ;

W = ~W(tK4-[klll]) v ~a€ . Since ky < k , the inductive
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k
assumption guarantees that W(tK+[ky:1]) = btl , and hence

that wy = ~b§l v:ua% = b% . If the rightmost two variables
of bk = Sbk]-a'j are commuted or they are both input vari-

ables or both output variables the proof is similar.

k
Case 2: . Suppose o€ = Do L . Then wg = W(n+[Kk]+k{) . But
since n = (t:2)K+ (k1) , we = W([(t=LK+[ky*1]) . Since
t=2 and 1€k, ky €K, (t:1)K+ (k1) < tK+ (k1) ,

and so by the inductive assumption we have w, = bt}l = b% .

K ) %K Bu; since

n= (t2)k+(k:1) and k €K, w = ag?l = by .

Suppose bk = Dad . Then W = a?

Since b% = W(tK}+[k&I]) , W 1is primitive recursive with respect to
the aj's , and +, +, » are primitive recursive, it follows that bk is prim-
itive recursive with respect to the ad's . This fact, in the light of the def-
inition of a primitive recursive transformation, implies that the transformation
realized at bk is primitive recursive and Theorem 5-8 is proved. Q.E.D.

We conclude with a remark relating the two-stage proof given here to
the function F , introduced in the text for the purpose of suggesting a method
of proof. If the function A of Lemma A-1 is taken to be W , then the func-
tion U defined in the proof of the lemma has the form:

1 L2 K-1 K
05 bg b b

(o) = 2°°53 *Pog.1 * Pog
2 K 1
b b b b
u(l) = 2973 8 ""PQ%-l . pg%

and in fact may be shown to be the function F .
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