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Abstract

In this paper, we address the problem of admission control and sequencing in a
production system which produces two classes of products. The first class of products
is made-to-stock, and the firm is contractually obliged to meet demand for this class of
products. The second class of products is made-to-order and the firm has the option
to accept (admit) or reject a particular order. The problem is motivated by suppliers
in many industries who sign contracts with large manufacturers to supply them with a
given product and also can take on additional orders from other sources on a make-to-
order basis.

We model the joint admission control/sequencing decision in the context of a simple

two class M/M/1 queue to gain insight into the following probléms:

1. How should a firm decide a) when to accept or reject an additional order; and b)

which type of product to produce next?

2. How should a firm decide what annual quantity of orders to commit to when

signing a contract to produce the make-to-stock products?

We fully characterize the structure of the optimal admission control and sequencing
decisions and also show how changes in problem parameters (such as holding costs,
order arrival rates, production rates) affect these decisions. Finally, we compare the
performance of simple policies to the performance of the optimal policy, and explore
the effects of decreases in demand or production process variability on firm profits and

the optimal quantity of orders the firm would be willing to commit to.



1 Introduction

Rarely does a manufacturing firm produce a single product for sale to a single customer.
Rather, a typical firm is likely to use its manufacturing facilities to produce a variety
of different products for a variety of different customers and market segments. The firm’'s
customers in different market segments may have different requirements and the relationship
between producers and customers may vary across different segments. For example, the firm
may sign a large contract to supply products to a major customer on a make-to-stock basis
and accept additional orders from other customers occasionally when it has extra capacity
to be able to, fill those orders.

This work is motivated by a major glass manufacturer that fabricates laminated and
tempered windows for installation into automobiles, trucks, and farm implements. This
firm’s products are sold to automotive assembly plants (the original equipment manufacturer
(OEM) market segment) for installation into new vehicles and to the automotive glass
replacement (aftermarket) segment for installation into older vehicles. The two segments
consume nearly identical products but are otherwise of very different character.

Sales to OEMs are based on long-term contracts that include large contractually specified
penalties if products are not available when required by the OEM’s just-in-time production;
the manufacturer is required, through these penalties, to dedicate a portion of its manufac-
turing capacity to the OEM segment. The long-term contracts are appealing to automotive
suppliers because they result in high guaranteed capacity utilization. The tradeoff is that
the unit profits generated by these contracts are typically low, and the potential for large
perialties dictate that the manufacturer maintain a suitable finished goods inventory to
buffer against production delays and to allow production runs of aftermarket items. As
noted in Duenyas et al., (1996), although the JIT literature widely espouses the virtues of
providing supplier plants with visibility to production schedules, in reality, many suppliers
have very poor information about future demand. Duenyas et al. discuss this issue in detail
and give examples from several industries. One result of this poor visibility to demand is
that suppliers often have to carry significant amounts of inventory to meet the demands
of their customers “just-in-time”. In this paper, we consider an additional r.eason for the

supplier to choose to carry inventory. namely, to allow acceptance and production of more



profitable orders.

In contrast to the OEM demand, the aftermarket is characterized by higher profit mar-
gins but more occasional and limited demand. A manufacturing facility may produce items
for a single OEM contract but many different aftermarket items. The OEM contract is
served in a make-to-stock fashion while the uncertain arrival pattern and the very large
variety of aftermarket items necessitates make-to-order service. Prices are fairly standard
in the aftermarket; quick service is the primary dimension of competition. Notably the
manufacturer is not contracfually required to accept an aftermarket order; an order can be
either refused or sourced from another firm.

Several interesting topics emerge from this situation. A long-term strategic question is
the optimal proportion of production capacity that the firm should dedicate to the OEM
segment. Once the firm commits to a certain volume of OEM production, how should it
decide whether to take on additional work? Finally, how should a firm decide to sequence
work? In this paper, we provide simple models to gain insight into the nature of these
problems.

We first address these problems in the context of a simple multi-class M/M/1 queue. The
first class of jobs (representing OEM jobs). are made-to-stock. Demands arrive randomly
and there is a penalty if demand is not satisfied immediately. The second class of jobs
represents possible aftermarket orders. These can be accepted or rejected by the firm
depending on the state of the system. The firm also has to decide whether to idle, or to
process a job of the first or second class at a given point in time. Thus, we are addressing the
joint problem of admission control/sequencing rin a make-to-order/make-to-stock M/M/1
queue. (Similar analysis can be performed at the cost of significant notational complexity,
without additional insight, for multi-class M/G/1 queues; as in other recent papers focusing
on structural insight including Veatch and Wein (1996) and Ha (1993, 1994, 1995), we
prefer the M/M/1 case. However. in Section 5. we numerically explore the effects of lower
variability in processing or demand arrival times by allowing Erlang distributions).

There is a rich literature on admission control and sequencing although most papers
consider these problems in isolation and not jointly. Stidham (1985) reviews the literature

on customer admission to single item make-to-order queues. In a recent paper, Stidham and



Weber (1993) review the literature on control of arrivals, routing control and scheduling for
a network of queues. In the routing-control models, arrivals are either immediately routed
to several parallel servers or join a common buffer and are routed to one of the queues
only when the job reaches the head of the queue (see Stidham and Weber for a review
of this literature). There has been a significant amount of recent interest in control and
performance evaluation of single server systems that produce multiple classes of products.
While past work has focused on the optimality of simple index rules for make-to-order
systems where set-ups are not required to switch from one class to another (e.g., Varaiya
et al. (1985), Walrand (1988) and the references therein), more recent work has focused
on systems where a set-up is required to switch from one product to another and the
dynamic stochastic economic lot sizing problem (SELSP) arising from the production of
multiple make-to-stock products. Duenyas and Van Oyen (1996) and Reiman and Wein
(1994) focus on control of make-to-order systems with set-ups. Gallego (1990) and Bourland
and Yano (1995) develop heuristic policies for SELSP. Anupindi and Tayur (1994) develop
a simulation-based approach to obtain effective base-stock policies, and Federgruen and
Katalan (1996) analyze the performance of cyclic base-stock policies for this problem. Other
recent papers on the SELSP include Markowitz et al. (1995), Sox and Muckstadt (1995),
and Qiu and Loulou (1995), and Ha (1993). However, in all of these papers, the only
problem addressed is the dynamic production/sequencing problem; admission control is not
considered.

Several recent papers have considered joint admission control and production decisions
in single product settings. Li (1992) considers a firm producing a single product and explores
the economic environmental factors that lead the firm to hold inventory. Ha (1994) considers
stock rationing in a single-item, make-to-stock production system with several demand
classes and lost sales, while Ha (1995) considers the case with backordering. Our work is
differentiated from these papers in that we consider customer classes that require different
products, whereas in these papers all customers require the same product, and therefore
we have to address the resulting sequencing problem jointly with the admission control
problem.

Duenyas (1995) considers the joint problem of quoting due dates and sequencing jobs



in a make-to-order queue with multiple customer classes, where a customer’s probability of
placing orders depends on the due date quoted. Thus, admission control can be indirectly
achieved by quoting a very high due date when more jobs are not desired. However, Duenyas
(1995) mainly focuses on developing heuristic solutions and does not characterize optimal
policy structure. Also, our paper considers a make-to-stock/make-to-order system.

Finally, recent work has focused on performance evaluation of make-to-stock/make-to-
order systems as well as on the problem of how a firm decides whether to operate in a
make-to-stock or make-to-order mode. Nguyen (1995) develops fluid and diffusion approx-
imations for the performance of a make-to-order/make-to-stock system with FIFO service
discipline. Federgruen and Katalan (1994) use the framework of a cyclic polling system
to address the decision of how many products to make to order and how many to make
to stock. Their analysis can be used by a firm to decide which products to offer, whether
to make them to stock or to order and in what annual quantities. Our paper differs in
that we assume the decision of which product to make to stock or to order has already
been made (in the environment described above, this decision is severely constrained by
contractual considerations for the OEM market, and the difficulty of making to stock the
huge variety of products that is demanded by the aftermarket demand segment) and we
allow for dynamically deciding which particular orders to accept/reject and which class of
jobs to produce next.

The rest of this paper is organized as follows. In Section 2, we introduce the notation
and formulation of the problem. In Section 3, we completely characterize the structure
of the optimal admission control and sequencing policies. These policies are characterized
by monotonic switching curves. We then consider how changes in problem parameters are
reflected in the switching curves and overall profitability. Since optimal policies are rather
complex, in Section 4, we describe a simple, and easily implementable admission control
and sequencing policy and show that, for a wide variety of examples, this policy performs
very well. We then demonstrate the importance of considering all three decisions that the
firm faces simultaneously, and show how making these decisions without considering their
interdependence can result in significant loss of profitability. In Section 5, we explore the

effects of lower variability in the demand arrival or production processes on profits as well



as the optimal level of OEM demand the firm should commit to. Section 6 concludes the

paper.

2 Problem Formulation

We consider the optimal control of a single server queue which produces two types of prod-
ucts. Demand for product of type i, (i = 1,2), arrives according to a Poisson distribution
with rate \;. (We allow Erlang distributions in Section 5). Type 1 products are made to
stock, and demand for them is satisfied from inventory. It is not possible to backorder de-
mand for type 1 products; if there is no type 1 product in stock when a demand occurs, the
firm satisfies the demand by purchasing the product from another supplier at an additional
cost (penalty) of 7 for each such occurrence.

Type 2 products are produced to order, and the firm has the option of to accept or
reject each type 2 order. (We will later generalize to the case where there are multiple
classes of products made to order which are only differentiated by price; for simplicity of
presentation, we first present the case where there is a single product type which is made-
to-order). Each accepted order generates a revenue (alternatively, margin) of Ro. Inventory
costs are incurred at the rate of ¢ per unit per unit time for each unit of type 1 product
in stock, and at the rate of co per unit time for each unit of type 2 product in process (ca
may also serve as a proxy for the cost to the firm of delaying production of type-2 orders
and thus becoming uncompetitive in that market). We assume that production of a unit
of either type 1 or type 2 product takes an exponentially distributed amount of time with
mean % (In Section 5, we allow Erlang processing time distributions and permit type-1
and type-2 production to have different processing time distributions). We further assume
that preemptions are permitted, and that no setup is required to switch from producing
one type of product to another.

The set of decision epochs correspond to the set of all arrival epochs, service completion
epochs, and instances of idling. A policy specifies at each decision epoch that the server idle
or produce a unit of type 1 or type 2. Furthermore, in decision epochs corresponding to the
arrival of a customer for a type 2 product, a decision must be made whether to accept the

customer’s order. Accepting the order generates revenue but also increases the rate at which



waiting costs accrue. The objective is to find a policy that maximizes the average profit per
unit time, where profit is the revenue from type 2 orders minus the costs associated with
the inventory costs for type 1 and type 2 products and the penalties incurred when type 1
demands can not be met from stock. (Note that all demand for type 1 products is satisfied.
Therefore, adding the revenue associated with type 1 products, Ry, to the objective function
has no effect on the optimal control policy).

We can formulate the optimal admission and production control problem as a Markov
Decision Process and characterize the structure of optimal order acceptance and sequencing
policies. We define the state (ny,ng) as the number of units of type-1 inventory in stock
and the number of units of type 2 products in process. We let v(n1,n2) be the relative
value function of being in state (n1,n2) and g(\;) denote the average reward per transition
(where a transition is an arrival or service completion). Then, using uniformization, we can

write

g(M1) +v(ny,ng) = %{ — ¢ciny — cono + Aqfv(ny — 1, n9) - I(n;>0) + (v(0,ng) — ) - I(n1=0)]
4+ max|v(ny, no + 1) + R, v(n1, na)]

+pmaxfv(ny + 1, n2), v(ny, ng = 1) - Iinys0) + v(n1,12) - I(ny=0)]
(2.1)

where () denotes the indicator function, and A = Ay + Ao + p.

In eqn. (2.1), the cost terms (‘l\{—clnl — cono}) represent the expected holding and
waiting costs per decision epoch and the terms multiplied by A; represent transitions and
penalties associated with the arrival of a type 1 customer, the terms multiplied by A2
represent transitions and revenues generated by the arrival of a type 2 order, and the terms
multiplied by u represent transitions generated by a service completion opportunity. We
note that since preemptions are allowed, idling when ng > 0 can not be optimal, and (M)
is the profit per transition when the manufacturer faces a long-run class-1 demand rate of
A1. Since transitions occur with rate A, g(A;)A represents the profit per unit time.

The second problem that the firm faces is that of choosing the optimal level of A;. In the
situation we described in the previous section, the firm makes this decision only once (for

example, when signing a contract to provide products for the OEM market). The problem



of choosing the optimal level of \; is formulated as
n&axg()\l)()q + X2+ p) + Rid (2.2)
1

Equation (2.2) shows the interdependence between a firm’s decision of the optimal level
of A\; that the firm will set and the levels of A, the production rate as well as the admission
control and sequencing policies that the firm will use. In the situation we described in the
introduction, the level of less profitable OEM demand that the firm is willing to commit
to providing depends on the level of more profitable aftermarket demand and how much
capacity the firm has to satisfy either type of demand. Therefore, the choice of A; is
interrelated to the solution of (2.1). It is therefore important to understand the structure
of the optimal solution to (2.1) and how this structure is affected by problem variables. We

first focus on the solution to this problem.

3 The Structure and Monotonicity of the Optimal Admission

Control and Sequencing Policies

In this section, we focus on the problem described by (2.1) and characterize the structure of
the optimal admission control and sequencing policy that the firm would use given that the
optimal level of A\ has already been fixed. The main result of this section is the following

theorem which completely describes the structure of the optimal policy.

Theorem 1 The optimal production policy is defined by a switching curve h(ng) such that
for ny > h(ng), the optimal policy is to produce type-2 items if ng > 0 and to idle if no = 0;
for ny < h(ng) the optimal policy is to produce type-1 items. We refer to this switching
curve as the production threshold curve. Furthermore, h(nz) is nonincreasing in no.
The optimal type-2 order acceptance policy is also defined by a switching curve, f(n2)
such that if ny > f(n2), the optimal policy accepts type-2 orders but otherwise rejects them.
We refer to this switching curve as the acceptance threshold curve. Furthermore, f(no)

1s nondecreasing in ng.

Proof: The proof is provided in the Appendix.
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Figure 1: The structure of the optimal admission and sequencing policies

The structure of the optimal policy in a typical problem is illustrated in Figure 1.
The optimal policy is characterized by four regions corresponding to the combinations of
producing either type 1 or type 2 items and either accepting or rejecting arriving type 2
customers. We conjecture that Theorem 1 holds even when the production rate for products
1 and 2 are different. However, although we have not been able to find any numerical
counterexamples to this conjecture in the very large number of examples we have solved, at
this time we are not able to show that Theorem 1 holds without the assumption that the
production rate for products 1 and 2 is the same.

Having characterized the structure of the optimal policy for (2.1), we next proceed to
analyze how the optimal profit and admission and sequencing decisions change as a function
of the problem parameters. Our first result. characterizing the monotonicity of the expected

profits as a function of the problem parameters is intuitive.

Theorem 2 The optimal average profit per unit time g(A)A of (2.1) is increasing in p,

A9, Ro, and decreasing in m, ¢y, co. M.

Proof: See appendix.
We note that the formulation in (2.1) does not consider revenues for type-1 products
but considers overall profits from acceptance of type-2 products and sequencing decisions

once the choice of A\; has been made. Therefore, the expected profit in (2.1) is decreasing



in \; -since the higher the value of \;, the fewer type-2 orders the firm can accept. Having
characterized the monotonicity of the average profit per unit time in (2.1), we next proceed
to characterize the monotonicity of the switching curves with respect to the input parame-
ters. Consider two instances of the admission control and sequencing problem described by
(2.1). To differentiate the second instance from the first one, we use the prime (') symbol

for costs and switching curves in the second case.

Theorem 3 1. Suppose that A} = A}, Ao = Ay, ¢1 = c’l, co = c'2, n=x',p=y' and
Ry > Ro. Then, f'(n2) < f(ng) for all ng, and h'(ng) < h(ng) for ng > 1, and
R'(0) > K(0).

2. Suppose that \; = /\'1, A2 = Ay, ¢ = c’l, cg = c’2, =1, R'2 = Rg, and ' > 7. Then,

f'(n2) > f(n2) and h'(n2) > h(ng).

Proof: see appendix

In words, the second part of Theorem 3 states as = gets larger, it may become optimal
to switch from accepting type-2 orders to rejecting orders in any given state and to switch
from producing type-2 orders to type-1 orders in states with ng > 0, and finally to switch
from idling to producing type-1 orders in states with n; = 0. This result can be explained
intuitively. As stocking out of type-1 units now costs more, the policy switches towards
giving higher priority to type-1 orders, keeping more type-1 units in stock and accepting
fewer type-2 orders.

The first part of Theorem 3 states that as Ro gets iarger, it may become optimal to
switch from rejecting type-2 orders to accepting them in any given state, to switch from
producing type-1 orders to producing type-2 orders in states with ng > 0, and to switch
from idling to producing type-1 orders in states with n; = 0. As type-2 orders become
more profitable when Ro is increased, the policy tends to switch to accepting more of them
and to give higher priority to their production rather than the production of type-1 orders.
However, when there are no type-2 orders to work on, the policy works towards building a
larger finished goods inventory of type-1 units so that it can have the opportunity to accept
and work on type-2 units when orders for them arrive. Figure 2 displays how the switching

curves shift as a function of a change in Ro.

10



J——
Idle

h'(0) ¢ fin
b0/ ()
of ()
’
= ,
£
':;: h'(n)*
> . Produce Type-2 .
S Admit new orders .’
s “ P i
E “ -
=< I Produce Tvpe-1 .- Produce Type-2
§ Admit new orders Reject new orders
17}
¢ . ..
o/ 4 o,
= »* Produce Type-1 -
= o’ Reject new orders

Make-to-order queue size (n;)

Figure 2: Change in policy as a result of an increase in Ro

Although the switching curves, f and h have nice monotonicity properties with respect
to m and Ry, they are not necessarily monotonic with respect to the other parameters. We
show this by way of counterexample. Consider the following problem which we will refer to
as “base case”. The “base case” has the following values: Ry = 20, 7 = 35, ¢; = 0.5, cp = 2,
A1 = 1.5, Ao = 1 and p = 2. We will analyze the optimal decisions in states S; = (2,2)
and So = (1,6) under the base case and other cases. Under the base case, the optimal
production decision is to produce type-1 items in S; and type-2 items in So. Changing
only A; to 0.75 from 1.5, but keeping all the other parameters the same, will in the optimal
policy result in producing type-2 items.in $; and type-1 items in SQ Similarly, changing
only 4 to 5 from 2 will result in once again the optimal policy producing type-2 items in S
and type-1 items in Sp. These examples clearly demonstrate that the switching curves are
not necessarily monotonic with respect to all parameters.

We conclude this section by pointing out that a simple extension of our model also has
a nice structure. In (2.1), we considered a problem with only two classes, where one is the
make-to-stock class and the second is the make-to-order class. An obvious extension is to
consider a single make-to-stock but an arbitrary number of make-to-order classes. Assume
type-1 orders are the make-to-stock orders and type-2 through N orders are make-to-order.

If we further assume that all products have the same mean production rate and that all

11
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the make-to-order products have the same waiting cost cg, and are numbered such that
Ro > R3 > ... > ...R,, we are again able to characterize the structure of the policy. First
of all, we note that since waiting costs for all make-to-order products are the same, once
we accept a make-to-order product, we do not need to keep differentiating it from other
make-to-order products. Thus, we can represent the state once again as (ny,no) where n;
is the number of units of type-1 in stock, and no denotes the sum of type-2 through N
orders accepted but not yet processed. Then using the same approach used for proving
Theorem 1, it is easy to show that there exists a production threshold curve h(ng) such
that if n; < h(ng) then the optimal policy is to produce a type-1 unit and otherwise to serve
any of the make-to-order units waiting. Similarly, for each make-to-order class there exits
an acceptance switching curve fi(no) such that if ny > f;(ng) then a type-2 order will be
accepted, and it will be rejected otherwise. Furthermore, h(n2) and fi(n2) are monotonic
with respect to ng as in Theorem 1. Finally. it is easy to show that fi(n2) < f;(n2) for
J > i. Figure 3 demonstrates the structure of the optimal policy in this case. We note that
all of the production rates and waiting costs being equal is a crucial assumption in this
case since if those strong assumptions did not hold, one would need to differentiate between

types thereby increasing the dimensionality of the state space.
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We close this section by noting that the firm can find the optimal level of A; by solving
(2.1) by discretizing the interval between [0, ) and solving (2.1) for each different level of
A1. The value obtained for g();) can then be input into (2.2) and the value of A; that
maximizes the value of (2.2) can be picked. We note that this procedure is very different
from procedures used by most firms, including the one that motivated this study. The
above-described way of setting A1 levels takes into account the opportunities for satisfying
aftermarket (type-2) demand as well as optimal production and acceptance policies. For
example, a typical firm will have separate and relatively uncoordinated OEM sales, after-
market sales and operations. In our numerical study in the next section, we focus on the
importance of coordinating all three functions by showing how even a firm which is un-
coordinated with respect to one of these functions (say, OEM sales) operates significantly

suboptimally compared to a firm which coordinates all three functions.

4 Numerical Study

The optimal policies described in the previous section are rather complex. In particular, the
production and acceptance policies are defined by switching curves which make their actual
implementation problematic. However, they also point to the importance of considering
these decisions simultaneously, i.e., “coordinating” these decisions. In this section, we
first explore the performance of a simpler, more implementable policy for production and
acceptance decisions. However, this policy still considers these decisions simultaneously.
We then give an example of a relatively sophisticated, but somewhat uncoordinated, policy
for controlling the three decisions that ultimately fails.

We first focus on the sequencing and acceptance decisions after A is set. Consider the
following simple policy: type-2 orders are accepted if ng < No, and production of type-1
inventory is allowed so long as n; < Nj. Given this basic structure, two questions remain:
1) What are the best values of N} and No, and 2) how does one decide whether to produce
type-1 or type-2 units at any point in time? We first consider a policy which gives total
priority to the production of type-1 items as long as n; < Nj; for any given N; and Ng,
this gives rise to a Markov chain with an associated profit that is easily calculated. We

perform a two-dimensional search for N} and No. We then consider a policy which gives
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total -priority to the production of type-2 production as long as nz > 0. We once again find
the best N1, and N3 values and the profit associated with these values undgr this sequencing
rule. We then pick the sequencing rule and corresponding Ny, No values resulting in the
highest profit. Although this is computationally inefficient, it is certainly a very simple
policy to describe and implement in practice. In actual operation, this policy appears to be
uncoordinated at first sight since in deciding whether to accept or reject a type-2 order, the
sales department does not need to know the level of current inventory. However, we note
that the operating parameters of Ny and N were in fact set in a coordinated fashion.

Table 1 compares the profits obtained by the optimal policy and by the simple heuristic
policy described for 22 examples. Example 1 represents the base case, and in Examples 2
through 16, we systematically increased or decreased one of the problem parameters to test
the performance of the described policy under a variety of conditions including high versus
low type-1 or type-2 demand, and high or low holding and penalty costs. We also added six
other examples to cover other cases. The results in Table 1 clearly show that this simple,
implementable policy performs very well. The average difference between the performance
of the optimal and heuristic policies was only 1.8 %. Although the computation of N; and
No is somewhat time consuming, in practice this would need to be done only once; and
the policy is very easy to describe to both manufacturing and sales departments. The last
column of Table 1 indicates which class the heuristic gives priority to. It is interesting to
note that in the majority of the cases, the heuristic gives priority to the production of type-2
orders.

However, we note that the above policy still considered sequencing and acceptance
decisions simultaneously in setting the parameters for the heuristic. As we noted in the
previous section, in many companies these decisions as well as the decision of how much
OEM demand to contract for are uncoordinated. In fact, many companies, including the one
with which we are most familiar, have separate divisions for OEM and aftermarket sales, but
common manufacturing facilities where both types of products are produced. Furthermore,
the divisions have an incentive to maximize division profits. In many other firms, OEM
contracting is performed first and the aftermarket sales are subsequently considered. We

show through a simple example how such uncoordination may be very costly. Consider
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Example | Ry | Ro | © | ¢ |ca| A1 | A2 | p | Optimal | Heuristic | % dif. | Priority
1 01025 |1|2] 1 |1]2]| 1157 11.35 | 1.9% 2
2 10105 [1]2] 1 |1]2] 1050 10.23 2.6 2
3 0[5 |25 | 12| 1 |1]2] 4974 49.04 1.4 2
4 0]1025 |1 |5] 1 |1]2] 1000 9.86 1.4 2
5 5110025 |12 1 |1]|2] 658 6.35 3.4 2
6 50 102 |1 ]2] 1 |1]|2]| 5158 51.35 0.4 2
7 05 25|12 1 |1]2]| 797 7.81 2.0 2
8 10010 4 (1|21 [1]2] 1508 15.02 0.0 2
9 100101012 1 |1]2] 948 9.16 3.4 2
10 0102 [5]2] 1 |1 ]2] 1351 12.82 5.1 1
11 1001025 |22 1 |1]2] 904 8.62 4.7 2
12 0102 [ 1.5 1 |1 ]2/ 1351 13.40 | 0.8% 2
13 100102 [1]2] 5 |12/ 966 9.32 3.5 2
14 1001025 | 1|2 ]L73 | 1|2/ 1254 12.48 0.5 2
15 0102 [1]2] 1 [o05]2]| 944 9.16 3.0 2
16 1001012 |12 1 |5 ]2] 1473 14.37 2.4 2
17 51250502 |2 1 |3 /|10 7264 72.65 0.0 1
18 512505005 2] 1 | 310/ 64.92 64.92 0.0 1
19 |5 25050502 1 |3 ]i0]| 7708 | 768 | 0.3 1
20 5 12532 |54 4 | 3|6 5737 57.25 0.2 2
21 50 |25 |10 {105 | 5 | 4 |10]| 3203 318.8 0.5 2
22 1001025 | 12151 ]2/ 1261 12.52 0.8 2

Table 1: Comparison of Optimal and Heuristic Admission and Sequencing Policies
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a firm’s OEM sales department which decides how much OEM demand to accept (i.e.,
the optimal level of \;), without taking into consideration the existence of aftermarket
demand. Assuming this division was doing everything else optimally, it would solve (2.1)
and (2.2) by setting Ao = 0, and find the optimal level of A;. Furthermore, assume that the
aftermarket sales and scheduling departments are then notified of the choice of A\; and make
their acceptance and sequencing decisions optimally and in coordination by solving (2.1)
(with the value of A given to them) and implementing the optimal policy for sequencing
and aftermarket order acceptance. In this example, all decisions except the initial decision
of the choice of \; by the OEM sales department are coordinated and optimal.

We numerically tested the performance degradation of this behavior on several of the
examples from Table 1. In Example 20, the OEM sales department would actually choose a
A1 value of 4.60 if it behaved in the above described manner, whereas the optimal value of \;
is 2. Even though all decisions are made optimally thereafter, the uncoordinated behavior of
this one department would result in a 38 % decrease in firm profits! We note that in Example
20, aftermarket sales are nearly five times as profitable as a OEM sales. However, even in
Example 1, where aftermarket and OEM margins are equal, the decrease in profits would
be nearly 6 %. Not unexpectedly. we have observed that as aftermarket margins become
significantly higher than OEM margins, (exactly the scenario observed in industry), the
profit discrepancy increases. Finally, we note that in these cases, overestimating the optimal

value of A1 usually results in a more significant profit degradation than underestimating it.

5 Extension to Erlang Arrival and Service Distributions

In the previous sections, we assumed that all distributions were exponential. However, in
some cases, signing a large contract with a firm might also result in a less variable demand
pattern. It is easy to extend our formulation to handle Erlang distributions for interarrival
and service times. This allows us to handle service and arrival distributions which have
significantly less variability than the exponential. For example, if we assume that the
arrival process of type-1 demand is Erlang-z, with all other distributions still exponential,
we can define v(ny, no, k) to be the relative value function of having ny type-1 units in stock,

no type-2 orders, and k phases until the next type-1 arrival, where each phase is of duration
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Figure 4: Optimal profits as a function of A; with changes in arrival variability

1/(kX). We can then write the following recursive optimality equation,

g(A1) +v(ni,no, k) = 71\-{ —cin] — cono + z/\l{v(nl,ﬂg,k -1)- I(k>1)
tv(n1 = 1,n2,2) - I(k=1 0, 50) + (v(0,n2, 2) = 7) - I(k= ) 0)]
+Xomax(v(ny,no + 1, k) + R, v(ny, no, k)]

+pmax(v(n; + 1,n9, k), v(ny,ne — 1, k) - I(ny>0) t v(n1,n2, k) '1(n2‘=0)l}
(5.3)

where g(\1) denotes the average reward per transition as before, and A = zA; + Ao+ p. In
a similar manner, we can easily extend the formulation to allow Erlang processing times for
type-1 or type-2 production. This also allows us to formulate situations where type-1 and
type-2 items do not have the same processing time distribution.

We are interested in how improvements in arrival or production process variability affect
the firm’s profitability and the size of contracts the firm would be willing to sign with an
OEM. Intuition would suggest that as the arrival process of type-1 demand becomes less

variable, perhaps through better customer-supplier communication or contractual agree-
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ment, the firm’s profits would increase and the firm would also be willing to dedicate more
of their capacity to that customer. Similarly, the large cumulative production volumes re-
sulting from a long-term relationship with the OEM customer might lead to a more efficient,
less varible production process for the product demanded by the OEM. It is also common
practice for some firms, such as Toyota, to assist their suppliers in variability reduction.
Intuition would again suggest that such improvements in type-1 production process would
have the same results as the reduction in the variability of the type-1 demand arrival process.
Numerical examples have verified our intuition. We give two examples of this behavior.

As a base case, consider the situation where all interarrival and processing times have
exponential distributions and Ry = 8, Ry = 15,7 = 25,¢; = l,co =2, A0 =1, and p = 2.
Figure 4 shows the impact of decreases in the variability of type-1 demand arrivals. In this
figure, we plotted the profit of the firm as a function of its choice of A; when the type-
1 demand arrival process was expontial, Erlang-2, and Erlang-5. As the arrival process
becomes less variable, the profit level at any \; increases, and as we expected the optimal
level of \; also increases. In particular, the optimal level of A is 0.85 when the arrival process
is exponential and it increases to 0.93 for Erlang-2 and to 0.99 for Erlang-5 distributions.
Similarly, Figure 5 demonstrates the effect of reducing type-1 processing time variability.
Once again, we plotted the optimal profits as a function of A; for exponential, Erlang-2
and Erlang-5 type-1 processing time distributions (the processing time for type-2 was fixed
to be exponential with the same mean for all examples. Once again, we note that as the
production process becomes less variable, both profits and the optimal value of A; increase.
In particular, the optimal A, changes from 0.85 to 1.00 for Erlang-2 and 1.02 for Erlang-5
distributions.

These results clearly show the beneficial effects to the supplier of decreasing arrival or
processing time variability. In fact, as lower variability leads to higher profits at all levels of
A1, a supplier might be willing to offer lower prices to the OEM in exchange for guarantees
in demand variability or improvements in the design of products which lead to demonstrated

decreases in production variability.
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Figure 5: Optimal profits as a function of A; with changes in process variability
6 Conclusions and Further Research

In this paper, we addressed the joint admission control and sequencing decisions faced by a
firm prodﬁcing products for multiple segments. We were able to characterize the structure
and sensitivity of optimal policies in the context of a multi-class M/M/1 queue. Since the
structure of the optimal policy is rather complex, we explored the performance of a simpler
policy and also presented examples showing the importance of simultaneously considering
these decisions.

Many open problems remain to be explored. First, our formulation easily extends to
general processing times with different rates for different products and we conjecture that
our structural results continue to hold. Second, in many cases in practice, switching from
one type of product to another requires a set-up; exploring how optimal admission control
and sequencing decisions are affected by the presence of setups is a very interesting question.
For example, is a firm more likely to accept orders for a product for which its machines are

already set-up if set-up are very long? Third, we have so far explored these questions only
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in the.context of a single server queue. It would be interesting to consider more complicated

multi-server or network settings.

Appendix - Proofs of Theorems

Proof of Theorem 1:
Consider a value iteration algorithm to solve for the optimal policy in which vo(ny,ng) =

0 for every state (n1,n2) and:

vkt1(n1,ng) = %{ — c1ny — cong + Afvk(n1 — 1,12) - In;50) + vk(0,n2) - I(n,—0) = 7 - I(n,=0)
+Xo max[vk(ni, no + 1) + Ro, vk(n1, no)]

+p max[vk(nl +1,n9), vg(n1,no — 1)- I(n2>0) + vg(n1,n0) - I(ng:O)]
(6.4)

Here, vi(n1,ng) can also be viewed as the optimal value function when the problem is
terminated after k transitions. In order to prove Theroem 1, we first show that (2.1) has a

well-defined solution, and the vi(n1, n2) values in (6.4) converge to v(n1,n2) in (2.1).

Lemma 1 There exist bounded functions, v(ny,na2), nj,no > 0, and a bounded constant

g(\1) satisfying (2.1). Furthermore, vi(ny,n2) — v(ny,no) as k — .

Proof: By Theorem 2.2 of Hernandez-Lerma (1989), the following are sufficient conditions:
1) compact action spaces, 2) bounded one-period rewards, 3) expected future reward func-
tions continuous in actions, 4) a "uniformly accessible state” which can be reached from
any state with nonzero probability. Finiteness of the action spaces guarantee conditions
(1) and (3). Without loss of optimality, we can add the constraint that we can never ac-
cept a customer when Ro < cona/A, and we can not produce another unit of type 1 when
7 < cin1/A. These are both straightforward. (For example, if cin1/A > , this indicates
that the expected amount of holding cost incurred by holding the n units of type-1 products
in stock until the next transition is greater than the penalty cost that would be incurred
if no type-1 products were available and the next event was the arrival of a demand for
a type-1 product). Therefore, we can convert the problem (2.1) to one with finite state

spaces, and the finiteness of ¢y, co. Ro guarantees condition (2). Finally, we note that the
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state-(0,0) is reachable from any state. This immediately follows from the fact that idling
is not allowed as long as ng > 0 O0.

To prove Theorem 1, we will analyze (6.4). We first note that the following conditions
on the value function of (6.4) are sufficient for the structure of the policy to hold at every

iteration of the value iteration algorithm.

Cla) vk(ni,n2+ 1) — vk(n1, n2) is non-decreasing with n1 and non-increasing with na,
C1b) vk(ny + 1,n2) — vk(n1, ng — 1) is non-increasing with both n; and ng, and

Clc) vg(ny + 1,n2) — vk(n1, no) is non-increasing with n; and non-decreasing with no.

To see this, we note that if it is optimal to accept a customer in state (n1,n2) (i.e.
vg(n1,no+1)+Ro > vg(ny, no)), then condition (Cla) implies that vg(n; +1,n2+1)+Rg >
vk(n1 + 1,n2), and it is optimal to accept customers in state (n1 + 1,n2). Similarly, if it
is optimal to reject a customer in state (n1,n2) then is also optimal to reject a customer
in state (ny,n2 + 1) by the fact that vk(n1,n2 + 1) — vi(n1,n2) is non-increasing with no.
The existence and monotonicity of the production threshold curve is similarly implied by

conditions (C1b), and (Clc).
Lemma 2 For every k = 0,1,2,..., conditions (Cla, C1b, Clc) hold.

Proof: vg(ny,ng) = 0 for every (n).no), so the lemma holds trivially in the first iteration.
We make the induction assumption that the entire lemma holds at arbitrary iteration k£ and
show that the lemma holds in the (k + 1) iteration. That is, we show that the structure
described by the lemma survives each iteration of the algorithm. For brevity, we present
the proof that viy1(n; + 1,n2) — vk. (ny.no — 1) is non-increasing with n; for the case
of both n; and ng greater than zero (i.e.. the first part of condition C1b). Proofs of the
other cases and parts of the lemma are entirely similar. Suppose that n2 > 2. Relating

kth

vk+1(n1 + 1,n2) — vkr1(ny,no — 1) to terms from the iteration by applying equation

21



(6.4),-it is sufficient that:

Rlvg(ny, no) — vi(ny — 1,n2 = 1))
+%2{mam[vk(n1 +1,n9 + 1) + Ro, v(n1 + 1, n2)] — maz[vg(n1, n2) + Ro, vk(n1, n2 — 1))}

+ 5 {mazfvr(n, + 2,n9), vk(n1 + 1,ng — 1)] = mazfvg(ni + 1,n2 — 1), vg(n1, no — 2)]}
(6.5)

is non-increasing with ny. A sufficient condition for (6.5) is for all three of the following

conditions to be satisfied:
1. vk(n1,n2) — vg(ny — 1,no — 1) is non-increasing in n1 ,

2. mazfvr(n1+2,n2+1)+Ro, vk(n1+2, no)]—mazfvg(n1+1, no)+ Ro, vk(n1+1,n0—1)] -
(mazlvk(ni+1,no+ 1)+ Ro, vi(n1 + 1, n2)] —maz[vg(nq, n2) + Ro, vk (n1, n2—1)]) <0,

and

3. mazfvg(ny +2,n2), vk(ny + 1, n2 — 1)] = maz(vg(ny + 1,n2 — 1), vk(n1, n2 — 2)] is non-

increasing in nj.

Conditions 1 and 3 follow directly from the induction assumption. Condition 1 is true as
(C1b) is assumed to hold true for vi. The terms in condition 3 have possible values of:
(1) ve(ny +2,n9) — ve(ny + Lono = 1), (2) vk(ny + 2,n2) — vk(n1,n2 — 2) , (3) zero, or (4)
vk(ny + 1,n2 — 1) — vg(n1, ng — 2); the non-zero values are non-increasing with n; by the
induction assumption (Cl1b).

Showing that condition 2 holds is a bit more involved. We use the acronym LHS to
denote the left-hand side of this condition. Since each of the max functions can take one

of two values, LH S has 16 possible values. For example, LH S would take the value:

vk(nl + Q,ng) - [vk(nl + 1,na) + RQI —vi(ny + 1,no+ 1) + vk(nl,ng)
in the case of:
vk(nl +2,ng + 1) + Ra < vi(ny + 2,n3), 'Uk(nl + l,ng) + Rg 2 vk(nl +1,n9 — 1)

vik(ny +1,n2 + 1) + Ry > vi(ny + 1, n2), and vg(ny, n2) + Re > vg(ny,no — 1)

Note that the first and third requirements for this case (expressed in boldface) contradict

condition (Cla) which is assumed to hold by induction; this case is therefore infeasible.

22



Of the 16 possible cases, 10 can be eliminated from consideration in this manner. The

remaining six are considered individually.

i) LHS = vig(n1 + 2,n0+ 1) = vk(n1 + 1,n9) — vk(ny + L,no + 1) + vk(n1,no) < 0 by
condition (C1b).

it) LHS = vg(n1+2,n2) — vi(n1 + 1,n2 — 1) — vg(n1 + 1, n2) + vg(ny1,n2 — 1) < 0 again
by condition (C1b).

iti) LHS = vig(n1 + 2,n2 + 1) — 2vk(ny + 1,n2) + vk(n1,n2 — 1) < 0 again by condition
(C1b).

i) LHS = vg(n1 + 2,n2) — 2vk(n1 + 1,n2) + vi(n1, ng) < 0 by condition (Clc).

v) LHS = vi(n1+2,n9) — [vk(n1 + 1, n2) + Ro] —vk(n1 + 1, n2) + vk(n1,n2— 1) One of the
requirements for this case is that vg(n1+1,n2) + R2 > vg(n1 + 1,n2—1). Thus, LHS
is less than or equal to vk(n;+2,n2) —vk(n1+1,no— 1) —vk(n1 + 1, n2) + vk (nq, ng— 1)

which is itself less than or equal to zero by condition (C1b).

vi) LHS = vg(n1 +2,n0 4 1) — 2vk(ng + 1,n9) + vk(n1,n2) + Ro A requirement for this
case is that vg(ny + 1,n2 + 1) + Ro < vk(ny + 1,n2). Thus, LHS < vk(ny + 2,n9 +

1) — vg(n1 + 1,n2) — vk(n1 4 1,n2 + 1) + vi(nq, no) < 0 by condition (Cl1b).

Now suppose that no = 1. The first two conditions remain unchanged, but the third
takes a slightly different form because production of a type-2 item is disallowed in state
(n1,0) while idleness is now possible. The third condition is now that mazfvk(n; +
2,1),vk(n1+1,0)] = maz[vg(n, +1,0), vk(ny, 0)] is non-increasing in n1. This condition can
be equivalently stated as: {{vi(n; +2,1) — vk(n1 + 1,0)]* + vi(ny + 1,0)} — {[vk(n1,0) -
ve(n1 + 1,0)]T 4+ vg(ng + 1,0)} where [-]* denotes maz[,0]. After canceling terms, this
becomes [vg(ny +2, 1) — vk(n1 + 1,0)]* = [vk(ny, 0) — vk(ny + 1,0)]T. This is non-increasing
in n1 by conditions (C1b) and (Clc).

We have therefore shown that the first part of condition (C1b) holds. The proofs for

the other conditions are similar and omitted O.
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Te complete the proof of the theorem, we note that the conditions sufficient for the
Theorem hold in every iteration of the value iteration algorithm by Lemma 2. By Lemma
1, vg(n1,n2) — v(ny, ng) which proves the result. O.

Proof of Theorem 2 The results for R, c1, c2 and 7 directly follow from the fact that
using the policy which is optimal before the change in these parameters after the change
as well will result in higher profits. We give the proof for Ao; the proofs for 4 and \; are
similar.

Consider two systems, labeled System 1 and System 2, that are identical except for

differing type-2 order arrival rates, /\{21] and /\g] for systems 1 and 2 where )\[21] < /\[22}.
Suppose that System 2 is operated in the following manner:
NG

1. Whenever a type-2 order arrives, it is immediately rejected with probability —%\YE]—L

2. Acceptance/rejection of the the orders not rejected in step 1; as well as the sequencing

of orders is done using the optimal policy for System 1

Under this policy, System 2 now exactly replicates the optimal operation of System 1 in
all respects and will thus realize the same profitability as System 1. Since the profitability
for System 1 is feasible to System 2, the optimal profitability for System 2 must be greater
than or equal to that of System 1. O.
Proof of Theorem 3

We give the proof for the policy sensitivity with respect to Rg. The proof for the
sensitivity with respect to 7 is similar. We again consider two systems, denoted System A
and System B, that are identical except for differing type-2 profits that are respectively RQ
and R5; Ro < Rj. We apply equation (6.4) to both systems simultaneously; the algorithms

are initialized with vg(-) = vj(-) = 0. We first prove the following lemma:
Lemma 3 For every k =0,1,---:

C3a) [vg(n1,n2 + 1) + Ry = vi(n1,n2)] = [vk(n1,n2 + 1) + Rg = vp(n1,no)] > 0
C3b) [vi(n1,n2) — vi(n1 + 1,no+ 1)] = [vk(ny, no) — vk(ny + 1,ng +1)] > 0

C8c) [vi(n1+ 1,n9) - ve(ny,no)| = [vk(ny + 1, no) = vk(ny,ng)] >0
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Proof- of condition C3a: The lemma holds trivially for £ = 0. We assume that the lemma
applies for all states at arbitrary iteration k and now show that it holds at iteration (k +1).
In the proof, we will also use the fact that previously proved conditions (Cla-Clc) also hold
for both vy and v}, at each iteration of the value iteration. For brevity, we only present
the proof of (C3a) in the case nj,ng > 0; the proof is similar for the other cases and its
presentation here is not additionally illustrative. Relating vk41(-) and vi;(-) to vk(-) and
vk(-) through equation (6.4) yields the condition that showing (C3a) for the k + 19t iteration

is equivalent to showing that

0< 2 {lvplm = 1,n2+1) = vi(n1 = 1,n2)] = [ok(n1 = 1,n2 + 1) = v(n1 = 1, n2)]}
+AA2 {maz[v}(n1,n2 + 2) + Ry, v(n1,n2 + 1)] — maz|vi(n1,n2 + 1) + Ry, vi(n1, no)]
—maz(vg(n1,n2 + 2) + Ro, vk(n1,n2 + 1)] + maz|vg(ni, n2 + 1) + Ro, vk(n1,no)]}
+& {maz(vy(n1 + 1,n0 4 1), vi(n1, n2)] — mazfvi(ny + 1,n2), vi(n1,ng — 1)]

—maz(vg(n1 + 1,n2 + 1), vk(n1, n2)] + mazlvg(ny + 1, n2), ve(n1, ne — 1)]} + Ry — Ro
(6.6)

We again extract three conditions that, when simultaneously satisfied, are sufficient for

(6.6) to hold.
1. v;c(nl -1,n2+1) —v;c(nl —1,n9)] = [vk(n1 = 1, n2+ 1) = vg(n1 — 1,n2)] + Rh—Rg >0,

2. maz(vy(n1, no+2)+Ro, vi(n1, na+1)]-mazlvi(n, no+1)+R5, vi(n1, ng)|—mazvk(ny, no+

2) + R, vk(n1,ng + 1)] + mazlvk(n1,n2 + 1) + R, vk(n1,n2)] + Ry — R2 2 0,

3. mazlvi(ni+1,n2+ 1), vi(n1, n2)| - maz|vy(n1 + 1, n2), vi(n1,n2 — 1)] = mazfvg(nr+

1,n9 4 1), ve(n1, n2)] + maz[vg(ny + 1,n2), vi(ny,n2 — 1)] + R — R > 0.

The first of these conditions holds by the induction assumption that C3a is assumed
to hold for the k'™ iteration. We let LH S denote the left-hand side of condition 2 and
let LHS? denote the left-hand side of condition 3. LHS!? and LH S® can each take 16
values of which 10 can be eliminated in the same manner as in the proof of Lemma 2. We
give the six feasible values of LH S 3! showing which terms come out of the four maximums
in LH S in each case.

The six feasible values of LH S!% are:
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i LHSB = v,’c(n1+1,n2+1)—v;c(n1+1,ng)——vk(n1+1,n2+1)+vk(n1+1,n2)+R’2—R2 >

0 by the induction assumption of C3a.

i LHS® = v} (ny,ng) — vl(n1,na — 1) — vk(n1, n2) + v(n1 + 1,n2) + RH — Rg > 0 by
C3a.

iii LHSB = vi(n1,n2) — v (ng + 1,n2) — vk(ny + 1,0 + 1) + vk(n1+ 1,n2) + R — Ra ;
Since v} (n1,n2) came out of the first maximum in LHS B in this case, a requirement

for this case is that v (ny + 1,ng + 1) < v(n1,n2). Thus,

LHSB > v (n1+1,n0+1)—vp(n1+1, ng) —vk(n1+1,no+1)+vk(n1+1,n2)+Ro— Ro

which is greater than or equal to zero by C3a.

iw LHSP = vi(n1,n2) — vp(n1 + 1,n2) — vk(n1,n2) + vk(n1 + 1,n2) + R4 — Ry, which

we can rewrite as
LHSB = {v] (n1,n9) = vj(n1 + 1,n0 + 1) = vk(n1,n2) + vk(n1 + 1,n2 + 1)}

+{v,'c(n1+1, no+1)—vp(n1+1, ng) —vk(n1+1, no+1)+vk(n1+1,n2)}+Ro—Ro

which is greater than or equal to zero by C3a and C3b.

v LHSB = v;c(nl,ng) - v;c(nl,ng — 1) = vk(ny + 1,n0 + 1) + vk(ny + 1,n2) + R — Ro

or equivalently
LHSPE = {v;c(nl,ng) - v;c(nl +1,na+1) - v;c(nl,ng -1+ v;c(nl + 1,n9)}

+{vp(n1+1,no+1)—v(n +1,n2) —vk(n1 +1, no+1)+vk(ny1+1,n2)+ Ry— Ra}

which is greater than or equal to zero by C1b and C3a.

vi LHSB! = vi(n1,n2) = vi(n1,n2 — 1) — vk(ny, n2) 4+ vk(ny + 1,n2) + Ry — Ra Since
vk(n1 + 1, n2) came out of the fourth maximum of LHSB! in this case, a requirement

for this case is that vi(n; 4+ 1,n2) > vk(n;,no — 1). Thus,

LHS
C3a.

3 > v,’c(nl,ng) —vi(n1,n2 = 1) = vk(n1, n2) + vi(n1,ng - 1)+ Ry — Ro > 0 by

The other 10 cases for LHS"® are not feasible due to the fact that they contradict the

policy structure at the k%" iteration. The proof for the fact LHS! is greater than or equal
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to zero is similar involving 6 feasible cases out of 16 and is omitted for brevity. Since all
three conditions are shown to hold, the proof of the lemma is complete O.

To complete the proof of the theorem, since vj,(n1, ng)—vk(n1, n2) converges to v'(ny, ng)—
v(n1,ng), conditions C3a-C3c will hold for the value functions of the average cost problem
for both systems. Now note that condition C3a implies that if acceptance of type-2 orders
at state (ny,n2) in System A is optimal, it must also be optimal in System B. Similarly,
condition C3b implies that if production of a type-2 product is optimal in state (n;, ng) with
no > 0 in system A, then it must also be optimal in the same state in system B. Finally,
note that the special case of ng = 0 of Condition C3c implies that if production of a type-1
unit is preferred over idling in state (n;,0) for system A, then it will also be preferred in
the same state for system B. This completes the proof 0.
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