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ABSTRACT 

A general numerical model was developed which can be 

used to study the biological response of a fishery to a 

variety of size limit restrictions. Effects of minimum, 

maximum (inverted), or slot size limits, or a catch-and- 

release regulation can be studied using this model. Fishing 

and hooking mortality are adjustable for simulating effects 

of different gear types and restrictions. Density-dependent 

growth can be used and seasonal fluctuations of growth may 

be assessed. It is also possible to model seasonal 

fluctuation in fishing mortality, including shifts in season 

length or time periods. 

Effects of a 7.0 inch maximum size limit (i.e., all 

fish 7.0 inches and longer have to be returned to the water) 

were analyzed for slow, average, and fast growing bluegill 

(Lepomis macrochirus Rafinesque) populations in Michigan. 

Density-dependent mortality was used to estimate the number 

of fry surviving to age I. Density-dependent growth was 

simulated using a relationship between number of fry 

produced and total initial mean length. 

Equations were developed to simulate the processes of 

mortality (natural, fishing, and hooking), growth, and 

recruitment, Number of fish in a population, number 

harvested, number caught and released, number lost to 

hooking mortality, and number of natural deaths were 

calculated using these equations and length-frequency 



information. Yield was calculated for harvested and caught 

and released fish using a length-weight regression. 

Model simulations demonstrated that a 7.0 inch maximum 

size limit restriction was not effective in controlling 

bluegill populations. Variable and constant recruitment 

were modeled separately, and in neither case did the size 

limit regulation increase the number of bluegills 7.0 inches 

and larger, nor did mean length at each age change 

appreciably as compared to the same populations simulated 

under a 5.0 inch minimum size limit. 

The greatest impact was observed in the fast growing 

population (using constant recruitment). Equilibrium 

numbers of 7.0 inch plus bluegills increased from 589 fish 

under a 5.0 inch minimum to 724 fish under the 7.0 inch 

maximum restriction, at a fishing mortality rate (m) of 0.40 

for both. Total catch remained about equal - 2,038 and 
2,089 fish per year for a 5.0 inch minimum and a 7.0 inch 

maximum size limit respectively, but legal harvest dropped 

from 1,530 under the existing conditions to 1,332 fish per 

year for the special regulation. A s  the conditional fishing 

mortality rate decreased, the population characteristics 

became virtually equal for the 5.0 inch minimum and the 7.0 

inch maximum restrictions. 





INTRODUCTION 

Management techniques developed for the purpose of 

controlling and improving stunted or slow growing bluegill 

(~epomis macrochirus Rafinesque) populations are many and 

often controversial, Techniques such as partial or complete 

poisoning and restocking of lakes, poisoning of spawning 

beds, encouragement of predatory fishes, or lowering of 

water levels to expose fingerlings to predation have either 

failed or only worked for short periods of time (Snow et al. 

1960; Hooper et al. 1964; Beyerle and Williams 1967 and 

1972; Schneider 1973b; Becker 1976; Beyerle 1977; Novinger 

and Legler 1978). These methods were usually discontinued 

because funds needed for reapplication or use on a widescale 

basis were not available. 

New types of management techniques, which are not 

limited by money or manpower, have become the focus of 

recent studies. Regulations aimed at controlling a 

particular species have been imposed on lakes and streams. 

Minimum, maximum (inverted), or slot size limits, catch-and- 

release, and gear restrictions are being used to optimize 

survival, growth rate, and ultimately the yield of a fishery 

(Patriarche 1968; Schneider 1973a and 1978; Clark et al. 

1979 and 1980). 

Optimum yield can be defined as total harvest, "trophy" 

harvest, or total number of fish caught and released, 

depending on anglers' preference. Because fishermen define 

"quality fishing" in a number of ways, many sociological 



problems arise when implementing such complex regulations 

(Gulland 1968; Anderson 1975; Weithman and Anderson 1978). 

Although angler reaction and behavior can cause any fishery 

restriction to fall short of expected goals, biological 

response of the population is also of importance. 

Management techniques should not be employed until a careful 

theoretical analysis of the biological response by the 

population has been made using a variety of possible 

environmental conditions. With the widespread use of 

computers, numerical modeling is growing as a feasible and 

useful tool in fishery management (Clark and Lackey 1976; 

Clark et al. 1977). Biological response of fish 

populations to size limit regulations may be simulated and 

studied in detail. This allows selection and use of the 

best size restriction for achieving management objectives, 

hopefully eliminating most of the field oriented trial and 

error process. 

The purpose of this study was twofold. The major 

objective was to develop a general numerical model which 

would aid in assessing the biological response of fish 

populations to a variety of size limit regulations. This 

model was patterned after one developed for trout fisheries 

by Clark et al. (1980). Five basic improvements were made 

on Clark's model to make it more applicable for warmwater 

inland lake fisheries (e.g., bass, bluegill, and similar 

species). These modifications included the use of density- 

dependent growth, a normal distribution of lengths at each 



age, a more explicit definition of the annual conditional 

hooking mortality rate, a breakdown of the annual 

conditional fishing and hooking mortality rates into a 

probability of capture and a probability of death given 

capture, and finally, distributing the different types of 

losses that are interacting in a fish population as a 

percentage of the competing mortality rates. The advantages 

of these improvements will be discussed as each is 

developed. 

The second step of this research was to apply the model 

to a study of Michigan bluegill. Computer simulation was 

used to evaluate the effects of a 7.0 inch maximum limit on 

slow, average, and fast growing bluegill populations in 

Michigan. A FORTRAN computer program, Size Limit Regulation 

Analysis ( S . L . R . A . ) ,  was written to perform the model 

simulations. 



MODEL ASSUMPTIONS 

Perfect simulation of real world processes is neither 

feasible nor possible. All numerical models must be built 

using basic assumptions as the starting foundation. If the 

assumptions are good approximations of the situation being 

simulated, then model performance is usually adequate. If 

too many assumptions are made or many are unrealistic, model 

results can be disastrous. The assumptions used to build 

this model are discussed in the following sections. 

Mortality 

Mortality includes many subdivisions which may be 

treated separately. Natural mortality at each age was 

assumed to remain constant from one year to the next. It 

was distributed by percentage throughout each year. 

Survival of fry was assumed to be density-dependent. A 

regression equation relating number of eggs to survival rate 

was used to estimate the number of fry reaching age I. 

Fishing and hooking mortality were developed as two 

independent sources of death. Fishing mortality was applied 

only to legal fish in the population ("legal1' refers to fish 

that can be harvested, and "illegal" to fish that must be 

released). The annual conditional fishing mortality rate 

(m) was constant for all age and size groups from one year 

to the next. This rate was divided into two components, a 

probability of capture (p') and a probability of death given 



capture (dl). The latter was assumed to be constant for all 

legal fish regardless of age or size. 

Only illegal fish were susceptible to hooking 

mortality. The annual conditional hooking mortality rate 

(h) was constant for all ages and size groups from one year 

to the next, and all illegal fish caught were released. 

This assumption excluded the effects of poaching which were 

considered to be negligible. Although this could lead to 

erroneous results, especially for certain species or size 

limits, such an assumption was necessary because the amount 

of poaching is basically unknown. 

Hooking mortality was divided into two components, a 

probability of capture (p") and a probability of death 

after being caught and released (d"). The latter was 

assumed to be constant for all illegal fish regardless of 

age or size. 

Growth 

A basic assumption used in many fishery models is that 

growth remains constant in the population (Patriarche 1968; 

Clark et al. 1980). However, constant growth is not always 

observed in fish populations. Changes in growth are caused 

by density-dependent factors (Goodyear 1980). 

Observed changes in mean length of a population over 

time may be simulated if  the actual growth rate in a 

population remains constant but the initial mean length of a 

cohort varies with changes in density of fry (Gerking 1967; 



Goodyear 1980). Therefore, although each new cohort 

experiences the same rate of size increase, their initial 

mean length may be different than that of other previous 

cohorts, This gives different lengths at each age than 

previously observed for the population. 

The assumption of density-dependent growth was used in 

developing this model. The actual growth rate was constant 

for all cohorts, while their initial mean length depended on 

the number of fry hatching. Use of an expression developed 

empirically by Ford (1933) and a density-dependent 

regression relating number of fry to length allowed changes 

in growth over time to be a function of initial length 

rather than changes in the actual growth rate. 

Recruitment 

Many assumptions must be made in any fishery model when 

dealing with a process as complex as recruitment, 

~ecruitment is a function of number of spawning adults, 

number of eggs produced, survivorship of fry, and growth 

(Goodyear 1980). Both variable and constant recruitment 

were studied in separate simulation runs. 

A major problem observed in many fisheries is year 

class dominance caused by many density related factors 

(e.q., food or available spawning areas). With variable 

recruitment, it is possible to model and study this 

phenomenon. By using density-dependent relationships for 

fry survival, number of eggs produced, and growth, variable 



recruitment was incorporated as a density-dependent 

function. Two basic assumptions were necessary to perform 

this task. First, the sex ratio was assumed to be 1:l when 

calculating the number of females in each age-length group, 

Second, spawning was allowed during only one time period 

each year. Although many warmwater lake species may spawn 

two or more times during a summer season, a spawning "peak" 

is usually observed. It was assumed that the majority of 

spawning activity was accomplished during this period. 

Constant recruitment was also simulated using these 

same basic assumptions. Although the number of fry 

surviving to age I remained constant, the number of eggs 

produced and the actual fry survival were still predicted 

each year to allow use of the density-dependent growth 

function. 



MODEL DEVELOPMENT 

A general numerical model based on a modification of 

Ricker's (1975) method was developed to simulate the 

processes of natural mortality, fishing mortality, hooking 

mortality, growth, and recruitment. This model may be used 

to study minimum, maximum (inverted), or slot size limits, 

or catch-and-release regulations by subdividing a population 

into length groups of illegal and legal size fish. Model 

predictions include estimates by age and length groups of 

number and weight of legal fish harvested and illegal fish 

caught and released, hooking deaths, and natural deaths. 

Such a breakdown of population dynamics is more useful in 

evaluating size limit restrictions on sport fisheries than 

is one of the older models (e.g., surplus production model) 

which estimate total weight of harvested fish, 

Model Variables 

The variables used in a simulation model may be 

categorized into three major groups. The important input, 

state, and output variables used in this model are 

summarized in the following section. A flow diagram showing 

input strategy and output objectives is found in Figure 1. 

A) Size limit regulation. 

B )  Fishing pressure (seasonal distribution), 

C )  Density-dependent growth relationship, 



D) Variable (constant) recruitment. 

State Variables: 

A) Nondynamic state variables. 

I) Natural, fishing, and hooking mortality 

rates. 

2 )  Seasonal distribution of mortality (natural, 

fishing, and hooking) and growth. 

B) Dynamic state variables. 

1) ~opulation numbers (weight). 

2 )  Total catch and total catch-and-release 

(numbers and weight). 

3) Harvest and hooking deaths (numbers and 

weight 1. 

4) Natural deaths (numbers). 

5 )  Mean length and standard deviation by age 

group. 

Output: 

A) Population structure. 

1) By age group. 

2 )  By length-frequency distribution. 

B) Yield. 

1) Total catch and harvest. 

2 )  Catch-and-release and hooking deaths. 

C) Mean length. 
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Figure 1. Flow diagram depicting input strategy and output 
objectives to be analyzed using the population 
model for warmwater inland lake fisheries. 



Mortality 

Ricker (1975) showed a method for separating mortality 

(Z) operating in a fish population into two major 

components, instantaneous natural mortality (MI and 

instantaneous fishing mortality (F). Relationships between 

these parameters is described by the following equations: 

Instantaneous total mortality rate: 

Z = F + M  

Annual expectation of death: 

A = l - e  - Z t 

Annual survival rate: 

Conditional mortality rates may be defined as: 

Annual conditional natural mortality rate: 

n = l - e  -Mt ( 4 )  

Annual conditional fishing mortality rate: 

m = 1 - e  -Ft = p ~ d t  ( 5 )  

where: 

p' - probability of capture for legal fish. 

d' - probability of harvest after being caught 

(constant over time and age). 



The use of the variable d' is an improvement of the model 

developed by Clark et al. (1980). Clark's method assumed 

that all legal size fish caught were harvested. The model 

in this paper relaxes that assumption and allows appropriate 

adjustment of the total harvest if necessary. This may be 

useful in fisheries where fishermen voluntarily release many 

of the fish they catch, regardless of size or the 

regulations currently in effect, 

By combining equations (4) and (5), a new expression 

for the annual expectation of death (A) may be written as a 

sum of the conditional rates: 

A conditional rate is the fraction of the original 

population which would have been killed by a certain type of 

mortality if  no other source of death was operating in the 

population. Because both natural and fishing mortality 

compete for the same fish, the interaction term in equation 

(6) must be subtracted to prevent a fish from being counted 

as lost to more than one type of mortality. 

Using this same logic, hooking mortality may be added 

as a third component of total mortality by redefining 

equations (1) and (6) and including a conditional hooking 

mortality rate: 



Instantaneous total mortality rate: 

Z = F + M + H  

where: 

H - instantaneous hooking mortality. 

Annual conditional hooking mortality rate: 

h = l - e  -Ht = p"d" 

where: 

p" - probability of capture for illegal fish. 
d" - probability of a fish dying after being 

caught and released (constant over time 

and age). 

This explicit definition of the annual conditional hooking 

mortality rate was not used by Clark et al. (1980). They 

used the same variable to describe the conditional fishing 

mortality rate for legal fish and the catch rate of illegal 

fish. The probability of capture ( p " )  used in this model 

allows hooking mortality to be defined in a way that is 

consistent with the definitions of the natural (n) and 

fishing (m) mortality rates. This explicit definiton is 

also advantageous in that separate probabilities of capture 

(and separate probabilities of death given capture) may be 

assigned to both legal and illegal size fish. 

Using equations ( 4 1 ,  ( 5 ) ,  and (8), equation ( 6 )  can be 

redefined as: 

A = l - e  -zt = m + n + h - mn - mh - nh + mnh 



Including the interaction terms in equation 9 ,  although 

they may be insignificant, is necessary from both an 

analytical and a biological standpoint. First, the terms 

are theoretically necessary to satisfy the numerical 

relationships between parameters. Second, these terms 

adjust for the combined effect of the three conditional 

mortality rates. Since these rates are acting concurrently, 

some fish already lost to one source of mortality may also 

be counted as lost to another. The Venn diagram in Figure 2 

depicts this problem. Thus, from a biological viewpoint, 

the interactions are necessary to prevent losing the same 

fish to more than one type of mortality. 

A change in the number of fish in the population from 

one time period to the next is described by the equation 

(Ricker 1975) : 

Because of the assumptions made concerning the 

different types of mortality, it is reasonable to subdivide 

a cohort into five length groups as (Clark et al. 1980): 

where: 

Interval Pt represents fish affected only by 

natural mortality. 



m - Fishing m o r t a l i t y  

n - Natura l  m o r t a l i t y  

h - Hooking m o r t a l i t y  

Figure 2. A graphical representation depicting the 
interactions between competing processes 
of loss acting in a fish population. 



Intervals Rt and Ut represent fish of illegal 

size. 

Intervals Tt and Vt represent fish of legal 

(harvestable) size. 

This subdivision (Figure 3 )  allows simulation of slot limits 

directly, and other limits with slight modification. 

By combining equations (91, (lo), and (bl), a change in 

the number of fish from one time period to the next becomes: 

Note that the interaction terms mlhl and mlnlhl do not apply 

to any part of the cohort. This is necessary to conform to 

the assumptions concerning mortality. There can be no 

interaction between fishing and hooking mortality because 

they apply to two independent groups of the cohort as 

depicted by the Venn diagram in Figure 4. The interactions 

shown in Figure 4 are not between the conditional fishing 

and hooking mortality rates explicitly, but between the 

respective probabilities of capture as necessitated by the 

variables defined above. This implies that a fish must be 

caught before it can die from harvest or hooking. 



x , x *  x 3  x 4  x, 
LENGTH 

P, - Uncatchable range 

R,  - F i r s t  i l l e g a l  range 

T ,  - F i r s t  l ega l  range 

U, - Second i l l e g a l  range 

V ,  - Second l ega l  range 

Figure 3. Hypothetical length-frequency distribution of a 
fish cohort depicting a slot size limit 
regulation, 



LEGRL 
F I S H  

ILLEGRL 
F I S H  

p' - P r o b a b i l i t y  of cap tu re  for l e g a l  fish 

n - Natura l  m o r t a l i t y  

p" - P r o b a b i l i t y  of cap tu re  f o r  i l l e g a l  f i s h  

Figure 4. A graphical representation depicting the 
interactions between competing processes of 
removal acting in a fish population which has 
been divided into two independent groups. 



A further breakdown of Nt+l may be written as (Clark - et 

al. - 1980): 

where: 

Ct - number of legal fish harvested. 
Dt - number of fish dying natural deaths. 
Ht - number of fish lost due to hooking 

mortality. 

Each of the three losses in equation (13) may be expressed 

as a combination of terms from equation (12) as: 

Legal Catch: 

Natural Deaths: 

Hooking Deaths: 



The interaction terms which apply to two sources of 

mortality have been distributed using a ratio of the 

mortality rate to the total combined effect as a weighting 

factor. This seems reasonable as the number of fish 

involved in an interaction term should be divided between 

the two sources of death according to the respective sizes 

of the mortality rates in question. This is a more accurate 

division than used by Clark et al. (1980), who divided the 

effects of the interaction terms equally. 

Two final quantities, numbers of legal and illegal fish 

caught and released that lived, may be calculated as: 

Growth 

The numerical model of mortality developed in the 

previous section requires the approximation of a length- 

frequency distribution for a cohort to determine the number 

of fish in each of the areas defined in Figure 3. Any 

unimodal distribution which adequately describes the length 

distribution may be used for this purpose. Clark and Lackey 

(1976) demonstrated a method for approximating a length- 



frequency distribution using a three parameter Weibull 

probability density function. Clark et al. (1980) used 

this method in estimating length-frequency distributions for 

trout. Another distribution that may be used for this 

purpose is the normal (Jones 1958; Ricker 19691, with the 

probability density function: 

where: 

x - random variable (length), 
p - mean of the distribution. 

o  - standard deviation of the distribution. 

The cumulative distribution function is: 

This distribution is very versatile as any normal 

distribution may be standardized using the transformation: 

giving: 

P(X I x )  = P({X - p] /u  5 {x - p ] / d  = 

P(Z 2 {x -  PI/^ 



thus: 

If the mean and standard deviation of the distribution are 

known, g(x) may be evaluated directly from a standard normal 

table. 

Using equation (231, the number of fish in each area 

defined in Figure 3 may be expressed as: 

Using equation (231, g(x) may be defined for each length 

interval in Figure 3: 



where: 

subscript "i" denotes the age of a cohort. 
- - 

'i, t - lift - mean length at time "t". 

Substituting respective values of g(x) from equations (29) 

through (32) into equations (24) through (28) gives: 

To simulate a fishery, the length distributions for 

each cohort must be moved through time as the fish grow 

larger. The fraction (Gt) of annual growth experienced in 

some small time interval O t  was used to move 

distributions through time, with: 

where: 

t' - number of time intervals in one year. 



The use of Gt allows modeling of seasonal patterns in growth 

(and thus in recruitment of fish into and out of legal 

ranges) to be simulated more accurately within a year. 

Changes in mean length for a given cohort within a year 

were expressed as: 

Clark et al. (1980) used constant growth in their 

trout model. However, this assumption is not realistic for 

inland lake fisheries where growth may be affected by 

density, food availability, and other environmental factors. 

The assumption of density-dependent growth used in this 

model necessitated the use of a function to relate the mean 

length at age "i+ll' to the mean length at age "i", while 

keeping the mean annual growth rate constant. Such an 

equation was developed by Ford (1933) of the form: 

where: 

k - Ford's growth coefficient. 

L, - mean asymptotic length. 
- 
li ,l - mean length at age "i". 

The parameters " k "  and "L," may be estimated from actual 

data using a computer program ( V O N B )  developed by Allen 

(1966 and 1967). 



By keeping "k" and "L," constant for all cohorts, it 

can be seen from equation (40) that the mean length at any 

age "i" depends on the initial length at age I. Thus, it is 

possible to observe different lengths at some age " i n  for 

each new cohort (depending on even though the actual 1,1 
growth rate rema .ins unchanged. 

A regression relating mean length of fry to number of 

fry was used to estimate 1 1,1 for each new cohort. The form 

of the equation used was: 

where: 

- intercept. 

b - slope. 
- 
l1,1 - mean length in time period 1 (age 1). 

FRY number of fry produced. 

The mean length estimated for fry from equation (41) was 

used as the mean length of age-I fish at the start of each 

year. Ford's equation (40) was used to calculate mean 

lengths for all other ages using the initial mean length 

estimated by equation (41). 

A ratio of mean length to standard deviation for a 

previous cohort at each age was used to calulate the 

standard deviations of new cohorts at each age. The 

relationship used was: 



where: 

q - denotes each cohort. 

Thus, the ratio of mean length to standard deviation for all 

cohorts is the same at each age "in. 

The reasoning used to develop equation ( 4 2 )  was based 

on the regression used in equation (41). As the number of 

fry increases, the initial mean length of the cohort 

decreases. A decrease in length should cause a 

corresponding drop in the standard deviation. With 

increasing density, competition for food and space would be 

spread out more evenly, thus decreasing the chances for any 

fish to gain or lose a competitive edge (Goodyear 1980). 

Therefore, length and associated variation should both 

decrease. This is often observed in lakes containing 

stunted populations which have very large numbers of fish of 

roughly the same length. 

The opposite holds true if the number of fry decreases. 

Mean length and associated deviation increase as fish have a 

greater chance to gain or lose a competitive edge depending 

on their ability to survive. 

Standard deviations of length were moved through time 

analogous to the method used for mean lengths. Using 

equations ( 3 8 )  and (39), this was expressed as: 



Equation ( 4 3 )  allows changes in standard deviation through 

time to be proportional to corresponding changes in mean 

length. 

Recruitment 

Recruitment of fish depends upon the number of young 

produced during the spawning season and their ability to 

survive to harvestable length. The total number of eggs 

produced in one season was calculated as (Clark et al. 

1980 : 

where: 

x - number of age groups. 

Y - number of length groups. 

FEMi j 
- number of females in each age-length 

group. 

FMATi j 
- percent females mature in each age- 

length group. 

EC 
j 

- mean egg content of females in each 

length group. 

Mean egg content was determined using a regression relating 

length to number of eggs of the form: 



where: 

a - intercept. 

b - slope. 

lj 
- length group. 

When the total number of eggs was calculated from 

equation (441, a stock-recruitment curve (~icker 1975) 

relating number of eggs produced and number of fry was used 

to estimate the number of fry surviving to age I. The form 

of the equation used was: 

where: 

a - intercept, 

b - slope. 
SF - number of fry surviving to age I. 

The number of fry calculated from equation (46) was used as 

the initial number of age-I fish at the start of the next 

year. 

Combining Mortality, Growth, and Recruitment 

The numerical model thus far developed allows the 

population processes of interest to be described as single 

equations. 



Population Numbers: 

Changes in number of fish for each age group was 

expressed by combining equations (12) and (33) through (37): 

Catch: 

Total catch of legal fish was calculated using 

equations (17), (35), and (37): 

Catch-and-release of illegal size fish was defined 

using equations (18), (33), (34), and (36): 

Harvestable catch (legal size fish) was expressed as a 

combination of equations (141, (35), and (37): 



Hooking Deaths: 

The number of fish lost to hooking mortality was 

expressed using equations (16), (33), (34), and (36): 

Natural Deaths: 

Number of fish lost to natural deaths was defined as a 

combination of equations (15) and (33) through (37): 

Yield: 

Yield in weight may also be calculated using the model 

equations developed for estimating catch. Length and weight 

for fish of a given age were related using the regression 

(Ricker 1975) : 

loge(wi 1 = a + bloge(Ii) 

where: 

a - intercept. 

b - slope. 



- 
W. - mean weight of fish at age "in. 

1 - 
li - mean length of fish at age "i". 

The catch equation ( 1 4 1 ,  which represents a sum of the 

total harvest in two length classes (i.e., intervals TiIt 

and ViIt in Figure 3), may be used to calculate yield in 

weight as: 

where: 
- 
WT - mean weight of a fish in interval Tilt. 
- 
Wv - mean weight of a fish in interval ViIt. 

Mean weight in each interval was calculated using equation 

(53) and the corresponding mean lengths in each interval (IT 

and IV). The mean lengths were calculated as: 





Combining equations (33), (341, (361, (531, and (58) through 

(60) gave a final form for the yield in caught and released 

fish: 

where: 

q1 = a + bloge(IR) 

q3 = a + bloge(IU) 



MODEL APPLICATION 

The model presented above was coded into a FORTRAN 

program (S.L.R.A.) and used to simulate population responses 

by Michigan bluegill to a 7.0 inch maximum limit. Necessary 

input data were collected from a variety of sources and are 

summarized in this section. 

Population Characteristics 

Bluegill populations were classified into three 

specific groups to cover a wide range of the existing 

conditions found in Michigan. Slow, medium, and fast 

growing populations were defined according to the mean 

length of a cohort at a given age. The stratification used 

is summarized in Table 1. 

Table 1. Strata (mean total length in inches) used to 
classify slow, medium, and fast growing bluegill 
populations in Michigan. 

*9e Slow Medium Fast 

Data published by Laarman (1963) were grouped using the 

above classes, and mean length with associated standard 



deviation and mean weight were calculated for each 

population at each age (Table 2 ) .  

Annual conditional natural mortality rates for each 

population were obtained from data published by Schneider 

(1973b) for Mill Lake in Washtenaw County, ~ichigan. 

Natural mortality was assumed to be size- rather than age- 

specific  able 3). Plots of mortality against mean length 

from Schneider's data served as a guideline for determining 

the rates used in this study. These rates were allowed to 

increase as growth increased and resulted in a natural 

mortality rate of 55% per year for bluegills larger than 6.0 

inches (Schneider 1973b). 

The initial population size was chosen to be 10,000 

fish and a lake size of 100 acres was used for all three 

populations. The initial age structures were calculated 

using the esimated natural mortality rates to determine the 

number of fish at each age (Table 3). 

Ford's growth equation (40) was fit to the length data 

in Table 2 for each population using a computer program 

(vONB) developed by Allen (1966 and 1967). The calculated 

coefficients are presented in Table 4. 

The regression equation (53) relating mean weight to 

mean length was fit for each population using least squares. 

A single regression was desired for all three populations, 

but tests for equal slopes and equal intercepts were both 

found to be highly significant (p<0.001). Therefore 

separate regression equations were used for the slow, 



Table 2. Estimated mean total length-in inches ( i ) ,  standard deviation of length ( s ) ,  
and mean weight in pounds (w) of slow, medium, and fast growing bluegill 
populations in Michigan. 

1 Slow 
- - 

Age i 1 s w 

Med i urn I Fast 





medium, and fast growing populations. The regression 

coefficients are summarized in Table 4. 

Table 4. Parameter values (and coefficients of 
determination) estimated for Ford's growth 
equation and the length-weight relationship for 
slow, medium, and fast growing bluegill 
populations in Michigan. 

Growth 

Slow 
Medium 
Fast 

Length-weight 

Slope (b) Intercept (a) R2 

Recruitment 

Three additional assumptions were necessary to 

Slow 
Medium 
Fast 

incorporate variable recruitment into the model. ~ i r s t ,  

3.1275 
3.0815 
3.2118 

spawning activity was assumed to peak in the third week of 

June. Choice of this week was based on studies by Carbine 

(1939) who reported that spawning peaked in late June, 

Karvelis (1952) who reported mid-June, and Snow et al. 

( 1 9 6 0 ) ,  Breder and Rosen (19663, and Becker (1976) who 

reported early to mid-June ranges. This week also 



corresponded to "tow in the model and it was at this time 

that fish were moved to the next age group. This was done 

not only because spawning was assumed to occur at this time, 

but also because the mean lengths reported by Laarman (1963) 

were considered early to mid-summer estimates. Second, a 

sex ratio of 1:l was assumed for all ages capable of 

spawning (~eckman 1946; Fabian 1954; Parker 1958). Third, 

it was necessary to assume some minimum length for mature 

females. Ulrey et al. (1938) reported a minimum of 5.2 

inches in Indiana lakes, Mayhew (1956) showed 4.3 inches in 

an Iowa lake, Snow et al. (1960) found the minimum to be 

4.5 inches in Wisconsin lakes, and Scott and Crossman (1973) 

reported 5.4 inches for Canadian lakes. An average of these 

estimates was used in this study. A value of 4.8 inches was 

chosen as the minimum length of mature females. 

A regression relating the mean egg content of females 

(EC) to mean length in inches (1) was reported by Latta and 

Merna (1976). This equation was: 

This equation shows that the average 4.8 inch female 

bluegill would contain 1,194 eggs and an average 6.0 inch 

female would have 14,031 eggs. These figures correspond 

well with estimates reported by Ulrey et al. (1938), Mayhew 

(1956), and Snow et al. (1960). This equation also agrees 

well with the choice of a 4.8 inch minimum length for mature 



females. Equation (44) was then used to calculate the total 

number of eggs produced (EGGS) for the year. 

In this model, fish were considered fry from the time 

of hatching until the following second week in June when 

they recruited into the age-I group. To use the assumption 

of density-dependent survival of fry, it was necessary to 

relate the number of eggs produced to number of fry 

surviving. Such a relationship for bluegills was developed 

by Latta and Merna (1976). A stock-recruitment curve 

(equation (46)) was fit to their observed data of the form: 

= 0.74647(EGGS)e -(1.776 x (EGGS) 
s~ 

 his curve ('Figure 5) results in a maximum number of fry 

surviving (154,000 per acre) when the egg production is 

about 563,000 per acre. Because data were lacking beyond 

this peak area of the curve, an assumption was made that the 

curve to the right of the peak should decrease. This 

implies that as egg production increases beyond 563,000 per 

acre, the number of fry decreases.  his seems reasonable 

because, as density increases, available spawning sites may 

be used up causing many fish to spawn in areas unsuitable 

for successful hatching, or suppression of spawning 

altogether (Snow et al. 1960). Swingle and Smith (1943) 

reported that at high densities bluegills will eat many or 

all of their own eggs which further supports this 

assumption. 
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220.00 332.00 444.00 556.00 668.00 
THOUSAND EGGS PRODUCED PER RCRE 

Figure 5. Fit of a stock-recruitment curve to observed fry 
densities. 



Another regression developed by Latta and Merna (1976) 

related fry density to mean length of fry. Use of this 

regression allowed density-dependent growth to be 

incorporated into the model. Equation (41) was fit to these 

data giving: 

The resulting curve (Figure 6) shows decreasing length with 

increasing density. This phenomenon was also reported by 

Karvelis (19521, Anderson (1959), and Novinger and Legler 

(1978). Goodyear (1980) also supported such a relationship 

in his comprehensive report on compensation in fish 

populations. 

The regressions developed by Latta and Merna (1976) 

were obtained from experiments done in ponds at the Saline 

Fisheries Research Station in Michigan. These regressions 

needed to be adjusted for use with the slow, medium, and 

fast growing populations previously described for two 

reasons. First, the predicted number of fry surviving and 

their estimated mean length were probably higher in the 

ponds than would be found in natural lakes. This would be 

caused by the fact that no predation existed in the ponds, 

except from the few older bluegills stocked to produced the 

fry. However, the effect of their predation was assumed 

negligible. Second, the populations studied at Saline 

showed some characteristics seen in slow growing 



36.00 72.00 108.00 144.00 180.00 
THOUSRND FRY PER RCRE 

Figure 6. Fit of a length-density regression equation to 
observed mean lengths of fry. 



populations. The regressions predicted survival and initial 

length better for the slow growing model populations than 

for the other two. However, these regressions were adjusted 

for use with each of the three populations. 

Another problem existed in that the regressions 

predicted number of fry per acre and mean length occurring 

in the fall. Since the model "to" was the third week in 

June, mortality rates were assigned for fry from the fall to 

the second week in June of 0.99915033, 0.99968773, and 

0.99968186 in slow, medium, and fast growing populations 

respectively. Although these may seem high, it must be 

remembered that the predicted estimates of fry per acre in 

the fall were also high due to lack of predation. These 

rates were chosen so that the populations to be simulated 

were in an equilibrium state when no fishing was allowed. 

Because fry dynamics were not modeled in any detail, the 

only important value was number of fry recruiting into the 

age-I group. The initial lengths predicted in the fall were 

also increased by one season of growth to keep them in phase 

with the model "year". 

The constant mortality rate of fry from the fall to the 

following spring did not allow the population to compensate 

for any change in the number of large bluegills (7.0 inches 

plus), the conditional fishing mortality rate, or the size 

of previous year classes. Thus, population characteristics 

were also simulated using constant recruitment each year. 

The number of fry entering the age-I group each year was set 



equal to the number of age-I fish found in the unexploited 

populations, 5,904, 4,001, and 4,915 fish for slow, medium, 

and fast growing populations respectively (Table 3). 

However, the actual number of fry produced each season was 

calculated using the fecundity relationships so that the 

density-dependent growth relationship could still be used in 

the model. 

Fishing Mortality 

Three annual conditional fishing mortality rates (m) 

were chosen for use in this model. The values picked were 

0.40, 0.20, and 0.10, each rate being applied to all three 

populations of bluegills during separate simulation runs. A 

consideration in determining what fishing rates to choose 

was that special regulations have often caused fishing 

pressure to drop on those lakes included in the regulations 

(Schneider and Lockwood 1979). Therefore, an upper level of 

0.40 was chosen and then reduced substantially to cover a 

fairly wide range of possible fishing mortality rates. 

The probability of death (harvest) given capture for 

legal fish (dl) was set equal to 1.0, meaning that all legal 

fish caught were harvested. Although this may not be true 

especially for a 7.0 inch maximum limit on bluegill, Bennett 

(1962) showed that most fishermen would keep bluegills that 

were 5.0 inches or larger. Thus, a lower bound on the legal 

(harvestable) range was set at 5.0 inches, supporting the 

assumption that all legal fish caught would be harvested. 



Because the probability of harvest given capture was set to 

1.0, the capture probability for legal fish (p') was equal 

in magnitude to the conditional fishing rates chosen, 

depending on which was being used in the simulation process. 

Hookinq Mortality 

An annual conditonal hooking mortality rate (h) was 

chosen corresponding to each fishing rate. The probability 

of death given capture for illegal fish (d") was set equal 

to 0.20, and the probability of capture of illegal fish 

( p " )  was set equal to the probability of capture for legal 

fish (p'). This resulted in hooking mortality rates of 

0.08, 0.04, and 0.02 for fishing rates of 0.40, 0.20, and 

0.10 respectively (h = p"d"). 

The assumption of equal catchability for legal and 

illegal fish seems reasonable because, as Snow et al. 

(1960) and Becker (1976) stated in their studies, "bluegills 

are always ready and willing to take a hookw. The 

assumption of a probability of death given capture for 

illegal fish equal to 0.20 also seems reasonable since it 

applies to bluegills over 7.0 inches with no restrictions on 

the types of fishing gear or bait used. Many bluegills 

often swallow hooks when fishermen are still-fishing with 

live bait (the most popular way to fish for bluegill) and 

will probably die when released. Although no experiments 

have been done on hooking mortality for bluegill, this 



figure is probably representative according to P. W. Laarman 

(personal communication). 

Seasonal Distribution of Natural Mortality, 
Growth, and Fishing Mortality 

The numerical model developed here allows a simulated 

year to be broken down into as many discrete time periods as 

seems reasonable. Since the dynamics of fish populations 

are all continuous processes, it follows that as the number 

of discrete time periods within a year increases (i.e., as 

tl-m), better estimates of the population characteristics 

will be calculated. Ricker (1975) pointed out that 

intervals as small as a day were probably unnecessary and 

that any period less than a day was unreasonable because 

diurnal fluctuations in predation, etc., would invalidate 

many results unless a calculus of finite differences was 

employed in the model. 

A discrete time period of one week was assumed to give 

accurate results and any smaller interval would not be 

justified by the increase in precision of the population 

estimates. Based upon this reasoning, time intervals of one 

week (t1=52) were used. Each month was assigned a specific 

number of weeks (Table 5 ) ,  allowing natural and fishing 

mortality rates and growth to be spread throughout a year. 

Patriarche (1968) published seasonal natural mortality 

rates for two lakes in Michigan. He assigned 7% to the 

spring ( ~ a y  1 to June 7), 81% to the summer (June 7 to 

September 11, 12% to the fall period (September 2 to 



Table 5. The number of weeks allotted to each month, and 
monthly percentage distribution of natural 
mortality (%n), growth (%g), and fishing 
mortality (%m), 

Number 
Month of weeks %n %9 %m 

Jan. 
Feb. 
Mar. 
Apr . 
May 
June 
July 
Aug . 
Sep. 
Oct. 
Nov . 
Dec . 

December l), and no natural mortality during the winter 

(December 2 to April 30). Schneider (1973a) used this same 

type of distribution in his model for Mill Lake in Washtenaw 

County, Michigan. The percent of mortality occurring in 

each month was computed as a ratio of the number of weeks in 

each month to the total number of weeks attributed to each 

season  able 5). 

Anderson (1959) showed a monthly percentage breakdown 

of total annual growth in his study of Third Sister Lake in 

Washtenaw County, Michigan. Both field data and laboratory 

experiments performed by Anderson gave similar results. 

Karvelis (1952) and Fabian (1954) reported approximately the 

same distribution for Ford Lake in Otsego County, Michigan 

as did Snow et al. (1960) for Wisconsin lakes. Schneider 



(1973a) also used a similar pattern of growth in his m ill 

Lake model. Anderson's figures were used in this model 

(Table 5). 

The distribution of fishing mortality was calculated 

from angler census data collected on Bear Lake (1952-1953) 

in Hillsdale County, Michigan (~chneider and Lockwood, 

1979). Fishing pressure on this lake of 117 acres in size 

was assumed to be representative of pressure received on 

small lakes in the 100 acre range as used in this study. On 

the basis of these data, 62% of the total fishing mortality 

was assigned to the summer months (June 24 to September 151, 

6% to the fall (September 16 to December I), 10% to the 

winter (December 2 to March 30), and 22% to the spr-ing 

(April 1 to June 23). This pattern was slightly modified 

(as recommended by M. H. Patriarche and P. W. Laarman, 

personal communication) and a final distribution of percent 

fishing mortality was estimated to be (same seasonal dates): 

57.5% in the summer, 7.5% in the fall, 10% in the winter, 

and 25% in the spring. Christensen (1953) showed a 

distribution of percent fishing mortality for six lakes in 

Michigan (averaged over a five year period) that was very 

similar to this latter distribution. These seasonal values 

were then spread over the corresponding months (Table 5) 

using the same method as described earlier for natural 

mortality. 

The monthly percentages of natural mortality, growth, 

and fishing mortality were spread uniformly over the weeks 



in each month. Each week was given an equal amount of the 

total value for the month by dividing the number of weeks in 

a month into the monthly percent estimate. 



RESULTS AND DISCUSSION 

The characteristics of slow, medium, and fast growing 

bluegill populations were simulated using the S.L.R.A. 

computer program. Simulation was continued until the 

populations reached equilibrium for the fishing mortality 

rate being used. The initial populations were also 

subjected to a 5.0 inch minimum size limit regulation, used 

as a control to determine the impact of the 7.0 inch maximum 

restriction. Although no regulation was in effect for 

bluegills, a 5.0 inch minimum was assumed to be 

representative of conditions found in Michigan at this time. 

Two separate sets of output were generated, one using 

variable recruitment and the other constant recruitment. 

Results Using Variable Recruitment 

Annual fishery statistics of the three bluegill 

populations at equilibrium (assuming variable recruitment) 

are summarized in Tables 6-17. Number of fish (per 100 

acres) and attained mean length in inches at each age are 

found in Tables 6, 10, and 14 for slow, medium, and fast 

growing bluegill populations respectively. These results 

show no change in length (at a given fishing mortality rate) 

between a 5.0 inch minimum and a 7.0 inch maximum 

regulation, and a large decrease in the total number of fish 

as the fishing mortality rate increases, especially in the 

slow growing population. This suggests that the density- 

dependent recruitment relationships used in the simulation 



were not adequate in describing the processes of fry 

survival and recruitment into the age'-I group. This could 

be attributed to many factors including the assumptions of 

only one spawning period per year and/or a 4.8 inch minimum 

length of mature females. Both of these assumptions could 

cause the number of eggs produced to be far less than seen 

in the field under the same conditions. Multiple spawning 

periods were not modeled because of the lack of data 

concerning this phenomenon and the complexity involved in 

simulating such a process. The effect of a 4.8 inch minimum 

length of mature females was not as important in the medium 

or fast growing populations where this length was attained 

by age I or 11. However, in the slow growing population, 

this length was not reached until age I11 or IV and the 

spawning stock had been greatly depleted by then because of 

fishing. This caused the large reduction in total number of 

fish as the fishing mortality rate increased. 

It was hoped that the use of a density-dependent growth 

relationship would offset these problems. However, the 

regression used to predict the mean length of fry was not 

sensitive enough to changes in the density of fry. Although 

the mean length at each age increased as density decreased, 

the change in length was not enough to offset the loss of 

fish over 4.8 inches. 

Another important factor was the assumption of a 

constant mortality of fry from the fall to the following 

spring. This assumption did not allow any compensation by 



the population for changes in the number of large bluegills 

(7.0 inches plus), the density of the previous year class, 

or the fishing rate. Better feedback mechanisms are 

necessary to model this compensation in any greater detail. 

The fishery statistics are recorded by length group in 

Tables 7-9 for slow growing, Tables 11-13 for medium 

growing, and Tables 15-17 for fast growing populations. The 

largest impact of the special regulation was seen in the 

fast growing population at a fishing mortality rate of 0.40 

(Table 15). Numbers of 7.0 inch plus fish increased from 

398 under existing conditions to 590 using the special 

regulation. Total catch was greater under the 7.0 inch 

maximum restriction (1,617 fish versus 1,363 fish), while 

harvest was essentially equal (1,024 and 1,020 fish per year 

for a 5.0 inch minimum and a 7.0 inch maximum respectively). 

The special regulation had little effect on controlling the 

slow and medium growing populations and the fishery 

statistics were virtually the same for the 5.0 inch minimum 

and 7.0 inch maximum restrictions. Changing from a 5.0 inch 

minimum to a 7.0 inch inverted regulation had little effect 

because less than 5% of the fish in these populations were 

over 7.0 inches (i.e., - the same fish were still harvested). 

Any change between the existing conditions and the 7.0 inch 

maximum in all three populations diminished as the fishing 

mortality rate decreased. 
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Results Using Constant Recruitment 

Annual fishery statistics of the three bluegill 

populations at equilibrium (assuming constant recruitment) 

are summarized in Tables 18-29. Number of fish (per 100 

acres) and attained mean length in inches at each age are 

found in Tables 18, 22, and 26 for slow, medium, and fast 

growing populations respectively. As in the results using 

variable recruitment, no change in length (at a given 

fishing rate) was observed between a 5.0 inch minimum and a 

7.0 inch maximum. However, because constant recruitment 

allows some compensation in the recruitment of age-I fish, 

the total number of fish in the population is much higher 

than seen in the earlier results for variable recruitment. 

The population structures seem much more realistic and are 

no longer greatly altered by the choice of a fishing 

mortality rate. The largest impact from using constant 

recruitment was observed in the slow growing population at a 

fishing mortality rate of 0.40. Total number increased from 

1,111 fish (assuming variable recruitment) to 8,880 fish 

(assuming constant recruitment). This was expected because 

of the slow growth and the 4.8 inch minimum length of mature 

females. This impact decreases frommedium to fast growth, 

but a significant change in total numbers was still observed 

between the variable and constant recruitment estimates. 

Although the assumption of constant recruitment did 

increase total numbers, the use of a 7.0 inch maximum 

regulation was still not effective in controlling the 
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Table 29. Predicted equilibrium levels of density. catch. and yield by length group for two size limit 
regulations. assuming constant recruitment and an annual conditional fishing mortality rate (m) 
of 0.10 for a fast growing bluegill population in Michigan. 

Simulated fishery statistics* 

Fish~ng regulation N C Y J Y  J C + J  Y  + Y J  H 

5 inch minimum 
7 inch maximum 

5 inch minimum 
7 inch max imum 

5 inch mi n 1rnum 
7 ~ n c h  maximum 

5 ~ricti minimum 
7 Inch maximum 

1.0- to 2.9-inch f ish 

3.0- to 4.9-inch f ish 

5.0- to 7.0-inch f ish 

O v e r  7.0-inch f ish 

A l l  f ish 

5 ~ncti rn i nimurn 9.330 437 86.5 161 1 0 . 1  598 9 6 . 6  33 
7 inch maximum 9.421 3 30 49.2 272 49.5 602 98.7 5 5 

+ N  = number of fish in the population; C = annual number of legal-size bluegills harvested; Y  = annual 
yield i n  pounds of harvest; J = annual number of illegal-size bluegills caught and released; Y J  = annual yield 
iri pourrds of illegal-s~ze bluegills caught and released; H = annual number of illegal-size bluegills dying from 
hook i ny nror ta 1 i t y . 



SUMMARY 

The simulations using the model developed in this 

report demonstrated two important points. First, a 7.0 inch 

maximum size limit regulation can not improve and control 

bluegill populations, The best results were obtained for a 

population showing characteristics of fast growth, and which 

was subjected to heavy fishing mortality even after 

application of the special regulation. However, these 

results depicted only a nominal improvement of the 

population. Any gains realized by restricting the size of 

harvestable bluegills could be easily offset or even 

reversed by poaching or any natural disaster. 

Further analysis reveals that a closed season on 

harvest in May, June, and some or all of July might be 

beneficial (along with the special size restriction) for two 

reasons. One, 55% of the annual fishing mortality occurs 

during these months. Large bluegills are very susceptible 

to angling at this time because they come into shallow water 

to spawn. Closing the fishing season during these months 

would protect the larger fish and possibly cut down on 

poaching. Second, 7 0 %  of the annual growth occurs during 

this three month period. A closed season would allow many 

more of the fish to recruit into the illegal size range 

e over 7 . 0  inches) and thus not be harvested, This 

would increase the number of large fish and possibly make 

the 7.0 inch special regulation much more effective as a 

management strategy for improving poor bluegill populations. 



Hooking mortality was essentially insignificant using 

0.20 as the probability of a hooking death for a fish caught 

and released. This implies that special restrictions on 

gear (e.q., artificial lures only) would not help improve 

the populations and are thus unnecessary if the probability 

of a hooking death is 0.20 or less. However, if the 

probability of a hooking death is much higher than 0.20, 

gear restrictions may be necessary to prevent large numbers 

of fish from dying after being caught and released. 

The second point demonstrated by this model is the need 

for further research regarding bbuegill spawning, survival 

of fry, and recruitment into the age-I group. It is 

necessary to determine the factors, dependent and/or 

independent, which influence these processes and allow the 

population to compensate for environmental and man-made 

stresses. The assumptions in the model of variable 

recruitment, one spawning period per year, a 4.8 inch 

minimum length of mature females, and a constant mortality 

of fry from the fall to the following spring were not 

sufficient to produce a bluegill population with realistic 

characteristics. Constant recruitment was then assumed, and 

although this did improve the population characteristics, it 

was still somewhat inadequate in producing the population 

dynamics associated with spawning and recruitment. A 

further density-dependent feedback mechanism may improve 

model performance. One hypothesis is cannibalism by large 

bluegills, illustrated in Figure 7. A variety of curves 



DENSITY OF BLUEGILLS 7 INCHES RND LRRGER 

Figure 7. Possible hypothetical functions relating fry 
survival to the density of 7.0 inch and larger 
bluegills. 



relating fry survival to the number of bluegills 7.0 inches 

and larger is depicted on this graph. The low horizontal 

line is the assumption used in this model along with the 

assumption of variable recruitment (i.e., high constant 

mortality regardless of the density of large fish). 

However, one of the other curves may be more realistic, the 

use of which might possibly enhance model performance 

depending on the sensitivity of the relationship. 

The model presented in this paper is very useful as a 

management tool. Its general applicability makes possible 

the simulation of a wide variety of size limit regulations, 

gear and season restrictions, and studies of seasonal growth 

and natural mortality. It may be applied to any inland 

warmwater fishery i f  the necessary data are available for 

accurate simulation. Application of this model to Michigan 

bluegill populations showed that more research is still 

needed before a successful solution for managing bluegill 

populations can be determined. It  is much easier to find a 

cure if  the symptoms are known rather than to use over and 

over a trial and error process. 
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