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ABSTRACT

ADAPTIVE SEARCH USING SIMULATED EVOLUTION

by
Daniel Joseph Cavicchio, Jr.

Chairman: John H. Holland

In this work we are concerned with studying the efficiency of
adaptive systems. Adaptive systems can be interpreted within a formal
framework so that adaptive plans can be viewed as search procedures
for locating good devices in an extremely large set of devices.

Our major concern is the experimental development of some
powerful and flexible adaptive plans. We proceed by first analyzing
some previous work in adaptive systems within a formal framework. As
a result we extract some of the common difficulties that these systems
encounter. Of major importance are the improper use of feedback and
inaccurate assumptions about the independence of components within
a device.

Then we proceed to develop a set of adaptive plans, called
reproductive plans, which overcome some of these difficulties.
Reproductive plans operate by treating the search procedure as if
it were an evolutionary process of finding the best organism for a
certain environment. Devices are represented as chromosomes (strings).

At each ''generation' or time step a population of devices is tested



and each device is rewarded (duplicated) according to its performance.
Then the duplicates are allowed to '"'mate' using a number of
genetic-like operators to produce a modified population of devices.

In this particular study devices are pattern recognition programs
although they could be any set of (modifiable) procedures.

Much of our work is concerned with experimentally testing and
improving the general reproductive plan to achieve fast and continuous
adaptation. This is accomplished by testing the effects of and
modifying (1) offspring selection schemes, (2) genetic operator
probabilities and types, (3) the size of populations and chromosomes,
and (4) other heuristic techniques to avoid false peaks and maintain
effective adaptation, This work differs from similar work in the
literature in that whole populations are evolved, many genetic operators
are used, and efficiency and long term adaptation are stressed.

As a result we develop some very good reproductive plans which
are superior to our original reproductive plans and which greatly
outperform plans similar to those presented in the literature. We
conclude that reproductive adaptive plans should prove to be valuable
heuristic search procedures for extending much of the work done in

artificial intelligence.
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Chapter 1 Introduction

The rapid expansion of the computer field in recent years has
provoked an even more rapid expansion in man's desire to attack
problems of great complexity. A decrease in computation time coupled
with an increase in computer memory either immediately accessable
in core or peripherally located, permits much of the computer's task
to be performed in real time. As a result many previously tedious
mathematical techniques, which are guaranteed analytically to provide
solutions, can now be easily implemented. The fields of numerical
analysis and mathematical statistics have reaped much of the benefit.
However, a different class of techniques have also emerged which do
not guarantee solutions, but which do offer increased information
about the nature of certain problems and their approximate solutions.
S. Lin has chosen to describe these heuristic techniques as practical,
effective, probabilistic, flexible, and approximate as opposed to
formal techniques which he considers theoretical, abstract, determin-
istic, rigid and yet precise [Lin, 1968].

Much of the work with heuristics falls in the domain of modelling
or simulation since it extracts certain features of real systems in
an attempt to predict future or unobserved aspects of these systems.
There is, however, another branch which extracts aspects of real
systems for purposes other than prediction. Although this latter
work might result in a better understanding of the real system and a
greater appreciation of how the extracted mechanisms serve the real

system, these findingsare not usually the principal concern. The



principal concern is with developing useful techniques which are
applicable to a variety of problems. This is one branch of the field
to which I would like to attach the ubiquitous terms "artificial
intelligence'".

As a few examples of these artificial intelligence systems we
can cite Newell and Simon examining protocols of human problem solving
behavior for their General Problem Solver [1963], Uhr and Vossler
[1963] explaining their pattern recognition detectors in light of
Hubel and Wiesel's experiments on the cat [1959], and Holland using
techniques from evolution as a basis for an adaptive strategy [1969].

The artificial intelligence work that we will be concerned with
in this study involves those systems which are adaptive or which
respond to feedback information by changing their structure in one
way or another in order to improve their performance. These systems
are particularly well suited to the investigation of unsolved problems
since they are generally flexible, exploring different variants of
techniques and sometimes entirely different techniques in response
to the feedback they receive. Furthermore, they are useful in situations
where solutions to a number of problems are for the most part known,
yet it is not always known exactly what problem is being confronted.

To facilitate the analysis of adaptive systems found in the
literature, we should have a general theory of adaptive systems which
could aid the process of isolating adaptive techniques. Given these
techniques and some understanding of their usefulness, much of the yet

unadaptive work in artificial intelligence could hopefully be extended.



The goal of this thesis is to investigate the analysis problem using
a formal framework, develop a general adaptive plan which has a flex-
ible structure, and demonstrate that this plan can actually achieve
significant adaptation. In addition, we will demonstrate how this
system could be applied to a variety of problems in artificial intell-
igence.

Upon examining the literature in adaptive systems one quickly
encounters ambiguity. Most of the work fails to distinguish the
adaptive mechanism from particular aspects of the task and the kind
of feedback that the adaptive mechanisms use. As a result we find
ourselves asking questions such as: What is actually adaptive? Where
does the feedback come from? What is unknown about the system? What
aspects of the system are particular to pattern recognition, problem
solving, or game playing and what aspects are generally applicable to
other problems? How can we compare one system to another? What is
a useful criterion for evaluating different systems?

These questions do not have easy answers. However, we may start
by looking at the various systems within a general framework. Chapter 2
will present such a framework and analyze some of the important liter-
ature in an attempt to extract general problems and techniques. Chapter
3 will then formulate an adaptive system which addresses itself to
these problems. A set of plans called reproductive plans using techni-
ques extracted from models of evolution and genetics will be described.
In Chapter 4 we will investigate aspects of a suitable task with

which to test the reproductive plans. First we will experiment with an



artificial task in order to get a feeling for some of the important
aspects of reproducitve plans. Then we will proceed to apply our

plan to a pattern recognition task which is more difficult and harder
to analyze than the artificial task. In Chapter 5 we will apply some
nonreproductive plans to the pattern recognition task in order to get
an idea of what performance levels are reasonably obtainable using
relatively unsophisticated plans. In Chapters 6 and 7 we will refine
some of the basic operations of reproductive plans in order to make
these plans more effective and flexible. Chapter 8 will show continuing
improvement of the reproductive plan by the introduction of new
techniques. Finally in Chapter 9 we will present some additional work
being done with these schemes, suggest future research in this area,
and summarize our work.

At each stage, a constant effort will be made to separate as much
as possible those aspects which belong to the adaptive plan and those
“which are particular to the task under investigation. This attempt
will begin by discussing reproductive plans in Chapter 3 before we
have mentioned any particular task. In the end we will hopefully
have convinced the reader of the need for a formal adaptive systems
framework and of the value of reproductive plans in dealing with some

of the problems in artificial intelligence.



Chapter 2  Analysis of Some Adaptive Systems

2.0 Adaptive Systems Terminology

In order to minimize ambiguity, we will adopt the following term-
inology. A task will refer to an attempt to solve a particular prob-
lem. The task is completed when the attempt is finished, whether or
not the problem is solved. In artificial intelligence one often speaks,
for example, of a game-playing task or a pattern recognition task. An
environment may be described as a particular situation or set of cir-
cumstances in which a task is performed. Different opponents consti-
tute different environments in a game-playing situation while various
pattern categories induce a variety of environments in pattern recog-
nition tasks. A device is a completely specified procedure (e.g., a
computer program) capable of performing a given task in a given en-
vironment. A representation of a device is a well-defined method for
coding a device. Given a code, one must be able to produce a unique
device. An adaptive plan or strategy is a procedure which success-
ively selects or generates devices, usually in accordance with certain
performance measures. Finally, an adaptive system consists of adaptive
plans, devices with a certain representation, environments and evalua-

tion criteria. This will be more rigorously defined below.

2.1 An Adaptive Systems Framework

Let us examine briefly what aspects of adaptive systems are impor-
tant enough to isolate in a formal framework. In general we should sep-
arately designate the actual task to be performed, the devices which are
supposed to perform the task, and the adaptive plans which are supposed

to choose the devices to be used. It should be noted that without



alternative devices we would need no adaptive plan and without alter-
native plans we would be unable to make comparisons.

The devices which are supposed to perform a given task can often
be broken down into a portion which is common to all devices and a
portion which varies from one device to another. This division is
very important since some systems contain a learning routine which
is distinct from adaptation. In many of these systems this learning
algorithm is the same for all devices and is not changed by adaptation.
Yet, in other systems it is the learning routine that <s changed by
adaptation. As one can surmise, confusion is only enhanced by using
words like "learning" and "adapting'", especially when they are inter-
changed in the literature. A formal framework should minimize this
confusion by pin-pointing which portions of a device are modified by
adaptation.

The source of feedback to the adaptive plan should also appear
explicitly. Feedback provides various kinds of information about some
unknown environment. One should know how much information is available
to the adaptive plan and what possible range of environments this in-
formation is coming from. Actually the task and the task environment
should be specified independently of the devices which confront the en-
vironment and the adaptive plans which choose among alternative devices.

Finally, one should have a well-defined criterion with which to
rank different adaptive plans. This should not be confused with a
similar measure which ranks the set of permissible devices. The cri-
terion should facilitate the process of comparing different adaptive
plans and even different adaptive systems once the environment, the

set of devices, and the adaptive plans have been isolated.



Now let us quantify the discussion with a formal framework. An

adaptive system is a quadruple of formal entities <;§¥7,d§, 57: X >,

Definitions:

D

2)

3)

.&is a triple < -M, d, @) > which constitutes the represen-
tation of admissable devices.
¢§%7designates a possibly infinite set of well-defined codes for
the devices belong to the set @Q@ ,;
The set.gz;;is the complete set of devices which are capable of
performing a particular task, T. The function d associates a
device with each code:

d: F > D
Each code A ¢ o4 need only specify that portion of the device
which may be changed through adaptation. We will often speak of
device d(A) as belonging to the set ;ﬁ%f when no confusion will

arise.

& designates a set of admissable (or possible) environments from

which feedback will be obtained.

An adaptive plan T € T is a quadruple <M, J, m, T>. M is
the set of possible memory states for the plhn t and & is the set
of possible feedback vectors. The function T selects elements of
LQ%?at each time step dependent upon previously selected elements,
the current memory state, and the current input or feedback. To

be more explicit, if:



At is the set of devices saved by the plan through time t,

(A,S )

Mt is the current memory storage of selected past information,
M, € M)

It is the feedback vector for devices sampled at time t,

(It € 67') then:

e 1) = A

T(A, M
To complete the iteration, the function m updates the memory:

m(A_, M I.,) =

t? ot Tt Mt+1
Actually the components of the vector It are the outputs of a
number of functions acting upon At and Et’ the current environ-

ment. This will be considered in more detail below.

4) x designates a criterion function which ranks elements of éyi
In other words, x specifies a particular measure of goodness with

which one can compare elements of .

We will find the following function valuable in discussing the feed-
back vector and in examining various criteria:
Definition:

Let é??designate the positive real numbers. Then p will designate

a ranking function with domain é?.X¢ﬂz' and range é;?.

w(E, A) =r ¢ é;?

Given a particular E ¢ & we see that u induces a ranking over the
set ;ﬂ%ﬁ Since we will mainly be concerned with evaluating different ele-
ments of <& in a particular environment E ¢ & , we could refer to a

particular function u; such that HE* an_>gﬁ?_ However, the subscript E

E



will not appear when the environment considered is obvious or irrelevant.
We will refer to u(A), A ¢ & as the utility or payoff of A.

The function p should appear explicitly or implicitly in all adap-
tive systems of interest since intuitively p(A) represents how much each
device A ¢ & is worth to the investigator. Different researchers might
construct different u's for a given set & in a given environment E, but

A2 € bzi s

then one would always prefer A1 over A2 when concerned with the given

task. The problem of defining a utility function which preserves this

for any particular p it should hold that if u(Al)>u(A2), Al’

kind of preference relationship has been extensively considered by psy-
chologists and economists.

Assuming that we have an adequate utility function, let us see how
it could be used in setting up a criterion function yx. Basically x ex-
presses the worth of an element of & in the same manner that U expresses
the worth of an element of in . The choice of x will reflect the im-
portance of certain factors as the set o is explored, insofar as x will
dictate which elements of & we should choose to use.

Let AE represent the set of devices selected by a plan 1 ¢ g at

time t. Then an accumulated utility criterion would take the form:

T
x(1) =3 u (A)
t=1

where T is some limit time. The function n can be extended to subsets of
A by taking the average or maximum over all elements.

A criterion of interest to artificial intelligence and search tasks
is the maximum utility criterion:

x(1) = MAX{ u(AD)}
1<t<f (1)

where f(t) is some limit time at which the search terminates. Since we

will assume that plans save a discrete number of devices at each time
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step, f(t) effectively puts a limit on the total number of samples per-
mitted. In the simplest case f(t) is constant for all t. With such a
criterion we see there is an opportunity cost involved in selecting ele-
ments of <& insofar as only a specified number can be selected for con-
sideration. Other f's might impose a limit depending on how well a plan
seems to be doing.

The above criteria will prove useful in comparing plans which use
essentially the same memoryg/ﬂ(and feedback information ggf, differing
only with respect to the transition functions 7 and m. Plans which differ
with respect to M and & can be properly compared only with a criterion
that takes into account the differences in memory costs and feedback.
Such criteria are hard to come by and the difficulties become even greater
when one attempts to compare plans taken from different adaptive systems.

Now we should examine some aspects of the representation.,éand the
effect of the representation on the plans & . At first one might think
it counterintuitive to have the function d map codes into devices. In
the typical coding situation it is the object that is mapped into the
code, with a suitable inverse function available to identify the object
at a later time. In adaptive systems, however, the complete set of de-
vices EZ); is generally not well-defined or else very complicated to
describe. The codes, whose image 9 under the function d is a subset
of Qb;, are well-defined. Furthermore, d is not necessarily one-to-
one. Thus we see that the representation;é?is an important aspect of
adaptive systems since it restricts the range of devices that will be
considered by the plans. This restriction is not necessarily bad; in
fact, if the average utility of D is much greater than that of @;,

the plan will probably benefit.
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The composition of the set ¥ is an even more important aspect of
the representation than the @space that it induces. Since the set &
is usually not available beforehand, the set 7 must be generated in a
constructive manner. One possibility is to generate elements of¢£¥7 in
a manner similar to the generation of well-formed formulae in logic.
This would entail a primitive set of elements together with rules for
generating new elements. Another method is to generate a co-ordinate
system and define an element of A as a point in the resultant space.
If the substitution instances along the co-ordinates are single real
numbers ordered in the usual way (i.e.,¢z1€;£2?“), we shall call the
space numerical. Otherwise the space is nonnumerical.

Let us look at some examples of the set cﬁ%f. Suppose a device
consists of a computer program with n subroutines. Each subroutine has
an integer input from some finite range which specifies the number of
times some iteration is performed. This input must be specified for all
subroutines before the device is operative. Then the resulting numerical
space;ﬁ%f has n co-ordinates corresponding to the n subroutines. A code
A is an n vector of integers.

Now suppose each subroutine were rewritten as many times as there
were possible different integer inputs; these new subroutines would have
different names but no input. Now a code would specify n symbolic names
and the resultant ez{ space is nonnumerical. In this case, however, the
internal similarities between subroutines would be obscured. Certainly
one would not choose this second representation for this task although
the resultant set D is the same. Yet a program which can call one of
a number of totally different subroutines at a particular point would

possibly use the second representation.
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The importance of a good representation becomes more evident when
one considers the operation of a plan 1 ¢ . First of all, the memory
_M and input & are often dependent upon the particular representation.
For example, a plan might receive input and save inferences about certain
components of a device as represented in the code A ¢ s . Inferences
about a number and inferences about complete subroutines would probably
take different forms. Secondly, the function T will typically search
a particular space by manipulating the coded descriptions constituting
points. Gradient search methods serve as good examples.

To sum up, representation is important for two reasons: on the one
hand, it may limit the maximum attainable utility by restricting the set
of devices; in addition, it determines certain characteristics of the
search space which will affect the performance of adaptive plans. There-
fore, one must be careful not to blame the adaptive plan exclusively for
poor performance that is a function of poor representation. Similarly,
an unusual representation of devices could make a certain plan look very
good, while over a range of other representations the plan or a suitable
equivalent might only appear to be average.

Now let us return to the feedback vector I ¢ ¢ and consider some
of its elements. We will adopt the convention that the first element
of I is always uE(A). If this element is not defined or used by a plan

T then we will designate the first element as ¢, the empty element.
Definition: A plan 1 € T is first-order if I = [uE(A)]

Many times u will have to be approximated. This is often the case

when the task deals with only part of an environment each time it is
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performed or when the device has a probabilistic element. In such cases,
we will define u'(A) to be the payoff for a particular running or trial
of device A with a particular input from the environment. The actual u(A)
will be the average of the p'(A) over a random sample of trials. Also,
we will sometimes speak of p-functions which are inversely related to the
above described u (e.g., error counting functions). This should cause no
confusion since there still will exist a consistent ranking of the set .
Many researchers feel that their adaptive plans can extract and p£o-
perly use more information than is given by the function p. This extra
information often reflects an evaluation of some component or substructure
of a device A ¢ bﬁz. Such components are usually co-ordinate substitution
instances or primative elements which can be explicitly identified in the
representation of a device A and ordered. Given an ordering of components

c +5C55e+.,C  We can define the set of functions,

u, od'*e%, i=1l,...,n

1

10"

with the interpretation that u, gives the worth of the ith component of
i
a device. Each He would occupy a position other than the first in the

i
vector I.

Difficulties will often arise when a plan uses feedback from these

Mo functions. Let us suppose that the representation's code of a device
i
consists of a vector of component substitution instances c

ve.,C.
1’ ’“n

Definition: The function We is independent with respect to the represen-
i
tation CisrvenCy in an enviromment E if there exists a function ﬁc

- - i
such that for all (cl,...,cn)

C,sevusc ) =1 (C.
R COPRR " e (c5)
_ i i
when He and W, are evaluated in E.

i i
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Definition: A utility ranking function p is Ilinear with respect to the re-

presentation c € in an environment E if there exists functions

IEERE

He seesMy such that for all (cl,...,cn)

c
1 n
n

u(aly"'xan) =1§ {Jcl (El)

The terms independent and linear will be used alone although there is
always a representation and environment implied.

These concepts of independence and linearity will prove very useful
in evaluating different adaptive systems. If a plan is to change a com-
ponent of a device on the basis of a component utility function ﬁc. then
this function should be independent. An attempt to approximate a ;tility
ranking function with a sum of independent component evaluation functions
could fail for two reasons: the original utility function could be non-
linear due to interactions between components, or the component evaluation
functions might not be the correct ones even if the original function is
linear. Note that a linear ranking function implies the existence of in-
dependent component evaluation functions.

Now that we have some understanding for the utility function HEs we
can more easily examine the set of environments é?. It is often difficult
to extract particular environments for various adaptive systems. However,
we can approach this problem by asking questions like, "What is it that
changes the utility function, independent of a change in the researcher's
desires?'" or "What is unknown about the system?"

Now let us reword the questions asked in Chapter 1 in terms of our

formal framework:
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Original Question

What is actually adaptive?

Where does the feedback come from?

What is unknown about the system?

What aspects of the system are
particular to pattern recogni-.
tion, etc. and what aspects are
generally applicable to other

problems?

How can we compare one system

to another? What is a useful
criterion for evaluating diff-

erent systems?

Formal Interpretation

What is et ?

What are jand g ?

Is the representation.Lxrapplicable
to a variety of tasks?
T extremely dependent on X ?

Are the plans

What is a good x? How can we adjust

for different setSLAh(and egr?

Before ending this section we should mention that there is one plan,

the random search plan, which can be used by any adaptive system.

The

random search plan does not use any memory./izx feedback .ﬂz, or knowledge

about the current devices At in selecting new devices.

The device selec-

tion function 7 merely selects a random subset of devices from some well-

defined set <7 .

tion or feedback.

even inferior to, the random search plan.

Therefore, it can be used regardless of the representa-

A given plan may turn out to be only as good as, or

The problem in this case might

be that the information used by T is irrelevant, T is using information

. ~ ., . . .
incorrectly, or T is operating under severe restrictions (e.g., conduct-

ing only an extremely local search).

result of a poor representation.

Any of these situations may be the

All adaptive systems should use the

random search plan to establish, in effect, a O-performance level in the

ranking of adaptive plans.

This would at least be a beginning in the
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attempt to compare adaptive plans across different adaptive systems.

Now that we have presented a framework within which one can study
adaptive systems, we will turn to some of the literature to see how
well this framework aids the analysis of various works. Hopefully, it
will help us pinpoint the difficulties that the systems under examination
have encountered and provide some suggestions to overcome these difficul-
ties. Also, we hope to be able to compare the plans of different systems
as far as the representations will allow. Such comparisons might even-
tually enable one system to benefit from an adaptive plan that proved

to be valuable to another system.
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2.2 Important Literature in Adaptive Systems

In this section, we will briefly consider some of the research in
the adaptive systems area. The general scheme of analysis will be as
follows: first, the important aspects of the work will be qualitatively
described including only as much detail as is needed to expose the sig-
nificant features. In most cases this will result in a simplification
of the work. Next, we will attempt to identify each of the elements
L, é?, é;t and x. Finally, we will try to evaluate the work with
respect to the representation chosen, possible alternative plans, and
possible criterion.

The General Problems Solver (GPS) [Newell, 1963]

GPS operates in a system in which a task is specified as a goal.
Elements of the system are well-defined objects which can be transformed
into other objects by using various operators. In addition, there are
means for detecting differences between objects and organizing informa-
tion into subgoals. Three types of goals are possible: [Newell, 1963]

Transform object A into object B,

Reduce difference D between object A and object B

Apply operator Q to object A.

The objects and operators are considered to be given by the task whereas

the differences are part of GPS. For example, if the task were symbolic
logic, the objects would be well-formed logic formulae, the operators

rules of inferences, and the differences expressions like ''delete terms'

or ''change sign.'" GPS works towards a goal by generating subgoals which
hopefully are easier and whose attainment will directly lead to the original
goal.

Looked at from our formal framework one realizes that GPS as originally
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presented is not an adaptive system but only an elaborate device. In
line with the claim that the system is general, one might claim that
at least it constitutues a set of devices; yet it is not completely
obvious what devices, other than the one presented for symbolic logic,
would look like.

Considering major tasks to be of the transform-objects types, the
environment E for symbolic 1ogic is the set of proofs for all theorems.

A utility approximation function u' could be defined as zero if the de-
sired goal is not completed (possibly due to space and time limitations),
or some positive number based on the difficulty of the goal and the effort
required to complete the goal.

Newell, Shaw, and Simon realized the deficiencies of a nonadaptive
system and presented a larger system to improve GPS [Newell, 1960]. One
of the nice aspects of the larger system is that the adaptive plan is just
the original GPS paradigm applied at a different level, i.e., with a diff-
erent set of operators, objects and differences. Let us see how this works.

As mentioned above, a significant feature of the original GPS is the
set of observable differences between objects. This is the portion that
the authors chose to be adaptable. Therefore, an A ¢ S is a set of
well-defined differences and the adaptive plan must find the 'best" set.
The plan is formulated as follows: let an element A e¢£¥7constitute an
object for the upper level GPS. Operators at this level are functions
mapping sets into sets. Examples are '"delete a difference'" or 'modify
a difference to give..."* Then there must be a set of upper level diff-
ences on the set eni. The differences at this level identify certain

good or bad aspects of each lower level difference set. The goals at

* The mechanism which generates and modifies differences is actually a
very elaborate programming language which operates on lists and extracts
"primitive discriminations'.



19

the upper level are not as explicit as, "Transform object A into object A'"
but rather take the form: '"Find an object A' such that A' satisfies cer-
tain criteria (which A did not) and A' can be directly obtained from A
with the available operators." Fortunately the ''certain criteria'" which
really constitute the goal correspond closely to the aspects measured by
the upper level difference set. Thus the upper level GPS works as follows:
generate an initial set of differences which meet certain minimal criteria
(e.g., consistency). Then directed by feedback from the upper level
""differences'", modify this set so as to improve it with respect to the
ordered set of criteria.

In our formal framework the plan may be formulated as follows. While
there is no significant memory Q/ZZ, the feedback Jz.is crucial. Consider
a typical vector It:

It=[{¢,u'}, ui',..., ui yenes ui s uk,..., up]*
i n n

The pair {¢,u'} indicates the fact that sometimes the new set of differ-
ences were evaluated according to their performance on an elementary task
while at other times they were evaluated only with respect to the '"differ-
ence criteria'. Most of the u's output "1" or "0" to indicate that a cer-
tain criterion has or has not been satisfied. The function ui. indicates
the result of applying criterion i to difference cj. An exampie of this
type of criterion is, "Only one or a few operators should be relevant to
each difference in the set.'" The criteria k etc., are applied to the
whole set. For example, '"The set of differences should be nearly ortho-
gonal..." The order of the u in the vector could indicate the importance

of each criterion. A new set of differences is generated each time step

by modifying the previously saved set. Thus the transition function T

* For convenience we will enter only the functions in the vector I. with
the interpretation that the elements of the vector are actually thé outputs

of these functions.
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replaces a difference according to the criterion which must be satisfied.
This transition function actually consists of the upper level GPS operators.

Although not explicitly mentioned it is fairly obvious how one might
go about generating a whole set ot adaptive plans. Any change in the
given criteria, the set of upper level differences or operators, or the
method of generating new lower level differences would effectively change
F and ¥. When this work was‘presented, the authors were still in the
process of programming and testing the particular plan given, a task
which is of considerable complexity. Therefore, the question of a cri-
terion x was not raised nor were alternative plans explored. However,
one should have no trouble convincing himself that the plan given oper-
ates at a much better than chance level.

The representation of devices in ;ﬁz, i.e., a GPS program, is pro-
bably responsible for much of its success. By explicitly isolating ob-
jects, operators, and differences at the lower level the device can re-
curse upon itself using the same operators and differences on subgoals.
This representation also simplified the task of adaptation since the com-
ponents (i.e., candidates for the adaptable portion) were explicitly de-
fined. Another possible adaptable portion discussed by the authors is
the table of connectives which specifies which operators are relevant
to each difference. The same principles of representation were carried
to the adaptive plan.

The adaptive plan does seem to have some limitations. For one thing,
no where do the authors seem to suggest using a p-function to get an
accurate overall measure of each device. A u which averages the u' I
have suggested above would be a necessary measure of a set of differences
if only to check that each new set of differences does in fact perform

better than the previous set on the given task. In a section on simulation
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of adaptation, the authors suggest using simple problems to pinpoint de-
ficiencies in the set of differences, but they do not mention an overall
measure. Furthermore, it is not clear when and how many logic problems
will be presented to each device. The main criticism is that without
some directly task-oriented measure, performance will improve only with
respect to the upper level criteria. The authors maintain that this re-
sults in directed, ”intelligenf" learning, yet there is no guarantee that
these criteria will eventually lead to the best problem solving ability
on the device level. Some of the criterion functions which examine each
difference in turn are not independent with respect to the set of diff-
erences. Furthermore, the criteria do not measure independent aspects,
so that by satisfying one criterion, a previously satisfied criterion
may become unsatisfied. These interactions affect how efficiently the
criteria direct adaptation.

Let us now summarize the elements of our framework:

bqf The set of all possible subsets of differences generated by a

Difference Program Language
Eed? The set of theorems of logic

reé?rThe method of selecting new subsets of differences as described

above

u Feedback designating the outcome of various criterion measures

and sometimes an overall utility approximation

X Not mentioned. The examples in the last section would be appli-

cable, given alternative plans.
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The Detector and Weight Problem

The next two works are grouped since the basic organization of each
is similar; both are concerned with detector functions which are respon-
sible for extracting information from the environment. With each detector
is associated a weight which reflects the importance of that detector
(e.g., a correlation co-efficient) or which relates that detector to a
number of possible decisions (e.g., in pattern recognition). The adapt-
able portion of each device will consist of the set of detectors and/or
weights. It is generally accepted that the detector problem (i.e., that
of generating better sets of detectors) is more difficult than the weight
problem, due essentially to the problems involved in generating and search-

ing an adequate space of detectors.

Samuel's Checker Player [Samuel, 1963]

A device here corresponds to a checker playing program which can
determine what move or decision is to be made at each stage of the game.
A fixed set of detectors which measure aspects of board configurations
such as piece advantage and center control are available. The output
of these detectors is a positive or negative number which indicates the
extent to which the player or opponent has the advantage with respect to

each criteria. Each board configuration is evaluated using a linear poly-

nomial. If {el,...,ek} are the detectors and {al,...,ak} are weights to
k

indicate the importance of each detector, then E: aiei constitutes the
i=1

evaluation function.
The checker player operates as follows: at each move it looks ahead

n steps in the game tree and evaluates all possible board configurations
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at that point. It then uses a minimax basis to back up these values and
select the best move. After the opponent has moved, it again looks ahead
to see if the evaluation has changed as a result of the opponent's move
or the additional board configurations evaluated with the look ahead. If
the difference (called '"delta'", A) between the new evaluation and the old
is sufficiently large, the weights are changed so as to make the two eval-
uations more consistent. Each weight is changed independently so as to
slightly change the value of the entire polynomial.

Now we can use the formal framework. An element of & is a k-tuple
of weights. &€ is the set of possible checker playing algorithms used
by opponents. For analysis we shall assume that the opponent uses one
fixed E ¢ € so that at each point his move is determined. The feedback
vector has the following form:

= [u', Mg sees Mo ]
1 n

It
No u' explicitly appears in Samuel's work, but the A factor plays a similar
role. Since changes in the set of weights are possible at each time step
(move), we see that no attempt is made to accurately assess u over a var-
iety of playing situations or games. It certainly would be too costly in
terms of time and information loss to extend the time step to a whole game
and just use win, lose or draw for payoff. However, it might help to ex-
tend the time step to a few moves and then make a change that is optimal
with respect to all A observed. The . conveys information about the
sign of the ith term in the polynomial.1 This information determines how
the ith weight will be changed. The memory M consists of a fixed number
of previous board configurations and their evaluations with respect to each
of the detectors. The function m replaces the oldest configuration with

the current one. This memory is used in the look ahead process to de-

termine A.
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The particular 7 used depends strongly on what conditions one re-
quired before the weights are changed, and exactly how they are changed.
In this respect, Samuel experimented with different plans which depended
upon how large a A had to be observed before a change was made. This was
one way of side-stepping the utility approximation problem mentioned above;
for example, a small A criterion would necessitate a change in weights just
about every move resulting in erratic fluctuations in weight values.
Other variations of the plan involved different types of change when A
was negative and positive. This was done to avoid being fooled by bad
play on the part of the opponent.

Since Samuel does in fact have a set of plans, we can ask what cri-
terion is used to compare plans. One such criterion is stability. A
plan which provides for a smooth, somewhat continuous change in weights
is better than one that makes larger erratic changes. This criterion
may be considered as a minimal one to insure some kind of convergence
of the plan. However, eventually one is concerned with the best poly-
nomial with respect to some payoff so the maximum utility criterion
would be invoked:

x (1) = MAx {u(a O}

1<t<f (1)

The u function might be the average of some inverse function of A and
the function f might correspond to a time when the average value of ob-
served A's no longer seems to be decreasing. This would mean that one
could search for a better device as long as it seems that successive
devices are in fact improving significantly. This latter criterion is
used very often in artificial intelligence work.

Samuel's checker player is considered to be one of the best game
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playing systems to date judging from its performance against professionals.
Therefore, one might ask where the power of his system lies. For one
thing, he has avoided the more difficult problem of finding good detectors.
Yet, this did not greatly limit his program's performance since the detec-
tors were formed after intensive consultation with expert checker players
(not implying that this was an easy task). The linear polynomial certainly
constitutes a significant part of the system. Its use did not result in
very good play at the beginning nor end of the game, situations which call
for specific identification of configurations rather than a general measure
of various criteria. However, middle-game playing was much better.

Given the use of a linear polynomial, one can then ask, 'How powerful
is the adaptive plan which picks the 'best' weights?" or "How difficult
is this task?" In my opinion, the plan does a good job of extracting
and processing large amounts of information at each move of the game. On
the other hand, a rather different plan which involves setting the weights
so that the evaluation of various boards will be as consistent as possible
with evaluations supplied by expert players proved also to converge on a
rather good set of weights for the linear polynomial. Both of these plans
illustrate interesting techniques for summarizing a large number of situa-
tions in a compact manner. However, their use is limited to truly linear
situations.

There is one serious limitation in Samuel's evaluation technique. If
the optimal use of all available detectors lies in some nonlinear combina-
tion, the linear polynomial scheme can only approximate this optimal per-
formance. By his choice of 574 (i.e., all possible k-tuples of weights)
and d (which generates the linear polynomial, the detectors, and the rest

of the device) Samuel has restricted the set of devices D and possibly
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the maximum performance level. Even if the best device did use a linear
polynomial, there is no guarantee that Samuel's detector are the proper
ones. In addition, Samuel's initial scheme for generating a new device
(i.e., changing weights) implicitly involves an incorrect assumption of
independence between detectors.

Samuel realized these problems and proposed an alternate method
for using the detectors [Samuel, 1967]. Basically his signature table
evaluation works as follows: subsets of detectors are grouped in the
first level of tables, and records are kept as to which combinations of
detectors values (i.e., outputs from the detectors) indicate a favorable
board configuration as rated by experts. (See Figure 2.2.1) This method
could potentially take into account all possible interactions between de-
tectors since each set of detector values are considered independently.
Therefore, a large output from a particular detector is not necessarily
good or bad in all situations.

Processing information about all detector value combinations, even
for a small set of detectors, would require too much memory and time;
therefore, the value combinations of subsets are quantized before enter-
ing the next level of signature tables to be compared with outputs from
other subsets. Therefore, the output of the first level tables, for
example, could rank the boards on a nonlinear basis of the detectors
involved as being very bad, bad, average, good, or very good. This pro-
cess is continued at each level until a final evaluation is reached based
upon some nonlinear interaction of all detector subsets.

Although the signature table organization is capable of extracting
any interaction, difficulties still arise. First, the researcher must
decide before hand upon the form of the table, i.e., which detectors to

group, to what range he should quantize the values, how many levels, etc.
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Once these decisions are made, the power of the table is somewhat re-
stricted. Referring to my example in Figure 2.2.1, a strong nonlinear
interaction between 6, and % could not be extracted completely. Further-
more, each entry in each signature table is analogous to a weight in the
linear polynomial scheme. Therefore, the signature table is not really
operational until some information is gained about all combinations of
detector values specified by the table. After investigation of many
board configurations, some entries are still not different from their
original dummy values. Therefore, they must be filled in by interpola-
tion or some other linear approximation.

However, signature tables constitutes one of the first attempts
to get around the problem of dependencies between components of a device.
As such it gives us a refreshing look at an alternate representation.
In addition, it did improve the checker player's performance. We men-
tioned the difficulties of the independence assumption with respect to
GPS's differences and we will see them come up again.

The following summarizes the formal framework with respect to

Samuel's systems:
LINEAR POLYNOMIAL

S The set of possible k-tuples of weights

S

The set of possible playing methods of opponents

The A-plans which modify the current set of weights or the
"book learning' strategy which picks weights so that the
polynomial reflects as well as possible the expert's eval-

uations observed up until that time

u Basically A or the correlation of individual detectors with

expert's decisions

X Not mentioned explicitly. Stability and the maximum criterion

are important. Also the ability to predict expert's decisions.
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SIGNATURE TABLES
The set of all possible sets of signature table entries
&  The set of possible playing methods of opponents

T The process of modifying entries similar to the 'book

learning' process mentioned above
u Expert's evaluations of board configurations

X The ability to predict expert's decisions.

It should be noted that the size of & in the signature table system
makes adaptation slower and necessitates the use of interpolation and
other approximation schemes.

Much of the power of Samuel's system lies in his detectors. Un-
fortunate these were hand tailored for the task, a process which at
present is still an art. Some systems have attacked the detector pro-
blem as evidenced in our next example. However, in this example the
task is somewhat artificial and the problem of generating detectors

nonexistent.

Klopf's Pattern Recognition [Klopf, 1965]

A. W. Klopf developed a pattern recognition system which nicely
fits into our formal framework.* In addition its structure closely re-
sembles Samuel's linear polynomial.

The task is to uniquely identify each of 2" patterns where a pattern

is specified by n binary inputs to the device. In this study, the main

* Klopf's system is called evolutionary, but to avoid confusion with later
discussion it will not be analyzed with the language the author uses since
the evolutionary concepts are minimal.
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concern is not with finding a good representation for pattern recognition,
but with finding the best device given a particular representation. In
other words, Klopf is interested in studying various adaptive plans.

A device consists of a set of m randomly generated functions, whose
input is the n binary numbers and whose output is a single number. A
new function can be generated by specifying 2™ new random numbers to make
up the range of the new function. The output of each function is multi-
plied by a weight and the resultant values summed (See Figure 2.2.2).
One can see that different input vectors will generally result in diff-
erent values of the weighted sum, Z. Certain values of Z are arbitrarily
chosen to represent each of the 2" patterns. Therefore, the weights must
be adjusted so as to correctly identify as many patterns as possible,
i.e., the output Z for each pattern input should come as close as possible
to the randomly chosen Z value for each pattern.

Unlike Samuel, Klopf did not include the weight adjustment problem
as part of his adaptation. Instead, he used an available routine which
always produced the optimal set of weights for this task. The existence
of such a routine seems to imply that the weight setting problem is gen-
erally not too difficult. Klopf's adaptation involved finding a good
set of random functions. The basic adaptive plan is as follows: generate
an initial set of random functions. Evaluate each function using pre-
scribed e evaluation functions. Replace a certain number of the worst
functions ;ith randomly chosen new functions. Repeat the procedure until
performance as measured by a utility function ceases to improve signifi-
cantly. The p used in the criterion x was an error counting function,
where the error is the difference between the observed Z and the correct Z.

Klopf used the maximum utility criterion, stopping adaptation when the
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error ceased decreasing. He varied his plans by varying the He evaluator
functions and the schedule which specified how many functions wére to be
replaced at each step. His results included a specification of the best
M and best replacement schedule along with statistical estimates to show
th;t his best plan performed much better than random search.

This work is representative of much of the work done in adaptive
pattern recognition and adaptive systems. Although there is a perfectly
good overall utility function available, Klopf does not use it. Instead
he uses component evaluation functions which are not independent. Yet,
he uses these functions as if they were independent. For example, one
type of Mo function measured correlations between the random function
outputs ané the final output Z, while another attached utility to the
size of the weight associated with each random function. In addition,
Klopf does not check to make sure that the inferior functions are not
replaced by even worse functions. Such a check is especially necessary
later in adaptation when gains are hard to come by and should be preserved.

The independence assumption is not generally valid. However, a
scheme very similar to Klopf's is used by Uhr and Vossler in their adap-
tive pattern recognition program [1963]. They try to simultaneously mod-
ify weights and detectors, yet they evaluate each detector as if it alone
were responsible for the recognition task. Although a plan based on an
independence assumption might sometimes be a good approximation to the
best plan, it seems that some other method should be available to search
the set ;ﬁ%zin a more sophisticated manner, especially when independence

assumptions break down.

To summarize Klopf's system we have:
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s All possible sets of n random functions

& an possible name (number) assignments associated with 2"

"patterns"

T The strategies for modifying the existing function set.
These plans differ with respect to the evaluation techniques
used and the number of functions replaced (alternatively the
size of the step taken in the search space). There is no

memory«/” involved. -
u The results of certain detector evaluation criteria

X The maximum criterion.

Fogel et al.'s Evolution [Fogel, 1966]

Fogel, Owens and Walsh wrote a book whose main purpose was to study
a particular adaptive system. Their claim was that the system would have
general applicability rather than be tailored to a particular task. How-
ever, the authors just about defeated their own goals by a poor choice
for the representation of their devices and a limited view of the environ-
ment.

Their devices consisted of finite state machines. A finite state
machine deals with a finite input and output alphabet. Given an initial
state and a sequence of input symbols, the machine will move through a
sequence of internal states and output a symbol dependent upon each state
transition it makes. Figure 2.2.3 is an example of a three state machine
with 0,1 as input symbols and a,B output symbols associated with each
transition. The set of all finite state machines is obviously infinite.

A particular environment confronting the machines is some relation
defined on an infinite sequence of input symbols. A simple example is

the repetition of some subsequence. The general task is to find a device
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O/a

I/B

State 3

Figure 2.2.3 A finite state machine. The arrow
labels indicate the input/output for each transition
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which knows the environmental relation in that given an input symbol, the
device's output symbol will match the next input symbol. Feedback is ob-
tained by a utility approximation function u' which at each time step cal-
culates the error in the predictions. Each error can possibly carry a
different weight to reflect the magnitude of the error. This process is
repeated over several time steps to produce a payoff u(A) for each device.

The plan the authors used is likened to evolution: start with some
initial randomly generated machine. After obtaining its payoff, generate
an offspring machine by randomly '"mutating' the ''parent' machine. A
mutation might be: '"add a state, delete a state, randomly change a next
state, randomly change the initial state,..." [Fogel,1966] Then the off-
spring machine is tested and the machine with the best payoff is retained
to continue the process. The strategy was varied by varying the number
of mutations and putting various biases on what mutations were to be used.
In addition, some experiments were run saving up to three parent devices
and sometimes producing offspring by combining the parent machines to
produce a majority logic machine whose output at each transition is
supposed to somewhat reflect the output of all parent machines.

The authors implicitly use the maximum utility criterion and claim
to have demonstrated significant adaptation. However, Lindsay in his
review of the work has done some rough calculations which indicate that
the random search plan would produce performance levels almost as good
as those demonstrated by Fogel et al. [Lindsay, 1968], This obviously
would not be a random search of the entire space cﬁfﬂ but the space in-
vestigated by Fogel et al. was generally limited to machines having eight
states or less.

Lindsay also criticized the fact that the authors do not use most
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of the standard concepts of genetics in their use of evolutionary plans.
For example, their ''organisms' do not at all resemble chromosomes. 1In
fact, when considering their use of finite machines to represent devices,
we can see that they run into the same problems evidenced in the other
systems we have discussed. In particular, although their mutation oper-
ators are not directed towards a particular component of the device based
on a component evaluation funétion, their use implies an assumption about
the independence of the components (states and transitions) of finite
machines. In this context, the independence assumption is extremely
bad; furthermore, as Lindsay points out, the representation of a finite
machine used by Fogel quite often obscures the structure of the system it
is modelling. Fogel's plan is analogous to changing a computer program
by randomly adding, deleting or changing instructions. A '"learning"
system by Friedberg [1958] failed very badly since it tried to operate
in this way with similar independence assumptions.

However, even apart from this poor representation, we can pinpoint
a bad aspect of the plan. There is generally no provision for storing
much information about past experience. A scheme like Samuel's checker
player stores such information compactly in the current set of weights,
which represent much of the learning that has gone on to date. Fogel
et alk devices are more specific. The code A is in effect the whole
device; Samuel's code is but a mode of operation for a device. Slight
changes in Fogel et al'’s devices may produce large changes in observed
behavior. This is not the case with Samuel's system. One way to in-
crease the information storage for systems like Fogel et al.s and Klopf's
is to save more devices at each time step. This is in fact the method
used by natural evolutionary systems. To summarize Fogel et al's

system we have:
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The set of all finite machines. Actually the space used is the
the set of all finite machines with less than N states, where
N is typically less than 10

The set of all possible infinite sequences of symbols

The plans which generate finite machines by mutating previously

saved machines

An overall utility measure based on error counting

The maximum utility criterion.
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Abstractions and Summary

Now that we have analyzed various adaptive systems within the formal
framework we can attempt to compare different adaptive plans looking for
common difficulties. In general, we see that with the exception of the
evolutionary system all plans considered are continually directed towards
reducing some identified deficiency. In GPS and Klopf's system this de-
ficiency is explicitly pointed out using predetermined criteria or eval-
uation functions. In Samuel's system and Uhr and Vossler's pattern recog-
nition the deficiency is identified as the result of inaccurate prediction.
The feedback vector It identifies the deficiencies while the transition
function ?'attempts to reduce these deficiencies. Moreover, we see that
the function ¥ is very closely tied to the feedback d?ﬁ which in turn is
very closely tied to the representation of the device. Klopf's plans
could possibly be applied to find an optimal detector set for Samuel's
system, but only after the problems of identifying bad detectors and gen-
erating new detectors were solved. Similarly, GPS could be applied to
Klopf's systems, but only after one obtained criteria which identified
good and bad aspects of a detector set, rather than an evaluation of
each detector function. Fogel et al'’s paradigm could possibly be applied
to the other systems but only when each system had a means for accurately
evaluating a whole device rather than just components. This last problem
might not be as difficult as the others but could involve high time costs
in many cases.

We can see from our formal description, however, that many of the
systems have common difficulties. The most prevalent of these is the
assumption of independence of components. This assumption appears im-

plicitly in adaptive plans which generate a new device by independently
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modifying each component of the current devices. This occurs in all the
systems we have examined.

Another difficulty can occur when the researcher imparts too much
of his own intuition or bias in setting up a representation and a priori
criteria. The result might be to impose severe restrictions on the set
%D or on the adaptive plan. Such limitations will prevent the plan from
effectively searching the space . s Klopf found out, the most in-
tuitive criterion does not always turn out to be the best in practice,
especially when additional assumptions are involved. Many plans might
benefit from Klopf's method of using a number of criteria before deter-
mining which is the best. In other words, one should always try a number
of adaptive plans and an evaluation function is a logical element to vary
over different plans.

The feedback vector It can also be a source of trouble especially
when elements like u' or W, are used. Side stepping the independence
problem mentioned above, th:re is still the chance that the feedback
does not really represent what the researcher thinks it represents.

Even if the components do not interact, the Mo function used may not
be the best for ranking possible components orlit may contain some in-
herent statistical error. If the He. functions are to be used to rank

i

the set .ﬁZ(, one should check that the induced order is in fact con-
sistent with one's beliefs concerning the goodness of devices. This
difficulty is enhanced when the task is not well enough defined. Sim-
ilarly, care must be taken that enough u' samples are observed before
an estimate of u is computed and the search continued.

Another difficulty might stem from search techniques. With the

exception of Fogel et al's scheme, none of the systems discussed saved
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previous devices for comparison with the new devices generated. In some
cases, this practice might reduce the chance of getting stuck on a local
maximum; in other cases it could result in rather erratic search behavior
with good devices being discarded. One solution might be to conduct a
parallel search, saving a subset of devices at each time step.

Finally, we have seen throughout all the systems studies that the
representation of a device and in fact the representation of the entire
system plays a crucial role in its success or failure. This is an un-
fortunate situation for analytical purposes since good representations
are often defined with respect to particular tasks. Fogel et al. pre-
sented what they felt was a good representation in that it was supposed
to be generally applicable to various tasks; however, they were not very
convincing. We have seen that the comparison of systems with different
representations can prove to be very difficult. The formal framework
has helped somewhat in extracting various elements of adaptive systems,
but the representation dependencies still remain.

Table 2.2 summarizes the difficulties mentioned above. The diffi-
culties are related to LQé7and é?vin our formal framework. Environmental
difficulties enter when the environment changes rapidly. This was not
the case in the artificial intelligence tasks studies to date. Also,
difficulties with a criterion y were not considered here since many of

our examples did not explicitly use a criterion.
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Formal Framework Difficulties Involved
Element

1) Imposed components may not be independent.
- 2) Might result in severe restrictions of
the set of possible devices.

3) Many other aspects of the system are

extremely dependent on representation.

Feedback difficulties:

K71 1) M, may not reflect true worth of ¢
i

2) u may be badly approximated by u'

3) u induced by Mo 's may not reflect

1
researcher's idea of yu.

Bl

1) Search flexibility might be restricted
by a priori criteria.
2) May incorrectly assume independence of

components.

Table 2.2 Summary of Difficulties
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Conclusion

One can draw the following conclusions: first, there are several
difficulties which seem to permeate much of the work done in adaptive
systems applied to aritifical intelligence problems. This seems to
stem from the fact that many of the systems generally use similar tech-
niques. Secondly, it is very difficult to evaluate one system in iso-
lation, yet there seldom exists a comparable alternative system that
performs the same task. Furthermore, a very good adaptive system may
be concealed under a bad representation, and vice versa.

Where does this leave the adaptive systems researcher? He may con-
tinue to attack a variety of tasks using specific representations and
tools designed to fit the particular needs of each. He may pay more
attention to improving upon certain strategies within a particular
< ;537, d? > X> - system. Or he may try to develop a very general re-
presentation and system which could be used for any task.

We have chosen the second alternative with inclinations towards
the third. In this way, we can at least make accurate comparisons of
plans over the space é;rwith respect to the criterion x. Klopf's work
serves as a refreshing example of this technique.

The remaining goal of this thesis is to present an adaptive system
which will address itself to some of the difficulties mentioned in this
chapter. We claim that the system is flexible in its representation and
powerful in its searching ability. This system will then be simulated on

a computer and attempts will be made to search both the Lﬁﬁfand é?rspaces.



Chapter 3 Reproductive Strategies

3.1 Search Spaces

As we have seen in the previous chapter, many of the difficulties
encountered by adaptive systems are involved in searching a particular
space. An adaptive plan is concerned with searching the space of de-
vices ¢£%7, while the researcher generally has the task of searching
the space of plans 67.. Bagley [1967] has attempted to analyze the
difficulty of tasks presented to various adaptive systems by estimat-
ing the size of the space involved and also the amount of environmental
information which each device must handle. However, there are other
aspects of spaces which are probably better indicators of search diff-
iculty than size.

One indicator of search difficulty is the density of points with
high payoff. An estimation of this density can be easily obtained using
the random search plan. This in fact should be the first step in the
study of any system since, as mentioned before, it gives a minimal per-
formance level above which any ''good" pian should be able to operate.

Other indicators of search difficulty are probably more significant

yet also are more difficult to estimate. Let us review the general search

method. The function T is responsible for the search in our formal frame-
work. Given an object or set of objects in the space ¢§¥7, T generates
another set of objects. Typically T induces a transformation on the orig-
inal set of objects so that the derived set bears some resemblance to the
original objects. The operation of T usually depends on some inherent

metric over the space . For numerical spaces, the euclidean metric

is usually used. However, there is not always a suitable metric available

for nonnumerical spaces. One can certainly define a metric based upon
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how many corresponding elements of two vectors match, but for most pur-
poses this is not adequate.

Discontinuities effect the difficulty of a search space. Continuity
is defined in terms of the utility function p with domain tﬁﬁ7and in terms
of some metric over 7. Numerical spaces like the one used by Samuel
are usually continuous. Nonnumerical spaces like Klopf's and that of
GPS are likely to have many discontinuities. These discontinuities are
often due to the lack of a good metric, but not always. Two detectors
may appear very similar (in terms of the functions or computer programs
describing them) yet produce quite different behavior when used in a de-
vice. This partially explains why the detector problem is more difficult
than the weight problem.

Finally, the number of local maxima will increase search difficulty.
Multimodal spaces generally are the rule in artificial intelligence tasks,
yet no practical search methods presently available can guarantee conver-
gence on the highest peak.

We have seen that the particular representation of a device deter-
mines the co-ordinates of the space to be searched, although the under-
lying task may possibly be represented in a variety of spaces both numer-
ical and nonnumerical. The environment through the utility function u
determines peaks and continuity in the given space. We would like to find
an adaptive plan that is capable of operating in a fairly large range of
environments and with various representation. Obviously such a plan might
not perform better than all plans <n a particular enviromment. But since
one often does not know what environment is involved, a flexible plan
would be a good one to have around. Let us now turn to a possible can-

didate for such a plan.
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3.2 The General Reproductive Paradigm

In this section we will consider a class of adaptive plans which
operate in a manner similar to natural genetic systems and in fact use
mechanisms which closely resemble genetic operators. However, these
plans are not meant to be a model or simulation of evolution. Rather
we will try out techniques similar to those which have been observed
in natural systems in hopes thét they will prove as useful to us in
discovering optimal regions in our search space as they have been to
the natural evolutionary process.

The general reproductive plan we will be concerned with has been
explored theoretically by Holland [1969]. It operates as follows.
Initially a set of devices is randomly sampled from the space tﬁﬁf.

Then the plan operates by producing devices at time t + 1 from the de-
vices at time t in two steps. During step one, called reproduction,
each device is copied a number of times depending upon how well it per-
formed at time t. The duplication rate for each device is determined
by the utility function u. In step two, called recombination, new de-
vices are generated by applying transformation or mixing operators to
the set of devices obtained from step one. This procedure is diagrammed
in figure 3.2.1.

The reproductive plan is basically a first-order plan (i.e., u is
the only feedback) although it could be modified to use additional feed-
back as we will explain later. None of the systems we have looked at
used first-order plans with the exception of Fogel et al's; however, the
p-function did appear explicitly or implicitly in all of them.

Fogel et al'’s plan was based on evolution but they failed to im-

plement the most powerful aspects of reproductive plans. Their popula-
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SAMPLE INITIAL SET
OF DEVICES

OBTAIN PAYOFF pc
1 FOR EACH DEVICE

REPRODUCE EACH DEVICE A
INCREMENT NUMBER OF TIMES ACCORDING
TIME STEP TO PAYOFF RECEIVED

A

GENERATE NEXT SET OF
DEVICES USING OPERATORS

Figure 3.2.1 The general reproductive paradigm
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tion usually consisted of only two individuals so that selection amounted
to merely picking the best. Larger populations are needed to insure a
rich mixture of individual types and to maintain a truly parallel search.
Since only one individual produces offspring in Fogel et al'’s system,

two very powerful genetic operators (crossover and inversion) were not
used. Therefore, their plan was unable to transmit valuable substructures
from one device to another.

Holland's theoretical results on reproductive plans indicate that
with respect to the accumulated utility function and some given set of
mixing operators there exists a reproductive plan which performs at least
as well as any other plan in a first-order environment. This result is
very important since it at least insures us that we are on the right
track in investigating these plans. In addition, Holland's work sets
forth the general structure of a reproductive plan. However, it still
leaves a wide range of choices when one is concerned with a specific
implementation of the plan.

For one thing, Holland's results involve modifying a probability
distribution defined over the set < and computing expected payoffs at
each time step. These distributions would have to be approximated since
simulations typically do not have the resources to store distribution in-
formation about spaces as large as the ones we have considered. Then we
must ask how good the approximations are. Furthermore, the process of
setting up a suitable set of mixing or transformation operators and the
method of deciding exactly how many times to reproduce each individual
are not specifically stated in the theorem. Therefore, the space T of
workable well-defined reproductive plans can be rather large.

Bagley [1967] has recently made a good attempt to operationally test
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particular reproductive plans using genetic mixing operators as proposed
by Holland [forthcoming book]. Performing actual computer simulations
he demonstrated that in a game playing situation a reproductive plan
could perform as well as a correlation algorithm (similar to that used
by Samuel and Klopf), even though the correlation algorithm received
more feedback. Furthermore, he demonstrated that as the environment
became more nonlinear, the advantages of the reproductive plan became
more apparent. Bagley's devices resembled chromosomes and his mixing
operators resembled genetic operators (e.g., mutation, crossover).
Besides comparing the reproductive plan to the correlation plan, he
also investigated various selection schemes (i.e., methods for deter-
mining how offspring are distributed) and various genetic operators.

The implementation we will present is similar to Bagley's in its

use of operators related to genetics and its basic chromosomal repre-
sentation. However, it differs from Bagley's in the size and represen-
tation of the population, the method of testing and altering the popu-
lation, the variety of the operators used, and the extent of the sub-
sidiary control mechanisms investigated. Also the space that we will
search differs from Bagley's in that it is larger, nonnumerical, and
very difficult to analyze theoretically. In one sense the work we will
present below is an extension of Bagley's work in that it investigates
new mechanisms and extends the search of the space T ot reproductive
plans. In another sense it constitutes a different representation of
the general reproductive plan and demonstrates its flexibility by apply-
ing it to a different, nonnumerical task.

Our implementation of the reproductive plan fits nicely into our
formal framework. An element A ¢ bﬁf?wdill consist of a list or string

of well-defined units. The string will be referred to as a chromosome
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or an individual while the units will be referred to as genes or com-
ponents in a general sense, or as subroutines, detectors, etc. in a
functional sense. The notion of a gene as a well-defined functional
unit is important here since genetic operators use gene boundaries in
their implementation. Although genes may often be further broken down
into smaller units, genes will seldom be split at these unit boundaries,
whereas chromosomes will often be split at gene boundaries and then re-
constructed in various ways. Most of the systems we have looked at em-
ploy well-defined functional units which could represent genes in a
chromosomal structure. The possible exception is Fogel et al.’s system
which really needed this type of representation since it purported to
model evolutionary mechanisms.

The environment for reproductive plans can be any task which pro-
duces a well-defined feedback g for each chromosome taken as a whole.
Since this is the only feedback for first-order plans, care should be
taken that p induces as accurate a ranking as possible on the set of
devices. Ideally, if two chromosomes differ in only one gene, the
function u should indicate this difference to the extent that it af-
fects the device's performance. If these different genes do not
affect performance, then the chromosomes should be rated equal.

Now let us consider more specifically the composition of the
space é;rand the methods which will be used to search it. Figure
3.2.2 presents a flow chart outline of the paradigm. This figure
should help the reader follow the logic. A few definitions will be
helpful here. A generation will condgitute the basic time unit in the
operation of a particular reproductive plan. Each generation involves
a sampling of a set of devices in the space 7. A run will consist

of the entire process of sampling successive devices by a particular
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Figure 3.2.2 Outline for testing reproductive plans
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plan until a certain stopping rule is exercised. This rule might be
determined by the f(r) function used by the maximum utility criterion
discussed above. At this point in the investigation, the pérformance
of the best individual (or set of individuals) in the run and the number
of generations used are saved as an estimate of the plan's goodness
under some criterion. This is only an estimate since the reproductive
plan contains random processes. Therefore, the goodness of a plan can
only be described with a distribution of final outcomes or alternatively
some parameters of this distribution such as the mean and variance. A
test or experiment will refer to the process of operating a number of
runs in order to estimate the mean and variance. In figure 3.2.2 the
process of one run is enclosed in a dotted box.

The first operation in Figure 3.2.2 is the specification of the
set ;ﬁ%f, the environment E, and the particular plan t. The specifica-
tion of «QZ will consist of setting a maximum length for each chromosome
in «Q7while E will specifically indicate the task to be carried out.
The specification of Q7 and E will usually remain the same over a num-
ber of experiments so that various plans can be accurately compared.
The specification of a plan t will involve stipulating a number of
parameters such as population size, percent of the population to be
replaced each generation, and probabilities of applying certain genetic
operators. This specification may also indicate the use of different
schemes at various point in the plan. The operations in Figure 3.2.2
which are enclosed by a double set of lines are operations for which
a number of different schemes will be tested. Also additional controls
will be introduced which generally will increase the complexity of the

diagram. One could imagine all such schemes and controls existing sim-
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ultaneously in the general plan, with a set of switches to determine
which schemes would be used for each specific plan. However, to keep
the exposition as clear as possible the flow chart will be médified
only with respect to the operation under consideration. If a certain
scheme proves to be superior to others, then it will assume exclusive
responsibility for that operation. However, if a number of schemes
work adequately, then they will be retained as conditional operations
in the flow chart. In this way we will be able to follow the search
of the é?vspace by following the modification of the flow chart.

A particular run proceeds as follows. The initial population is
randomly sampled from the set 7. Next each individual is ranked
according to how well it performed the particular task. Since we will
have an accurate performance measure HE» rather than an estimator u',
we need obtain payoff for each individual only once. The top portion
of the ranking is designated as the current population and each popu-
lation member is assigned an integer number (again according to u)
to indicate the extent to which it will be used in producing offspring.
Those individuals with nonzero numbers constitute the domain of the
genetic operators. The genetic operators generate a fixed number of
new individuals each generation by ''mixing'" duplicates of other indiv-
iduals and adding a certain amount of random ''genetic material". This
process will be discussed in more detail below. Then the new individ-
uals "compete' for positions in the current population with the best
possibly replacing some previous population members. After each gen-
eration a check is made for a stopping condition dependent upon what
criterion is being used.

Let us consider in a little more detail the question of a criterion
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for ranking reproductive plans. Intuitively such a plan should be both
efficient and effective. An effective plan should be able to discover
substantial peaks in the space ¥ . 1In addition an efficient plan
should be able to find these peaks with a minimum amount of sampling.
These two criteria, however, cannot always be considered independently
and therein lies a problem. If one has knowledge of the maximum poss-
ible performance level and he feels that this level can be obtained
without extreme effort (or alternatively that this level must be ob-
tained regardless of the effort) then the effectiveness criterion is
well-defined by this performance level. Therefore, efficiency becomes
the only real question and we can use the minimum time criterion. If

pu* indicates the maximum possible performance level, then:
. T_
x(t) = min {t | u(A)=u*}

When we wish to compare plans which sample a different number of devices
each time step we will use a more basic criterion, the mintmum sample
eriterion, which measures the total number of samples before an individ-
ual with payoff p* is obtained. These two criteria are equivalent with
respect to plans which sample the same fixed number of devices each time
step.

When it is the case that only a specified number of samples is al-
lowed for each plan, then effectiveness is of primary concern. In this
case, the maximum utility criterion would be used with f(t) constant.

Unfortunately for many tasks we are not sure what level of perform-
ance 1is reasonably attainable nor are we willing to rigidly specify a
maximum amount of time we will let the plan operate. What type of a

stopping rule would be reasonable in this situation? One possibility
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is a marginal utility rule. In other words, we would let a plan continue
as long as the performance has improved at least a certain amount in the
last n time steps. This stopping rule would effectively define f(r) in
the maximum utility criterion. This use of the maximum utility criterion
could be criticized on the grounds that comparisons are made between
plans obtaining an unequal number of samples. However, there does not
seem to be a viable alternative without a priori knowledge of the search
space. Therefore, this criterion will be used for most of the experi-
ments that we will perform. However, when there seems to be a signifi-
cant difference between the average numbers of samples used by alter-
native plans, this difference will be considered in the final analysis.
This difference will be particularly important when the average perform-
ance levels do not differ significantly.

Let us now look at the genetic operators in more detail. The follow-
ing distinctions will be useful when considering certain chromosomal re-
presentations. A gene will be thought of as a functional entity which
exerts control over certain processes in the device. An allele will be
a possible substitution instance for a gene which will specifically pin-
point how the function is to be performed. For example, if Samuel's
weights were interpreted in this structure, the functional notion of a
gene would be associated with each detector, while the alleles for each
gene would be all possible weights which could be attached to each parti-
cular detector. However, in Klopf's system this distinction is not nec-
essary since all detectors play the same role.

We will now define three genetic-like operations which are gener-
ally applicable to any chromosomal representation regardless of the task.
We should mention that these operations and the assumptions involved in

their use do not necessarily correspond exactly to their counterparts
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in living systems. However, we will try to maintain all the evolutionary
aspects of living systems which we feel will benefit our adaptive plan
within our space and time limitations.

Let us use Roman letters to represent genes or particular alleles
in a chromosome, and arrows to designate breakage points. The crossover
operator acts on a pair of strings by breaking each string at some point
and rejoining the subsegments from different strings. Figure 3.2.3

illustrates this process:

A|B C|DJ|E AlB] C D'| E'
Y eld
A'| B'| C'|{ D'| E! A"} B'l C'| D | E

4&

Figure 3.2.3 The Crossover Operator

For our purposes breakage will be equiprobable at every point, although
the breakage points could be determined according to some nonuniform dis-
tribution. Also certain conditions might have to be satisfied before
crossover may take place, such as a similarity condition between the

two input strings. However, we will just pair strings randomly. The
term double crossover will refer to the crossover operator with break-
age at two points in each string, resulting in the exchange of inner

substrings:

¥ ¥
A B C D E F A B C'| D'| E F
yield
—
A"l B'] C'| D'| E'| F! A'| B'] C D E'| F!

Figure 3.2.4 Double Crossover
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The inversion operator also makes two breaks, inverts the inner seg-

ment, and then rejoins the string:

ABCDEF}=’ABEDCF

4 1

Figure 3.2.5 Inversion

Inversion may or may not chanée the performance of a device, dependent
upon the existence of order dependencies between genes. However, in
conjunction with the crossover operator it can bring about important
changes in adaptation as we will discuss below.

The role of crossover and inversion as valuable mixing operators
has been pointed out by Holland [forthcoming book]. Let us consider
a few important points here. Crossover (and double crossover in the
following discussion) is capable of sampling a wide variety of devices
in the space while still preserving certain nonlinear interactions that
might exist between genes. It enables a plan to take large steps in
the search space as opposed to small, local steps. Therefore, even if
an offspring resulting from crossover obtains a payoff which is only
comparable to that of its parents, there is still a net gain since
now a new region of the search space is being investigated and the
parallelism of the plan is extended. However, the offspring is often
much better than both parents due to the combination of subsegments
which work very well together. Due to the variability in breakage
points and the use of two types of crossover, the subsegments exchanged
vary widely in length and composition, enabling the plan to test a

large combination of devices.
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Inversion plays a dual role. On the one hand it sets the stage so
that later mixing by crossover is beneficial. Quite often the situation
may arise in which a number of individuals in the current population
differ only at a few genes. Crossover using these individuals will most
likely result in little or no significant mixing. Inversion changes
this situation without necessarily changing the devices involved. 1In
this way it enriches the set of possible future devices to be sampled.

Inversion also plays another role in co-ordination with crossover
in nonlinear situations. Consider the alleles P and P' of two different
genes. If P and P' occur on the same string and are positioned very
close together, then we will say they are highly linked. The farther
apart, the less they are linked. Let us assume that interactions in
the use of P and P' are such that when they occur together on one chrom-
osome, the performance of the resultant device is much higher than would
be warranted considering either allele by itself. In other words, we
have an extremely nonlinear situation. These two alleles could be as-
sembled on one string with the crossover operator. However, the chances
that they are highly linked on the resultant string are rather low.
Therefore, the chance that they will again be separated by another cross-
over operation are rather high. Inversion obviously modifies linkage.
If P and P' become highly linked via inversion the chances that they
will be separated becomes very low. In addition, the string containing
P and P' will produce a large number of offspring due to its high per-
formance. Since most offspring will contain this highly linked P P' unit,
the chances that this unit will be lost to the population are extremely
low, even if P and P' are separated in a few individuals.

The third type of operator we will be concerned with is mutation.
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As opposed to crossover and inversion, mutation will be specifically
designed according to the structure of the chromosomes. Since the basic
purpose of mutation is to introduce new alleles, the mutation operator
must have knowledge about what constitutes a permissable allele. A
complete mutation will result in the whole allele being replaced. If
some substructure is present in an allele, a partial mutation may re-
place only a portion of the allele. A mutation is random if the new
allele or portion is randomly taken from all possible alleles. A
mutation is biased if the selection process is biased, perhaps by some
metric defined over the alleles or allele substructures. We will gen-
eralize the notion of mutation so that it may map a set of alleles into
another set. Operating on the empty set we will call the operator in-
sertion., If the resultant set is empty we will call it deletion. These
will be considered special cases of mutation.

In the systems analyzed above, we have seen examples of mutation-
type operators. Klopf's scheme replaced certain inferior detectors with
randomly chosen ones. Fogel et agl. used insertion and deletion in addi-
tion to random mutation. He also changed his initial state in a non-
random manner. Insertion, deletion and random mutation are generally
applicable to any representation as long as the set of admissable alleles
are known. However, the researcher can often cut down the range of the
mutation operator so that the space can be searched more locally. Fogel
et al. changed the initial state designation for a particular machine to
the next state in the transition in an attempt to check for errors due
to phase shifting. Similarly, Klopf could have made smaller changes in
his detectors either by changing the detector output for only a few of

the input patterns, or by incrementing or decrementing the values rather
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than using new random values. Since one purpose of the mutation operator
is to perform local searches, it should be capable of taking as small a
step as possible at the intragene level. This proves to be very useful
in the later phases of adaptation when local steps are more important

and larger steps are often harmful.

Now we have seen how crossover, inversion, and mutation play im-
portant complementary roles in searching the space . Along with
the selection and reproduction phases, they direct the search of.&%fby
progressively skewing the distribution of sampled devices towards de-
vices having higher and higher payoff. The initial sample is random
and therefore uniform over the space & . Selection eliminates the
worst devices while reproduction skews the distribution towards the
better devices. Then the genetic operators sample new devices by re-
combining various aspects of old devices and adding a bit of new genetic
material through mutation. This process usually results in the retention
of at least a few new and better devices which further skew the distribu-
tion. Thus we see all aspects of the reproductive plan interacting to
achieve adaptation.

Now we must consider what are the important aspects of reproductive
plans and how these aspects should be investigated. One important as-
pect is the population size. The population contains most of the in-
formation the plan has gathered to date. Furthermore, the operations
of crossover and inversion are only successful when there is sufficient
variability in the population. So in addition to being large, the pop-
ulation must have a number of different individuals.

Population size is one aspect which will be investigated experi-

mentally. However, the maximum size will be put at about 40 individuals.
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A minor reason for this is space limitation. More important, however,
are time or cost considerations. Since the cost per sample is directly
measured in the criterion, we must be very careful to sample as little
as possible while still preserving the power of the plan. Since the
number of samples per generation will range only between 2 and 10, it
seems that a population of size 40 or less will provide sufficient di-
versity with proper care.

Proper care in one respect amounts to investigating various selec-
tion schemes. A selection scheme is a method of apportioning offspring
to members of the current population. At one extreme a selection scheme
could emphasize the best individuals to such an extent that the resultant
populations become very homogeneous, each individual closely resembling
one of a limited number of parents. Such a situation is undesirable
and effectively lowers the population size. On the other hand, insuf-
ficient selection will slow down the skewing process and often result
in inefficient adaptation. Since the population sizes are rather small
and the number of samples per generation even smaller, we must be very
careful that offspring are distributed in as optimal a method as poss-
ible.

We will also study the effects of the genetic operators. In par-
ticular, we would like to know how often and how many times each oper-
ator should be applied. Too much mixing may result in only large steps
being taken in the space while too little mixing may decrease the vari-
ability in the population. Since the operators are to be applied pro-
babilistically, this optimization could amount to parameter setting.
However, the need for various operators may change during evolution or

over different tasks. This would call for more sophisticated controls.
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Our paradigm may also be improved by introducing additional controls
and applying other aspects of natural evolution. Dominance provides for
variability with reduced selective pressure. Intrachromosomal duplica-
tion locally increases the sampling rate for a particular gene. Iso-
lated populations interbreed with a resultant increase in variability.
These and similar techniques will be investigated to see what effect
they may have on adaptation. Hopefully, the more sophisticated the
plans get, the more information we can extract about the operation of
reproductive planslso that the search process will become more refined.
This will not involve receiving more information from the environment
but will involve inferring more information about the search space by
observing techniques which work and testing for situations in which they
have been shown to work. In addition, there will be a constant effort
to develop techniques which could prove to be generally applicable

rather than specific to a particular task.
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Summarz

In this section we have presented a paradigm for an adaptive plan
which we claim should overcome some of the difficulties encountered by
other plans. Of most importance is the ability of reproductive plans
to deal with nonlinear interactions between subunits or components of
the device. This is accomplished using the crossover and inversion
operators. The population which enables the plan to use crossover
and inversion effectively also enables it to conduct a parallel search.
This is another important aspect since it eases the problems involved
in searching multimodal spaces. In addition, the plan is first-order
and therefore does not restrict itself by making assumptions about the
nature of other kinds of feedback. Furthermore, the performance of a
good first-order plan sets a nontrivial lower bound on the performance
of plans which receive additional feedback. |

In our last chapter wewill speculate as to how additional feedback
could possibly be used by a reproductive plan. The immediate goal now,
however, is to find a suitable task with which to study our reproductive

plans.



Chapter 4 Task Selection and Initial Attempts

4.1 The Question of Cost

It will take various amounts of computer time to perform different
tasks. In addition, different plans may require different amounts of
time on the same task depending upon how much information is extracted
and processed by the plan. In a modelling situation real time computer
costs do not directly affect the way in which the investigator sets up
his model. Certainly he must live within the space limitations imposed
by his budget, but these limitations do not typically enter into his
criterion for the model's success.

On the other hand, the process of searching the ;ﬂffspace associ-
ated with an artificial intelligence task usually involves higher time
costs than does a typical simulation of a model. Also there is a hope
that good adaptive plans can be generalized so that they can be used
many times for production runs. In addition, some tasks require adap-
tive systems to operate in real time. Typical optimization techniques
are good examples: a control system for an automatic pilot or a robot
exploring a far off planet are systems which might need a real time
adaptive plan. So we see that real time cost is an important aspect
which can play a major role in the development of an adaptive system.

Uhr and Vossler in their work with an adaptive pattern recogni-
tion scheme realized this cost problem [1963]. They developed an elab-
orate system which extracted many bits of information from patterns,
only to discard the system for one which operated more quickly. The
original system took about 40 seconds to process one character while

the modified system reduced this to one second. Certainly time sta-
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tistics like these are dependent upon particular computers, yet com-
puter differences do not usually account for time factors of 40 or more.

The biggest costs for adaptive plans usually consist of the cost
of obtaining feedback or, in other words, the cost of sampling new de-
vices in the space ¢£¥7. In general, the more feedback received, the
greater the cost. Let us consider first-order plans where the only
feedback is HE for each device. How can we classify the cost of ob-
taining Mg as being high, medium, or low? If we were working with a
real time system we would have to operate within a fixed limit; the
plan would have to produce a new device at least as soon as it was
needed. A high cost situation might be one in which only one or two
devices could be tested before the plan was required to submit a new
device for actual use. When real time operation is not important,
the judgement of the cost might depend on how long the researcher
wants to wait for the plan to terminate or how big his budget is.

A more consistent method of evaluating cost is to compare the time
needed to obtain the feedback u with the time needed to process and ana-
lyze this information and generate or select another sample. For repro-
ductive plans most of this processing takes place in producing new off-
spring. The time to complete this process is less variable over different
tasks than the time required to obtain the feedback. If these two times
are comparable within an arbitrary factor then we might say the cost for
this task is normal. This cost will play an important role in the oper-
ation of our plan. In a high cost situation we will judiciously take
only a few samples per generation. In a low cost situation we can main-
tain a large population and obtain many samples. This cost will directly

affect our investigation. Ultimately, however, we should use the minimum
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sample criterion. Then time cost is not the only concern and opportunity
costs become relevant. In other words, how well can the plan do with

what information is available?

4.2 Statistical Tests and Some Comments on Variance

As mentioned previously, each experiment will be run a number of
times, thereby generating a distribution of final performance values.
Then according to the criterion currently being used, the distributions
and, therefore, the plans which generated the distributions will be
ranked.

Since it would be impractical to experiment with all possible re-
productive plans, we will not be concerned with finding a plan which
is optimal with respect to the given criterion. Rather we will be con-
cerned with generating successive reproductive plans which are as good
as or better than previously tried plans.

A suitable statistic for ranking different adaptive plans is the
mean of the experimental distribution. Depending on the criterion used,
this statistic may be the mean number of samples required to achieve a
certain performance level, the mean performance level after a fixed num-
ber of samples, etc. A suitable statistical test to determine signifi-
cance levels between plans is the difference-in-means test.

The standard ''difference-of-two-means test' assumes that the under-
lying distributors are normal [Hoel, p. 276]. As we will see later,
the distribution of the random sampling plan closely resembles the nor-
mal distribution. Also since the final results of each run are influ-
enced by a number of random processes, one can cite the central limit

theorem to argue that these results will be normally distributed. For
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our purposes we will use Student's t distribution to eliminate the error
in approximating the normal distribution with small sample sizes. This

is very important since we generally will run each experiment only five

times, due to the relatively high cost involved.

Another question comes up with regard to the alternative hypothesis
used in the statistical tests. Let us designate ﬂx and ﬁy as the dis-
tribution means for plans x and y. The statistical hypothesis H0 will
always be:

H : ix =y
The alternative hypothesis may be:

or

=1

le My >

Hi: uy # g

depending upon our a priori feelings about plan x and plan y. For most
of the tests we will use H1 since we generally will have reason to be-
lieve that each new plan we develop will perform better than the pre-
viously best plan. However, sometimes we will be adjusting parameter
values without any a priori feeling for the best value. In these cases
we will use Hi. We will use the standard 5% level of significance for
all of our tests. When results are much more significant than the 5%
level, we will mention the significance level.

It is often difficult for one to estimate the significance of the
difference of two means by inspecting only the means. The variance of
the distributions is also important; the larger the variance the less
significant the difference. The reader should bear this in mind when
reviewing our results.

Sometimes the sample variances of two distributions differ by a

very large amount. Therefore, we will also test to see if the variances
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are significantly different [Hoel, p. 225]. If this is the case we will
have to use a different test (which does not assume equal variances) to
determine if the difference-in-means is significant [Hoel, p. 279].

However, the variance by itself is an important statistic for eval-
uating adaptive plans. A plan that induces a small variance over various
runs is better than one with a large variance, given that the means of
the two plans are not significantly different. A small variance is im-
portant since in production situations one usually will only make one
run. In this case we would like assurance that this run is fairly re-
presentative of the distribution. One phase of our investigation will
be concerned with forcing all runs of a plan to reach a comparable level
of performance, thereby decreasing the variance between runs.

A clarifying word on terminology is needed at this point. Through-
out our investigations we will use the word variance in two different
senses. This should cause no confusion as long as the reader is aware
of the distinction. In one sense, we will speak of variance between runs
of an experiment. This is the variance mentioned in the above discussion
and refers to the spread in performance values over different tests of
our adaptive plans using different random numbers. We would like this
variance to be low, indicating that all runs converge to comparable per-
formance levels.

For our second use of the word we will usually speak of genetic or
population variance. This variance is an indication of the variety of
individuals in the current population at a specific point in time. As
opposed to the variance between runs, we would like the population var-
iance to remain high throughout evolution. A large population variance

is necessary in order to maintain a truly parallel search. If many pop-
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ulation members resemble one another, we find ourselves searching only

a small area of the space ¥ since current population members determine
where new samples will be taken. Furthermore, Crow and Kimura [1970]
have shown theoretically that under the conditions of a fixed environ-
ment and random mating, the rate of increase of the average performance
of a population is approximately equal to the genetic or population var-
iance suitably defined. Later in our investigations we will experiment
with techniques which attempt to improve the performance of reproductive

plans by continuously insuring that population variance is maintained.

4.3 1Initial Attempts

The problem now at hand is to find a suitable task for experimenting
with reproductive plans. Initially we felt it best to operate reproductive
plans on a low cost task so that we could get a feel for the operation of
these plans and gain some insight into possible improvements on the basic
reproductive paradigm.

The task we have used is somewhat artificial although it includes
features that are common to typical artificial intelligence tasks. The
task may be defined as follows: We have available a set of 50 subroutines.
Specific subsets of these subroutines are needed to perform certain macro
operations. An optimal device must contain all necessary subroutines to
completely perform a number of macro operations and furthermore must per-
form these operations in a minimal amount of time.

This type of task could arise in a number of situations. For ex-
ample, the task might be to build the necessary parts for a machine. A
macro operation could constitute the construction of a part in an assembly
line operation, while the subroutines might constitute the primitive steps
required to put the part together. There might be a number of ways in

which a part could be assembled, each varying in cost. Some operations
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may be dependent upon others. In a pattern recognition situation the
subroutines might correspond to detectors while the macro operations
could correspond to the successful recognition of a pattern.

We will assume that there are no order dependencies between the
subroutines or macro operations. The task is represented in a chromo-
some as follows. A gene consists of a single subroutine. The chromo-
some will contain at least enough gene positions to perform all neces-
sary macro operations, given that the necessary subroutines are avail-
able. The task is performed in a serial manner by operating the sub-
routines from left to right on the chromosome. Each subroutine takes
one time unit to run. When all the subroutines for a particular macro
operation have been performed, the total elapsed time is recorded. When
all necessary macro operations have been completed, processing is ter-
minated. Of course, the chromosome may be exhausted before all operations
have been completed, in which case partial credit is assigned along with
the maximum operating time. To be more specific, payoff p is calculated

in the following manner. Let

S T _-T
i max ‘i
Mi T F YT
i max
max
where My = the payoff of the ith macro operation
Si = the total number of subroutines needed to perform the
max . .
macro operation i
Si = the actual number of operation i subroutines found in
the chromosome
T = the length of the chromosome
max
Ti = the amount of time required to reach and perform all of

operation i's subroutines.
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If all of a certain macro operation's subroutines are not present, Ti
would equal Tmax' Payoff p is equal to the average of the ui's over all
operations needed to accomplish the task.

The reproductive plan receives only the payoff for each string.
Crossover and inversion and a single random mutation are applied to each
chromosome pair with certain probabilities. Two special operators are
also used. A deletion-insertion operator extracts a subroutine from some
random position on the chromosome and inserts it at another random posi-
tion. The inner subroutines are shifted one position in the process.

A reversal operator exchanges the position of two randomly chosen sub-
routines.

As one can surmise, the special operators were designed for this
specific task. However, their use does not presuppose detailed knowledge
of how the payoff is obtained. All we assume is that the position of a
subroutine in the chromosome will have an effect on performance. Cer-
tainly inversion also changes positions but in a grosser manner. Muta-
tion is the only operator that can introduce new subroutines into the
population, although crossover can assemble new subroutines on one string
if they are already present in the population. Mutation must be com-
pletely random since there is no similarity measure between subroutines.
We are operating in a nonnumerical space with no particular order relation.

We will use this task to investigate the effects on performance of
different operator probabilities and different selection schemes. Oper-
ator probabilities are important since they determine to what extent du-
plicates of population members will be mixed and mutated to form new in-
dividuals. Too much mixing may be detrimental while not enough may result
in an inefficient search. Selection schemes are methods based upon indiv-

iduals' performance of determining to what extent population members will
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be duplicated to serve as input to the genetic operators. Overselection,
a situation arising from duplicating a few very good individuals too

many times, may result in a loss of population variance. However, under-
selection may not influence sampling enough to induce an efficient search.

Two selection schemes were used in our experiments. With Selection
Scheme 1, a certain percentage of the top individuals is chosen to serve
as parents. The rest of the population will be replaced by new individ-
uals. The payoffs of this group are then rescaled by subtracting the
lowest payoff of the group from all others. The resultant values are
used as weights to determine how many offspring each indiviual will con-
tribute. With Selection Scheme 2, the offspring are equally distributed
as far as possible among the parent portion of the population.

The task used for the initial experiments involved three macro op-
erations, each of which required five subroutines. Some subroutines were
used by more than one macro operation. The first set of experiments were
designed to test the plan's sensitivity to the genetic operator probabil-
ities. The following parameter settings were used:

Population size --------=-cccmcmcmmaaa 25 individuals
Percent of population serving as parents --30%
Chromosome Size ------==-=ccccommmmmman 25 subroutines
Selection Scheme --------=--=ccocoomommmoo 1
Only 12 subroutines were needed to complete all macro operations due to
overlapping use.

We observed that most of the first few runs reached the maximum pay-
off after an average of about 80 generations (1360 samples). An individual
receiving the maximum payoff contained all the needed subroutines in the
12 leftmost positions of the string, arranged so that certain macro oper-

ations were completed after only five or six time steps, thereby minimiz-
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ing the average completion time. Since the maximum utility was rather
easily obtainable, the maximum utility criterion (after a fixed number
of generations) did not seem suitable. Therefore, the minimum sample
criterion was used (or equivalently in our case the minimum generation
criterion). Also, instead of operating the plan until a maximum utility
individual was discovered, runs were terminated when an individual was
discovered with utility equal to 98% of the maximum. This seemed reason-
able since some runs would get stuck on minor suboptimal peaks at the
level of about 99% of maximum utility. All runs were terminated at or
before the 150th generation whether or not the desired payoff level had
been obtained.

Tables 4.3.1, 4.3.2, and 4.3.3 give results for the more signifi-

cant experiments performed. The meaning of the column headings is as

follows:

EX NO ----- An identification number for each experiment

SEL SCM --- The selection scheme used

MUT ------- Mutation probability

D-T -==--m- Deletion-Insertion probability

REV ------- Reversal probability

INV ----u-- Inversion probability

CRS ------- Crossover probability

% MAX ----- The percent of the runs in this experiment which reached
the maximum allowable number of generations (150), be-
fore attaining the desired payoff level.

MEAN ------ The mean number of generations used by the runs in this

experiment. If a run reached the maximum allowable gen-
eration (150), then the value 150 was used in the com-

putation of the mean.
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S.D. ------ The standard deviation of the runs in this experiment.
If any runs reached the maximum allowable generation,
the standard deviation is not listed.

SIGN ------ Indication of which experiments were significantly diff-
erent from others using the minimum generation criterion.

These experiments will be referred to in the text.

The first set of experiments was designed to test the plan's sensi-
tivity to operator probability levels. All operators were applied with
the same probability. Table 4.3.1 summarizes the results of these ex-
periments. Only very high and very low probability levels resulted in
significantly inferior performance. Experiment 1 with low probabilities
was the worst. This could be attributable to two factors. First, there
was a high probability (greater than .5) that an offspring would be af-
fected by none of the operators and therefore obtain the same payoff as
its parent. Since this situation was not checked for, this 'new" indiv-
idual would then enter the parent portion of the population and effec-
tively decrease the population variance since its parent also remains.
The second reason for this experiment's inferior performance, is the low
mutation rate. This is discussed below. Experiment 5, using very high
probability levels, performed better than experiment 1, but still differed
significantly from the experiments using intermediate levels. The in-
ability to take small steps in the search space probably accounts for

the inferior behavior of this experiment.
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OPERATOR PROBABILITIES

EX SEL %

NO SscM MUT D.I. REV INV CRS MAX MEAN S.D. SIGN
1 1 .10 .10 .10 .10 .10 10 112.1 - *

2 1 .30 .30 .30 .30 .30 50.3 11.0

3 1 .50 .50 .50 .50 .50 51.1 11.5

4 1 .75 .75 .75 .75 .75 47.7 17.0

5 1 .99 .99 .99 .99 .99 61.7 7.2 *

Table 4.3.1 Probability Levels

The next two sets of experiments were designed to test the plans
sensitivity to individual operators. We consider mutation a very im-
portant operator for this task since it is the only operator which pro-
vides subroutines not already existent in the current population. The
experiments in Table 4.3.2 demonstrate that a 20% mutation rate is suffi-
cient to enable the plan to operate as efficiently as the plans in ex-
periments 2-4. Lower mutation rates were very detrimental even with
intermediate probability settings for the other operators. Many of the
runs in these experiments failed to reach the desired utility level in

the allowable number of generations.

OPERATOR PROBABILITIES

EX  SEL 9

NO SCM MUT D.I. REV INV CRS MAX MEAN S.D. SIGN
6 1 .10 .99 .99 .99 .99 40 115.1 -

7 1 .20 .50 .50 .50 .50 53.4 17.7 *

8 1 .10 .50 .50 .50 .50 20  109.1 -

9 1 .00 .50 .50 .50 .50 100 150.0 - *

Table 4.3.2 Mutation Levels
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EX  SEL OPERATOR PROBABILITIES %
NO SCM MUT D.I. REV INV CRS MAX MEAN S.D. SIGN

10 1 .50 .00 .00 .00 .50 90 148.5 - *
11 1 .50 .10 .10 .10 .50 10 76.5 -
12 1 .50 .00 .00 .50 .50 20 105.4 -
13 1 .99 .00 .00 .99 .99 71.3  20.0 *

Table 4.3.3 Order-Shifting Mechanisms

Mutation is important in obtaining the necessary subroutines to
complete all the macro operations. Deletion-insertion, reversal, and
inversion are capable of moving these subroutines around to minimize
processing time, the other factor used to determine the payoff. Table
4.3.3 shows the effects of these operators. When all of these order-
shifting operator probabilities were set to zero, performance was very
poor (EX.NO. 10). A slight increase in these probabilities produced
a significant improvement (EX.NO. 11). Inversion without reversal and
deletion-insertion was also helpful. However, inversion provides for
grosser position shifts than the other two operators. This is not de-
sirable in the later stages of adaptation.

One aspect of these experiments became very obvious upon closer
examination of the runs. Those runs with high mutation rates did very
well initially. However, after all necessary subroutines had been ob-
tained, a high mutation rate could be detrimental by eliminating some
of the necessary subroutines. At this point in adaptation a low mutation
rate and high rates for order-shifting operators would be advantageous.
Experiments whose probability settings satisfied this latter condition
(e.g., EX.NO. 7) performed well once all necessary detectors had been

discovered.
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Other experiments were run with an assortment of probability settings.
None of these performed significantly different from experiments 2, 3, 4
and 7. We may therefore draw the following conclusions:

1) There is a general insensitivity to operator probability settings,
except in the extreme cases. As long as mutation and some posi-
tion shifting operator were relatively active, performance due
to different probability settings did not vary significantly.

2) There seemed to be a need to have operator probabilities vary
during adaptation.

Figure 4.3.1 shows the performance of some of the experiments from
Table 4.3.1. The average performance of all runs at each generation is
plotted. Figure 4.3.2 shows some sample runs for experiment 4. This
indicates the variance involved between runs. The highest payoff ob-
served after each generation is plotted.

The next set of experiments tested the effect of the selection
scheme used. Two probability settings which were '"good" using Selection
Scheme 1 and one ''bad" setting were rerun using Selection Scheme 2. Table
4.3.4 shows that the ''good'" settings turned in significantly poorer per-
formance (EX.NO. 14 vs. EX.NO. 3, NO. 15 vs NO. 7) using scheme 2. Therefore,
we may conclude that the weighted selection scheme results in a superior
plan.

A few more experiments were run to test the effect of varying other
parameters of the plan such as population size, percent of the population
retained after each generation, and the size of the chromosome. Of most
importance was chromosome size. When the number of permissable subroutines
on the chromosome were reduced to 20 and then to 15, performance decreased

markedly. This may be directly attributable to the lack of redundancy
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OPERATOR
PROBABILITIES
EX  SEL 9
NO SCM MUT D.I. REV INV CRS. MAX MEAN S.D. SIGN
14 2 .50 .50 .50 .50 .50 65.3 3.76 *
15 2 .20 .50 .50 .50 .50 100.5  26.9 *
16 2 .50 .50 .50 .50 100 150.0 -

Table 4.3.4 Selection Scheme 2

and processing room. Redundancy (i.e., multiple copies of a subroutine)
is important since it guards against loss by mutation. Extra room on
the chromosome can serve as a valuable mechanism for accumulating new
subroutines. Important subroutines will eventually appear on the left-
most region of the chromosome since this results in higher payoff.

Thus mutations and crossovers in the right-most region will seldom be
harmful. However, if the chromosome is too short, every position would
have to contain a crucial subroutine.

At this point we decided to end investigations on this initial

task since it did not provide the proper demand characteristics to dis-
tinguish between a range of different adaptive plans. However, we have
established the following conclusions about reproductive plans:

1) Different selection schemes do effect the efficiency of the
plans.

2) Operator probabilities are important in extreme cases. It is
necessary to have operators which play different roles and allow
the plan to take steps of different sizes in the search space.

3) There seems to be a definite need to have operator probabilities
vary during adaptation.

4) Redundancy within the chromosome plays an important role.
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These conclusions will be very valuable in future investigations.

The next step in our investigation is to find a task whose optimal
performance is very difficult to obtain. Character pattern recognition
was chosen for the following reasons:

1) The difficulty of the task could be easily but nontrivially

varied by using carefully or badly drawn patterns.

2) The field is of interest to artificial intelligence apart
from its applicability to adaptive systems.

3) It is a prime candidate for extension by an adaptive system.
Despite much research done in the field, many of the problems
still remain unsolved.

4) A paradigm already exists which seems applicable with some
modifications to the reproductive plans.

Let us now turn to the basic pattern recognition paradigm.

4.4 The Pattern Recognition Task

The pattern recognition task we will use is based on a paper by
W. W. Bledsoe and I. Browning [1959]. Patterns are represented on a
25 x 25 grid where each square of the grid contains a 1 if the pattern,
when drawn on the grid, intersects that square and a 0 otherwise (see
Figure 4.4.1). The information available to the program, however, de-
pends on a specified set of detectors or n-tuples. An n-tuple or de-
tector is a set of n points or squares on the grid. An n-tuple serves
as a primitive detector by returning information which completely spe-
cifies the 0-1 configuration of the squares that it investigates. Each
different configuration will be called a state.

A chromosome for the reproductive plan will consist of a string of



81

* %%

*kkk*%

*kxkkkkk
*kkkkk
kkkkkk
LEEEE L & £
*khkkkkk *k%k
*k kX * k%

* k% * %%
* k% * k%
*kk%k * %
kkkkkk % *%

kkkkkkkkkk
khkkkkkkk
*kkkkk
khkkkhhk
kkkkkx
*%

XRERERFREY
REXERRERFRPRRR

FERREREERERERRRN
FEXPERRRERRRRRRN

FRRRFRE XXF

XRFX PR
¥ ¥ ¥ X ¥ ¥
RRRF *¥ ¥
X XK XXX
XX FN XXX
KXERRKRN * ¥ X
FEXEFRRRERR

P

FERRERRRRERRRRRFR
FRERERFRFRFRERY

RERFRFRERERRY

* %
*kkkk*k
kkkkkkkkkk
*kk *kkkk
* k% *kkk*k
* %% * k%
* % * %
*% * %%
* k% * %
* k% * %
* %%k * %k k%
* %% kkhkkhkkhkkhkhhhk

khkkhkkhkhhkhhhkdkhhhx
dkhkhkkkhkhkrhkkhhkkkxdk

*kkokk * k%
* % * k%
* * k%

* %
¥ XXEXR
FXERRPERRFXY
FERPERRERRFRY
FERXFRRERRRFRRR
XEER X PR
XXX P
* ¥ * ¥

X ¥ *¥
* % * ¥
* ¥ * ¥
* ¥ * ¥

XX X XK

XXX FRERFRRE

XEXRERRE RREXRXRFXEY
XEFRFRRRRERERFXY
XREXEFRERRRN

XXXX X

khkkkkkkx *
kkkkhhkhhkkhikkhdkx
khkhkhkkhkhkdhkrhkhhkkkid
* %%k
* k%

k% *
kkkkk*k
*kkkk
* %k Kk
*kkk
* %k %%k
*k%
kkkk *kkkk
khkhkkkhkkhkdkkkdkhd
kkhkkkkkikkkhkkkkkk
* %

XX FRRRR
FET T T E L E Y

KEEFERPERFRFERERRRR
REXXEXRERRERRPRRERY
REXFRRER XEXFRRERER

XERFRREX
XERRERXRY
XRRRXRF

FXERRER
RXFRFKR
XXEERXR
XERPERRRX

XERRERRF

RERERRER

XEXFXEX
XEXRERXEFERRRERRR
XAEFRRERERFERERRRRP RN

FEXFXRFRERERRRRERY
XEXRFRXRXFPREY
FRFR

CLASS 11

CLASS I

Sample pattern instances from two different pattern

Figure 4.4.1

Class distinctions are explained in chapter 5.

classes.



82

detectors. The rest of the pattern recognition scheme will be the same
for all devices. As long as the n-tuples are fairly randomly distributed
around the grid, the performance of different devices will not vary grea-
ly, due to the redundancies present in most visual patterns. However,
this variability is the crucial factor that allows the performance to
improve through adaptation.

In order to facilitate discussion we will introduce the following

n.,

notation. Let all possible n-tuples be ordered and let Ny Moyeee, My

designate their names. Each n. can be regarded as a function which
maps an input matrix into an integer designating a state. Let ﬁi be the
number of points making up the n-tuple n, and let ng be the jth state
observed by n. . There are 2 ﬁi states for each n. .

The pattern recognition program or device proceeds in the following
manner. In its learning phase, the program is presented with a grid-

pattern along with a name. The program reserves a chunk of memory for

this name, and then further divides this chunk into slots, one slot for

J
i

each n.. In each slot the program records the n: observed for that pat-
tern. If, during this learning phase, another pattern with the same name
is input to the program, it is possible that another state n?, k # 3, will
also be stored in the n, slot due to variability within pattern groups.
Therefore, it is possible to have more than one state stored in a parti-
cular slot under one pattern name.

During the recognition phase an unknown pattern is input and a state
is observed by each of the n-tuples. Then a comparison is made with each
memory chunk for each pattern name. This is done by comparing states re-

corded in the respective n, slots of the unknown pattern with those of

each known pattern, and totaling all matches. Let Mj be the number of
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state matches between the unknown pattern and the known pattern j. Mj
can equal at most the number of detectors. The maximum Mj determines
which name is chosen for the unknown pattern. This procedure is demon-
strated in Figure 4.4.2. Actually, first and second choices are made

for each unknown pattern and the number of matches (expressed as a per-
cent) is recorded for each choice. This data will be used later to de-
termine the payoff.

The above scheme was chosen for a variety of reasons. The most
important, of course, is the fact that a particular program can be easily
changed (by changing some of its n-tuples) without vastly altering its
overall performance. Another merit is the program's generality. It is
not designed to identify a particular type of pattern but should perform
well on a variety of patterns due to the nonspecificity of its detectors.
Other reasons for using this scheme include its relative simplicity, speed,
and success when compared to other pattern recognition programs reported
in the literature. For all the n-tuples used in the tests, ﬁi was re-
stricted to the range 255{56, due to the fact that larger ﬁi's should
result in prohibitively large memory storage.

A device's payoff is determined by how well it recognizes all un-
known patterns. For each unknown pattern, a score from O to 100 is re-
corded according to the following procedure. If the correct pattern name
is not one of the first two choices, the score is 0. Otherwise discrim-
ination is defined to be the difference between the percent of matches
(with the unknown pattern) of the first two choices. If the first choice
is correct, discrimination is positive; if the second choice is correct,
discrimination is negative. The score on each unknown pattern is then a

linear function of discrimination, with zero discrimination having a payoff
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UNKNOWN PATTERN

KNOWN PATTERNS

PATTERN ? J] PATTERN 1 PATTERN 2
N-TUPLE | STATE || STATES | MATCH? || STATES | MATCH?
N| 3 1,3 YES 1,4 NO
N2 6 | 5 NO |l 357 | NO
N3 13 || 10,13 | YES 13,16 | YES
Ng [ 1,2 YES 1,3 YES
Ns 4 3 NO 5,2 NO
TOTAL | M;=3 || TOTAL | My=2
%MATCH| 60% [%MATCH| 40%

Figure 4.4.2 Sample state matching procedure

A hypothetical case using two known patterns and five n-tuples.
In this case the unknown pattern would be taken to be an instance

Note that at least two instances of pattern 1, and
at least three instances of pattern 2 have been learned.

of pattern 1.
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of 50 (see Figure 4.4.3). The slope of the score function determines

how great a discrimination is required before a perfect score of 100 is
obtained. This slope, therefore, constitutes part of the environment.

The utility p is equal to the average score over all unknown input patterns.

It should be noted that the above payoff scheme gives a much more
accurate representation of a device's performance than would be the case
if one just used the percent correct. For example, a score of about 50
would result from the case in which first and second choices had about
the same percent of matches regardless of which choice was correct.

This method effectively compensates for many chance indentifications.

The chromosome or adaptable portion is represented in the follow-
in manner:

+5 +372 +9 -518 -213 -35 -76 +44 +348....

Sequential numbers of the same sign indicate one n-tuple while the
actual numbers specify the squares in the input grid which the n-tuple
observes (input patterns are stored in one dimensional, not two dimen-
sional arrays). A gene is considered to be a whole n-tuple. Therefore,
crossover and inversion breakage will occur at n-tuple boundaries where
there is a sign change. However, certain types of mutation will make
changes within n-tuples. It is not necessary to distinguish between
genes and alleles in this task since all genes have the same function.

All chromosomes in the current population will contain the same
number of mesh points but not necessarily the same number of genes.

The function which translates the chromosome into a working pattern re-
cognition device operates as follows. The chromosome is scanned left
to right. After extracting n-tuple n., the function sets aside 2 ﬁi

memory locations. Each location contains 16 slots, one for each pattern
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Number
Known of % of
Patterns Matches Matches
PAT 2 28 56 %
2 100t

PAT 3 | 36 | 72%
PAT 4 | 21 | 42%
PATS [ 31 | 62%
PAT 6 | 34 | 68% ST —

DISCRIMINATION %

-
-

The programs first choice would be PAT 3 with 72% and second choice
would be PAT 6 with 68%. The performance score will depend upon
what the unknown pattern actually is. Cases are given below:

CASE 1 CASE 11 CASE III

Unknown pattern is PAT 3 Unknown is PAT 6 Unknown is PAT 5
Discrimination is +4% Discrimination is -4% Score is 0

Score is 70 Score is 30

Note: If the slope of the discrimination function is changed, the
scores in cases I and II will change.. In particular if the
slope is 2 5/4, case I will score 100 and case II will score O.

Figure 4.4.3 Sample payoff determination
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name. If available memory (set at 1400 location) is exceeded in the pro-
cess, then some of the n-tuples on the right-most portion of the chromosome
are not used. Chromosomes with an excess of large n-tuples will typically
exceed available memory.

The above pattern recognition paradigm is well suited for a first-
order plan like a reproductive plan. This stems from the difficulty of
arriving at a good measure fof ranking individual n-tuples independently
of others.

Let us examine a situation which should point out this difficulty.
We define an n-tuple to be completely saturated with respect to some
pattern X if all the possible states of the n-tuple are recorded in its
memory slot under the pattern name X. Complete saturation is obviously
undesirable since in that case the particular n-tuple does not help at
all in distinguishing X from any other pattern. We can make some ob-
servations with respect to the saturation phenomenon:

1) The smaller ﬁi, the more likely that the n-tuple will become

completely saturated since smaller n-tuples have fewer states.

2) The more pattern instances of the same name that are learned,

the more likely any n-tuple will become completely saturated.
Obviously an n-tuple must go through various degrees of saturation before
it becomes completely saturated.

A critical question is, 'What degree of saturation will produce op-
timal performance?" There does not seem to be an easy answer to this
question. Large n-tuples will not become saturated as quickly as smaller
ones, but then there is a good chance that the larger n-tuples will not
properly match the correct pattern since there are a larger number of

possible states. We also might have the case of an n-tuple which in-
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vestigates the border regions of the mesh. Such an n-tuple would con-
sistently observe the same state (corresponding to zero or blank mesh
entries) for all pattern instances. As such it is the least saturated
but probably the most useless detector.

In general, an n-tuple's performance depends greatly on what other
n-tuples are present, how many patterns of the same name are learned,
and how similar different pattérns are. Therefore, it is extremely
difficult to evaluate an n-tuple independent of these circumstances.
However, in the next chapter we will operate a control experiment which
will attempt to extract measures of an n-tuple's goodness. As we have
indicated in the previous chapter, the use of such measures involves
assumptions and resultant restrictions on a plan's searching ability.
In the next few chapters we will show that these assumptions prove to

be detrimental for adaptation with our pattern recognition task.



Chapter 5 Nonreproductive Plans

5.1 The Random Selection Plan

This section will serve two purposes. First,we will examine the
behavior of the random selection plan on the pattern recognition task
and thereby obtain a 0-level performance to which other plans' performance
can be compared. At the same time we will test the performance of random
plans biased by some unchanging but nonuniform distribution over the set
of devices. Secondly,we use the random plan in a number of environments
in order to establish what we will call easy and difficult tasks.

The first step is to establish appropriate testing alphabets which
will constitute part of the environment. An alphabet is a set of pattern
instances of the block letters A through P. Two classes of alphabets
were created. Class I contains two alphabets of 16 block letters each,
hand printed on graph paper and then coded onto cards. Class II contains
four alphabets printed on a scope using a light pen routine. In general
the two classes differ in the style of the letters, the width of the
lines and neatness (Class I patterns were smoother and more carefully
drawn). Figure 4.4.1 contains some Class I patterns in one column and
Class II patterns in the other. The pattern recognition paradigm contains
no preprocessing to adjust for differences in pattern size, thickness,
translation or rotation.

A particular environment Ee & consists of a set of alphabets which
the device will learn, a different set which it will try to classify,
and a mapping between these sets to indicate which pattern instances
have the same name. The pattern recognition devices will be tested
in various environments.

The random plans will differ with respect to the sampling distri-

89
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bution over the devices. These distributions will be generated by
probabilistically restricting the number of n-tuples of certain sizes.
This is done for a number of reasons. The most important reason is
storage limitations. Large detectors (5 or 6 points) consume an enormous
amount of memory due to the exponential growth with n-tuple size.
Therefore, we usually desire fewer of these detectors. Secondly, we
know from previous work with this pattern recognition paradigm that
smaller n-tuples are typically more economical [Bledsoe]. However,
when many patterns have been learned, larger n-tuples also become
necessary due to the saturation phenomenon discussed above. Finally,
we are interested in seeing what effect varying the distribution will
have on the performance of the random plan. One usually considers
the random plan to sample from a uniform distribution over all devices.
However, the critical feature of random plans is that they sample randomly
from some constant underlying distribution and do not use any feedback
to change their sampling behavior or to modify the underlying distribution.
Table 5.1.1 lists the results of some important experiments which
differ in the sampling distribution used. The column labeled PN stands
for the probability of an n-tuple with N points. The particular alphabets
used for the learning and recognizing phases of the pattern recognition
device are designated under the columns 'LEARN" and "TEST'". The Roman
numeral indicates the alphabet class while the Arabic numeral indicates
the alphabet within that class.
The first set of experiments (1-7) tested the effect of different
sampling distributions. The environment consisted of one learning
alphabet and one testing alphabet, both taken from Class I. Mean

performance was quite stable over the various distributions. Only
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between the extreme cases (Ex 3 and 5) was there a significant difference.

This lack of variation in performance is rather surprising
considering the different amounts of memory and different number of
detectors generated by the various distributions. Experiments 1 through
4 used about all the detectors on the chromosome, but experiments 2
and 3 used only 45% and 57% of available memory respectively. Exper-
iments 5 through 7 used all of available memory but less than all
available detectors. Experiment 5 used only 68% of the chromosome.

We can suggest many reasons why these experiments were insensitive
to the different sampling distributions. Many of the n-tuples might
be redundant so that their elimination does not adversely effect perfor-
mance. Although only about half of available memory is used by devices
with smaller n-tuples, there are in this case more n-tuples being used.
Since only one instance of each pattern was learned in these experiments,
the saturation effect is minimal. Therefore small n-tuples are more
efficient. Although more memory was set up using large n-tuples,
much of this memory was not used.

Different environments, however, produced different results.
Experiments 8 through 14 demonstrate performance when three alphabets
were learned. In this environment most of the experiments were
significantly different from some others. The extreme cases are desig-
nated with a double asterisk. The worst performance (Ex 9) is in the
case where only 2-tuples are used. It is very likely that saturation
played an important role in this case since each n-tuple has only four
states and three instances of each pattern are learned. The rest of
the experiments suggest that 4-tuples are best suited for this environment.

The next set of experiments (Table 5.1.2) was designed to test the
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EX Alphabets

NO LEARN TEST MEAN S.D. SIGN
15 I-2 II-1 17.5 4.91 *

16 I1-1 II-2 43.0 5.28 *

17 I1-2 II-3 55.5 5.80 *

18 I11-3 I1-4 47.5 4.75 *

Table 5.1.2 The Difficulty of Various Environments

difficulty of different environments, given a fixed amount of learning.
The n-tuple distribution for all these experiments was identical to

that used in experiment 1. All experiments used the same number of
learning and testing alphabets, but the particular alphabets used

were varied. Every one of these experiments produced significantly
different results. The worst performance came in the case where the
learning and testing alphabets came from different classes, indicating
that the class differences cited qualitatively above, are significant.
The performance levels in these experiments could be taken as similarity
measures between each alphabet pair used.

The purpose of these experiments was to arrive at appropriate
environments for testing reproductive plans and to find a suitable
n-tuple probability distribution. The n-tuple distribution is important
to the reproductive plan since it determines the initial population
and affects the behavior of certain genetic operators, such as random
mutation.

We decided to use environments involving only one learning alphabet
and one testing alphabet for the following reasons:

1) These environments required the least amount of time to
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obtain a payoff. Doubling the number of alphabets used doubled
the time needed to obtain payoff.

2) The performance levels of the random plan in these environ-
ments were significantly lower than the levels in other
environments which allowed more learning alphabets. Low
performance levels imply a harder task and, therefore, more
room for improvement.

3) Performance in this type of environment seemed least sensitive
to changes in the n-tuple distributions as evidenced by
experiments 1 through 7. This is desirable since the n-tuple
distribution will remain fixed when testing reproductive
plans. If performance were closely related to this distri-
bution, we would have to run a number of additional experiments
to control for this factor. Such experiments would be
prohibitively costly.

Having decided on the one-learning-alphabet, one-testing-alphabet
type of environment, the choice of an n-tuple probability distribution
became less important. One important property was that the distribution
provide for some nonzero probability of all size n-tuples. In this
case selection can effectively’alter the n-tuple size frequency in
the population, given that certain size n-tuples consistently result
in higher than average payoff. The distribution used in experiment 1
will be used from now on. The environments used in experiments 1 and
15 will be used in most of the remaining experiments. In our discus-
sions the environment in experiment 1 will be called the easy task
while that in experiment 15 will be called the difficult task.

Before ending this section we should say a few words about the



95

random plans. The larger the variance of the payoff distribution, the
longer the random plan will continue to discover significantly higher
peaks with successive samples. However, we generally can estimate

the true variance with a minimal amount of sampling and thereby estimate
the expected number of samples needed to discover an individual within

a specified payoff interval.

Figure 5.1 contains a bar graph representation of some distributions
generated by the random plan. The two distributions represent the
highest and lowest variance produced by different random plans.

Most distributions resemble the normal distribution. Therefore,
we can estimate that about only one individual out of 1000 will exceed
three standard deviations above the mean. For our easy task this

performance level is 63.0; for the difficult task, it is 32.2,

Summary

We have now narrowed the range of possible task environments
and plans we will consider. 1In addition we have estimated the
performance of the random search plan.

The process of selecting an appropriate task was directed by
two criteria. The first was concerned with minimizing real computer
running time. This was a practical criterion dictated by experimental
or research needs not necessarily related to adaptive systems studies.
The second criterion demanded that the task be difficult enough so
that significant performance differences between various plans might

become evident. By manipulating the number and type of alphabets
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FREQUENCY

PERFORMANCE
MEAN=35.4 STANDARD DEVIATION=2.87

FREQUENCY

Tigure 5.1

20 30 40 S0 60
PERFORMANCE

MEAN=46.0 STANDARD DEVIATION=7.28

Sample payoff distributions for the random plan
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used for the pattern recognition task both of these criteria were
adequately satisfied.

The possible range of adaptive plans was narrowed by settling
on a fixed n-tuple distribution for generating new detectors. This
distribution could have varied over different plans; however, initial
results indicated that this would not be a worthwhile aspect of plans
to study.

Since we obtained the above results by obtaining payoff for a
number of randomly generated devices, we have, as a by-product, an
estimation of the performance of a random search plan. Nearly all
of the performance distributions resembled the normal distribution.
The parameters of these distributions enabled us to estimate the
probability that random search might select an individual with utility
greater than any given level.

The next section will examine very briefly the performance of
an adaptive strategy very similar to that used by Klopf. This study
will not be exhaustive but is only intended to provide a feeling for
what might be accomplished with a nonreproductive plan more sophis-

ticated than the random plan.



98

5.2 A Detector Evaluation Plan

Before investigating the behavior of reproductive plans we shall
look at a nonreproductive plan in order to obtain an estimate of the
difficulty of the search space. The only plans available are those
which use feedback other than an overall utility in the search process.
Unfortunately this choice biases any comparison with reproductive
plans, which by their nature are first-order plans. However, we still
can obtain some information about the nature of the search space
and gain a feeling for the operation of a nonreproductive plan.

The general plar we have chosen is similar to that of Klopf
discussed in Chapter 2. Such a plan entails identifying certain
inferior detectors in the current device and replacing these with
randomly generated detectors. Two methods for generating a random
detector were adopted. A partial random mutation, called Mutation I,
generates a new detector from a previous one by replacing one randomly
chosen point in the n-tuple with a randomly generated mesh point.
A complete random mutation, Mutation II, randomly generates a totally
new n-tuple by generating n new points. Mutation II is analogous
to Klopf's mutation. Mutation I was designed to allow the plan to
take smaller steps in the search space. Adaptive plans which modify
weights or amplifiers can easily adjust the search step size by varying
real valued increments. The problem at hand (i.e., generating new
detectors) is more difficult and has been presented less often in
the literature.

The problem of deciding which detectors should be replaced or

equivalently what characterizes bad detectors is more difficult.
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Klopf's criteria involve weights associated with his detector functions
or employ a correlation technique. These evaluation methods are not
applicable to our pattern recognition paradigm. Our paradigm uses

no weights nor do the detectors output numerical values to be used

by a correlation plan.

The process of identifying bad detectors for our task relies
strongly on intuition. One indication of an inferior n-tuple is the
saturation effect discussed in Section 4.4. Having observed many
instances of each pattern, a detector becomes saturated and ends up
matching all patterns. However, the environments we shall work with
involve learning only one instance of each pattern, thereby reducing
the saturation effect.

An evaluation procedure often mentioned in the literature is to
rate a detector as if it alone were performing the identification
task; this obviously entails an independence assumption. In our task
a detector records either a match or no match for each pattern. Since
only 16 patterns are recognized, scores would be quantized to 16
levels with the majority near the lower end of the scale. With over
100 detectors this would result in many ties for the worst detector.
In addition, this method would be displeasing since discrimination,

a function of all detectors, and not percent correct is the ultimate
indicator of payoff.

Although the above procedure is not particularly satisfying, no
real alternative seemed available. Therefore, the above technique
was modified a bit to eliminate the difficulty of having only 16 levels

in the n-tuple ranking. For each n-tuple the following information
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was recorded:

1. The number of times the n-tuple correctly matched the state
of the unknown pattern with the stored state for that pattern
name in memory. This is the percent correct measure mentioned
above.

2. The number of alternate names that were not matched, whether

or not the correct pattern was matched.

Obviously, a n-tuple which has a low score on both of these counts

is very bad since it matches many of the wrong patterns and few of
the correct ones. High scores on both these counts identifies a

very good detector. However, most evaluations fall between these two
extremes and it is not obvious how the above two measures should

be combined. The number of correct matches is important only when the
n-tuple does not match for incorrect pattern names. In other words,
matching all patterns is just as bad as (maybe worse than) matching
no patterns. Also, certain nonmatches are more crucial than others
due to similarity between patterns. Yet this information is not
available until all detectors have been used.

Two evaluation criteria were used in the experiments. Criterion I
ranked n-tuples according to the number of correct matches. In case
of a tie the second measure, the number of nonmatches, was used to
further refine the ranking. Criterion II identified bad detectors
using only the number of nonmatches on alternative names. Ties in

this case were improbable.
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We wanted to come up with a criterion which combines number of
matches and nonmatches in a meaningful way. However, no such
combination seemed capable of consistently identifying the worst
detectors. For example, a weighted sum of matches and nonmatches
was a possibility but this criterion would fail to throw out detectors
which always matched everything. Such detectors would appear some-
where in the middle of the ranking since they scored high on correct
matches. On the other hand, Criterion II would place these detectors
at the bottom of the ranking. These worthless detectors were common
when n-tuples contained points around the perimeter of the mesh.

In this case the n-tuples recorded blanks (zeros) for all patterns
and therefore matched all patterns.

The flow chart in Figure 5.2.1 demonstrates the operation of
these plans. Initially two randomly generated strings are tested
and receive payoff. At this time information is also recorded on the
individual detectors. Depending upon which mode the plan is using,
either the best or the newest string is saved as the current string.
Then a specified number of the worst detectors (ranked by a specified
criterion) are modified using a specified mutation operator. This
process is then iterated. The type and number of mutations and the
evaluation criterion remain fixed over an entire experiment. All
experiments operated on the difficult task.

Table 5.2.1 presents results using Criterion I. The column
headings are as follows:

EX NO ----- Experiment identification number

RN NO ----- Run identification number

MUT  ----- Mutation type and number of detectors mutated
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RANDOMLY GENERATE
TWO STRINGS

CHECK
STOPPING
RULE

DETERMINE PAYOFF

—2
OF NEW STRING
MODE Bl &MODE A
SAVE SAVE
NEWEST STRING

BEST STRING

A

RANK DETECTORS
USING CRITERION

TRANSFORM CURRENT STRING
BY MUTATING A FIXED

NUMBER OF DETECTORS

Figure 5.2.1 Sumnmary of the detecter evaluatiocn plan
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PAYOFF AT CERTAIN TIMES

EX RN
NO NO MUT MOD 100 200 400 600
1 1 I1I-1 A 26.4 27.8 37.5 35.5
2 25.5 30.4 28.4 30.7
2 1 I11-1 B 26.7 27.5 37.7 52.4
2 37.2 40.2 45.6 45.6
3 1 I-1 B 22.2 22.2 22.2 22.2
2 23.8 23.8 23.8 23.8
4 1 I1I1-3 B " 40.8 40.8 40.8 43.1
2 38.6 43.4 43.4 43.4
5 1 II-5 B 36.4 37.2 37.2 45.1
2 50.4 51.3 51.3 51.3
6 1 I-3 B 31.1 37.1 45.4 52.4
2 24.9 25.2 49.9 50.6
3 22.7 23.8 24.7 28.0
4 21.6 21.6 21.6 21.6
Average 30.6 32.3 36.3 39.0

Table 5.2.1 Results: Detector Evaluation Criterion I

MOD ---- Mode of operation. A, save newest string.
B, save best string.

Since the object of these experiments was to get a feel for the detector
evaluation plans rather than to converge on the best detector evaluation
plan, most experiments were run only two times.

Only the first experiment operated in mode A (saving each new
string). This mode eliminates the problem of false peaks and is
similar to that used by Klopf, and Uhr and Vossler. However, the
results with this scheme were not favorable. Maxima discovered at
one time were lost and not attained again later. The average maximum

of each run was 38.9 while the average payoff of the current string
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after 600 samples was only 33.1. This type of performance might
indicate that Criterion I was not correctly designating the worst
detector with respect to the payoff. Yet even if it did designate
the worst detector in the string, it is still possible that mutation
could generate an even worse detector especially when performance
was fairly high. Figure 5.2.2 shows a plot of comparable runs using
mode A and mode B.

The remaining experiments with Criterion I operated in mode B
since mode A was obviously inferior. The experiments tested the
effect of the type of mutation (I or II) and the number of mutations
per string (1, 3 or 5). The main characteristic of all the experiments
was the tendency of the plan to land on a false peak which it
subsequently could not get off of. Many of the runs reach these
peaks in less than 100 samples. This behavior effectively wasted
most of the samples. No experiment was superior to any other based
on the few runs which we made. Experiment 6 appeared to be consistently
producing superior performance, but additional runs demonstrated that
it was just as susceptible to false peaks as other experiments.

It was hoped that many of the failings of the first set of
experiments would be corrected by using Criterion II to evaluate the
detectors. However, the results, displayed in Table 5.2.2, were no
better. The average performance of all runs using Criterion I was
not significantly different from the average performance using
Criterion II.

The best performance observed so far has been 52.4. This is about

seven standard deviations above the random sampling mean of 17.5 on
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PAYOFF AT CERTAIN TIMES

Sé MUT MOD 100 200 400 600

7 II-1 A 18.7 18.7 27.0 21.9
8 I1I-1 B 34.5 38.5 43.5 46.3
9 I-1 B 29.2 37.9 45.3 49.7
10 II-3 B 30.1 35.4 35.9 35.9
11 I1I-5 B 18.7 18.7 18.7 18.7
12 I-3 B 21.0 23.0 29.7 29.7

Average 33.7

Table 5.2.2 Results: Detector Evaluation
Criterion II

the difficult task. Considering that the plan used only 600 samples,
it is far superior to the random plan. However, some runs ended up
with performance levels in the low 20's after 600 samples. This
performance is inferior to that of the random plan. One would expect
a good adaptive plan to consistently operate better than the random
plan.

We now have a better indication of the difficulty of the search
space. Most runs reached a performance level of about 35.0. We also
have an indication that some detectors play a major role in the operation
of a device. Often a device would realize an immediate increase in
performance due to the mutation of a single n-tuple out of a total

of 110.



107

Summarz

The purpose of this section has been to test the performance of
nonreproductive plans which commonly appear in the literature. We
have not attempted a complete evaluation of these plans but have
restricted ourselves to some obvious implementations.

These plans proceeded in a serial manner; sampling was dictated
by the evaluation criterion. Therefore, most of the new samples were
concentrated in a particular region of the space and adaptation pro-
ceeded in a fairly rigid manner. Were the detector evaluation criterion
very good, this search method could have proven very efficient provided
that there were no strong interactions between detectors. However,
it was difficult to come up with a good detector evaluation criterion.
As a result, some of the runs were inferior to the random plan and
most spend substantial amounts of time on false peaks.

One might argue that a much more sophisticated detector evaluation
technique would have resulted in a marked improvement in the plan's
operation. Such techniques might involve checking a detector's
performance with respect to certain crucial patterns or checking for
redundant actions by detectors. However, the plan still could prove
inferior to other plans. As mentioned above, strong nonlinear depen-
dencies between detectors could complicate the action of any scheme
which evaluates and modifies single components. But the cost factor
may be even more important. By extracting the extra feedback information
required by Criterion I or II, the plan consumed twice the amount
of time to run the pattern recognition program. Since this process

constitutes most of the adaptive plan's operation time, we must be
p P P
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willing to allow a first-order plan twice as many samples in order
to approach a fair comparison. A more sophisticated evaluation
technique would require even more time, not including the fact that
a whole series of experiments would have to be run for each new task
before a good evaluation criterion were discovered. Therefore, we
can strongly support putting more work into the adaptive plan rather
than trying to extract detailed information on each new device about
which we often know very little.

Reproductive plans proceed in a parallel manner; sampling is
directed in a general way by specifying selection schemes,
recombination operators, and operator probabilities. 1In the rest
of our work we will demonstrate that reproductive plans can operate
efficiently in addition to discovering substantial peaks in the

search space.



Chapter 6 Reproductive Plans: Preliminary Investigations

6.1 Investigation Techniques

In this chapter we shall begin our search for a good reproductive
plan. An adaptive plan is responsible for conducting a search in the
set of devices bﬁ{; the process of finding a good plan reduces to a
search in the set of plans . ‘However, the set  differs from e
in thatéypis usually not completely available beforehand as a set
of well-defined objects. Ratheregrris generated as the search takes
place and as needs dictate. Certainly small subsets of & are identi-
fiable beforehand as might be the case if part of a plan were determined
by a certain parameter setting. However, most interesting new plans
are created through the use of new techniques rather than discovered
by converging on an optimal set of parameter values. This is one reason
why we might not be able to use another adaptive plan to search the
space é?y, although this certainly is a possibility in many cases. In
fact, this type of a procedure was suggested by Newell et gl. in their
work with GPS.

In our case as in most others, new adaptive plans will evolve through
intuitive and heuristic means. In investigating the behavior of certain
plans, we will try to pinpoint failings and inflexibilities. New plans
will hopefully correct these observed deficiencies and eventually perform
better as measured by our quantitative criterion .

There is one difficulty with our search technique which we will
have to live with. This involves the recurring problem of interdependencies.
The plans we shall be working with have well-defined components such as
the population size, the selection scheme, and the genetic operator

probabilities. The substitution instances of these components generate
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a subset of é?rwhich although small when compared to typical search

spaces, cannot be searched in any great detail due to the tremendous

cost involved. It typically takes hours of computer time just to evaluate
one reproductive plan operating on our task. Therefore, we will usually
resort to the practice -of using intuition whenever possible to reduce

this subset of é?'even further. At this point we will try to choose

a region where we feel there is a minimum of interaction between components
and then proceed to modify components independently. When in doubt

we shall repeat the tests in other regions of g

One certainly might criticize this procedure in light of what we
have said previously about independence and linearity assumptions.
However, when costs are very high as is the case in our search of the
space éyp, there is really no alternative unless we restrict ourselves
to a very small subset of plans. We feel that our method will be more
fruitful. We might mention that there is very little empirical work
in the literature which addresses itself to this problem of searching
a space of adaptive plans.

There are other difficulties which we must consider in our first
attempts at searching & . One of these involves the use of a stopping
rule for the maximum utility criterion. Letting plans run for a fixed
number of generations has the virtue that all comparisons are based
on an equal number of samples. However, this procedure has its faults
in a high cost situation. Primarily we are reluctant to continue sampling
when little or no gains are being made. This situation may arise after
a plan has become stuck on a false peak or perhaps when a very good plan

has found a significant peak very quickly. Also a fixed generation
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stopping rule often fails to distinguish superior plans. Plans are
usually good due to their ability to maintain a steady performance
increase over many generations. If all plans are stopped too early
they may all appear to have maintained good performance and may have
obtained similar performance levels. On the other hand, if all plans
are allowed to run for an extremely long time, the inefficient plans may
eventually manage to reach a significant peak while the efficient plan
has been on that peak for many generations.

The marginal utility (slope) stopping rule would alleviate a few
of these difficulties. In this case all runs would proceed until the
marginal gain in performance over the last few generations falls below
a certain minimal level. However, this rule is not without faults
either. First of all comparisons between plans would be made using an
unequal number of samples. Secondly, one still must decide on an accept-
able marginal utility level. Finally, this rule may terminate a run
which is only temporarily stuck on a false peak but which still has the
potential for further performance increases.

A third stopping rule is also possible. The payoff stopping rule
would require all runs to proceed until a specified payoff level had
been reached. Comparisons are then made on the number of samples required
to attain this level. This stopping rule was used in Section 4.3 on the
initial task. Its main fault is that its use requires a priori knowledge
of what constitutes a significant yet reasonably attainable performance
level. Furthermore, it stresses only efficiency, assuming that all

plans can reach a certain level given enough time.
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The initial process of searching égpwill entail trying out a number
of stopping rules in our comparison of different plans. Hopefully, we
will eventually settle upon one rule which can be effectively used in
further investigations. However, we may benefit by evaluating plans
with respect to a number of criteria, especially when two plans seem
indistinguishable when examined with respect to only one criterion.

One additional problem we will have to resolve fairly early is the
choice of a task environment. The easy task would probably require less
running time since there is less room for improvement. On the other
hand, this task might not be able to discriminate between two very good
but significantly different plans. We encountered this problem with
the initial task which only served to point out the very bad plans.

Hopefully, many of these problems will be resolved fairly early
in our investigations so that we may spend most of our time investigating
different aspects of reproductive plans. The rest of this chapter will
attempt to resolve some of these technical problems while investigating
two important components of reproductive plans: selection schemes or
the method of allocating new offspring and the method of using genetic

operators.
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6.2 Selection Schemes

In this section we will examine some initial runs of our reproductive
plan and begin our search for some good plans. This search will entail
developing a good method for determining how offspring should be dis-
tributed among the population members. As we discovered in Section 4.3,
selection schemes can have a significant effect on a plan's performance.
These schemes directly affect the search process since they bias the
regions from which new samples are obtained by directing the duplication
of population members. A scheme which overemphasizes very good individuals
may induce a narrow search in a small region of the space. The net
result is usually a decrease in the population variance, a measure of
the variety of genes and individuals in the population. Without this
variation the evolutionary process becomes very inefficient.

However, a scheme which duplicates most individuals equally, giving
little regard to their performance, may also prove inefficient. Our
investigations on the artificial task in Section 4.3 showed that a
scheme of this type was inferior to one which used performance measures
to influence the duplication process.

We will now investigate the performance of four selection schemes
operating on the difficult and easy task using two different population
sizes. Let us adopt the following notation for discussing population
sizes. An M/N population consists of M individuals, of which the N
best remain as population members after each generation to possibly
produce offspring. M - N offspring are produced each generation. Initial
experiments will use a 20/10 or a 12/6 population.

The recombination portion of the reproductive plan will not vary
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through the initial experiments on selection schemes. The genetic
operators we will use are crossover (single breakage), inversion and the
two mutation operators used in the detector evaluation plan in Section 5.2.
During recombination, the duplicates of individuals are randomly paired.
Crossover is applied to each pair with probability .5 while inversion

is applied to each duplicate with probability .5. Then each new individual
receives from 1 to 5 mutations of each type, the specific number being

drawn from a uniform probability distribution.

Before the regular reproductive plan was tested, we tried a modified
version which does not guarantee a monotone increase in the member
population's performance. After each new set of offspring are produced
the parent or member portion of the population is discarded leaving only
the offspring to carry on the evolutionary process. This version failed
to produce any significant adaptation using the 12/6 population. With
a much larger population there is a good chance that many of the offspring
will closely resemble many of the more superior parents and thus maintain
a similar level of performance. However, with relatively small populations
and an even smaller number of offspring per generation, this version is
ineffective. As we later found out, less than one-third of the offspring
typically perform well enough to assume a position as a population member.
Therefore, the best of the past performers must be maintained until
they can be replaced by even better individuals.

Two selection schemes, developed along the lines of those used on

the initial artificial task, were used for the first few experiments:

Scheme 1: The basic scheme -- the payoffs of the population members are
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decreased by the minimum payoff of this group and these
adjusted values are used as weights to determine duplication
rates.

Scheme 2 :  Payoffs of the population members are used directly as weights

to determine duplication rates.

Selection schemes are basically allocation of resource techniques,
the "resources' being the number of offspring permitted at each generation.
Each individual is duplicated according to how its weight compares to
the sum of all weights. If all weights are very close in value, it may
happen that each individual is alloted only a fraction of a duplication.
If all offspring slots have not been allocated after the duplication
rates have been rounded to integers, then randomly chosen individuals
which have not already been duplicated are reproduced.

The first few experiments were run for 50 generations. Four or
five statistical runs were made for each experiment using, however, the
same initial population. A summary of results using two different selec-
tion schemes, population sizes, and tasks, appear in Table 6.2.1. The
notation under TASK stands for easy (E) or difficult (D) task. The values
under MEAN are the mean performance values of the best individual in
each run after 50 generations.

Surprisingly, there was no significant difference between experiments
differing only in the selection scheme used. As one may recall, the basic
scheme proved to be superior on the artificial task. However, those
results were based on a 25/8 population, in which case there are more

offspring slots than population members.
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EX SEL POP

NO SCM SIZE TASK MEAN S.D. SIGN
1 1 12/6 E 75.1 2.5

2 2 12/6 E 77.3 2.3

3 1 20/10 E 78.8 2.7

4 2 20/10 E 79.2 2.4

5 1 12/6 D. 50.1 3.7

6 2 12/6 D 51.7 2.0

7 1 20/10 D 53.6 2.0

8 2 20/10 D 55.2 3.5

Table 6.2.1 Initial Experiments on Selection Schemes

Upon closer examination of the actual duplication rates, we found
that Scheme 2 resulted in duplicating each individual exactly once.
This meant that no selection took place with this scheme after the
current population had been determined. On the other hand, the basic
scheme seemed to tend toward overselection; with this scheme the best
population member often contributed to 50% of the offspring. This
effect obviously became more serious when one individual remained the
best population member over many generations.

It seemed a bit puzzling that these two schemes did not turn in
significantly different performance. However, it is possible that they
both reached similar performance levels through different types of
inefficient operation. Presumably a scheme which combined aspects of
both would produce better performance levels. The following schemes
were designed to improve upon the basic scheme by checking for over-

selection situations:

Scheme 3: The basic scheme is used with the constraint that a maximum
of two duplicates per individual per generation is permitted.

If this constraint is exercised, then randomly chosen popu-
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lation members are duplicated to fill the remaining offspring
slots, as long as no one individual is duplicated more

than twice.

Scheme 4: Scheme 3 is used with the additional constraint that a
maximum of three offspring per individual is permitted over
all generations. However, this constraint is relaxed when

excess offspring slots are being randomly distributed.

Most of the experiments were rerun using the new schemes. In
addition, the difficult task was run up to 100 generations and then
continued under a marginal utility stopping rule up to a maximum of
125 generations. The slope stopping rule allowed runs to continue as
long as there was a net performance gain of 1.0 in the previous 15
generations.

Table 6.2.2 summarizes these new experiments in their relation
to the past experiments which have been repeated for ease of reference.
GEN 50 and GEN 100 indicate mean performance after 50 and 100 generations.
STOP MEAN and STOP GEN represent the mean performance and mean generation
when the slope stopping rule was exercised.

With a number of experiment pairs both Schemes 3 and 4 were shown
to be significantly superior to the others. In the first group of
experiments operating with a 12/6 population on the easy task, Scheme 3
outperformed both Scheme 1 and 2 while Scheme 4 outperformed Scheme 1.
The next two groups of experiments showed no significant difference
along the lines of the first group. However, on the basis of the slope

stopping criterion, Scheme 2 dominated Scheme 1 at the 10% level. This
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EX SEL  POP GEN  GEN STOP STOP
NO SCM  SIZE TASK 50 100 MEAN GEN SIGN

1 1 12/6 E 75.1 -- - -

2 2 12/6 E 77.3 -- -- --

9 3 12/6 E 80.4 -- -- -- *
10 4 12/6 E 79.1 -- -- -- *
3 1 20/10 E 78.8 -- - --

4 2 20/10 E 79.2 -- -- --

11 3 20/10 E 78.9 -- -- --

12 4  20/10 E 80.2 -- -- -

5 1 12/6 D 50.1 56.0 50.5 74 *
6 2 12/6 D 51.7 58.6 56.6 79 *
13 4 12/6 D 49.4 54.7 54.7 87

7 1 20/10 D 53.6 62.7 59.7 87

8 2 20/10 D 55.2 63.9 62.5 102

14 4  20/10 D 59.3 64.7 61.8 79 *

Table 6.2.2 Summary of All Selection Scheme Experiments

reinforced previous suspicions that Scheme 2 was better than Scheme 1
since the performance of Scheme 2 always dominated (but not signifi-
cantly) that of Scheme 1.

The fourth set of experiments repeated the trends of the first set.
Based on performance after 50 generations, Scheme 4 was definitely sup-
erior to Scheme 1 and dominated Scheme 2 at the 10% level. However,
these differences disappeared by the 100th generation, indicating that
the other plans were eventually able to catch up although they were not
as efficient. This lack of efficiency is demonstrated again in consid-
ering performance using the slope stopping criterion. Although all three
schemes reach performance levels which were not significantly different,
Scheme 2 required significantly more samples to do this.

Based on these experiments we can generally conclude that Schemes 3
and 4 are both superior to Schemes 1 and 2. Figure 6.2. summarizes

all significant result in graphical form. The circles designate selec-
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Figure 6.2 Summary of significant results between
selection schemes
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tion schemes while each arrow designates a test which distinguishes
between two schemes. Labels on the arrows indicate percent significance
levels.

Scheme 4 has been chosen for use in further experiments. There
have been no results in this section to indicate which of Schemes 3
or 4 is superior. However, Scheme 4 seems more intuitively appealing
since it places an upper bound on the total number of offspring an in-
dividual may produce. Furthermore, by allowing this upper bound to
vary, one can consider Scheme 3 a special case of Scheme 4.

As we mentioned earlier in our discussion of search techniques,
some tests will be reapplied in different regions of the space to
determine if the results were overly dependent on other components of
the plan. Since the results on selection schemes have not been as clear
cut as one might desire, we have repeated some of these tests after we
have developed what we consider to be one of the best reproductive plans.
The details of this plan will be discussed later as it is developed.
However, it seems appropriate here to present the results of this plan
varying only the selection scheme. This will firmly establish the sup-
eriority of Scheme 4.

Table 6.2.3 summarizes these results. After 85 generations Scheme
4 dominates Scheme 2 at the 10% level. However, using the slope stopping
criterion, Scheme 4 dominates Scheme 2 at the 0.5% level; there were no
significant differences in the number of generations over all experiments.
There were no significant difference in means between experiments 15, 17
and 18 using the slope stopping criterion since the variances of experi-
ments 15 and 17 were so large. In fact the variance using Scheme 4

differed from that of Scheme 1 at the 1% level and that of Scheme 3 at
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EX SEL GEN STOP STOP STOP

NO SCM 85 MEAN GEN S.D. SIGN
15 1 67.1 73.1 134 7.2

16 2 66.6 69.5 114 3.2

17 3 68.2 71.3 116

18 4 70.4 76.1 140 1.3 *

Table 6.2.3 The Effect of Selection Schemes on a
Very Good Reproductive Plan

the 2% level. This test along provides sufficient reason to choose
Scheme 4 since a small variance between runs is a desirable quality
of adaptive plans. In practice one will make only one run of a plan

and assume this run to be fairly representative.

Summary

We have now begun our search for a good reproductive plan by try-
ing our various selection schemes. The selection scheme is an important
aspect of the reproductive paradigm since overselection may result in
false peaks while underselection may result in slow, inefficient adap-
tation. The scheme finally settled upon was basically a payoff-weight
scheme modified so that overselection would not result. It should be
noted that the selection scheme effectively narrows the set of devices
upon which the function T will operate. This is an important step in

directing the search of the space .



122

6.3 Analysis of Initial Investigations

Besides serving to identify a good selection scheme, the exper-
iments in this chapter also represent our first attempts at using a
reproductive plan on our pattern recognition task. The average performance
of the reproductive plan operating on the difficult task after 600
samples (12/6 population after 100 generations) was 56.4. This compares
very favorably with the average of 39.0 for the detector evaluation
plan. The range of performance values over all runs was 12.3 for the
reproductive plan compared to 30.8 for the detector evaluation plan.
Furthermore all runs with the reproductive plan produced devices with
performance levels at least 6 standard deviations above the random
sampling mean indicating performance far superior to the random plan.
Yet 28% of the runs with the detector evaluation plan produced maximum
performance within two standard deviations of the random sampling
mean. These comparisons indicate that our reproductive plans are
definitely producing significant adaption using only first-order
feedback.

These initial experiments have also demonstrated the importance
of choosing a good criterion x. It was felt that the maximum utility
criterion was the best, yet it was not obvious what was the best
stopping rule. Comparisons based on performance after a fixed number
of generations proved very useful especially when such comparisons were
made before performance of some plans began to level off. However,
comparisons using the slope (marginal utility) stopping rule also

proved helpful in testing a plan's ability to maintain efficient
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adaptation. Even when no performance difference resulted, we sometimes
found a difference in the number of samples used. This use of multiple
criteria seems to be a good way to resolve the problems involved with
using a single criterion since we now can simultaneously select for
plans which are both efficient and effective.

The experiments in this chapter will also help to direct future
investigations. It seems likely that the easy task will not prove too
useful in the future in distinguishing the effectiveness of different
plans. Mean performance levels are approaching 80 while there is evidence
that maximum performance for this task is around 87. This does not leave
sufficient room to significantly distinguish many different plans.

The difficult task costs more to operate since more generations are
usually needed before performance levels off. However, this often
provides good plans with a better opportunity to distinguish themselves.

Comparing experiments which differ only with respect to population
size, we find no significant difference. Table 6.2.2 seems to indicate
that the 20/10 population is better than the 12/6 population when
operating on the difficult task. However, this comparison is based
on an equal number of generations. When comparisons are based upon
an equal number of samples we find there is no difference in performance.
Furthermore, comparisons on the easy task after 50 generations also
produce no significant difference even though the 20/10 population
has received 66% more samples than the 12/6 populations. Most of the
future runs will use populations which sample only six new individuals

per generation. However, the benefits of a large member population
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Formal The basic reproductive The addition of
Element paradigm Selection Scheme 4
Add: Total number of
Payoffs of current offspring for each
M . .
t population population member
over generations
Change reproduction
T Reproduction and (sampling scheme) to
- . avoid over or under
recombination .
selection
Save payoff of new Update to?al number
m s e of offspring
individuals

Table 6.3 Changes Due to Selection Scheme 4

can still be realized by running a 20/14 or a 40/34 population.
Typically the poorer members of these large populations will not be
selected to produce offspring. However, if a set of individuals tend
to retain possession of the top positions in these populations, they
soon will have exhausted their maximum allowable number of offspring
and the remaining offspring will be randomly distributed among the other
population members. This is a technique of selection scheme 4 which
is not available with schemes 1, 2, or 3.

Table 6.3 indicates how the formal elements of an adaptive plan,
Mt’ T, and m have been modified or extended as the result of incorpor-
ating selection Scheme 4. Figure 6.3 points out the aspects of our re-

productive plan that have been changed, investigated or further specified
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as a result of the experiments performed in this chapter. It will be
the practice in these figures to abbreviate operations which have not
changed since the last figure and to put a double box around operations
which have changed or have been specified in more detail.

The next chapter will continue our search for a better reproductive

plan by investigating the roles of various genetic operators.



Chapter 7 Genetic Operator Schemes

Introduction

In the previous chapter we have investigated aspects of the repro-
duction or duplication step of the reproductive plan. In this chapter
we shall turn to the recombination step in which new individuals or de-
vices are produced from duplicates of selected parents using various
genetic-1like operators.

Our investigation will consist of two phases. First, we will brief-
ly examine the role of the operators when their application rate remains
constant throughout evolution. Then we will proceed to develop a scheme
through which the application level of each operator will be influenced
by the plan's performance. Such a scheme will relieve the researcher of

the type of work involved in the first phase of our investigation.

7.1 Operator Probability Settings

In this section we will try to get a feeling for the role of various
genetic operators in influencing efficient and effective adaptation. This
investigation will by no means be exhaustive for a number of reasons.
First, it simply is not feasible, condidering the high cost of our runs,
to operate multiple experiments to test the effect of different parameter
settings for our operators.

Secondly, it is very doubtful that such experiments would produce
many significant differences. As we discovered in our initial artificial
task, reproductive plans are generally insensitive to changes in operator
probability settings except in extreme cases, However, it was important

to have operators which played different roles and allowed steps of diff-
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erent sizes to be taken in the search space. We also expect that there
will be a fair amount of interaction between various operators. There-
fore, it would be difficult to obtain information about the optimal set-
ting of a particular operator without considering a wide range of settings
for all the other operators.

Third, even if we did find some optimal probability settings, we
still would not have greatly édvanced our knowledge about reproductive
plans. These settings would obviously depend on the specific operators
used and even more so on the particular task, chromosome size, population
size, etc. One cannot be expected to go through this optimization pro-
cedure for every new operator, task, or chromosomal representation.

What information can we expect to get from this first phase of in-
vestigation on genetic operators? First, we can obtain an initial estim-
ate of the role of various operators. For example, we would like to know
if the different mutation operators actually have different effects, or
if crossover and inversion really help the process of adaptation. Second-
ly, by investigating the effects of operators at different stages of adap-
tation we can re-evaluate the need for a scheme which modifies probabilities
during adaptation. As one may recall, our work with the initial artificial
task demonstrated such a need. Finally, our experiments with a variety of
probability settings will give us a better estimate of the performance of
reproductive plans on our tasks. In the previous chapter we used the same
parameter values for all experiments.

Now let us look at some of the more important experiments. As we
mentioned earlier, the crossover and inversion operators are applied
with certain probabilities. However, since there are usually about 110

genes per chromosome, the mutation operators may be applied a number of
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times, this number being chosen from a given distribution. The distri-
bution is specified by a single parameter designating the maximum poss-
ible number of mutations. The distribution is a combination of a uni-
form distribution plus a possible weight at zero. Figure 7.1.1 shows
some possible distributions along with their identifying parameters.

Table 7.1.1 summarizes the first few experiments using a 12/6
population on the difficult task. Experiments 1 and 2 clearly indi-
cate that operating alone, mutation 1 is significantly superior to
mutation 2 both after 50 and 100 generations. One may recall that
mutation 1 randomly changes a single point in an n-tuple while mutation
2 randomly replaces the whole n-tuple. Experiment 3 used both muta-
tion operators; performance after 50 generations was similar to exper-
iment 1, but improved little in the next 50 generations. This could
be directly attributed to the inability to take small enough steps
later on in the search process. These results seem to indicate that
mutation 1 is a much more valuable operator than mutation 2. Exper-
iment 4 with the introduction of crossover and inversion proved to be
significantly superior to all the others after 50 generations. How-
ever, at the end of 100 generations, experiment 1 had caught up. Again
this can be attributed to the inability of experiment 4 to decrease
the application rate of its operators and take smaller steps in the
search space.

Figure 7.1.2 displays the adaptation curves of the population
mean for typical runs of experiments 1, 2 and 4. Experiment 4 is char-
acterized by large sudden gains and then a leveling off. This pheno-
menon is probably due to the crossover operator which results in large

changes in performance more often than the mutation operators which in-
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131

sjuswrtxsadxs FS3IO9[9S JO
sunx [eo1dA3 J0F soAxnd uoriezdepy z°'1°/ 2anity

SNOILVY3IN39 40 ¥38NNN
0s

b HUAWNIIAXT e e e
2 WaWLIAAXT ceeeccccancee
| judwuadxy

(0]

oS

3ONVNY04Y3d



132

EX POP STAT. PARAMETERS GEN  GEN
NO SIZE TASK CRS INV. M1 M2 50 100 SIGN

1 12/6 D .00 .00 5 0 44.9 56.4 *
2 12/6 D .00 .00 O 5 38.4 47.2 *
3 12/6 D .00 .00 5 5 45.0 48.0

4 12/6 D .50 .25 5 5 51.1 57.1 *

Table 7.1.1 Initial Experiments on Genetic Operators

duce a more gradual performance curve. Figure 7.1.2 also reinforces

our practice of using a number of stopping rules for the maximum utility
criterion. Using a generation stopping rule of less than 50 generations,
experiment 4 is superior with little difference between 1 and 2. A gen-
eration stopping rule after 50 generations shows experiment 2 inferior
with little difference between 1 and 4. However, a slope stopping rule
in this case would be inadequate since experiment 4 might get shut off
around generation 60 while experiment 1 would continue past generation
100. Such a disparity in the number of samples would prohibit a just
comparison. Therefore, we will continue to use at least two stopping
rules for future comparisons.

A similar set of experiments run on the easy task yielded results
along the lines of those displayed in Table 7.1.1. Table 7.1.2 presents
some results using a 20/10 population on the easy task. The main pur-
pose of these experiments was to test the effects of the level of the
crossover and inversion operators versus the level of the mutation op-
erators. One general observation is the relative insensitivity of per-
formance despite the rather large range of operator probabilities used.

More specifically, it was interesting to see that experiment 7 with

very high crossover and inversion probabilities and no mutation, per-
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EX  POP GEN STOP STOP

NO  SIZE TASK CRS INV M1 M2 35 MEAN GEN SIGN
5 20/10 E .2 .2 5 5 76.2 78.0 56 *

6 20/10 E .5 .S ) 5 78.6 83.2 70

7 20/10 E 1.0 .9 0 0 80.9 83.8 60 *

8 20/10 E 1.0 .9 3 3 80.7 83.4 61

9 20/10 E 1.0 .9 10 10 77.7 80.0 51 *

Table 7.1.2  Summary of Experiments

formed as well as any other experiment. Obviously there was sufficient
genetic material within the 20/10 population to permit adaptation with-
out mutation. However, a similar experiment using a 12/6 population
was not as successful; moreover, experiment 7 without inversion produced
virtually no adaptation whatsoever. This suggests some strong inter-
dependencies involved in the optimal operation of reproductive plans.
One must use inversion and a relatively large member population for
crossover to work well. Under these circumstances crossover works very
well, significantly outperforming experiment 5 with low crossover and
high mutation rates. Experiment 7 also significantly outperformed ex-
periment 9 which utilized all operators at very high levels. The other
experiments were not significantly different from experiment 7.

At this point we decided to introduce two additional operators.
Mutation 2 had not proved to be a very valuable operator. This leaves
mutation 1 which induces an extremely local search and crossover which
takes very large steps in the search space. We felt that there should
be some operators which could take some medium-sized steps in the space.

Double crossover was a readily available operator which is similar

to crossover except that two breaks occur and the center portions of
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the strings are exchanged. On the average, double crossover results in
the exchange of segments which are shorter than those exchanged using
crossover. Figure 7.1.3 shows frequency distributions for the length
of exchanged segments for crossover and double crossover operating on
strings of length L.

Crossover and double crossover will not be applied independent of
each other. At most one will éperate on each pair of individuals. The
sum of the '"probabilities" of both operators will be used to determine
probabilistically if either operator will be used. This sum will never
exceed one. If one of the operators is to be applied, then the individual
probabilities are used as weights to determine which crossover operator
will be used.

A new mutation-like operator, called mutation 3, will modify two
adjacent n-tuples simultaneously. If the two detectors designate a
total of six or more mesh points, then they are transformed into three
smaller detectors by regrouping the same mesh points. If the two ad-
jacent detectors specify a total of five or less mesh Points, then they
are combined to form one detector using all the points. This new oper-
ator permits changes in detector composition and size without changing
the actual mesh points investigated. Both of these new operators fall
between crossover and mutation 1 in terms of the step size taken in the
search space.

The new operators seemed to have a marked effect on the reproduc-
tive plan's performance. Table 7.1.3 summarizes an interesting set of
experiments operating with a 12/6 population on the difficult task.

For experiment 11, double crossover was used instead of crossover and

mutation 3 was used instead of mutation 2. The frequency of mutation 3
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EX GEN  GEN GEN GEN

NO CRS DCR INV M1 M2 M3 50 100 200 300 SIGN
10 .5 0.0 .5 5 5 0 49.2 60.0 62.1 65.5

11 0.0 .5 .5 5 0 3 54.1 65.9 71.9 75.8 *

Table 7.1.3 Some Effects of Double Crossover and
Mutation 3

was less than that of mutation 2 since mutation 3 affects two detectors
upon each application. Experiment 11 produced significantly superior
results (at the 2% level) for every test after generation 50, demonstrat-
ing that this setting was both more efficient and more effective. A
comparison using the slope stopping rule was not possible due to a large
difference in the number of generations elapsed before stopping.

A number of other experiments were run with these new operators.
Table 7.1.4 summarizes experiments using a 12/6 population on the easy
task. Only experiment 14 using mutation 3 alone proved to be signifi-
cantly inferior. Again comparisons using the slope stopping rule were
not possible due to the large differences in the stopping generations.
However, experiment 12 again points out the need to have probabilities
vary through evolution. After 35 generations experiment 12 performed
as well as experiments 13 and 15. However, experiment 12 terminated
much earlier than the others presumably due to its use of too many op-
erators at moderate to high application levels. Performance improved
when some of the operator parameters were set to zero, although it was
not extremely important which parameters these were.

The need for low probabilities at later stages of evolution was
even more evident upon closer examination of new population members.

A new population member is a newly-formed individual which performs
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EX GEN  STOP STOP
NO CRS DCR INV M1 M2 M3 35 MEAN GEN SIGN

12 .3 .3 .5 5 5 3 74.2 75.8 49.3
13 0.0 .5 .5 5 0 3 77.3 82.4 67.5
14 0.0 0.0 0.0 O 0 4 65.8 67.1 53.3 *
15 0.0 .5 5 0 0 75.3 85.4 99.8

Table 7.1.4  Additional Experiments with Double Crossover
and Mutation 3

well enough to take the place of a parent in the current population.
A tabulation was maintained on every new individual to determine how
it was created (i.e., via how many mutations of each type, via cross-
over or double crossover and/or inversion). In early generations the
usage of various operators in new population members was consistent
with the distributions which generated the operator frequencies. In
other words, there was no selection for individuals formed via a certain
number of mutations or via crossover. However, in later generations
there was a definite selection for individuals with fewer changes,
e.g., a lower number of mutations. Figure 7.1.4 shows the observed
frequency distribution of the mutation 1 operator among new population
members during the last 10 generations of a particular run. The gener-
ating distribution (for all new individuals) was uniform in this inver-
val showing a definite selection for individuals with few mutations.
This evidence seems to solidify our presemption that we need a
scheme which can modify the parameters of our operators as the needs
of the plan dictate. Real chromosomes actually have sites among their
genes which regulate mutation rates [Helling, 1968]. Although a self-

regulating system may not always perform as well as one in which optimal



138

- a A WA WAV

[ XXX X XXX XA
00 N03030%0 303030302
RNt etotetoteresess
9.9.9.9.9.9.9.0.90.9. )

TR
oY%

ERIILRGEKRAANS
RIS

IR
I

-~

.'

/N\/ NN\ N NN\ N\ N\ \ \{
et e e 02020200
o

&

AV

| 1 1 | |

AON3ND3Y 4

NUMBER OF MUTATIONS PER INDIVIDUAL

Figure 7.1.4 Mutation 1 frequency in new population members



139

settings have been determined (usually after extensive studies), the self-
regulating system certainly would be more flexible and would relieve the

researcher of much of the work we have performed in this section.

Summary

The work of this section has proved to be very successful in accom-
plishing its goal. First, we have gained a good estimate of the worth
of the various genetic operators and their roles. Mutation 1 seemed to
be the most valuable mutation operator, with mutation 2 the least val-
uable. Furthermore, all the mutation operators seem to play more im-
portant roles later in the evolutionary process when small step sizes
are beneficial.

The crossover operators coupled with inversion also play a valuable
role especially in regard to the efficient operation of reproductive
plans. They are capable of providing for significant adaptation even
without any of the mutation operators. However, the optimal use of
crossover and inversion seems to demand a population of a size capable
of maintaining a rich mixture of genetic material.

As a by-product of these experiments we have established some
'"good" overall parameter settings and performance levels which will
serve as optimal guidelines for future comparisons. Furthermore, we
have established that our reproductive plans are relatively insensitive
to changes in the operator parameters. This is probably due to the fact
that different operators play similar roles in searching the space. How-
ever, large changes in parameter settings (eliminating an operator or
creating a new one) can have substantial effects in the plan's efficiency

and effectiveness. This is particularly true when only a few operators
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are being used.

We have also gained some more insight into the use of stopping
rules for the maximum utility criterion. Comparisons at different
generations proved very valuable in identifying good and bad aspects
of various settings. On the other hand, the slope stopping rule us-
ually did not result in an equitable comparison in terms of perform-
ance levels. However, by comparing the number of generations before
stopping, we did gain valuable information about settings which were
not capable of sustaining sufficient adaptation later in evolution.
This information will prove to be very helpful in the next section
on parameter modification schemes.

Finally, we have now massed enough information to justify our
belief that a parameter self-modification scheme would be extremely
beneficial. We have observed distinct differences in effective op-
erator application rates at different points in the evolutionary pro-
cess. In general, most operators should be applied less frequently
in the later stages of evolution. However, in such a situation (low
parameter settings) the plan becomes more sensitive to particular op-
erators. This sensitivity should be used to maintain the valuable
operators and effectively turn off the poorer ones. We shall now turn

to the task of developing a suitable parameter-modification scheme.
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7.2 Parameter Modification Schemes

Introduction

Our immediate goal in this section is to develop a scheme which
can suitably adjust and modify the genetic operator parameters as the
needs of the plan dictate. To reiterate, a scheme of this type will
serve two major purposes. First of all, it will make reproductive
plans more general and flexible since it will facilitate their appli-
cation to new tasks using various chromosomal representations. In this
case the researcher can be fairly certain that a few runs will be re-
presentative of the plan's performance using a certain set of operators,
since the plan will not be biased by a predetermined set of operator
parameters. Furthermore, after observing the plan's use of the oper-
ators he may decide to eliminate some and create new ones similar to
ones which have proved to be effective. This would be a more interest-
ing and valuable endeavor than just testing parameter values for a given
set of operators.

In addition to increasing the flexibility of reproductive plans,
the parameter modification scheme should in the long run make them more
efficient and effective. The ability to adjust parameter levels at
different stages of evolution should allow a longer period of signifi-
cant adaptation. Furthermore, the plan should be able to turn up or
down the application level of individual operators according to their
worth in the particular task environment.

Examining a parameter modification scheme within our formal frame-
work for adaptive systems, we can view it as sort of a meta-plan within
the reproductive plan. In this meta-system the set ¥ is the set of

all parameter value combinations for a given set of operators. The en-
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vironment determines how well a particular parameter setting performs,
i.e., how effective this parameter setting is in generating a high pro-
portion of good offspring. As we have seen, the environment in this
meta-system changes since a genetic operator (and therefore its appli-
cation level) has varying worth at different stages of adaptation.
The different schemes that we will develop in this section will be taken
from the set of plans Jin this system. As opposed to reproductive
plans, these plans will not be first-order but will use additional feed-
back from the meta-environment. This mode of operation stems from the
difficulty of obtaining an accurate estimate of the worth of one para-
meter setting. Such an estimate is only possible after the setting has
been used many times, but this involves running entire experiments as
we did in the previous section.

Let us be a bit more explicit about how we will extract informa-
tion which will enable us to modify parameter settings. Presumably
at each point in evolution there is an optimal setting which will be
most successful in generating valuable new offspring. Suppose the plan
is using a parameter setting which results in higher application rates
of the operators than would be dictated by a better setting. In this
case the best offspring will on the average result from lower applica-
tion levels. Since a parameter setting effectively defines a distribu-
tion of application levels, offspring resulting from low application
levels are possible. Examination of operator usage in creating the
better offspring, i.e., those which have become new population members,
should indicate that low application rates are favorable and the appro-

priate distribution parameters will be lowered slightly.
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The situation here is very similar to that of Samuel's checker
player. We must extract and use as much information as possible so as
to respond quickly and validly to changes in the environment. In order
to do this we must make assumptions such as independence of components.
This certainly is not an accurate assumption since we have reason to be-
lieve that the components (i.g., the genetic operators) are not independ-
ent of one another.

However, we can justify this decision. We do not need an optimal
parameter setting but only a fairly good one. Therefore, a good approxi-
mation which converges quickly is preferable to an optimal solution which
takes more time. In other words, the ability to change a setting during
adaptation is more important than the ability to find the best setting
at any particular point in time since there are probably many good set-
tings, judging from our work in the previous chapter.

Referring again to Samuel's work, one may suggest that a signature
table approach would be a propos. Certain parameter value combinations
could be rewarded as a whole, resulting in a more accurate utility mea-
sure for any given complete set of parameter values. However, the pro-
blem of accurately filling in the entire table would be even more diff-
icult than in Samuel's case. We can reward a set of parameter values
only when they are used to produce new offspring. Since we typically
generate 6 offspring per generation, we may expect to have 300 '"'tests"
of different parameter settings after 50 generations. This may be con-
sidered a reasonable number for a table with a total of 6 parameters,
each parameter quantized to about 5 values. However, one ''test' of a
parameter setting consists of one sample from the distribution which

“this parameter setting defines. So we would need at least a few tests
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of each setting. Furthermore, the data gathered during the first 50
generations would probably not be applicable to the next 50 generations.
In fact, there may be a negative correlation since high parameter values
seem to work well during the first phases of adaptation whereas low set-
tings work well later on. We may, therefore, conclude that a signature
table approach would not be very suitable.

Criteria for evaluating our meta-plans or probability modification
schemes will be different from the usual criterion for evaluating repro-
ductive plans. Certainly the overall performance of the reproductive
plan using the parameter modification scheme will eventually serve as
a crucial determiner of a scheme's success or failure. However, in de-
veloping suitable schemes we shall use some intermediate criteria to
guide our work.

A very important criterion will be based on intuition and past ex-
perience with reproductive plans. We have developed general ideas for
what constitutes favorable parameter settings. For example, a low ap-
plication level for the genetic operators will generally be favorable
in the later phases of adaptation, whereas higher levels are beneficial
in the earlier phases. We shall expect good schemes to follow such
general guide lines.

Other intermediate criteria will be based upon convergence and
stability. By stability we mean that the parameter values should vary
gradually throughout adaptation without rapid fluctuations. This is a
criterion used by Samuel in evaluating his A-plans for modifying his
linear polynomial. We will say that a scheme converges if the parameter
settings for different rums at similar points in evolution fall 'close"

to each other. It is questionable whether we should expect a scheme to
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converge. Although each run starts out with the same parameter setting,
they could all pass through and end up with very different settings
which were equally good. However, if a scheme did converge in the above
sense, we would have some assurance that the scheme was not overly sen-
sitive to the random aspects of reproductive plans and did actually ex-
tract relevant information.

In the final analysis of farameter modification schemes, we must
resort to the maximum utility criterion to evaluate the reproductive
plan which uses the schemes. 1In this case, we will compare plans with
and without the parameter modification scheme operating on our previous-
ly run task and also using some different sized chromosomes to change
the demand for different operators. These latter experiments should
test the ability of the parameter modification scheme to operate in a
situation different from that in which it was developed. This is very
important since a major purpose for a parameter modification scheme is
to give reproductive plans the added flexibility to operate efficiently
on new tasks with different chromosomal representations and genetic op-
erators. In addition to the above experiments, all of which will start
with the same parameter values, we shall compare the performance of a
plan with the parameter modification scheme to a variety of plans without
the modification scheme but which use different parameter settings. This
should indicate whether one may justifiably dispense with the type of ex-
periments we performed in the previous section without greatly sacrific-
ing the effectiveness of the reproductive plan. A good plan with a para-
meter modification scheme will obviously be more efficient since we can

then eliminate all the experiments in the previous section.
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Suitable Modification Schemes

One approach to parameter modification is similar to that actually
observed in nature. The parameter values would be encoded into the in-
dividual strings and would determine how their offspring would be formed.
The offspring could assume the parent parameter with small modifications
or in the case of two parents, some average of the parent parameters.
However, this scheme is similar to the signature table approach and sub-
ject to similar criticisms. An offspring's parameters are determined
from his parents', yet the actual operator frequency which determined
the offspring is just one point in the distribution induced by the par-
rents' parameters. Furthermore, we would have to worry about loss of
variation in the meta-population of parameter settings. Considering
the relatively small population size and the small number of generations
over which evolution takes place, there would probably be an insensi-
tivity to appropriate modifications.

Therefore, we have devised an alternate scheme which hopefully
will alleviate the sampling problem somewhat. The scheme works in the
following manner. One set of parameter values is maintained for all in-
dividuals. During each generation a tally is kept to determine how many
times each operator is applied and is successful in contributing to the
creation of a new population member. The reader should recall that a
new population member is a new individual which performs well enough to
take the place of a parent in the current population. After a certain
number of new population members are observed, the parameter values are
modified to an extent determined by the observed frequencies.

If P(t) is some parameter value at generation t, and 0(t+n) is the

observed value for the parameter in new population members between gen-
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erations t and t+n, then
P(t+n) = P(t) + [0(t+n) - P(t)] A
where A is some expression, not necessarily constant, which controls
the amount of change taking place (04£A41). The actual form of A
will depend upon whether a crossover parameter or a mutation para-
meter is being modified. A may also vary over the different schemes
that will be tried. |
For the crossover operators P(t) is the probability of crossover
while 0(t+n) is the observed relative frequency in new population mem-
bers. For the mutation operators, P(t) is the identifying parameter
of a generating frequency distribution while O(t+n) is the parameter
of a distribution whose mean matches the observed average frequency
of the particular mutation operator in new population members. If
P(t) falls between integers, we combine the two integer distributions
in a weighted manner.
Our immediate goal is to determine :
1) the best form of A,
2) the number of individuals observed before a change in pro-
bability settings is made,
3) Appropriate levels of starting probabilities, i.e., high,
medium, or low,
4) what other forms of control might assist this general para-
meter modification scheme.
Inversion was not put under direct selection since it does not direct-
ly affect an individual's performance. Instead, its value is set
equal to the average value of crossover and double crossover.

In the following discussion we shall explain the details of each
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scheme, briefly describe some results and then motivate the develop-

ment of the next scheme.

Scheme 1
Definitions:

{I—P(t) if 0(t+n)>P(t) (defined only for the cross-

PGAP = .
P(t)-.1 if O(t+n) < P(t) over operators)

NTOT = the number of new population members observed between
successive parameter changes, i.e., between t and t+n.

NEW = the number of possible new population members per
generation.

MIN = the minimum number of new population members which
must be observed before a change in probabilities
is made.

K = a nonnegative constant.

Modification takes place after at least MIN new population members
have been observed and after a generation is completed. Therefore,
MIN SNTOT<MIN + NEW. The PGAP factor will determine the amount of
change possible for the crossover operators, the minimum possible
crossover probability being .1. Such a minimum value is needed so
that an operator will not be turned off and thereby eliminated from
future usage. An alternative method would be to continually intro-
duce random application of an operator independent of its probability.
The A factor has the following form:
For the crossover operators,

(PGAP) (NTOT)
(NEW+MIN+K)

A =
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For the mutation operators,

(NTOT)

A = REWMINGG

The purpose of the PGAP factor is to keep the crossover operators

from falling below the .1 level while also decreasing changes in values
near the extremes. We did not feel that a similar factor was needed
for the mutation operators. The remaining factor insures that A re-
mains at a suitable level below 1.0. MIN was a constant for this
scheme.

The goal of the initial experiments was to determine good values
for MIN, K and the starting parameters. A low value for MIN and a high
value for K means that changes in values would be made very often but
by small amounts. This did not prove successful since the changes were
based upon very small samples, resulting in too many random modifica-
tions. The initial probabilities changed very little throughout evo-
lution. On the other hand, a high value for MIN and low K was even
worse. Very few changes were made and when they were, averaging had
taken place for so long that the observed rates closely approximated
the actual probability parameters. Fairly good results occurred when
MIN = NEW and K = 5. Making MIN dependent upon NEW has the virtue that
the results are less dependent upon the number of offspring generated
per generation. Therefore, MIN will be larger for the 20/10 population
than for the 12/6 population.

Certain failings of this first scheme became evident immediately.
The expression,

NTOT
NEW+MIN

was present to insure that A<1 even if K = 0. However, NTOT was gen-
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erally closer to MIN than MIN + NEW especially in later generations.
Therefore, with MIN = NEW, A = 1/2. Yet in earlier generations, A was
often near 1. This fluctuation in A dependent upon how many new popu-
lation members were created during the generation that NTOT exceeded
MIN was not desirable. Furthermore, this effect was difficult to ana-
lyze with the term K in the denominator.

Other problems also exisfed. In late generations there were fewer
new population members. Therefore parameter changes occurred less often
just when they should have been changing a great deal, hopefully de-
creasing. As a result, high initial parameter values tended to remain
fairly high throughout evolution.* The lack of a lower limit on mutation
also caused a problem, since some rates became so low that the operators
were effectively shut off. This was particularly serious when initial

parameters were low.

Scheme 2

Scheme 2 was designed to correct some of the failings of Scheme 1.
First MIN was allowed to change values during evolution. As soon as the
marginal gain in performance during the previous 15 generations became
less than 3.0, MIN was halved and remained that way for the rest of the
run. This was to provide for more changes in parameters during later
generations when new population members were infrequent. Hopefully, this
change would induce a reduction in most operator rates so that smaller

steps could be taken in the sample space.

*By "high initial parameter values' we mean crossover rates of .5 and
mutation distributions with upper limits of 5. Low values are cross-
over rates of .2 and mutation distributions with upper limits of 2.
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The A factor was changed as follows:

For the crossover operators,

A = (PGAP) (NTOT)
MIN+. 3(NEW)

with 0<PGAP £.5.

For the mutation operators,

K (PGAP') (NTOT)

A = NN+, 3 (NEW)

where,
P(t)-1.0 if P(t) <2 and 0(t+n) < P(t)
PGAP' =
1.0 otherwise

and K is a constant such that 0<K<Z.5

NTOT
MIN+.3 (NEW)

NTOT. It eliminates some of the wide variations noted above but still

The factor was decided upon after inspection of values of
enables a large NTOT to carry more weight than a smaller one when changes
are made. Although this factor may possibly be greater than one, the
limits on PGAP and K insure that A will be less than one.

The restriction on PGAP was necessary since crossover probabilities
underwent large fluctuations especially when P(t) was low and O0(t+n) was
very high. O0(t+n) may be very high in populations which lose their var-
iance so that many individuals resemble others. In this case a crossover
may produce no new mixing but the resulting offspring may prove to be good
due to the action of other operators. The PGAP' factor provides for a
minimum mutation value of 1.0 and reduces change in mutation rates when
they are already low and still decreasing.

The results with this scheme were mixed. With 20/10 populations
the results were uniformly good, independent of starting probability
levels and modification in MIN and K (K was set at .3 or .5, MIN set at

NEW or .5(NEW)). On the other hand, the 12/6 populations exhibited
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erratic behavior between runs. Low starting parameter values resulted
in inferior final payoffs; large populations did better with low start-
ing values. With high starting values the small populations showed no
clear cut results, performing well during some runs and poorly during
others. In addition, the small populations were not successful in re-
ducing high parameter values near the end of evolution. The large pop-
ulations were more successful at this.

These observations would support a hypothesis that large popula-
tions are certainly superior to smaller ones and worth the extra cost
involved. Certainly, one explanation is due to the larger sampling
rate of the large population. Not only do the large populations have

more chances to create superior individuals, but in general they also

have more information available to make better adjustments in their para-

meter settings. The sampling problem becomes more crucial with parameter

modification schemes, since not all sampled (newly created) individuals
provide data samples to the parameter modification scheme; only those
which become new population members are used.*

There is an additional cause for the inferior results of the small
population. When probability settings are very low, it becomes very
possible than an offspring will not be acted upon by any operator and
therefore remain identical to its parent and obtain the same payoff.
This serves only to reduce the variance within the population and ob-

viously hurts small populations more than large populations.

*One might argue that keeping a record of rates of the bad individuals

might prove useful. However, it is not clear how this information could
beused along with the current information, to modify parameters. Further-

more, in late generations, most new individuals are bad due to peak
effects. Using such information might just add a noise effect to the
information obtained from new population members.
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Scheme 3

Scheme 3 results from a few small changes in Scheme 2. First of
all, each new individual is checked to make sure it is sufficiently
different from its parent. An inversion and/or one mutation 1 was not
considered a sufficient change; any greater chage was sufficient. If
an individual was not sufficiently different, additional operators were
applied. |

The second modification involved final parameter values which still
seemed too high in many cases. Therefore, every generation that the mar-
ginal gain for the last 15 generations was less than 3.0, each mutation
rate was decreased one-half the distance to 2.00 (given that it was great-
er than 2.00) and each crossover probability was decreased one-half the
distance to .1. This was in addition to reducing MIN.

These modifications seemed satisfactory. In particular, the small
populations exhibited better performance than with Scheme 2. In add-
ition, performance levels were approaching the results achieved with
the best parameter settings when no parameter modification scheme was

used.

Scheme 4

Scheme 4 again involves minor modifications prompted by observation.
In this case the MIN reduction lasts only while the marginal gain is less
than 3.0; if it rises above 3.0 later on, then MIN resumes its initial
value. Such a measure was deemed necessary since an early leveling off
followed by a resumption of a normal increase may result in a low value
of MIN to persist when it is not needed.

Similarly decreasing mutation and crossover rates every generation
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that the marginal gain was less than 3.0 seemed to result in lower rates
than desired and lack of flexibility, especially for the crossover oper-
ators. Therefore, the reduction process was applied only as the marg-
inal gain fell below the 3.0 point. A few runs with this scheme indi-

cated that the unwanted phenomena had been eliminated.

Quantitative Results: Parameter Values

At this point we tried to get a more quantitative measure of the
value of the parameter modification scheme. A number of experiments
were run using 12/6, 20/10 and 20/14 populations. The introduction of
the 20/14 population at this point seemed very fitting. The 20/14 pop-
ulation costs no more timewise than the 12/6 population since it still
samples only 6 individuals per generation. On the other hand, it has
a larger population base (14 individuals) than the 20/10 population
making it less susceptible to loss of variance. We might note here
that the 20/14 population would have provided no benefit with selection
schemes 1 and 2 since the 6 offspring would always be apportioned to
the top 6 or less population members. The rest of the population would
never produce offspring. However, Selection Scheme 4 quite often dis-
tributes excess offspring among the whole population.

The difficult task will be used for all future experiments since
many of our experiments are not reaching nearly maximal performance
(empirically observed) on the easy task. Operator parameters will be
initially set to medium levels (crossover operators at .4, mutation
parameters at 4.0), MIN will equal NEW initially, and K will be .5.

Let us first look at the changes in parameter values with respect

to the stability and convergence criteria. Figure 7.2.1 shows the changes
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in the parameter value for mutation 1. Each curve represents a different
run plotted until the slope stopping rule was exercised. Figure 7.2.2

is a similar graph for mutation 2. The experiment used a 12/6 popula-
tion. The parameter value for mutation 2 seemed to undergo more gradual
changes which were very similar between runs despite the fact that some
runs ended much sooner than others. Also the variance in the final values
for mutation 2 was smaller than that of mutation 1 for this experiment
indicating that mutation 2 converged more than mutation 1.

Another way to test for 'convergence' of final parameter values is
to determine if the values of different operators converge to signifi-
cantly different levels. Such a result would indicate that the para-
meter modification scheme can sense the need for different operators
and consistently adjust the parameter values. Figure 7.2.3 shows the
changes in all three mutation parameters during two runs. We can ob-
serve two distinct phenomena from this figure. During the first third
of the generations, mutation 2 and 3 operate at higher levels than muta-
tion 1. This could indicate a selection during this phase for mutations
which induce large changes in the composition of the string. Secondly,
at the end of each run (using the slope stopping rule) mutation 1 is
higher than mutation 2 which is in turn higher than mutation 3. This
indicates a selection in later stages of adaptation for mutation opera-
tors which make smaller changes.

Let us now try to verify these observations quantitatively. Table
7.2.1 gives the average ending values of the mutation parameters for a
number of experiments using different population sizes and different
chromosomé lengths. The entry under NO. DET indicates the average num-

ber of detectors used in the chromosome for each experiment. Under
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the heading SIGN PAIRS we have indicated which pairs of mutation oper-
ators ended up at significantly different parameter value levels. All
parameter values for all experiments started at 4.0.

As we can see in all experiments mutation 1 ended at a signifi-
cantly higher level than mutation 2. In addition, mutation 3 was often
significantly higher than mutation 2 and significantly different from
mutation 1. These results clearly indicate the ability of the parameter
modification scheme to converge to parameter values which are signifi-
cantly different even though all values were the same initially. 1In
addition we can see that all values are lower than the initial value.

We can perform some additional important tests using the data in
Table 7.2.1. We have indicated above that a good parameter modification
scheme should be sensitive to the needs of different tasks in addition
to the needs of one task at different generations. Therefore, we shall
test to see if one operator ends up at significantly different levels
in different experiments. Although we have not really changed the task
in the different experiments, we have changed the need for different
operators by decreasing the chromosome length or in effect changing gﬁZ.

The first three experiments use the same chromosome length but
differ in the composition of the population.” For these experiments
there was no significant difference in the final levels for all three
mutation operators. This result indicates a convergence to a mutation
level independent of population size. Experiments 3-5 use the same pop-
ulation size but differ in chromosome length. For these experiments we
find a distinct difference in final parameter levels. For mutation 1
all three experiments ended at significantly different levels, consis-
tent with expectations that the shorter the chromosome, the fewer muta-

tions. This trend was upheld for mutation 2. Mutation 3 was more in-
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EX NO. POP MUTATION VALUES

NO DET SIZE M1 M2 M3 SIGN PAIRS

1 100 12/6 2,64 1.33 1.76 1§2, 1§3, 283
2 100 20/10 2.23 1.25 2.40 182, 283
3 100 20/14 3.26 1.46 1.85 182, 183

4 35 20/14 2.08 1.27 2.80 1§2, 1§3, 283
5 17 20/14 1.42 1.10 2.06 1§2

Table 7.2.1 Ending Mutation Levels

teresting. Only between experiments 3 and 4 were the levels significant.
In this case, mutation 3 was higher with the shorter chromosome, a result
that was unexpected. Furthermore, mutation 3 is significantly higher
than mutation 1 in experiment 4, a reversal of the trends in experiments
1 and 2. Additional studies with short chromosomes have indicated that
mutation 3 is indeed more valuable than in the long chromosome situation.
These results clearly indicate that the parameter modification scheme

can adjust parameter levels in a variety of situations and in a manner
which is consistent between runs of an experiment.

Another criterion for evaluating a parameter modification scheme
concerns its ability to perform well independent of starting probability
levels. Therefore, we ran some additional experiments which were iden-
tical to experiments 3 and 5 except for starting parameter values for
the mutation operators. These results are summarized in Table 7.2.2.
Experiments using 100 detectors showed no significant difference in the
final values of different experiments. Using 17 detectors, experiment
9 was significantly different from 8 and 5 in the case of mutation 3
only. This, however, is an extreme situation. The use of only 17 de-
tectors and starting mutation parameter levels of 5.0 results in initially
mutating over half of the detectors on the average, in addition to the ap-

plication of one of the crossover operators. Such a high level of mixing
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EX NO START END VALUES
NO  DET VALUE M1 M2 M3 SIGN
6 100 3.0 3.16 1.28 1.95
3 100 4.0 3.26 1.46 1.85
7 100 5.0 2.85 1.38 1.96
8 17 3.0 1.44 1.10 1.40
17 4.0 1.42 1.10 2.06
9 17 5.0 . 2.56 1.34 3.61

Table 7.2.2 The Effect of Starting Parameter Levels
on Final Levels

adds too much noise for the parameter modification scheme to operate
effectively. Therefore, we may conclude from these experiments that
the parameter modification scheme under reasonable operating conditions
can eventually adjust its parameters to values which are independent of
initial values.

We have not mentioned the crossover operators in the above discus-
sion due to the lack of any consistent trend. The probabilities of these
operators fluctuated more rapidly than the mutation rates, especially
near the end of adaptation. At this point in evolution, new population
members created by mutation are more common than new members created by
a crossover operator. Therefore, crossover probabilities would tend to
decrease. However, at the same time, we have an increasing number of
individuals in the population which differ only at a few genes due to
the formation of offspring using only mutation. Thus it becomes more
likely that a crossover will exchange identical segments, except for

maybe a few genes, producing an effect similar to mutation. This would
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tend to increase crossover probabilities. Since sample sizes are very
small at this point in evolution, these couteracting effects often pro-
duce much fluctuation in the crossover probabilities. We will discuss

possible remedies for this situation near the end of this section.

Quantitative Results: Performance Levels

We must now determine if in fact our parameter modification scheme
does result in a more effective search. We have already pointed out
the flexibility and efficiency of the scheme since it operates inde-
pendently of initial parameter settings and chromosome length. In terms
of performance, however, we would like to show the following:

1) A plan with the parameter modification scheme attains perform-
ance levels significantly higher than the average of other
plans using different parameter settings but no modification
scheme.

2) A plan with the modification scheme and certain starting para-
meter values attains performance levels significantly higher
than a plan which uses the same starting parameter values with-
out modification.

Table 7.2.3 gives results for some initial experiments. The entry

under MOD? indicates the use of the parameter modification scheme. All

experiments started with medium parameter values (mutation=4.0, crossover
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EX POP STOP STOP STOP MEAN
NO SIZE MOD? MEAN GEN S.D.
10 12/6 No 60.2 79 6.6
11 12/6 Yes 61.4 99 6.0
12 20/10 No 64.6 90 7.9
13 20/10 Yes 70.2 102 3.8

Table 7.2.3 Initial Results Using the Parameter
Modification Scheme

=.4). The experiments using the modification scheme did perform signi-
ficantly better than the average of other plans with the same population
size (goal 1 above). However, they were not significantly superior to
the other experiments using the medium starting levels throughout. The
lack of significance between experiments 12 and 13 was largely due to
the large variance of experiment 12. Unfortunately these initial exper-
iments were terminated using the slope stopping rule so that comparisons
during later generations were not possible. It is during later genera-
tions, however, that the parameter modification scheme should prove sup-
erior due to its ability to take smaller steps.

To test this hypothesis we ran a 20/14 population for 250 generations
with and without the modification scheme. Table 7.2.4 summarizes the re-
sults. Using the slope stopping criterion the modification scheme was
superior, but this can be accounted for by the additional number of gen-
erations used before stopping. After 100 and 200 generations there was
no significant difference although the modification scheme dominated.
However, after 250 generations, the modification scheme was clearly sup-
erior. In addition, the variance of the modification scheme was signi-

ficantly lower.
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EX STOP STOP  GEN GEN GEN S.D.
NO MOD?  MEAN GEN 100 200 250 250 SIGN

14 No 64.2 97 64.7 70.7 71.8 2.9
15 Yes 67.5 120 64.8 72.3 75.5 1.0 *

Table 7.2.4 The Modification Scheme with a 20/14
Population

The next table compares performance levels of experiments using
short chromosomes (17 detectors). We have shown above that the modi-
fication scheme converges on different settings for this chromosome.
Table 7.2.5 verifies that the result was favorable. At every gener-
ation the modification scheme significantly dominated.

Next let us examine what effect different starting parameter val-
ues will have on final performance levels. We have seen above that
there is no effect on final parameter levels but this does not guaran-
tee that performance has not been affected in the transition period.
Table 7.2.6 summarizes these results. Using 100 detectors we find that
there is no significant difference using the slope stopping criterion.
Similarly, using 17 detectors we again find no significant difference
using a number of criteria. Experiment 22 seems to be operating better
initially but the others catch up very quickly, despite the fact that

experiment 23 began with extremely high settings considering the number

EX STOP STOP GEN GEN GEN

NO MOD? MEAN GEN 100 150 200 SIGN
16 No 60.3 98 60.2 62.6 64.3

17 Yes 71.0 122 70.2 72.2 73.2 *

Table 7.2.5 The Modification Scheme Using a Short Chromosome
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EX NO. START  STOP STOP GEN GEN
NO DET VALUE MEAN GEN 150 200

18 100 3.0 63.8 103 -- --
19 100 4.0 67.5 120 -- --
20 100 5.0 65.2 127 -- --

21 17 3.0 67.3 117 69.8 71.4
22 17 4.0 71.0 122 72.2 73.2
23 17 5.0 65.5 118 68.1 72.4

Table 7.2.6 Effects of Different Starting Parameter Values

of detectors.

As final proof of the overall superiority of the parameter modi-
fication scheme we took one of the best reproductive plans (which will
be developed in the next chapter) and ran it without the parameter mod-
ification scheme. The results are presented at this time in Table 7.2.7
to demonstrate the modification scheme's superiority in this important

situation.

EX STOP  STOP GEN GEN

NO MOD? MEAN  GEN 150 200 SIGN
24 No 71.9 111 72.9 74.1

25  Yes 75.5 130 76.8 79.2 *

Table 7.2.7 Effect of the Modification Scheme on One of
the Best Reproductive Plans
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Critique of the Parameter Modification Scheme

Before ending this section we would like to point out some bad as-
pects of our parameter modification scheme and to suggest some improve-
ments. Although the scheme has proved to be a valuable addition to our
reproductive plan, we believe that some parts of it can still be further
refined to work even better.

The first problem involves the starting parameter values which
must still be set by the experimenter. We have shown that within a
certain range the initial values do not significantly affect final per-
formance especially in the long run. However, in extreme cases and in
the short run, initial values do seem to have some effect. As a general
rule it is better to start with higher values than with lower ones since
the scheme is biased towards eventually lowering values in the later
part of adaptation. However, a better solution might be to institute
a new scheme during the first 10 or 20 generations whose sole purpose
would be to extract a set of parameter values to be used from then on.
During these initial generations, the genetic operators could be applied
at random or in some systematic way so as to test as many parameter value
combinations as possible.

Another problem involves the crossover operators. As we explained
above, the parameter values for these operators fluctuated more than de-
sired, especially in the later stages of adaptation. A relatively simple
way to reduce this phenomenon is to readjust the PGAP factor (see presen-
tation of Schemes 1 and 2 above). By imposing a maximum of .6 or .8 on
each crossover operator we would reduce the size of PGAP when an increase
in probabilities is due. Furthermore, this maximum would guard against

extreme crossover rates which, as we mentioned above, can come about due
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to loss of variance in the population. We could also reduce the maximum
on PGAP from .5 to .25. Again this would affect increases more than de-
creases since PGAP is usually less than .25 when a decrease in probabil-
ities is in order.

The next step in improving the modification of crossover probabil-
ities would be to maintain only one probability to determine the appli-
cation rate of a general crossover operator. The question of how many
breaks will occur could be decided independently by examining only those
individuals which were produced using crossover. In this way the cross-
over probability would be modified on the basis of twice as many samples
as before since previously only one of the two crossover operators could
be applied. This would definitely reduce some of the fluctuations.

A way to check for unjustified rewards to the crossover operators
and also help to minimize problems involved with loss of variance, would
be to maintain a similarity measure between individuals. If an individ-
ual were produced using only mutation, it would be very similar to its
parent. In this case crossover could be prohibited between these two
individuals (a sort of incest taboo) or the crossover could carry little
weight in modifying the crossover probability. Another possibility would
be to eliminate the inferior member of a very similar pair, thereby main-
taining a rich variety of individuals. This method will be investigated
in Section 8.4.

Another problem with our parameter modification scheme involves in-
teractions between operators. For example, if a new individual is formed
using crossover and some mutation operators, it is very likely that its
performance will be due mainly to crossover, which made the largest modi-
fication. Therefore, the mutation parameters should be modified very

]
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little based upon this sample. There are probably similar interactions
between the mutation operators but to a much lesser degree.

Our final comment involves the false peak phenomenon in the meta-
space of parameter values. About the only time this becomes a problem
is during the later stages of adaptation. Take the following observed
situation. Low crossover and mutation rates produce many similar indiv-
iduals. Inversion is also 1ow‘since it equals the average of the two
crossover operators. Soon crossover takes place between identical seg-
ments on two different strings. No actual change takes place but the
offspring performs as well as its parents and the crossover operator
is rewarded. Thus the crossover rate increases pulling inversion up
with it. Increased inversion makes it less likely that crossover will
occur between identical segments. But now almost every offspring is
formed via crossover and the modification is too large (at the later
stages of adaptation) for it to perform well enough to replace a popu-
lation member. Without new population members no change occurs in the
high crossover values and almost all new individuals are inferior.

This problem might be eliminated using some of the suggestions
above (e.g., maximum crossover rate, similarity measures). However,
there are other solutions. One would be to use information from all
new individuals to modify parameter values especially when there are
few new population members. Another solution would be to introduce a
low level of random applications of operators throughout adaptation to
avoid extreme dependence on the current parameter values. Either of

these solutions would have most likely avoided the above problem.
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Summarx

In this section we have successfully developed a parameter modifi-
cation scheme which resulted in more efficient and effective use of re-
productive plans.

The scheme maintained one set of parameters for all individuals
and used observed operator frequencies in new population members to
modify the current parameter vélues. In addition, some biases were
introduced to lower parameter values near the end of adaptation.

The scheme was evaluated and developed with respect to stability
and convergence criteria. We found that it was capable of converging
on final mutation values which were significantly different for the
different mutation operators and for different chromosome lengths but
which were not affected by population size or starting parameter values.
Similar trends did not occur with the crossover operators for reasons
which we have discussed above.

Plans using the parameter modification scheme outperformed similar
plans without the modification schemes. This result was particularly
evident in the long run and was upheld over different chromosome lengths,
starting parameter values, and plan modifications.

Finally, we have discussed some of the bad aspects of the parameter
modification scheme and suggested possible improvements.

The successful implementation of a parameter modification scheme is
a major step in developing efficient and effective reproductive plans.
First, it eliminates all the testing that took place in the previous sec-
tion to find "optimal" parameter settings. This is important since these
plans typically require a large amount of time. Secondly, it enables the

-
plan to use what operators it needs when it needs them. This is very impor-
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tant since the need for different operators at different levels of evo-
lution has been demonstrated previously in this task and in earlier work.
Finally, by examining the changes in operator parameters, the researcher
can gain valuable information about the space he is searching even though
he still receives payoff-only information from the environment. This
could eventually result in the development of valuable new operators.
Table 7.2.8 indicates how the formal elements of an adaptive plan,
Mt,? , and m have been modified or extended as a result of the parameter
modification scheme. Note that most of the work was involved in devel-

oping a good function m to change the current set of parameters in memory.

Formal

Element Modification Involved

Mt: 1) Current set of parameters

Current Memory 2) Current observed frequency of operator

usage in new population members

3) Number of new population members since
last change in parameter settings

~

T :Device Selection .
Uses current parameters for recombin-

function .
ation
m: 1) Update current parameters (various
Memoxry schemes were tried to reduce fluctua-
updating tions and produce consistent performance)
function

2) Keep track of operator usage and new
population members

Table 7.2.8 Changes Due to the Parameter Modification Scheme
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7.3 Some Additional Observations on Population Size and Crossover

Before ending this chapter we would like to reassess the effects of
population size and the crossover and inversion operators in light of the
experiments of the previous section and the introduction of the parameter
modification scheme.

Table 7.3.1 presents three experiments from the previous section
which differ only in the compésition of the population used. All exper-
iments used the parameter modification scheme on the difficult task. We
have included the number of samples before shutoff to adjust for the diff-
erent sampling rate of the 20/10 population. The 12/6 population proved
to be significantly inferior to both of the other populations. The com-
parison with the 20/10 population is not justified due to a significantly
different number of samples. However, the 20/14 populations did. not use
significantly more samples but did produce significantly better results.
Comparisons between the 20/10 and 20/14 populations indicate no signifi-
cant difference in performance even though the 20/10 population used sig-
nificantly more samples. These results point towards to 20/14 population
for future use. It performs at least as well as the 20/10 population yet
it has a larger population base (important for maintaining population

variance.)

EX POP STOP STOP NUMBER

NO SIZE MEAN GEN SAMPLES SIGN
11 12/6 61.4 99 594 *
13 20/10 70.2 102 1020

15 20/14 67.5 120 720

Table 7.3.1 Population Size Comparison
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Now let us reexamine the effects of crossover and inversion. Ex-
periments in Section 7.1 seemed to indicate that these operators were a
valuable addition to reproductive plans. However, the results of the
last section did not verify the plan's need for definite crossover appli-
cation levels at certain points in evolution. Therefore, we have run
some additional experiments using the parameter modification scheme but
without the use of the crossover operators or inversion. In these ex-
periments the parameter modification scheme should work even better on
the mutation rates since there is no crossover to mask the effects of
good or bad mutations. Starting mutation rates were the same for all
experiments.

Table 7.3.2 summarizes the results of two pairs of experiments.

The entry under C&I? indicates the use of crossover and inversion. Ex-
periments 17 and 27 were run with a short chromosome (17 detectors).
Experiment 17, using crossover and inversion, was significantly superior
(at better than the 1% level) for every comparison point used. Experi-
ments 25 and 26 involved one of the best reproductive plans developed
(in next chapter) run with and without crossover. Again the plan with
crossover was superior at the same significance levels. These results
provide solid evidence that crossover and inversion are extremely val-
uable mixing operators independent of chromosome size and plan modifica-
tions.

This section ends our study of the basic elements of reproductive
plans. The rest of our work will be devoted to exploring a number of
schemes to further improve the operation of these plans. We shall be
principally concerned with maintaining an effective search for an ex-

tended period of time. Therefore, many of the schemes will be used only
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EX STOP STOP GEN GEN

NO CgI? MEAN GEN 150 200 SIGN
17 Yes 71.0 122 72.2 73.2 *
27 No 62.0 115 63.5 64.8

25 Yes 75.5 130 76.8 79.2 *
26 No 64.5 103 68.2 71.1

Table 7.3.2 The Effects of Crossover and Inversion

when adaptation slows down or when the population lands on a false peak.
As a means to the above end we will also be concerned with maintaining
a rich variety of individuals in the population since loss of variance
is often the major cause of false peaks. Let us now turn to this en-

deavor.



Chapter 8 Further Refinements of the Reproductive Paradigm

Introduction

In this chapter we will investigate a number of techniques to
further improve the performance of reproductive plans. Basically,
we will be concerned with inducing an effective search. In other words,
we will try to develop a plan which is capable of maintaining significant
adaptation over an extended period rather than operating efficiently
for a short period. Therefore, many of the schemes which we will
try will take effect only when performance seems to be leveling off.
Figure 8.1.1 presents a flow diagram outline of the current status
of the reproductive plan. In the large box we have indicated how
the parameter modification scheme affects the process of generating
new offspring. 1In the top left hand portion we have added a new
option called the variable chromosome scheme. Let us now turn to

this scheme.

8.1 Variable Length Chromosomes

The purpose of this scheme is to force an individual to use all
of its detectors effectively by initially giving it only a few detectors
to use. The plan proceeds as follows. At the beginning of adaptation,
all chromosomes contain about one-third of the normal number of detectors.
Adaptation continues with these chromosomes until the marginal gain
in the average performance of the population during the previous 15

generations falls below a certain level called the extension level.

174
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At this point more detectors are added to each individual and the

whole chromosome is retested to receive a new utility. Adaptation

with this 'new'" population continues for at least an additional 15
generations and then as long as the marginal gain remains greater

than the extension level. This process is repeated adding more detectors
until all chromosomes have the normal amount. Then normal adaptation

is continued until some stopping rule is exercised.

In developing this plan we have assumed that an individual which
is forced to use limited resources will build up valuable small subsets
of detectors. When these resources seem to be insufficient for further
improvement we provide for additional resources which presumably will
induce a sudden increase in performance. By the time the individual
is using the normal number of detectors he will hopefully have built
up a more powerful set than would be the case if he were using all
the detectors from the start.

In developing this scheme we will be concerned with how the
extension will be made (i.e., where we will obtain the additional
detectors) and when the extension will be made (i.e., what extension
level). A chromosome normally contains 110 detectors. Each chromo-
some will consist of 35 detectors initially, and will gain an additional

25 during each extension for 3 extensions.

Scheme 1: Random Extension

In this scheme the extension level was set at 4.0. When the
change in utility for the previous 15 generations fell below that

level the chromosomes were extended by adding randomly generated new
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detectors.

The results of this scheme were not favorable. Every time a
chromosome was extended it experienced an immediate decrease in utility
contrary to what we had expected. Obviously, the inferior performance
of randomly generated detectors outweighed the benefit of having more
detectors. It took the plan on the average 15 generations to regain
previous utility levels after the addition of the new detectors.

Using the slope stopping criterion this scheme turned in performance
comparable to the constant chromosome scheme (i.e., using 110
detectors from the start). However, the random extension scheme used
about 50 additional generations before stopping (significant at the
1% level). This suggests that the random extension scheme is not a

valuable addition to reproductive plans.

Scheme 2: Intrachromosomal Duplication

A process called intrachromosomal duplication has been observed
in the real world. As a result of this process, a gene or set of
genes becomes duplicated many times within a chromosome. This
effectively increases the local sampling rate of slight variations
of this gene since it is more probable now that one of the duplicates
will undergo mutation.

This operation seemed ideal for our situation. The random extension
scheme probably failed due to the jarring effect of adding random
detectors to detectors which had worked very well together. Intra-
chromosomal duplication would add additional genes without having this

jarring effect since the ''mew'" genes would only be copies of others.
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This is analogous to attaching weights of 2 to some of the detectors
in the pattern recognition task. This probably will affect the new
utility a bit depending on whether the duplicated detectors were
good or bad, but generally performance should not change greatly and
when it does, it sould increase as often as it decreases.

Results with this scheme were about as expected. Although
performance after extension was often below that before extension,
it only took 4 generations on the average to regain the previous level.
Furthermore, final performance under the slope stopping criterion
was superior to that of the constant chromosome scheme. These results
will be presented later in table form.

Since this scheme was so successful we decided to test the effect
of different extension levels. Low extension levels (2.0, 3.0) seemed
to force the individual to become too good before extension. As a
result, performance dropped by a greater amount after extension and
it took more generations to regain previous levels. The net result
was a larger number of generations before stopping, but no similar
increase in performance. An extension level of 8.0 seemed to be the
best. Performance was similar to experiments using an extension

level of 4.0 but fewer generations were needed.

Scheme 3: Concatenated Segments

This scheme differs from the above in that the chromosome segments
initially evolve independently of one another. At the beginning each
of three independent populations of chromosomes (containing 36 detectors)
evolve until marginal performance falls below the extension level. At

this point a population of normal length chromosomes is generated by
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randomly selecting one segment from each of the three populations

and concatenating the detector strings. This new population then becomes
the current population. However, for at least the next three genera-
tions, new individuals are still formed using concatenated segments,

not by the usual duplication and recombination methods of reproductive
plans. After these three generations, this process is continued as

long as at least one new population member is created per subsequent
generation. As soon as this condition is not met, the three populations
of concatenated segments are discarded and the normal operation of

the reproductive plan takes over for the rest of adaptation. Care is
taken that no concatenated individual is identical to a previously
created concatenated individual.

It was felt that increasing the sampling of concatenated
individuals beyond the formation of the new population was a worth-
while expenditure since it constantly increased the mean performance
of the population without any loss in variance. In this respect, each
individual differs from another in at least one whole segment, i.e., 1/3
of the chromosome. The increased sampling was justified. As opposed
to the previous schemes where extension typically resulted in
temporary falling off of performance, the concatenation scheme resulted
in a population whose mean performance was significantly higher than
the mean performance of all segments contributing to the concatenation
process. Furthermore, the best individual of the concatenated popu-
lation was always superior to the best of all segments contributing
to the population. Since we have shown using previous schemes that

size alone does not account for the goodness of a chromosome, we must



180

conclude that the concatenated segments work in somewhat of a comple-
mentary fashion. Results also show that on the average seven additional
generations were spent sampling concatenated individuals after the
initial three. Again we found that a high extension level (concatenating

early in evolution) produced better end results in fewer generations.

Quantitative Analysis of Variable Chromosome Schemes

Let us now compare the performance of all three schemes to that
of the constant chromosome scheme. Table 8.1.1 gives performance
based on the slope stopping criterion. Both Schemes 2 and 3
significantly dominated the constant chromosome scheme. The signifi-
cance was less for the random extension scheme due to its large variance.
In fact, the variance of Scheme 2 (intrachromosomal duplication) was
significantly lower than that of Scheme 1. Furthermore, Scheme 1 took
significantly more generations than did the constant chromosome scheme
or Scheme 2. The number of generations shown for Scheme 3 is a bit
deceptive since we have included all generations of all three initial

populations of segments.

EX EXTENSION STOP STOP STOP SIGN
NO SCHEME MEAN GEN S.D.

1 Const.Chrom. 67.5 120 4.5

2 1-Random 65.3 167 8.2

3 2-Inchrom. Dup. 71.5 126 3.4 *

4 3-Concat. Seg. 71.7 149 3.6 *

Table 8.1.1 Summary of Variable Chromosome Schemes
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The above results indicate that two of the variable chromosome
schemes, intrachromosomal duplication and concatenated segments,
perform significantly better than the best constant chromosome scheme.
We have chosen to maintain the intrachromosomal duplication scheme
for further experiments. Although the concatenated segments scheme
performed as well as the intrachromosomal duplication scheme, the

former required more controls and used more generations.

Effects of Population Size: Revisited

Before ending this section we would like to present the results
of some experiments which again test the effect of population size.
Since the beginning of our investigations, we have found that in-
creasing population size has had a favorable effect on performance
even though we maintained the same number of samples per generation.
Moreover, the introduction of the parameter modification scheme and
the intrachromosomal duplication scheme has increased the need for a
large population in order to maintain sufficient population variance.
The parameter modification scheme reduces population variance as a
result of low parameter settings during the later stages of adaptation.
In this situation many offspring closely resemble their parents and
replace some other individual in the current population, thereby
increasing the homogeneity of the population. Intrachromosomal
duplication can produce a similar effect due to the duplication of
genetic material within an individual. The combination of these two
schemes can severely inhibit significant adaptation during advanced
stages due to the loss of variance and the resultant loss of a parallel

search.
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We have introduced the 40/34 population to further guard against
loss of variance. In addition, we have modified our selection scheme
when using this population. If we allowed all 34 members to produce
modified utilities for use in offspring distribution, all individuals
would be apportioned a small fraction of an offspring. As a result,
all six offspring would be randomly distributed over the population
resulting in an underselection situation. Therefore, we shall use
only the top 14 individuals for the initial weight assignment of off-
spring. Any excess offspring due to an individual exceeding his quota
during one generation or over all generations will be distributed ran-
domly among all members of the population. If there were no excess
offspring this population would act exactly like the 20/14 population
since the extra population members would never by able to produce
offspring and, therefore, might as well not be there.

However, table 8.1.2 indicates that the 40/34 population does have
a significant effect. For the constant chromosome scheme, there
was no clear cut effect. Experiment 5, using a 40/34 population, per-

formed very erratically with many runs terminating very early. As a

EX POP STOP STOP STOP SIGN
NO SIZE SCHEME MEAN GEN S.D.

1 20/14 Const. Chrom. 67.5 120 4.5

5 40/ 34 Const. Chrom. 60.4 101 11.2

3 20/14 Ichrom. Dup. 71.5 126 3.4

6 40/ 34 Ichrom. Dup. 75.5 130 4.3 *

Table 8.1.2 Effects of a Large Population
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result, the variance of this experiment was very large and significantly
different from all others. There was no significant difference in
mean performance between experiments 1 and 5.

The intrachromosomal duplication scheme, on the other hand, reacted
very favorably to the larger population. As evidenced by experiment
6, it produced performance which was significantly superior to all other
experiments (at the 2% level) without any significant increase in
the number of generations. Experiment 6 has proved to be one of the
most successful reproductive plans that we have developed. It has been
referred to in earlier chapters when we have performed final tests
on various schemes. In these cases we have run experiment 6 with one
modification (e.g., a different selection scheme or without the para-
meter modification scheme). In all cases the modification has resulted
in performance inferior to experiment 6. These results indicate that
the reproductive plan used in experiment 6 consists of many parts,
all of which are needed to turn in the excellent performance that
we have seen.

A few additional experiments were run to test the effect of popu-
lation size and sampling rates in extreme situations. These experiments
used 4/2 and 40/38 populations. Runs were maintained for 600 generations
so as to permit comparison with other experiments having a higher
sampling rate.

Table 8.1.3 summarizes the results. Besides maintaining a constant
chromosome, experiment 7 did not¢ use the parameter modification scheme;
the other experiments did. For all comparisons, there was no signi-

ficant difference between experiments 7 and 8. This may seem surprising
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EX POP GEN GEN GEN

NO SIZE SCHEME 200 450 600 SIGN
7 4/2 Const. Chrom. 53.8 61.1 63.5

8 4/2 Ichrom. Dup. 52.3 58.2 60.1

9 40/ 38 Ichrom. Dup 64.3 75.3 77.3 *

Table 8.1.3 Effects of Different Population Sizes

since we have already shown that the parameter modification scheme and

the intrachromosomal duplication scheme produce superior results.

However, these experiments point out the importance of a large popu-
lation in these cases. Experiment 9 supplies the most convincing

evidence since it differs from experiment 8 only in the size of the
current population. This was significantly superior to the other
experiments at the 2% level. As far as sampling rates are concerned,
there was no significant difference between experiment 9 (2 samples/gener-
ation) and experiment 6 (Table 8.1.2, 6 samples/generation); comparisons

were made using equal numbers of total samples.

Summary

In this section we have investigated a different type of reproductive
plan. The device selection function 7 did not change. However, the
search space L£%7xvas modified (expanded) as the search proceeded. Some

heuristic techniques have already been developed which increase the
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efficiency of a search by effectively decreasing the size of the search
space [Lin]. The variable chromosome scheme has achieved a similar
goal but from a different direction. Initially, the search space 1is
small. Once some peaks in this space have been discovered, the space
is expanded so that the previous peaks are preserved in the larger
space.

It was discovered that intrachromosomal duplication and concate-
nating segments were both successful in preserving previous peaks in
the expanded space. Furthermore, these schemes performed significantly
better than the constant chromosome scheme without any increase in
the number of samples. We will use both the constant chromosome scheme
and the intrachromosomal duplication scheme for future experiments.

In addition to testing variable chromosome schemes, we have also
extended our tests on the effects of population size and sampling rates.
In these experiments we found that a 40/34 population can further
improve the performance of schemes which normally result in a decrease
in population variance. On the other hand, our most powerful schemes
were shown to be of no benefit when 4/2 populations were run. This
result is very significant considering that Fogel et al, Klopf, Samuel
and Uhr and Vossler all maintained "populations' of only one or two

individuals.
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8.2 Auxiliary Populations

In this section we will experiment with two techniques which
maintain or generate more than one population of devices in the course
of evolution. Again the main purpose of these techniques is to maintain

significant adaptation over an extended period of time.

Isolated Populations

Our first technique is to operate two separate populations until
performance appears to be leveling off. At this point the populations
are mixed to form two new populations, each new population containing
some individuals from each of the isolated populations. Then the
new populations are permitted to continue adaptation, hopefully more
successfully than the previous populations.

In using this technique, we are assuming that performance usually
levels off because a population loses much of its variance and thereby
loses its ability to carry on a truly parallel search. Since many
individuals closely resemble one another at this point, crossover
fails to bring about any meaningful mixing, leaving mutation as the
only means of variation. However, by mixing populations which have
evolved independently of one another, we will end up with genetically
different individuals which have comparable payoffs. In this case,
it seems very likely that crossover will produce valuable exchanges

and the parallelism of the search will be maintained.
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The scheme was implemented in the following manner. The first
population evolved until its marginal utility fell below a certain
level. At that point, the population was saved along with its mean
performance. The second population evolved until its mean performance
was just greater than the mean performance of the first population.

At this point, the two populations were combined to produce two mixed
populations. The first, third, fifth, ... individuals of the first
population were combined with the second, fourth, sixth, ... individuals
of the second population to form one mixed population, the other mixed
population being formed similarly. Then each mixed population evolved
independently for at least fifteen generations and then until the mar-
ginal utility stopping rule was exercised.

The above scheme was used to assure that both isolated populations
reached comparable performance levels before mixing. Otherwise individ-
uals from a superior population would dominate those from an inferior
population and no significant mating would take place in the mixed
population. Populations of size 20/14 were run using the parameter
modification scheme with constant length chromosomes.

For the first few runs, the first population evolved until its
marginal utility for the previous 15 generations was less than 2.0.
This, however, resulted in population mixing at too early a point in
evolution. Significant adaptation did continue after mixing but it
was hard to say whether this was due to the mixing or to the fact that
there still was plenty of room for improvement. At any rate this did

not address itself to the real problem, namely that of forcing all runs
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to attain nearly the same high degree of performance.

Therefore, the first population was allowed to evolve until its
marginal utility was less than 1.0. Since this is the normal stopping
point for our runs, any additional increase above the performance level
attained by these isolated populations should be considered important.

The results, however, were disappointing. Of two runs tried, only
one of the four mixed populations continued to any substantial degree
past the 15 generation minimum after mixing. In fact, this one popu-
lation remained mixed for only three generations after the initial
mixing, whereupon all individuals from one of the isolated populations
were selected out in favor of the individuals from the other population
and their offspring. In addition, we discovered that little mixing
took place via the crossover operators. For two of the mixed populations,
no new population members were formed from a crossover between members
of different isolated populations. Another mixed population generated
one '"mixed individual" just before the run was terminated. The fourth
population produced a few '"mixed individuals'' but still could not
increase its mean performance enough to avoid being shut off after
15 generations. In light of this evidence, no further runs were made
using this particular scheme.

The cost of running two isolated populations is certainly great;
therefore, one should be guaranteed success almost every time. One
way to reduce the cost factor would be to run the two isolated populations
sampling only half as many individuals as usual. This would solve the
cost problem but two difficulties remain. The performance of the

isolated populations with half the sampling would certainly be inferior
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to a population sampling twice as much. Secondly, the problems after
mixing still remain.

Unless significant mixing takes place between individuals from
different populations through a crossover-like operator, isolated popu-
lations will serve no purpose. One of the problems with our scheme
might have been due to the lack of rigid controls after the mixed
populations were formed. At this point, it might have been helpful
to aid the process of forming a truly mixed population (of mixed in-
dividuals) by requiring all offspring to be formed via crossover.

If this proved to be too great a change, then biases could be placed
on the breakage points for double crossover so that the length of the
exchanged segments was relatively small. After a number of fairly
good mixed individuals were formed, these controls could be relaxed
and adaptation could continue normally.

Another technique which might help the isolated populations
scheme would be to mix the populations early in evolution, force the
formation of mixed individuals, and then continue to mix the newly
formed mixed populations at selected points thereafter. This technique
would probably result in more similarity between the isolated populations
but would still maintain added parallelism in the search. Furthermore,
the similarity between the isolated populations would make it increasingly
likely that good mixed individuals would be formed each time the

populations were mixed.
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New Populations

Instead of implementing the above modification of the isolated
populations scheme, we decided to try a new scheme which hopefully will
serve the same purpose, i.e., to force all runs to discover significant
peaks in the search space. This scheme operates in the following manner.
At each generation a copy of an individual randomly chosen from the
current population is stored in an auxiliary population. This secondary
population does not come under selection but is continually modified
by replacing the "oldest" individual every generation. When the
performance of the current population seems to be leveling off, the
secondary population becomes the current population and takes over the
evolutionary process. The other population is discarded. This new
population continues adaptation for at least as many generations as
is needed to build up another secondary population. Then it continues
on its own merit until its average performance falls below a specified
level.

For the first few runs populations were replaced when the marginal
utility was less than 1.0. However, few new populations were able to
survive at this pace and were replaced as soon as another new population
became available. This was not desirable. Therefore, we ran the new
populations until the marginal utility fell below .5 and stayed below
.5 for up to four successive generations. This latter condition was
useful since it allowed momentary dips below the crucial value.

With this new replacement rule, many of the new populations did

remain in use for a substantial period of time on their own merit.



191

The problem now was to determine an adequate stopping rule for each run.
We decided to permit a total of three new populations. Since each
auxiliary population is generated from the previous population and its
offspring, there is usually a loss in variation with each new population
producing a decreasing marginal utility. In addition, we felt that

if any gains were to be made they should have taken place by the third
new population.

This scheme was tested with a 20/14 population using the parameter
modification scheme. Both constant chromosomes and varying chromosomes
(using intrachromosomal duplication) were used. The results of these
runs were for the most part difficult to analyze. To reiterate, the
purpose of this scheme is to enable evolution to continue when it appears
that the present population has reached a peak. Therefore, we should
at least expect a significant difference in performance levels after
the third new population when compared to the level before the first
new population. However, some compensation must be made for the cost
of running these additional populations. In particular, each new popu-
lation will run a minimum of 14 generations. In a total of 42 additional
generations it is probable that the original population would have
made some additional gains. Therefore, comparisons must take into account
the total number of generations elapsed before final payoff.

With this criterion in mind we shall now evaluate the new-populations
technique. The experiments with the intrachromosomal duplication
scheme seemed to indicate that the new populations added very little.

Of six runs, four realized very little or no increase in performance
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due to the new populations. However, there was an unexpected complication
in these tests since two of the runs attained very high levels of per-
formance before the new populations were used. Therefore, there was
little room for additional improvement. Another two runs attained
comparatively low levels of performance but still were not able to
benefit from the new populatidns. However, upon investigation of
these runs we found that the original populations had lost most of
their variance well before the new populations took over. As a result
each successive population was more and more homogeneous. Two other
runs did achieve a relatively larger performance increase with the new
populations, although the final performance levels were not above what
is typically reached using the same total number of generations.
Therefore, one can conclude that the new population scheme is not
worthwhile when used with the intrachromosomal duplication scheme.

Using constant chromosomes, the results were a bit easier to analyze.
All the runs attained comparable performance levels before the new
populations and all realized some gain with the new populations.
In particular, the best run before the new populations realized the
least improvement by means of the new populations, while one of the
worst runs before the new populations realized the most improvement.
This certainly seems to satisfy the desire of bringing inferior runs
up to the level of other runs.

Table 8.2 gives average performance levels right before replacement
of the original population and after each new population. The gain in
performance with each new population is not overly impressive, but

does indicate that the new populations are capable of sustaining
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AVE AVE
STATE OF THE SCHEME GEN PAYOFF
Before first new population 183 72.8
After first new population 212 73.8
After second new population 240 74.7
After third new population ' 287 77.4

Table 8.2 The effect of new populations on
performance using constant length chromosomes

adaptation. However, the current method of generating new populations
is rather crude.

A refinement of the new population scheme might prove more
successful. For one thing at least one of the new populations in
each run achieved little or no improvement whatsoever. Yet, because
they were required to run for a minimum of 14 generations they did
succeed in diluting the performance of the better populations since
total time is taken into account. Therefore, any improvement in
the selection of individuals for the new populations might prove
helpful. One such improvement would result from checking for dupli-
cations during the process of randomly picking new population members.
Some duplications are highly probable and serve only to reduce the

population variance.

Summary

In this section we have investigated two schemes in an attempt to
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maintain significant adaptation over an extended period of time.
However, we have come to the general conclusion that the schemes
did not live up to our initial expectations.
We have presented suggestions at the end of each scheme as to
how we feel the schemes could be improved. In general, these suggestions
call for more elaborate controls. We have developed reproductive
plans which are now working very well. Therefore, it is difficult
to get them to perform even better without sophisticated controls.
Such controls might involve monitoring the population to assure that

variation is maintained.

8.3 Mutation Pools

In the previous section we tried to maintain significant adap-
tation by operating isolated populations or generating new populations.
However, the isolated populations did not mix sufficiently and the
new populations were probably formed too late in evolution after most
of the damage (i.e., loss of variance) had been done.

In this and the next section, we will investigate techniques
which will operate continuously as the population evolves. First
we will try a scheme, similar to dominance in the real world, which
should maintain rapid access to potentially valuable genes or detectors.
Then in the next section we will continue our efforts to maintain
a rich mixture of different individuals in the population.

Let us briefly describe the role of dominance in a real world
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situation. In the typical case we are dealing with a diploid individ-
ual, which possesses a number of pairs of chromosomes. Therefore,
each gene is composed of two possibly different alleles. In the

case of pure dominance, only one of two different alleles has an
effect on the individual's performance. This one is called the
dominant allele while the other is considered recessive.

One benefit of this situation is that it reduces selective
forces against a number of recessive alleles. If each allele were
expressed according to its worth in the present environment, selection
would often favor the '"best' one, eliminating the rest. Two possible
dangers may result from this situation. First, the environment
may change so that an allele which was very good in the previous
environment may only be average or even lethal in the new environ-
ment. Secondly, there might be interactions between genes so that a
particular allele might be best only while existing simultaneously
with another allele at a different gene. In other words, the goodness
of an allele may be very dependent upon the context in which it
appears. If this context changes due to the change in an allele
at another gene, the particular allele which formerly appeared to
be very good may not perform very well any longer.

Without dominance in an isolated population, the only way to replace
lost alleles is through mutation. However, mutation is for the most
part a random operation which provides for very slow replacement
of alleles. In a dominance situation the recessive allele is carried

along with the dominant one but is not subject to selective forces
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since it does not affect performance. However, if identical recessives
show up on both genes of a chromosome pair they will affect performance
and be subject to selection. In this way dominance provides for rapid
access to a number of different alleles.

Dominance itself may also change due to changes in the environment.
In other words, an allele which in one environment played a dominant
role may eventually become recessive in a different environment. The
phenomenon of industrial melanism provides the most convincing example
of how a change in environment can force a change in dominance (Wallace,
1968).

It certainly seems that dominance would be a valuable addition
to reproductive plans. However, with our task there is no important
distinction between a gene and an allele and it is doubtful that any
single detector will play a large enough role so that over-selection
will take place over the number of generations we are dealing with.
Yet, the ability of the dominance situation to provide rapid access
to alleles in addition to mutation seems to be an interesting technique
which we could use.

Basically we will try to improve the performance of the Mutation 2
operator (which previously produced randomly generated detectors) by
maintaining a recessive pool of detectors wﬁich are extracted from the
current population throughout evolution. The detectors in this pool
are not affected by selection, but when the plan calls for the use
of mutation 2, a detector randomly taken from the pool will replace
a detector on a chromosome. Thus the previously ''recessive' detector
is now affected by selective forces.

Let us look at the specific implementation of the mutation pool.

The pool actually consists of five subpools, each subpool containing
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about 100 detectors. After the initial population is randomly generated
and tested, the pools are filled by randomly extracting detectors

from the top portion of the population. Most likely there will be
duplicates. Thereafter each subpool is used once every five generations
and serves as t%e source of genetic material for Mutation 2. During
each generation one-fifth of the detectors in the current subpool is
replaced with detectors extracted from the current population. Detectors
in the subpools are dated so as to replace the oldest ones first.
Therefore, at each generation detectors are available from a subset of
the past 25 generations.

Our first experiment used mutation 2 alone to test the effect of
the pool without the interference of other operators. For comparison
with a previous experiment we used a 12/6 population on the easy
task. Experiments 10 and 11 in Table 8.3 show the results of this test.
Mutation 2 operating from the pool produced significantly better adap-
tation than random Mutation 2. Next we ran our 20/14 population on the

difficult task using all genetic operators. Experiment 12 did not use

EX POP PARAM MUT 2 STOP STOP

NO SIZE TASK MOD? POOL? MEAN GEN SIGN
10 12/6 EASY NO NO 71.1 43

11 12/6 EASY NO YES 77.3 55 *

12 20/14 DIFF. YES NO 67.5 120

13 20/14 DIFF. YES YES 68.2 126

Table 8.3 The effects of the mutation pool
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the mutation pool while 13 did. The lack of significance between these
two experiments is probably due to the fact that Mutation 2 plays a
relatively minor role in the evolutionary process when compared to
the role of the other genetic operators. However, we have shown that
the recessive pool does improve the performance of Mutation 2.

The mutation pool can be viewed as a method which eliminates
some of the random aspects of mutation by directing the choice of new
alleles towards those which are more likely to produce high payoff.
Mutation 1 could be modified similarly. Instead of replacing an
n-tuple point with a randomly chosen mesh point, we could extract some
random point from another detector in the current population.
Alternatively, we could bias our choice of a new mesh point by picking
new mesh points which are spatially close to the point we have

eliminated.

8.4 Maintaining Population Variance

Introduction

In the previous section we were concerned with maintaining variance
at the gene level. In this section, we will be concerned with invest-
igating a technique for maintaining population variance; i.e., main-
taining a rich variety of individuals in the population. Rather than
trying to correct for the loss of population variance as we did in

Section 8.2 on auxiliary populations, we will apply a more continuous
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effort to insure that no two individuals in the population are too
similar to one another.

Near the end of Chapter 7 we commented on the need for a method
which would maintain population variance. At that time we suggested
calculating a similarity measure between individuals in the current
population and using this measure to influence pairing for the cross-
over operation or to determine which population members should be
discarded. However, it would be very costly to calculate a similarity
measure for each new population member. First the measuring process
itself could prove lengthy. For example, a suitable measure should
take into account the number of identical detectors existing between
two individuals. However, we could not calculate this just by lining
up the strings and checking for matching detectors along the length
since an inversion might have reversed positions. Therefore, we would
have to use a more sophisticated process and, for each new individual,
we would have to apply this process to all N-1 pairs of individuals
in a population of size N.

In order to avoid the very high costs associated with the above
process, we will use less exact but simpler techniques. We assume that
a similarity measure will be highest between parents and offspring.
Therefore, we will check for similarity only between these individuals.
In this way, our similarity measure can be based upon which genetic
operators were used to form the offspring rather than upon structural
similarities between all individuals. There is also a good chance

that different offspring from the same parent will be similar. However,
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this chance will be minimized as we will demonstrate below.

Before presenting the three schemes that we have investigated,
we would like to comment on how we should evaluate them. These schemes
constitute a major change in the operation of reproductive plans.
What we will do is add a preselection scheme so that individuals will
be discarded using information in addition to payoff. However, many
of the techniques we have previously incorporated (e.g., parameter
modification) were developed using only our previous selection scheme.
Therefore, there is a good chance that performance using our preselection
schemes may appear inferior even though it could prove to be superior
in the long run.

In this regard we will be satisfied if performance with our new
schemes is only as good as performance with our old scheme since as
a valuable addition we will have evolved populations with a larger
variety of individuals. We have previously mentioned (Section 4.2)
why population variance is important for successful operation of re-
productive plans. This variation is important for a number of additional
reasons. First, the greater the variation the more likely that the
population will continue to improve past the final point that we use
for our comparisons. Secondly, we will have a number of truly differ-
ent devices which are very capable of performing a given task. This
would be valuable, for example, if the environment changed. In this
case there is a greater chance that some devices will '"survive'" the
change in environment and continue to receive a high payoff in the
new environment. If many of the devices are similar before the change

in environment, they will probably perform similarly (good or bad)
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after the change. Finally it might just prove convenient for some
researchers to have a number of different good devices rather than

just a few.

Preselection Schemes

We will call our schemes preselection schemes since they may dispose
of individuals (either offspring or parents) before the normal selec-
tion scheme is used. Our previous selection scheme will not change.
Figure 8.4 shows where this preselection process fits into the operation
of our reproductive plans. Below we will present three schemes.

Each scheme will be run with a 20/14 population using constant sized

chromosomes. Then we will compare performance using these schemes to
the performance of constant chromosomes without any of these schemes

and to the performance of the interchromsomal duplication scheme,

which to date has produced the best reproductive plan.

Scheme 1

This scheme exerts the least selection of the three we will
present. Its development was prompted by the following observation.
It often was the case that an offspring performed worse than its
parents (or parent) but, nevertheless, performed well enough to
replace a current population member. In other words, the mutation

and/or crossover was harmful but not harmful enough for the offspring
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to be discarded. However, this inferior offspring does resemble its
parents and serves only to decrease population variance.

To eliminate this situation we check all offspring after they
receive their payoff. If the offspring was created using one of the
crossover operators, it must have performed better than both parents
in order to assume a position in the current population. Otherwise
it is discarded. If the offspring was formed using only the mutation
operators, it must perform better than its parent or else it is discarded.

Performance with this scheme was a bit disappointing. Table 8.4,
experiment 14, shows the performance at selected generations. When
compared to experiment 17 (the previous constant chromosome scheme)
it was significantly inferior at generation 150. This significance
did not remain in later generations due to the large variance between
runs of experiment 14, Furthermore judging from the spread of
performance values in the population, it did not appear that exper-
iment 14 really maintained any greater degree of population variance
than did experiment 17. We may therefore conclude that this scheme

is not a worthwhile addition to our plans.

Scheme 2

This scheme involved an addition to Scheme 1 which resulted in
disposing of parent individuals when offspring were superior. If
offspring were inferior to their parents, this scheme operated like
Scheme 1. However, if an offspring was superior to its parents (or

parent) then, in addition to its assuming a place in the current
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EX PSEL CONSTANT GEN GEN GEN

NO SCM CHROM? 150 200 250 SIGN
14 1 YES 62.6 68.3 71.5

15 2 YES 58.3 61.3 63.8

16 3 YES 71.7 74.5 77.5 *

17 None YES 69.9 72.3 75.5

18 None Ichrom. Dup. 76.8 79.2 79.8

Table 8.4 Summary of Results Using Preselection Schemes

population, the worse parent (or only parent in the case of mutation)
was discarded. As one can see this scheme puts a major emphasis on
maintaining population variance. This was especially important in
the case of an offspring formed using only the mutation operators,
since in this case similarity is very high. With this scheme only
the better of the parent and the offspring remains in the current
population.

This scheme resulted in an extremely high amount of population
variance. In fact, the best individual in the population typically
received a payoff twice that of the average individual. However, the
performance of the best individual was extremely poor when compared

to other plans. Experiment 15 demonstrates this performance.

Scheme 3
It was surprising that Scheme 2 performed so poorly especially

since it maintained a large population variance. One possible reason
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is the rather strong requirements on offspring formed using crossover.
About 75% of all new individuals in the first stages of adaptation
are formed via crossover but very few performed better than both
parents.

Scheme 3 modified Scheme 2 only in the case of offspring formed
using crossover. In this case the offspring was required to perform
better than only one parent in order to assume a place in the current
population; in this case the inferior parent was discarded. If the
offspring was worse than both parents, then it was discarded.

The improvement resulting from this scheme was enormous.
Population variance was maintained to a greater extent than with
experiment 17 (which used no preselection) and performance was higher.
In fact, after 250 generations, experiment 16 significantly dominated
experiment 17, and at this same point it was not significantly
different from experiment 18 which was previously one of the best
reproductive plans. Therefore, we may conclude that the third pre-
selection scheme is a valuable addition to reproductive plans; it has
improved the performance of the constant chromosome scheme and has
maintained population variance.

Before ending this section we should comment on one bad aspect
of Scheme 3 which may have prohibited it from performing even better
in the late generations. Scheme 3 was developed after the parameter
modification scheme but Scheme 3 definitely affects the behavior of the
modification scheme since it plays a significant role in determining
new population members. In one sense, it should have improved the para-

meter modification scheme since now the genetic operators are rewarded
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based upon more valid information. In other words, now new popu-
lation members are offspring which have truly performed better than
their parents as a direct result of the genetic operators.

However, in another sense Scheme 3 seemed to adversely affect the
parameter modification scheme since it favored new offspring created
by crossover to a greater extent than new offspring created by mutation.
As a result crossover rates rose to their maximum values so that
every new individual was formed by crossover or double crossover.

This situation is certainly not favorable, especially in the later
stages of adaptation.

To avoid this situation we imposed limits of .6 on each crossover
probability and a limit of .8 on the sum of the two probabilities.
However, this did not significantly improve performance which already
was high despite the high crossover rates. It is possible that the
high crossover rates were not detrimental to adaptation; on the other
hand, the imposed limits may still have been too high to affect any
significant difference. In the final analysis we would suggest that
the refinements of the parameter modification scheme mentioned at the
end of Chapter 7 would most likely improve the performance of Scheme 3,
but, nevertheless, Scheme 3 was very successful in maintaining

population variance while increasing final performance levels.
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8.5 Summary

In this chapter we have investigated a number of techniques in
order to improve the performance of reproductive plans. Some have
proven to be very beneficial while others did not significantly improve
the performance of our plans.

Of greatest value was an evolutionary technique whereby the length
of the chromosome increased as adaptation took place. Of three schemes
investigated we found that two significantly improved the final per-
formance of our reproductive plans. One scheme entailed evolving sub-
populations of chromosome segments. After the performance gains of
these populations leveled off the segments were concatenated to form
normal sized chromosomes. The other scheme increased the chromosome
length by duplicating some of the detectors already existent on the
chromosome. This technique, which is analogous to an operation observed
in nature, significantly improved both the efficiency and the effective-
ness of the reproductive plan.

The second most successful scheme in this chapter involved the
addition of a preselection technique which determined which individuals
were permitted to become or remain members of the current population.
This scheme provided a rather simple means for eliminating similar
individuals without applying an elaborate similarity measure to all
population members. As a result we are now able to maintain an evolving
population of very different individuals with a resultant increase in
performance.

The remaining techniques investigated in this chapter were generally
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not as successful as the above. The mutation pool and dominance tech-
niques upon which the pool is based show promise of becoming valuable
additions to reproductive plans. However, our particular task did
not seem to need such mechanisms. As a result performance increased
only in a special case.

We also concluded that the technique of operating auxiliary popu-
lations did not prove to be a valuable addition. Our scheme for main-
taining population variance has really eliminated much of the need
for the new populations. However, the process of operating isolated
populations and then mixing these at various stages of evolution may
still prove valuable, especially in situations where the environment

changes.

This chapter ends our experimental investigations into the
behavior of reproductive plans. In the next and final chapter we
will review some other work which has been done or will be done with
reproductive plans, suggest some further additions to the reproductive

algorithm, and then summarize our investigations.



Chapter 9 Overview and Conclusions

9.1 Other Uses of Reproductive Plans

Other researchers have used or are in the process of using repro-
ductive plans of various types on various tasks. In this section we
will briefly present some of this work to give the reader an idea of
the breadth of possible applications of the reproductive paradigm and
to point out some different implementations. This presentation will
not examine any of the work in detail since much of it is still in the
developmental stages. At the end of the section we will present some

guidelines for further work with reproductive plans.

Current Research

The first major experimental investigation of reproductive plans
was presented by Bagley [1967]. Bagley chose the game of hexapawn, a
simple game played on a 3 x 3 board, for his task environment. This
task was convenient for a number of reasons. Strategies for playing
the game could be quantified into a set of parameter values analogous
to Samuel's detector weights. The strategy of the opponent or, in
other words, the environment, could be varied to make the play in-
creasingly more difficult. Furthermore, this environment could be
controlled so that performance would depend upon specific interactions
between specific parameters. In addition, the entire playing process,
player and opponent, could be simulated so that the cost of obtaining
payoff was very small.

Bagley used diploidy (chromosome pairs) in order to include dom-

209
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inance in his investigations. His plan operates as follows. Single
chromosomes taken from a large population (200 chromosomes) are paired
to create a diploid individual which defines a strategy for playing
hexapawn. Dominance values assigned to the alleles determine which
allele will be used in the strategy. After these chromosome pairs re-
ceive payoffs, each chromosome in the pair is duplicated a number of
times according to how the performance of its pair compares to the
average performance of the population. Then these duplicates are
mated using crossover, inversion, and a single mutation operator.

Bagley compared his genetic plan to a correlation plan which in-
volved correlating the success of the entire game-playing strategy with
individual parameter values (and sometimes parameter pairs, triples,
etc.). He found that the genetic adaptive plan performed very well
when compared to the correlation plan especially in environments where
payoff was affected by interactions between parameters.

One noteworthy result of Bagley's was the ineffectiveness of in-
version. When a chromosome contains parameter values we must also en-
code into the chromosome indices to indicate which values correspond
to which parameters; otherwise, an inversion would confuse the decoding
process. A typical chromosome would consist of a string of 2-tuples as
follows:

Py 1) (0,2) .- (py,1)
where P; is the value for parameter i.

A problem will arise if crossover is attempted between two strings
in which corresponding parameter values do not occur in the same posi-
tions on both strings due to previous inversions. If a crossover took

place the result would possibly be a string having two values for some
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parameters and no values for other parameters.

To avoid this problem Bagley only allowed crossover to take place
between homologous regions of chromosome pairs, i.e., regions where the
parameter indices matched position for position. However, after a num-
ber of generations, the chances of finding such a match between randomly
selected pairs became very small. Therefore, inversion served only to
delay adaptation since it restricted the use of the crossover operator.

Another significant feature of Bagley's plan is that the best in-
dividuals are not retained per se from one generation to another. An
individual in this system is actually a pair of chromosomes, but each
pair is split after each generation. It is difficult to say whether
this hurt or helped Bagley's plan since he maintained relatively large
populations (200-400 chromosomes) and the best chromosomes did remain
from one generation to another. Therefore, there probably was a good
chance that previous devices would be rediscovered due to duplication
of chromosomes and dominance effects.

Weinberg also plans to use a reproductive plan to improve the
performance of a biological model. His simulated cell of the bacterium
Escherichia coli uses a number of parameter values to simulate enzyme
characteristics under different environmental conditions [1969].

In Weinberg's reproductive plan the chromosome consists of a
single string of parameter values and indices. A chromosome's utility
is determined by how well the behavior of the simulated cell using the
parameter values matches the behavior of real E. coli cells in similar
environments. Weinberg's reproductive plan consists of operating four
independent 10/6 populations similar to the populations we have used.

He does not use diploidy as Bagley did and he saves the best individuals
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after each generation.

During normal operation crossover and mutation (incrementing or
decrementing parameter values by random amounts) are used to generate
offspring for each isolated population. At specified generations dur-
ing evolution the two worst populations are discarded and replaced by
inverted copies of the two best populations. In other words, inversion
is applied to all individuals in the population using the same breakage
points so that all individuals in the new population are homologous.

In this way, Weinberg can use inversion to modify linkage and thereby
take advantage of interactions between parameters without affecting
the operation of crossover.

Another interesting application of reproductive plans has been
suggested by Goodman [1969]. The task is simply to find the maximum
of a well-defined mathematical function. Therefore, the set of devices
& is the set of points which define the domain of the function.

A chromosome consists of co-ordinate values suitably coded (e.g.,
using a binary representation) so that new values can be generated using
genetic operators. In this representation one binary digit is analogous
to an allele. One interesting aspect of Goodman's work was his demon-
stration that using only crossover certain coding procedures provide
for more efficient adaptation than the standard binary encoding.

For example, the Hamming distance between two binary codes is de-
fined as the number of positions in which the two codes do not match.
Certain codes (called snake-in-the-box codes) have various distance-
preserving properties meaning that the Hamming distance between two
codes is related to varying degrees to the numerical distance between

the values which the codes represent. These snake-in-the-box codes
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prove to be better than a standard binary encoding for a number of in-

teresting utility functions.

Guidelines for Further Work with Reproductive Plans

As one may suspect, the uses of reproductive plans is unlimited.
All the researcher need supply is a chromosomal representation to
effectively define the set of devices &/ and an accurate utility
measure u to rank the devices. Establishing a utility measure should
present no problems as long as the researcher knows what kind of per-
formance is desirable and as long as this performance measure can be
easily obtained in a reasonable amount of time.

Finding a good representation for a device and/or generating the
set 2/ can pose more of a problem. The researcher must first decide
upon which components of a device he desires to put under selection.
In making this decision he must estimate, either intuitively or by ob-
taining payoff for a few devices, which components when changed will
induce the greatest variability in performance. This is very important
since variability is a crucial feature in the successful operation of
reproductive plans.

After deciding upon which aspects of a device are to be varied
during adaptation, the researcher must decide upon a suitable encoding
in a chromosomal structure. This might involve deciding which parts
will be analogous to genes to be exchanged using crossover and which
parts, if any, will constitute intragene structure to be changed only
by mutation. If mesh points were considered as genes in our represen-

tation, the concept of detectors as functional units would not be ap-
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parent to the plan. If there appear to be additional functional units
consisting of sets of genes, the researcher may wish to represent a de-
vice with a number of chromosomes. Such an extension of our reproductive
plan should be fairly straightforward.

After settling upon an adequate representation the researcher may
have to exercise additional caution in constructing suitable mixing
operators. In fact, his awareness of the problems involved in the
effective operation of genetic operators may very well influence his
choice of a representation. Mutation-like operators typically will
not cause any problems. The researcher should try to have a variety
of these operators to enable the plan to take different sized steps
in the search space and he should use his intuition and any previous
knowledge about the task in developing meaningful mutation operators.

Crossover-like operators may be more difficult to use success-
fully. As we have seen in Bagley's work, the simultaneous use of cross-
over and inversion is not always easy to implement. Furthermore, there
are a number of representations which may not be preserved under the
operation of crossover. In other words, the offspring created by cross-
over may not be codes for any device. In cases such as these, one must
be careful to use mixing operators which are closed in the set of per-
missable chromosomal codes.

Once he has decided upon a suitable representation, utility measure,
and set of genetic or mixing operators, the researcher can proceed to
operate a reproductive plan. Hopefully at this point he can draw upon
many of the techniques that we have investigated in this work in order

to provide for efficient and effective operation of his reproductive
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plan. With proper care this procedure should result in meaningful ex-

tensions of much of the work done in artificial intelligence.

9.2 Extensions of the Reproductive Paradigm

Throughout our work we have touched upon only a small number of
possible reproductive plans. In the previous section we reviewed some
previous and ongoing research which is investigating other implementa-
tions of the general reproductive paradigm. Now we would like to sug-
gest a few extensions of the plans we have been working with in hopes
of spurring continued interest in the study of reproductive adaptive
plans.

We have already suggested possible extensions and improvements of
the schemes we have investigated. Near the end of Section 7.2 we pre-
sented a critique of the parameter modification scheme. In Section 8.2
we suggested how the use of isolated and new populations might be im-
proved. In Section 8.3 we presented the dominance effect as a poten-
tially valuable addition to reproductive plans and proposed how our
mutation operators might be modified to increase the chances of finding
valuable new detectors. Finally, at the end of Section 8.4 we suggested
how our preselection scheme might be improved in conjunction with an
improved parameter modification scheme so as to maintain population
variance.

One possible extension that we have not mentioned involves the
use of additional feedback. From our analysis of other adaptive sys-
tems in Section 2.2 we may conclude that researchers generally feel

that they can extract additional feedback information for use in an
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adaptive plan. As we have mentioned previously, exclusive use of this
feedback, which usually takes the form of a component evaluation, may
result in a very inflexible adaptive plan which searches only a small
portion of the set o Yet, this additional feedback may prove val-
uable to a reproductive plan by directing many of the processes which,
in our work, have been completely random.

However, we must stress that in the final analysis the cost of
this additional feedback must be weighed against the potential or actual
gain. If the extraction of the additional feedback takes again as much
time as the extraction of the overall utility u, we will expect repro-
ductive plans using the additional feedback to require only half the
number of samples to discover peaks similar to those discovered by a
plan not using the additional feedback. Of course, if the plan which
does not use the additional feedback is incapable of discovering devices
of the same quality as those discovered by plans using the additional
feedback, then the extra cost is certainly justifiable.

Let us now look at some possible uses for this additional feedback.
Suppose we had some information as to which detectors or components
were possibly inferior to the rest. This is the type of information
often used by other adaptive plans. We could use this information to
generate a nonuniform distribution over the components of each device.
This distribution could be used by the mutation operators so that the
inferior components are more likely to be mutated while the superior
components are less likely. We should stress, however, the importance
of maintaining the probabilistic nature of the plan rather than direct-
ing mutation towards the worst component as is often done. As we men-

tioned before, the additional information is usually not completely
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valid either because it is the result of a poor measure or because its
use is based upon independence assumptions which do not hold. The
more valid we feel the information is, the more we may bias our dis-
tribution.

We may also have some information that indicates why a particular
detector or component is inferior. This information could be used to
decide which mutation operator should be applied and even how it should
be applied. In other words, we may be able to bias the choice of a
detector or component.

The operation of crossover may also benefit from additional inform-
ation. Crossover operations between '"similar'" individuals are more
likely to result in superior offspring than crossover between dissimi-
lar individuals. However, similarity can not always be defined in terms
of utility. Additional information might identify such similarities
and might also identify individuals which perform complementary roles
in executing the task. In this latter case, there may be a good chance
that offspring created by crossover will be able to perform both roles,
especially if there is redundancy in the chromosome.

Any information concerning the interaction between components
could be used to bias the choice of breakage points for the operations
of crossover and inversion. Components which interact in a favorable
manner should not be separated by crossover and should become highly
linked using inversion.

We should mention that most of the operations in our plan which
were completely random are generally not random in natural genetic sys-
tems. Different genes have different susceptibility to mutation, cer-

tain types of mutation are more probable than others, breakage is not
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equiprobable at each possible breakage point, and individuals do not
mate randomly. Many of these operations presumably have regulatory
sites which themselves come under selection. Rosenberg [1967] has in-
vestigated the use of such regulatory sites in directing breakage for
the crossover operation. Similar procedures could be used to improve
other probabilistic aspects of the reproductive plan which we have made

completely random.

9.3 Conclusions

Formal Summary

Let us now use our formal framework to briefly summarize our ex-
periments with reproductive plans. In all the experiments the set 874
was the set of detector strings of a certain specified length. A few
of our schemes, however, used only portions of the detector strings.
The variable chromosome schemes effectively began their search in small
spaces by using only a few of the available detectors on the string.
When this chromosome segment seemed unable to continue substantial per-
formance growth, it was extended to obtain an increased information cap-
acity. The search eventually took place in the full space cﬁZ.

The set & consisted of the different pattern recognition tasks.
Two task environments (called the easy and difficult tasks) were used
for the majority of the experiments. A criterion based upon the best
device obtained after a certain number of time steps was used for most
of the experiments. In these cases runs were continued until a fixed
number of generations elapsed or until the marginal utility (slope of
the performance curve) fell below a certain level. Many experiments

were evaluated with respect to both of these stopping rules.
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The majority of the experiments were concerned with searching or
generating the set <. The feedback F consisted only of the payoff
u(A) for each device. The current memory Mt’ the device selection
function T, and the memory updating function m varied over the different
experiments. At the beginning the memory state Mt consisted only of the
payoffs for each device in the current set. The device selection func-
tion T involved the basic reproduction and recombination steps. Table
9.3.1 briefly summarizes the different schemes we have investigated and
indicates how these schemes enlarged the set é?rthrough changes in Mt’

T, and m. Changes in Mt should be interpreted as additions in most cases.

Overview

The goal of this dissertation has been to develop a good set of
adaptive plans for use in artificial intelligence work. As with many
goals of this type, it was beneficial to restate the goal in many diff-
erent ways so as to beter our understanding of the problems involved.
Therefore, we first tried to answer the more basic questions : 'What
is an adaptive plan?'", "What constitutes a good adaptive plan?'", and
"What difficulties might keep an adaptive plan from becoming good?"

To answer these questions we developed a formal framework with which

we could analyze adaptive systems and applied this framework to some
current adaptive systems. As a result we extracted some of the diff-
iculties that these systems encountered and gained a better understand-
ing of what ''good" means with respect to adaptive plans. At that point
our goal became more concrete.

Many of the adaptive plans that we analyzed encountered similar



YIOMOWRI{ JRWIOJ 9y3 UT po3oxdasljul sawaydg Jo Areuming

(e8ed 3xsu uo penuriuo))

1°¢°6 919elL

(edurwIoy

-xod JU83STSUOD 2INPp
-oxd pue suotrjenioniJ
92NpoeI 03 PaTI} 9IAM
SOWAYDS SNOTJIBA) SIS
-ouwexed juaxand ajepdp

UOTJBUTQWODSX IOF
sxojouexed FuUsdINO SOS)

s3utyles Io3ouw
-exed ut sfueyd 3sey
9OUTIS SIaqueuw UOT3

: ~eyndod mou Jo xsqunN (g

sIsaquaw uoTl
-eindod mau ut 98esn
1o03exsdo jo Adusnb

-9IJ pPaAIasqo jusxan) (g

sasjou
-exed jo 38s juaxan) (I

UOTJBOTFIPON Iol8wWered

220

Sutadszzo
Jo Joqunu [e303 93epdn

aoueTeq tewrido axow

e J03 (oweyds Juridueg)

uotionpoxdex o3uey)

suotjexauad xono Surads

-JJO JO Jequnu [B30L

uotr32919s Surxds3yzo

STENPTIATP
-ut mau jo jJoAed saeg

UoTlRUIq
~-wod9X pue uorldonpoxdsy

uoileIn
-dod jusxano Jo syyoded

J1seg

w

1
~

1
W

POATOAUT UOTIBITFTPON

aweydg




221

(pepnrouc))

NIOMAUWEI{ TeWIO] 213 UT poazoxdxojul sswaydg jo Lxeuwung T1°¢°6 2IqEl
SoUBTIBA
STENPTATPUT JBTTWIS uotzerndod
SUTIBUTWITS AQq SOTITITIq UTBIUTBW

-1ssod Surtdues xopeoag

01 UOT1238T=Sadd

N0 3SITI
‘ut 3se1 tood siepdpn

100d
woxy syot1d I] UOTIBINY

II UOI3BINU IOJ SOTS[T®E
Jo 1ood AxeTTiXny

100d uoTIEINK

sIaquou
uotyerndod jusxand

yitm sasquew uortieindod
Axe111xne Suroeidex
ATwopuex £q uotierudod
fLxet1IXne seozepdp

330
SToAeT oduewxojxad usym

soxeds,, yatm uortzerndod
juexand sederdax

uotleindod AxetyIXny

suot3eIndod moN

pouUTqWOd I93e]
8Ie YOTYM (seyoxess)
suotjeIndod juspusdapu]

uotjerndod evxaxg

suotyendod poleloSs]

A11eT3TUT °0®dS
ISTTBUS B SoYdIBOS

SauosowoLyod
yidua orqeTIEA

1
~

awaydg

POATOAUT UOTIBITFTPO)




222

difficulties. Basically these difficulties stemmed from the improper
use of feedback information, although poor representation also played
a significant role. As a result many of these plans, in our opinion,
were capable of carrying on only a limited search of the space .

Additional inflexibility also resulted from biases usually based upon
the researcher's incorrect assumptions about the task and the devices.

We decided to investigate a class of adaptive plans which showed
promise of performing very well in situations in which the adaptive
plans that we analyzed would probably perform very poorly. This bas-
ically is a situation in which we have little specific knowledge about
the task and the devices but in which we can estimate that there may
be strong interactions between components of the devices. These plans
are called genetic or reproductive adaptive plans.

On the one hand, Holland's theoretical results indicated that this
class of plans is optimal with respect to an appropriate quantitative
definition. On the other hand, Bagley's empirical results showed that
a more specific set of these plans performed as well as other widely
used adaptive plans (correlation plans). The class of reproductive
plans, however, is very large. Our goal, therefore, was reduced to
finding a good subset of reproductive plans.

We claim to have achieved this goal. Guided by the maximum utility
criterion mentioned above, we have developed a subset of reproductive
plans what are much better than the detector evaluation plans and which
are better than other implementations of the reproductive paradigm.

We feel this is a major result especially since the criterion takes
cost considerations into account.

The reproductive plans that we have developed have proved to operate
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both efficiently and effectively on our pattern recognition task. We
have mentioned in several places how the successful operation of these
plans depends upon the interaction of many of the schemes we have de-
veloped. For example, we have demonstrated that a large member popula-
tion is necessary for the successful operation of the parameter modifi-
cation scheme, for efficient use of the crossover and inversion operators,
and for efficient use of our intrachromosomal duplication scheme, which
resulted in one of the best plans. Furthermore, we have seen that this
large member population would be of no benefit without a selection scheme
that utilized many of the population members. In addition, we have sug-
gested how the preselections schemes, which maintain population variance,
might be improved by improving the parameter modification scheme. As a
further check on the goodness of many of the schemes we developed, we
have operated one of our best reproductive plans in a number of testing
situations, each time replacing a different part of this very good plan
with an alternative scheme. In each case, the result was significantly
inferior performance.

To sum up how our reproductive plans have improved the performance
of the pattern recognition paradigm, we have plotted in Figure 9.3 some
representative runs of the detector evaluation plan (called the control
experiment) and two reproductive plans operating on the difficult task.
We have plotted "Number of devices tested" on the abscissa rather than
number of generations since the detector evaluation plan samples only
one device per time step. The reproductive plans do not improve init-
ially due to the sampling of the initial population. Performance for

the reproductive plans is average performance of the current population.
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We have also indicated the three-standard-deviations level of the random
plan.

As one may recall, the detector evaluation plan operated in a serial
manner (one device generated and saved each time step). Detectors were
evaluated and the worst ones replaced using our mutation operators.

The run that is plotted is actually better than the average run. How-
ever, all runs exhibited a leveling off trend after sampling about 300
devices.

The "initial" reproductive plan is representative of runs after
different selection schemes had been investigated but before parame-
ter modification schemes had been introduced. It too levels off after
300 devices but at a much higher level than the detector evaluation
plan. This leveling off might be attributed to the plan's inability
to take smaller steps in the search space (i.e., due to the lack of
the parameter modification scheme).

The "improved'" reproductive plan represents one of the best plans
we have developed. This plan used the best parameter modification
scheme, the interchromosomal duplication scheme, and maintained a large
population (34 individuals) with a small number of samples per genera-
tion (6). The vertical lines along the performance curve indicate
points at which the chromosomes were extended. These improved repro-
ductive plans did not usually level off until performance was above
the 75 level. We should note that the control experiment took twice
as long as the reproductive plans to obtain payoff due to the additional
feedback required. This time difference is not reflected in Figure 9.3.

Our reproductive plans are also good for other reasons not in-

cluded in the criterion x. With the successful implementation of the
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operator parameter modification scheme, we have produced plans which
will remain good over different environments, representations, and
specifications of mixing operators. In other words, we have added an
element of flexibility.

Finally, our plans are good in that they were not restricted by
the assumptions that other systems made (such as, independence of com-
ponents). Therefore, the plans were not limited to any particular type
of search.

In this study we have investigated a number of different schemes;
some have proved valuable while others have not. However, all were
investigated with specific purposes in mind. In Table 9.3.2 we have
summarized these schemes indicating the purposes for investigating
them along with an estimate of their value or importance to reproduc-
tive plans in general.

As with most work of this nature, we were not able to thoroughly
investigate each scheme. Hopefully some of these schemes will be tried
again using different tasks and different implementations of the repro-
ductive plan. In particular one should try to operate reproductive
plans with more than payoff-only feedback, as we have suggested in
the previous section. Using this feedback, one would be in a better
position to accurately compare reproductive plans to nonreproductive
plans which use the same representation.

However, accurate comparisons between a wide variety of adaptive
plans and learning techniques will only be possible when we have available
a number of standardized tasks upon which a number of plans can operate.
We feel we have made progress in resolving some of the problems involved
with evaluating different adaptive plans by considering a number of alter-

native plans and using quantitative criteria to measure a plan's success.

However, much more work is needed along these lines.
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