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2.A. THE BASIC CLOSURE THEOREM

2.1, THE SPACE OF CONTINUOUS VECTOR FUNCTIONS OF A SCALAR VARIABLE

We shall consider the collection X of all continuous n-dimensional vector
functions defined on finite closed intervals of the real axis:
x(t) = (xl,...,xn), a<t<b, x(t) ¢ En’ where a,b are finite but not neces-
sarily the same for all elements of the collection. It is often said that each

element of X, or C:x = x(t), a <t < b, is a nonparametric continuous curve of

the tx-space E; x En' The orientation on C is then assumed to be the one cor-
responding to t increasing. The graph of an element x, or C, of X is the set
of all points (t,x(t)) € E; % En’ a<t<hb.

For the sake of simplicity we shall denote by x and y, or x(t), a <t <D,
and y(t), ¢ <t < d, any two elements of X. We shall assign to X a distance
function p(x,y) and by doing so we shall make X a metric space. To define p
it is convenient to extend first x(t) outside the interval [a,b] by taking
x(t) = x(a) for t < a and x(t) =b for t > b. The same we shall do for y(t).

Then we take
o(x,5) = Ja-c| + |b-d| +Max|x(t) - t(t)] ,

where Max is taken for -w < t < +wo. Because of the way in which x(t), y(t) are
defined outside their original finite interval of definition, the maximum above
exists. It is left as an exercise for the reader to prove the basic properties:
(1) o(x,¥) >0, %,y € X3 (2) p(x,y) = O if and only if a = ¢, b = 4, x(t) =

y(t)s (3) o(x,¥) = o(y,%x), x5 € X35 (&) o(x,¥) < o(x,2) + o(2,¥), X,¥,2 € X.



k=12,..., of elements of X is said to be

A sequence xk(t), a <t<b

k k’

convergent toward an element x(t), a < t < b, of X, provided p(xk,x) + 0 as

k > o, Then a, > 8, b, > b, and xk(t) + x(t) uniformly on (-«,+o) (after ex-

tension of each X, and x outside their original interval of definition as above).

We shall say that the metric p defines the uniform topology on X.

As mentioned earlier we shall consider arbitrary classes  of elements of
X, or continuous curves in the tx-space E; x En. For our purpose the following
simple statement shall be noted.

We shall assume that A is any closed subset of the tx-space E that B

1+n’

is a closed subset of the t;x;tsxs-space E and that g(ti1,X1,ts,x2) is a

2n+2’

continuous scalar function on B. We shall denote by O the class of continuous
vector functions satisfying (t,x(t)) e A for all t; <t < tz, and
(t1,x(t1),t2,%x(ts)) € B. Thus Q < X.

(2.1.i). The class Q is closed in the uniform topology (metric p) and the
functional I[x] = g(ti,x(t1),t2,x(t2)) is continuous in Q.

In other words, if xk(t), t.,. <t < t2k’ are elements of X with (t,xk(t))

1k

€ A, (tlk’ xk(tlk)’t2k’xk(t2k)) € B, and x(t),t; <t < tp, is an element of X

such that p(xk,x) ~ 0 as k + =, then (t,x(t)) € A, (t1,x(t1),tz,x(t2)) € B, and
I[xk] +~ I[x] as k »+ o,
Proof of (2.1.i). First p(x

,X) > O implies tlk + t1, t. > ts as k > o,

k 2k

Secondly, x(t) is continous in [t1,t-], hence its extension is continuous in
(-®,4®); hence, given € > O there is & > O such that [t - t;| < & implies
|x(t) - x(t1)| < e, and |t - tp]| < & implies |x(t) - x(tz2)| < €. Finally, there

is k such that k > k implies ltlk - tll <39, ,t2k - to] <58, p(xk,x) < g, and

hence



%, (b)) = x(t) | < e () = x(e )]+ [x(e,) - x(ta)] < 2e

t. ) >

) - x(t2)| < 2e for k > k. This proves that Xk( 1k

and analogously ka(t2k

x(t1), xk(t2k) > x(tz) as k » . Thus, (t (tlk)’tQk’Xk(tzk)) € Bwith B

1Kk
closed implies (tq,,x(ty1),ts,x(t5)) € B. By the continuity of g then g(tlk,
xk(tlk)’t2k,xk(t2k)) - g(tl)x(tl))tzrx(tz)) as k » ©, Also, (tlk’xk(tlk)) € A

with A closed implies (t;,x(t,))e A, and analogously we prove that (tg,x(tz)) e A.

Finally, for every t ¢ (t,,ts), we have also t ¢ (t ) for all k sufficiently

lk’t2k
large, and (t,xk(t)) € A then implies (t,x(t)) € A. We have proved that (t,x(t))
€ A for all t; <t < tz, hence x is an element of Q, and this completes the proof.

Finally, we remind here that Ascoli's theorem in terms of the metric p

holds in the following form: If xk(t), t.,. <t<t

1K S k=1,2,..., are

2k’

equicontinuous vector functions, and there is a constant M such that

M <t t. <M, ka(t)l <Mfor t e [t

1k < oK ], k =1,2,..., then there is a

lk’t2k

subsequence [xk ] convergent in the metric p toward a contirnuous vector function
x(t), t1 <t < tszz.
2.2. ORIENTOR FIELDS

We assume that a set A is given in the tx-space E; x En’ x = (xl,...,xn),
and that for every (t,x) € A a set of "allowable directions" z is assigned, pre-
cisely, a nonempty set Q(t,x) of vectors z = (zl,...,zn) is given, Q(t,x) =
{z}tx, and this set may depend on (t,x) € A. As mentioned in 1.2 we denote the

relation

dx/dat € Q(t,x) (2.2.1)



an orientor field. A solution x(t), t1 <t < tz, of (2.2.1) is a vector-valued

function x(t) = (xl,...,xn), t; <t < tp, such that (1) x(t) is absolutely con-
tinuous (AC) in [ti,t2]; (2) (t,x(t)) € A for all t € [t1,t2]; (3) dx/dt e
Q(t,x(t)) almost everywhere (a.e.) in [t;,tz]. Thus, for almost all

t € [t1,t2] the direction dx/dt = (xl‘,...,xn') of the curve x = x(t) at
(t,x(t)) is one of the "allowable directions" z e Q(t,x(t)) assigned at
(t,x(t)).

An orientor field will be said to be autonomous if Q(t,x) depends on x only
and not on t. Nevertheless, every orientor field can be written as an autono-
mous one by a change of coordinates. Indeed, if we add the vector variable xo
satisfying the differential equation dxo/dt = 1 and initial condition xo(tl) =

l,...,xn), and direction set

t,, and then we use the (n + 1)-vector X = (xo,x
E(§) = [; = (zo,zl,...,zn) = (zo,z), z € Q(xo,x), 2° = 1], then system (2.2.1)

becomes
dx/dt € Q%) .

We may use this remark in proofs in order to simplify notations.

Remark 1. For the sake of simplicity, we have assumed the variable x to vary
in a Euclidean space En' As a careful reader may see, most of the results be-
low are valid even if we allow x to vary in much more general spaces, and atten-

tion will be called to this fact when needed.

2.3. MEANING OF CLOSURE THEOREMS
The closure theorems we shall discuss below answer affirmatively a very im-

portant question, a question which is relevant even for the particular case of



ordinary differential systems. If we have a sequence [xk] of solutions xk(t),

b <t<t

1k of an orientor field (2.2.1), and [xk] "converges'" toward a

2k’
given function xo(t), t;1 <t < tz, then also xo is a solution of the orientor
field (2.2.1). This is essentially true, though under various sets of assump-
tions on A, on Q, on the mode of convergence, on xo.

In the closure theorems below we shall always assume that A is a given

closed subset of the tx-space E, x En’ and that, for every (t,x) € A, Q(t,x) is

a closed convex subset of the z-space En. Concerning the mode in which Q(t,x)
is allowed to vary as (t,x) describes A, we shall need a very mild property

which is usually described as an upper semicontinuity property. Such a proper-

ty has been introduced by various authors in different ways far different pur-
poses, and we shall introduce some of these definitions as we go along and we

need them.

2.4, METRIC UPPER SEMICONTINUITY AND PROPERTY (Q)

Given any set Z in En’ we shall denote by cl Z, bd Z, co Z the closure of
Z, the boundary of Z, and the convex hull of Z, respectively. Thus, cl co Z
denotes the closure of the convex hull of Z, or briefly the closed convex hull
of Z.

Given a set A of the tx-space E; x E , & point (to,xo) € A, and a number
& > 0, we shall denote by Nﬁ(to’xo)’ or neighborhood of (to,xo) in A, the set of
all (t,x) € A at a distance < & from (to,xo). Then N6(to’xo) < A. Also, given
a set U(t,x) of points z = (zl,...,zm) for each (t,x) € A, a point (to,xo) € A,
and a number & > O, we shall denote by U(to,xo;B) the union of all U(t,x) with

(t,x) € NS(to’xo)’ in other words



ut ,x ,8) = U Ul t,x)
°° (t,x)eN_(t ,x )
’ 8 oo

c t .
Thus U(tx,xo) U( O,xO,S) for all & > 0

We say that U(t,x) is metrically upper semicontinuous at a point (to,xo) € A

provided, given € > 0, there is some & = 8(to,xo,€) > 0 such that U(t,x) ©
[U(to,xo)]E for all (t,x) € Nb(to’xo) and where [U]€ denotes the closed &e-
neighborhood of Q. We say that U(t,x) is metrically upper semicontinuous in A
if it has this property at every (t,x) e A.

The following analogous property of upper semicontinuity is of interest.
We shall say that a variable set U(t,x), (t,x) € AC El+n’ u(t,x) < E has prop-

erty (U) at a point (to,xo) € A provided

U(to,xo) = 620 cl U(to,xo;B) ,
that is,
t = n 1 U .
u o’xo) 550 © {(t’x)eNB(to’Xo) u(t,x))

We shall say that U(t,x) has property (U) in A if it has property (U) at every
int (t .

point ( O,xo) € AO

If M denotes the set of all (t,x,u) with (t,x) € A, u € U(t,x), then
MC El+n+m’ and M is the graph of U(t,x). The main statement concerning prop-
erty (U) is the following one:

(2.4.i). If A is closed, then M is closed if and only if U(t,x) has prop-
erty (U) in A.

We shall prove this statement in [App. A.1l.ii] together with others. If

U(t,x) has property (U) then U(t,x) is certainly closed as the intersection of

6



closed sets. Property (U) is usually denoted as Kuratowsky's upper semicon-
tinuity.

In the proof of the Closure Theorems belgw, we shall often require that the
sets U(t,x) be closed, convex, and satisfy an analogous property of upper semi-
continuity, which we shall denote as property (Q), and which is specific for
closed and convex sets.

We shall say that U(t,x), (t,x) € A, has property (Q) at the point

(to,xo) € A provided

U(to,xo) = BQO el co U(to,xo,a) , (2.4.1)
that is,
Ut ,x) = _0_cl co { u U(t,x))
o’ "o 8>0 (t,x) eNS( to xo)

We shall say that U(t,x), (t,x) € A, has property (Q) in A if it has prop-

erty (Q) at every (t,x) € A. If U(t,x) has property (Q) then certainly U(t,x)
is closed and convex as the intersection of such sets. For closed convex sets,
property (Q) is a way to express the idea of upper semicontinuity in a form
which is more general than the metric upper semicontinuity.

The concept of metric upper semicontinuity can be traced very far back
(see for instance, F. Hausdorff [ 1]).

Note that we can always denote (t,x) as a unique variable, say X e En+l’

hence A is a subset of the ;-space En+ , and U(x) depends on x only. We shall

1
use this remark in the proofs for the sake of simplifying notations.

(2.4.1). If A is closed, if, for every (t,x) € A, U(t,x) is a closed sub-

set of Em’ and U(t,x) is metrically upper semicontinuous in A, then certainly



U(t,x) has property (U) in A. If all sets U(t,x) are closed and contained in a
given interval in E, then U(t,x) has property (U) in A if and only if U(t,x)

is metrically upper semicontinuous in A. If, for every (t,x) e A, the sets
U(t,x) are known to be closed and convex, then the same statements above hold
for property (Q). The proof is given in App. A (A.l.v; A.l.vii; A.2.iv; A.2.v).
Remark 1. Property (U) for closed sets, and property (Q) for closed convex sets
are actually more general than metric upper semicontinuity. This can be shown

by the following simple example with m =2, A = [t|]0 <t < 1], U(t) = [z =

1 2

(z4,2%)|[0< 2zt <+, O <z < tz']. Here U(t) is an angle, and obviously, for
t > to, U(t) is not contained in any [U(to)]g’ no matter how t is close to to.
U(t) has both properties (U) and (Q) in A, but it is not metrically upper semi-
continuous.

More on the comparison properties of upper semicontinuity will be given in

App. A.

2.5. THE BASIC CLOSURE THEOREM FOR FUNCTIONS OF A SCALAR VARIABLE

(2.5.i). Closure Theorem 1. Let A be any closed set of the tx-space

E, x En’ for every (t,x) € A let Q(t,x) be a closed convex subset of points
z = (zl,...,zn), and let us assume that Q(t,x) satisfies property (Q) at every
point (t,x) € A with exception perhaps of a set of points whose t coordinate

lies on a set H of measure zero on the t-axis. If xk(t), t Sttt

k 2k’

k =1,2,..., is a sequence of solutions of the orientor field (2.2.1), conver-
gent in the p-metric toward an AC function x(t), t; < t < tp, then x(t) is also
a solution of the orientor field.

In other words, we know that each xk(t), t., <t <t k =1,2,..., is AC,

1k 2k’

8



that (t,xk(t)) € A for every t ¢ [t ], and that dxk/dt € Q(t,xk(t)) a.e.

1k’t2k

in [t ], we know that p(xk,x) + 0, hence tlk + t1, t. *> ts, as k > o, and

1K’ P2k ok

that x(t) is AC in [t;,t-], and we want to prove that (t,x(t)) € A for all
t e [ti,t2], and that dx/dt e Q(t,x(t)) a.e. in [ti,to].

Proof of (2.5.i). The vector functions x'(t), t1 <t < to, xé(t), tlk <t< t2k’

are defined a.e. in [t;,tz] and [t ] respectively, k =1,2,..., and are

1w’ Yok
L-integrable in the respective intervals (that is, each component is L-integ-
rable).

Since p(xk,x) + 0, hence tlk > t3, tzk + ty as k »®, if t € (t,,ts), or
(t)) € A.

tp <t <tz thent, <t < t2k for all k sufficiently large, and (t,x

1k k

Since xk(t) + x(t) as k » » and A is closed, we conclude that (t,x(t)) € A for
every t; < t < tp. Since x(t) is continuous in [t;,t-], and hence continuous
at t; and tz, we conclude that (t,x(t)) € A for every t; < t < tz.

For almost all t € [t;,ts] the derivative x'(t) exists and is finite and
t e [ti1,tz] - H. Let to be such a point with t; < to < tz. Then, there is a
>0 with t, < to -0< to + 0 < tp, and, for soﬁe ko and all k > ko, also
tlk < to -0< to +0< t2k' Let x = x(to). We have xk(t) > x(t) uniformly
in [to - o,to + 0] and all functions x(t), xk(t) are continuous in the same

interval. Thus, they are equicontinuous in [tO - c,to + 0]. Given € > 0, there

is & > 0 such that t,t' e [t - o,t_ + o], It - t'] <8, k> k_, implies
() - x(£")| < /2, [x (%) - x (t)] < e/2. (2.5.1)

We can assume 0 <% <o, & < &. For any h, 0 <h < &, let us consider the

averages



m = ht éh x'(to + s)ds h'l[x(to +h) - x(to)] , (2.5.2)

I
]

n-t éh xé(to + s)ds h'l[xk(to + h) - xk(to)] . (2.5.3)

Mk

Given n > 0, we can take h so small that
lmh - x'(to)l <n . (2.5.4)
Having so fixed h, let us take k; > ko so0 large that
Imy - m L <n Ix(e)) - x(t )] < e/2 (2.5.5)

for all k > k;. This is possible since xk(t) + x(t) as k > @ both at t = to and

t = to + h. Finally, for 0 < s <h,

(£, +8) - x(e )| < Ix (6 +8) - x (6)] + [x(t) - x(t)]

gef2 +eg/2 = g

IA

+ - =
I(to s) tol s<h<d<e ,
(t + + + €.
Xk( o s) € Q(tO s,xk(t0 s)) a.e
Hence, for almost all s, 0 < s < h, xi(to +8) € Q(to,xo,Ze) and consequently

Xi(to +8) € cl co Q(to,xo,Ee), a.e. in [O,h].

The average mhk as defined by (2.5.3) is then also a point of the same closed

and convex set, or

m . € cl co Q(to,xo,Ze)

10



for the chosen h and every k > k;. By relations (2.5.4) and (2.5.5) we deduce

x'(t) -m | < [x(s) -m |+ |m -m | <20,

and hence

x'(to) € [el co Q(to’xo’ze)]En

Here n is an arbitrary number, and the set in brackets is closed, hence
1] -
x (to) € ﬂn[cl co Q(to,xo,Ee]zn = cl co Q(to,xo,2€) )
for every € > 0. Thus, by property (Q),
! o
X (to) € ﬂe cl co Q(to,xo,28) = Q(to,xo) .
We have proved that for almost all t e [t;,tz], we have

ax/dt e Q(t,x(t)) .

The Closure Theorem 1 is thereby proved.

The following example illustrates the first closure theorem. Let n =1,

A =E, Q=0Q(t,x) = [z|]-1<z<1], and xk(t), 0<t<l, k=1,2.,.., be de-

fined by xk(t) =t - iK™t if kTP <t < ik7h o+ (2k)7Y, x (t) = (L + L)k - ¢

W
if ikt + (2k)™ <t < (1 + 1)k™* for i = 0,1,...,k - 1. Then xk(t) > xo(t) =0
uniformly in [O,1]. On the other hand, xi(t) = +1 according as t is an interior
point of one or the other of the two sets of intervals above, xé(t) = 0, and
xi(t), xé(t) € Q for almost all t. Here Q is a closed convex set. If we had

taken Q = Q(t,x) = [z]|z = -1 and z = +1], then obviously xi(t) € Q while

xé(t) £ Q. Here Q is closed but not convex.

11



2.6. INTERPRETATION OF CLOSURE THEOREM 1 IN TERMS OF USUAL TRAJECTORIES AND
STRATEGIES. CLOSURE AND COMPACTNESS THEOREMS

(a) Let us assume here that A is any closed set of the tx-space El+n’
1 n .

x = (x',...,x ), that, for every (t,x) e A, U(t,x) is a subset of the u-space

E, u = (ul,...,um), that the set M of all (t,x,u) with (t,x) € 4, u e U(t,x),

is closed, that the vector function f(t,x,u) = (fl,...,fn) is continuous on M,

that B is a closed subset of the t;x;toxo-space E and that g(ty1,X1,tz,X2)

on+2’
is a continuous scalar function on B. Also we assume that the sets Q(t,x) =
f(t,x, U(t,x)) < En are closed, convex, and satisfy condition (Q) at every point
(E,i) € A—with exception perhaps of a set of points whose coordinate t lies on
a set of measure zero on the t-axis. As stated in (1.1), we say that a pair
x(t), u(t), t1 <t < ts, is admissible (and that x isa (real) admissible
trajectory provided x is AC in [ti,t»], u is measurable in [ti,tz], (t,;x(t)) € A
for all t e [t1,to], and u(t) e U(t,x(t)), x' = f(t,x(t),u(t)) a.e. in [t1,t=2].
For x,u admissible we define as cost functionalI[x,u] = g(t1,x(t1),t2,x(t2)).
In other words, we have a Mayer problem with state variables x = (xl,...,xn),
and control variables u = (ul,...,um).

(2.6.1) (a closure theorem). Under the hypotheses above (in particular
the sets Q(t,x) being convex), any AC limit x(t), t1 < t < tp, in the p-metric
for trajectories is a trajectory.

In other words, if xk(t), uk(t), t.,. <t < t2 k=1,2,..., is any se-

1k = k’
quence of admissible pairs, if x(t), t; < t < tp, is any AC function, and
p(xk,x) - 0 as k > o, then x is a trajectory, that is, there is a measurable
function u(t), t1 < t < tp, such that x(t), u(t), t1 <t < tz, is an admissible

pair, and I[xk,uk] > I[x,u] as k » », Note that, whenever we wish to disregard

boundary conditions, we have only to take B:=E2n+2’ and g and I need not be defined.

12



Proof. By (2.1.i), (t,x(t)) € A for t € [t1,t2], and (t1,x(t1),tz,x(t2)) € B.
Also, xi(t) = f(t,xk(t),uk(t)) € Q(t,xk(t)) for almost all t € [tlk’t2k]’
i=1,2,.... By (2.5.1), or closure theorem 1, then x'(t) € Q(t,x(t)) a.e. in
[ti,t2], and by (1.6.i), or implicit function theorem for orientor fields,
there is a measurable function u(t), t; <t < tz, with u(t) e U(t,x(t)),
x'(t) = f(t,x(t),u(t)) a.e. in [t1,t2], that is, x,u is an admissible pair. By
(2.1.1i) we know that I[xk,uk] + I[x,ul.

For Lagrange problems with usual functional I = fta fo(t,x(t),u(t))dt
with fo(t,x,u) a continuous scalar function on M, thettlass of admissible pairs
is restricted to only those for which fo(t,x(t),u(t)) is L-integrable on [t;,
t>]. By introducing the variable xo,‘the additional differential equation
dxo/dt = fo(t,x(t),u(t)), and condition xo(tl) = 0, we have I = xo(tz), and we
have again a Mayer problem in the state variable % = (xo,x) = (xo,xl,...,xn)
and control variable u = (ul,...,um). Closure statement (2.6.i) could now be
repeated in the new situation, with ;k’; replacing X, s %5 by assuming that the

sets a(t,x) = ;(t,x,U(t,x)) c En+ are closed convex, and satisfy property (Q)

1
F = (£,£) = (£ ,f1,...,f ), and by demanding that p(?ck,?c) >0 as k + w,

This last requirement is in most cases too demanding in Lagrange problems
with unbounded controls, and we shall introduce and discuss the concept of lower
closure in (2.9).

(b) Instead of the hypotheses stated at the beginning of (a), let us now
assume that A is compact, that M is compact, that f(t,x,u) is continuous on M,

that B is closed, and that g is continuous on B. Also, let us assume that the

sets Q(t,x) = £f(t,x,U(t,x)) are convex for all (t,x) € A, with exception perhaps
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of a set of points whose t coordinate lies on a set of measure zero on the t-

axis., We have as beforé a Mayer problem with cost functional I[x,u] =
g(t1,x(t1),t2,x(t2)).

(2.6.ii) (a compactness theorem). Under the hypotheses above (in particu-
lar, the sets Q(t,x) being convex), the family of all usual trajectories x(t),
t1 <t < tz, is sequentially compact in the p-metric.

In other words, if xk(t), uk(t), t.,. <t<t k=1,2,..., is a sequence

1k 2k’

of admissible pairs, then there is a subsequence [ks}, and an AC function
x(t), t1 <t < tp, such that p(xk,u) + 0 as k »», and x is a trajectory, that
is, there is a measurable function u(t), t; < t < tz, such that x(t), u(t),

t1 <t < tp, 1s admissible, and I[xk,uk] > I[x,u] as k > o,

Proof. Here A is compact, hence bounded, and A is contained in some set

ltl < L, lx] < L. Also, f is continuous on M, hence bounded, and we can take

L in such a way that |[f| <L on M. Then -L < t t, <L for all k, and

1k < ok

lxk(t)l <L for all t e [t ] and all k. Also, x, is AC and lxﬁ(t)] =

lk’t2k k

lf(t,xk(t),uk(t)l <L a.e. in [t hence lxk(t) - xk(t‘)l S]ﬂt - t'| for

lk’t2k]’

all t,t' e [t ] and all k. Thus, the trajectories x, are equibounded and

lk’t2k k

equilipschitzian, hence equicontinuous. By Ascoli's theorem (see (2.1)) there
is a subsequence [ks] and a contiguous vector function x(t), ti <t < tz, with
p(xk,x) + O as k > », Then x is Lipschitzian of the same constant L, hence AC
in [t1,tz]. Now the set M is compact by hypothesis, hence by (A.l.v) the com-
pact sets U(t,x) are metrically upper semicontinuous in A, and by (A.3.i), the

sets Q(t,x) are also compact and metrically upper semicontinuous in A. From

(A.2.v) we conclude then that the sets Q(t,x) which are convex by hypothesis,

14



have property (Q) in A. Statement (2.6.ii) follows now from (2.6.1i).

We may now consider Lagrange problems as in (a). Again we shall assume A
and M compact, and we take a scalar fo(t,x,u) continuous on M. Note that now
for x(t), u(t), t1 <t < tp, admissible in the usual sense, the function
fo(t,x(t),u(t)) is necessarily measurable and bounded, hence L-integrable.
Actually, the functions fo(t,x(t),u(t)) are equibounded, and so are the func-
tions f(t,x(t),u(t)) = (fo,fl,...,fn). Statement (2.6.ii) holds now also in
the new situation, provided we assume that the sets a(t,x) = g(t,x,U(t,x)) are
convex, and the conclusion is that the trajectories ;(t), t1 <t < tz, are now
sequentially compact, with X = (xo,x) = (xo,xl,...,xn), and dxo/dt = fo(t,x(t),
u(t)), xo(tl) = 0. (See (2.9),(2.10) for extensions of these statements.)
2.7. INTERPRETATION OF CLOSURE THEOREM 1 IN TERMS OF GENERALIZED SOLUTIONS

CLOSURE AND COMPACTNESS THEOREMS
Here we completely abandon all hypotheses of convexity of the sets Q and

of (2.6).

D

(a) Let us assume here that A is any closed set of the tx-space El+n’

x = (x ,...,xn), that for every (t,x) e A, U(t,x) is a subset of the u-space Em’

u = (ul,...,um), that the set N of all (t,x,p,v) € with (t,x) € A,

(

1
P = (pl,...,py) el, v= (u( ),...,u 7)) e V(t,x) = [U(t,x)]7 is closed, that

E
1+n+m+my

the vector function f(t,x,u) is continuous on the set M = [t,x,u)[(t,x) € 4,

u € U(t,x)], that B is a closed subset of the t;x;toxo-space E Y and that

2
g(t1,%1,t2,%2) is a continuous function scalar on B. Also we assume that the
sets R(t,x) = co Q(t,x) = co £(t,x,U(t,x)) < En are closed, convex, and satisfy

property (Q) at all points (t,%) € A with exception perhaps of a set of points (t,x)

whose t coordinate lies on a set of measure zero on the t-axis. As stated in
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(1.8), we say that x(t), p(t), v(t), t1 <t < tp, is an admissible generalized
solution (and that x is a generalized trajectory), provided x is AC in [t,,t5],
p(t), v(t) are measurable in [ti,t2], (t,x(t)) € A for all t e [ti,t2], p(t) ¢
r, v(t) e v(t,x(t)), x'(t) = h(t,x(t),p(t),v(t)) a.e. in [t1,t2] (see (1.8)).
For x,p,v admissible we define the cost functional J(x,p,v) = g(ti,x(t1),tz,
x(tz2)). We have here a Mayer-type problem.

(2.7.1) (a closure theorem). Any AC limit x(t), t1 < t < tp, in the
p-metric of generalized trajectories is a generalized trajectory. In particu-
lar, any AC limit of (usual) trajectories is certainly a generalized trajectory.

In other words, if xk(t), pk(t), vk(t), tlk <t< t2k’ k=1,2,..., is any
sequence of admissible generalized systems, if x(t), t1 < t < to, is any AC
function, and p(xk,x) +- O as k » o, then x is an admissible generalized system,
that is, there are measurable functions p(t), v(t), t1 <t < tp, such that x(t),
p(t), v(t), t1 <t < tp, is an admissible generalized system, and J[xk,pk,vk] -
J[x,p,v] as k »». Note that, whenever we wish to disregard boundary condi-

tions, we have only to take B = E2n+2’ and g and J need not be defined.

t2
ta

ho(t,x(t), p(t).v(t))at (see

For Lagrange-type problems with usual functional I = [ fo(t,x(t),u(t))dt

ta

replaced by the generalized functional J = ftl

(1.9)), we consider as in (2.6) the new state variable X = (xo,x)

1

n . m
,...,X ), the same usual control variable u = (u',...,u ), and gen-

1
eralized control p = (pl""’Py)’ v = (u( ),...,u(y))

= (xo,x
. Here we assume fo(t,x,u)
continuous on M, we restrict the class of admissible generalized systems to
only those for which ho(t,x(t),p(t),v(t)) is L-integrable in [ti,tz], we re-

~

place in the hypotheses above x x for x X, we assume now that the sets

k, k.’
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ﬁ(t,x) co a(t,x) = E(t,x, r U(t,x)y) are closed, and satisfy property (Q)

with h ;)+Oask—>oo.

(ho,h) = (ho,hl,...,hn), and we assume that p(xk,
Statement (2.7.1) holds now with no further changes for Lagrange-type problems.
(b) 1Instead of the hypotheses stated at the beginning of (a), we shall

now assume only that A is any compact set of the tx-space E n’ that the set M

1+n

is also compact, and that B is closed and g is continuous on B as before. We

consider again the Mayer-type problem J[x,p,v] = g(ti,x(t1),ts,x(t2)).
(2.7.i1) (a compactness theorem). The family of all generalized tra-

jectories is sequentially compact in the p-metric.

Indeed, here A is compact, M compact, hence N is compact, and the proof

proceeds now as for (2.6.ii) with R replaced by Q.

to

For Lagrange-type problems, with usual functional I = ft
. 1

fo(t,x(t),u(t))dt
replaced by J = f:i ho(t,x(t),p(t),v(t))dt, fo continuous on M, no other hy-
pothesis is needed. Thus, for A compact, M compact, B closed, statement
(2.7.ii) holds for the family of generalized trajectories x(t) = (xo,x)

(0] 1 n
= (x ,x7,.00,x )

, t1 <t < tp. Note that here the sets R(t,x) are all compact,
metrically upper semicontinuous, and since they are convex by definition, they
certainly have property (Q), as for the sets Q in (2.6.b).

Part (A) above alone will be used in Chapter L4 (problems with bounded

controls). Parts (2.B), (2.C), (2.D) below will be used only in Chapter 5

(problems with unbounded controls).
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2.B. CLOSURE THEOREMS FOR FUNCTIONS WITH SINGULAR COMPONENTS

2.8. A CLOSURE THEOREM FOR FUNCTIONS WITH SINGULAR COMPONENTS

We shall need a variant of Closure Theorem 1. We shall assume here that
the space En is actually a product space ES X En-s’ hence x = (y,z) with
y € Es’ Z € En-s' Analogously, we shall assume that Ao is a subset of the y-
space ES, and we shall take A of the form A = AO X En-s’ so that we have as

usual A C En' We shall finally assume that the orientor field in A has the form
dx/dt ¢ Q(t,y) , (2.8.1)

in other words, the set Q depends on t and y only, and not on z. A solution of
this orientor field is then an AC n-vector function x(t) = (y(t),z(t)),
t1 <t < tp, with (t,x(t)) € A, that is, (t,y(t)) € Al for every t ¢ [ty,tz2],

and
dx/at e Q(t,y(t)), a.e. in [t1,ts]
that is
;.y'(t),z'(t)) € Q(t,y(t)) (2.8.2)

(2.8.1) Closure Theorem 2. Let Ao be a closed subset of the ty-space

E; x Es’ and A = A x En—s’ for every (t,y) € Al let Q(t,y) denote a closed
subset of En’ and assume that the sets Q(t,y) are convex, closed, and have
property (Q) at every point (t,y) € Ao with exception perhaps of a set of points
whose t coordinate lies on a set H of measure zero on the t-axis. Let xk(t),

tlk <t< t2k’ k =1,2,..., be a sequence of solutions of the orientor field
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(2.8.1), xk(t) = (yk(t),zk(t)), for which we assume that the s-vector yk(t)
converges in the p-metric toward an AC vector function y(t), ti <t < tz, and
that the (n-s)-vector zk(t) converges pointwise for all t, t; < t < ts, toward
a vector z(t) which admits of a decomposition z(t) = Z(t) + S(t), where Z(t)
is an AC vector function in [t;,ts], and S'(t) = O a.e. in [t;,ts], that is,
S(t) is a singular function. Then, the AC n-vector X(t) = [y(t),z(t)],

t; <t < tz, is a solution of the orientor field (2.8.1).

In other words, we know that each xk(t) = (yk(t),zk(t)), t,, <t<t

1k 2k’

k=1,2,..., is AC, that (t,yk(t)) € Ao for every t ¢ [t ] and that

lk’t2k

1 1
(yk(t),zk(t)) € Q(t,yk(t)) a.e. in [tlk’t2k]’ we know that p(yk,y) + 0 hence

tlk > t1, t. + tz as k > o, that zk(t) + z(t) = 2(t) + S(t) for every

2k
t e (t1,t2), that S(t) is singular, and (y(t),Z(t)) is AC, and we want to prove
that (t,y(t)) e Ao for every t e [t1,t>] and that (y'(t),Z2'(t)) € Q(t,y(t))

a.e. in [t1,t2]. For s = n this Closure Theorem 2 reduces to Theorem 1.

Proof of (2.8.i). The proof that (t,y(t)) e Ao for every t € [t1,t2] is the

same as for Closure Theorem 1.
Let us prove the remaining part of (2.8.i) where we shall need to
know only that zk(t) + z(t) for almost all t € (t1,ts).
For almost all t e [ty,to] - H the derivative X'(t) = [y'(t),2'(t) ] exists
and is finite, S'(t) exists and S'(t) = 0, and zk(t) + z(t)., Let to be such a
point with t; < to < tz. Then, there is a ¢ > 0 with t; < to -0< to + 0 < ty,
and, for some ko and all k > ko, also t to to +o<t

ok’ Let xO =

1k <
x(to) = (yo,zo), ory_ = y(to), zo = z(to). Let z, = z(to), S, = s(to). We
have S'(to) = 0, hence z'(to) exists and z'(to) = Z'(to). Also, we know that
zk(to) > z(to).
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We have yk(t) + y(t) uniformly in [to - o,to + 0], and all functions
y(t), yk(t) are continuous in the same interval. Thus, they are equicontinuous
in [to - c,to + 0]. Given € > 0, there is ® > O such that t,t' € [to - 0o,

o+ o], |t -t <&, k> k_ implies
ly(t) - vt <e/2, Iy (%) -y (tD)] <e/2 .

We can assume 0 < ® < g, 8 < €. For any h, 0 <h <&, let us consider the

averages

]
I

n~? éh X'(t_+s)ds = nTU[X(t_+h) - X(t)] ,  (2.8.3)

"h

h'l[xk(to +h) - xk(to)] ,  (2.8.4)

Mk

h
ht ' + s)d
é xk(to s)ds

where X = (y,2), Xk = (yk’zk)'

Given n > O arbitrary, we can fix h, 0 < h <& < 0, so small that
m - X't ) <n (2.8.5)
ls(tO +h) - s(to)l <nh/s . (2.8.6)

This is possible since h~! fh X'(to + s)ds + X'(to) and [S(to + h) - S(to)]h'l-* 0
)

as h > 0+, Also, we can choose h in such a way that zk(to +h) » z(to) as

k > +o, This is possible since zk(t) > z(t) for almost all t; < t < tz.

Having so fixed h, let us take k; z»ko so large that
ly (8 = w(e )],y (6 +n) - y(t +h)| < min[n /b, e/2],
(t) - 2zt )), [z(t  +n) - 2(t +n)] <nn/8 .

|z,
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This is possible since yk(t) > Y(t), zk(t) + z(t) both at t = to and t = t_+ h.

Then, we have
IRy (¢, +B) -y ()] - b7 [y(t, +h) - y(t )] < [h7 Iy, (¢ + 1)
- (b, + )1+ 07y (t)) - y(6 )11 < h7H[n b/b + 7H(n n/k)
= n/2
Analogously, since z = Z + S, we have
In™ [z, (6 +h) - 2, (5 )] - b7 [2(t +h) - 2(t )] = [n7V [z (¢ +h) -z (t)]
- b7 [2(t + h) - 2(6 )]+ hTS(s +h) - s(t )] < [h7 [z (¢ + h)
- 2(t +0)] + [0z (6) - 2(t )1 + [nTR(s(t_ + h) - s(t )]
<h™(n 1n/8) +n*(n b/8) + h™H(n h/¥) = n/2
Finally, we have
m - m | = [0 [x(t +h) - x(t)] -0 [X(t +n) -x(t )] < [0y, (¢ +h)
- v (8 )1 = 07 y(t + ) - y(£ )1+ [hTH [z (6 + h) - 2z, (% )]
- h'l[z(to +h) - Z(to)]l <n/2+n/2 = q . (2.8.7)

We conclude that for the chosen value of hy 0 <h <% < o0, and every k > k;

we have
Im - x'(t ) < Im -m | <n Iy (t) -y(e)] <e/e.  (2.8.8)
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For 0 < T < h we have now
(b, + 1) = v(s )] < v (e, + 1) =y (8 )] + Iy (£)) - v(t )| <e/2 +¢/2 =

l(to+'r) - tol <h<d<e, (2.8.9)

xi(to +T) = (yi(to + 1), zl‘{(to +7T)) € Q(to + T, yk(to + T)) a.e. in [O,h].

Hence, for almost all 7, 0 < T < h,
! + = ' ' +
Xk(to T) (yk(to + T)’Zk(to T)) e Q( to:yol2€) ’
and consequently
' + = ! + ' + e, 1 .
X (to T) (yk(to T),zk(to T)) € cl co Q(to,yo,2s) a.e. in [O,h]

The average m . 8s defined by (2.8.4) is then also a point of the same closed

and convex set, or
m o € el co Q(to,yo,ZE)

for the chosen h and every k > k;. By relations (2.8.5) and (2.8.8) we deduce

1 - P ! - + -

xf(e) - m [ < X)) -m]+|m -m | <2,
and hence
]
2 L
X'(t.) € [el co Q(t ;v ,2€) 121]

Here n > 0 is an arbitrary numbef, and the set in brackets is closed, hence

1
X (to) € cl co Q(to,yo,Ze)
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for every € > 0. By property (Q) we have
! n = t
X (to) e N cl co Q(to,yo,Ee) Q( o’yo) s

where y _ = y(to), and X'(to) = (y'(to),Z‘(to)). We have proved that for almost

all t € [t1,t=] we have

dX/dt e Q(t,y(t)) .

Closure Theorem 2 is hereby proved.

The following example illustrates Closure Theorem 2. Let n =2, s = 1,

1

1, A=Es Q=@Q(t,y) = [z =(24,2%)]2° >0, -1 <z'@ <1]. If o(t),

S
1
2]
I

0 <t <1, denotes a singular continuous monotone function with o(0) = 0,

o(1) =1, o'(t) = 0 a.e. in [0,1], let us define ¢(t) in (-w,+o) by taking

=1
+
Ofor t <Oand @ =1for t >1. Let zk(t) =k ft k o(T)dT, 0<t <1,
t
1,2,.... Here the scalar functions zk(t) are absolutely continuous, mono-

P

k
tone nondecreasing, with zi(t)lz 0 and zk(t) +z(t)= o(t) uniformly in [0,1]
as k > », Let us take Z(t) = 0, y(t) = 0, yk(t) =0, 0<t<1, k =1,2,...,
and then z(t) = Z(t) + ¢(t), Z(t) absolutely continuous, ®(t) singular. Here

(yk,zk) converges uniformly toward (y,z) in [0,1]. All pairs (y ) are solu-

x’ %k
tions of the orientor field (y',z') € Q, (¥,Z) is a solution of the same
orientor field, but (y,z) is not.

Remark 1. We could now deduce from (2.8.i) corollaries similar to the closure
statements (2.6.1i) for usual solutions, and (2.7.1) for generalized solutions.
This task can be well left to the reader as an exercise. The essential point

is that while for usual solutions we need require explicitly that the sets Q,

or Q, are convex, for generalized solutions the corresponding sets R are neces-

sarily convex.
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2.C. LOWER CLOSURE THEOREMS

2.9. LOWER CLOSURE OF FUNCTIONALS IN INTEGRAL FORM

We shall now introduce the concept of lower closure.

As usual let A be a closed subset of the tx-space E; x En, for every
(t,x) € A let U(t,x) be a given subset of the u-space E,» let M be the set of
all (t,x,u) with (t,x) e A, u € U(t,x), and let £(t,x,u) = (£g,f1,...,fy) =
(fo,f) be a given continuous vector function on M. Let B be a closed subset
of the t;x,t-x--space E2n+2' As in (1.2) and (2.6, (b)) we consider the func-

tional
I[x,u] = fzi fo(t,x(t),u(t))dt . (2.9.1)

As in (1.1), (1.2) we shall say that a pair x(t), u(t), t1 <t < tp, is admis-
sible provided x(t) is AC in [ti,tp], u(t) is measurable in [ti,t2], (t,x(t)) ¢ A
for t e [t1,t2], u(t) e U(t,x(t)) a.e. in [t1,t2], dx/dt = £(t,x(t),u(t)) a.e.
in [t1,t2], fo(t,x(t),u(t)) is L-integrable in [t3,t5], and (ti,x(t1),ts,x(ts))
€ B. Whenever we wish to disregard boundary conditions, we have only to take
B = .

E2n+2

Let x(t), t1 <t < tp, be any AC vector function (which is the limit in

the metric p of admissible trajectories). If, for any sequence xk(t), uk(t),

t. <t<t

1k < k = 1,2,..., of admissible pairs with p(xk,x) > 0, lim I[xk,uk]

2k’
< + o as k + o, there is some measurable function u(t), t; <t < tz, such that
x(t), u(t), t1 <t < ts, is admissible, and

I[x,u] < lim I[x,u.] , (2.9.2)
K~o0
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then we say that I[x,u] has the property of lower closure at the trajectory

x(t), t1 <t < ta.

Before we prove a sufficient condition for lower closure, the following
remarks are needed. First, if x is the limit in the p-metric of admissible
trajectories as assumed, then by (2.1.i), we know that (t,x(t)) e A for all
t e [t1,t2], and (t1,x(t1), ta,x(tz)) € B.

Furthermore, if we know that the set M is closed, and that for every
(t,x) € A the sets Q(t,x) = f£(t,x,U(t,x)) are closed convex subsets of E sat-
isfying property (Q) in A, then certainly x'(t) ¢ Q(t,x(t)) a.e. in [t3,t5] by
force of Closure Theorem 1 (2.5), and then there is some measurable u(t),

t1 <t < ty, such that
u(t) e U(t,x(t)), x'(t) = f£(t,x(t),u(t)) a.e. in [t1,t2] (2.9.3)

by force of Implicit Function Theorem (1.6.i) as we have seen in (2.6.1i). As
usual, we say that any such strategy u(t) generates x(t), t1 <t < tp. Ob-
biously, in the comcept of lower semicontinuity we require more, namely we
need a strategy u generating x for which (2.9.2) holds.

It may well occur that x is generated by some strategy u for which (2.9.2)
does not hold. The following example displays two strategies u and ﬁ, both
generating the same trajectory x, such that (2.9.2) holds for u but not for a.

Indeed, take m =n =1, t; =0, tz = 1, fo =1+ cos nu, f=17°; = sin nu,

ueU=[-1<u<1l], x(t) =0, 0<t <1, A=Es Now take uk(t) = 271 ac-
cording as k™1 <t < k™' + (2k)7%, or k7' + (2k)7t <t < (i + 1)k7Y,

i=0,1,...,k -1, k =1,2,..., and take xk(k) =t - k™, or x, (t) = k™ H(i+1)-t,
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according as t is in one or the other set of intervals above. Then xk, uk,

k =1,2,..., is a sequence of admissible pairs, 0 < xk(t) < (2k)~*, and X, 7 X

as k > o uniformly in [0,1]. The trajectory x(t) 0, 0 <t <1, is now gen-
erated by both u(t) =1, 0 <t <1, and by u(t) = 0, 0 <t < 1. On the other

hand,
I[x,u] = 0, I[x,u] = 2, Ixouw] = 1, k = 1,2,...,

and thus relation (2.9.2) holds for u but not for u.
As we shall see in (2.13), the concept of lower closure introduced above
contains as a particular case the usual concept of lower semicontinuity, in

particular the concept of lower semicontinuity for free problems.

2.10. A SUFFICIENT CONDITION FOR LOWER CLOSURE
Let A, U(t,x), M, B, fo(t,x,u), £(t,x,u) = (f1,...,f,) be defined as in
(2.9). TFor any (t,x) ¢ A let Q(t,x) be the set of all z = (2°,2%,...,2"%)

(2z°,2) with z°

> fo(t,x,u), z = f(t,x,u) for some u ¢ U(t,x).

(2.10.1i). If the sets A, M, B are closed, and fo(t,x,u), f(t,x,u)
= (fl,...,fn) are continuous on M, let us assume that the sets E(t,x) are
closed, convex, and satisfy property (Q) at every point (t,x) € A with excep-
tion perhaps of a set of points whose t coordinate lies on a set of measure
zero on the t-axis. Let us assume that, for some locally L-integrable scalar
function y(t) we have (u;)fo(t,x,u) > y(t) for all (t,x,u) e M, with exception
perhaps of another set of points whose t coordinate lies on a set of measure
zero on the t-axis. Then the integral (2.9.1) haé the property of lower clo-

sure at every AC vector function x(t) = (x*,...,x%), t; <t < ts, which is the
; <t <t
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limit in the p-metric of admissible trajectories. 1In other words, for every
AC vector x(t) = (x%,...,x%), t; <t < tp, and sequence xk(t), uk(t),

t.. <t <t k =1,2,..., of admissible pairs with p(x

1k »%) > 0, lim I[x ,u ]

2k’ k

< + o as k > o, there is a measurable function u(t), t; <t < t, such that

x(t), u(t), t1 <t < tp, is admissible and I[x,u] < lim I[x,w].

Remark 1. Condition (y) in statement (2.10.1i) will be drastically reduced in
statement (2.10.ii) below. A simple condition under which the sets 6 above,
if convex, are closed and satisfy property (Q) as requested, and under which

also condition (y) above is satisfied, will be given in (2.12.i).

Proof of (2.10.i). As usual we introduce auxiliary variables x° and u®, vec-

tors x = (x0,x%,...,x0), u = (u°,ul,...,u™), and vector function £(t,x,u) =
= (%g,fl,...,fn) = (Eg,f) with %5 = u° Let U(t,x) be the control space

[q = (uo,u)luo > fo(t,x,u), u e U(t,x)] Em+1' Then

§<tyx) = [z = (ZO;Z)IZO > fo(t)x)u): z = f(t;x:u)) u € U(t:x)]
~ ~ (2.10.2)
= f(t)x)U(t:X)) s
while
Q(t,x) = [z|lz = £(t,x,u), u e U(t,x)] = f£(t,x,U(t,x)) .

We have now an auxiliary canonic problem with

dx/dt = f(t,x,0), a e U(t,x), (t,x) ¢4,

Xo(tl) = 0, (tle(tl):t2;x(t2)) € B,
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and functional

J = f:f w(t)at = x°(tz) .

Here p(xk,x) + 0 as k + o, hence tl ~ty, t,, * tp, and thus t; - £ <t

k 2k 1k

< tek <ty + /4 for all k = 1,2,..., and some constant £ > 0. Finally

totd

tl-l W(t)dt = -L )

Tixow ] = 2 £ (6,5, (8),u (8)at > - J
1k

where L > 0 is now a fixed number.
et i = lim I[xk,uk], so that -L < i < + . Let us assume i < + o, and
k-0

let us consider a subsequence [ks] such that I[xk »Uy ] »ias s > Let Ly
s s

be a constant such that I[xk ,us] < L; for all s.
s

Now we have

L) = 5 £ (nx (1), (r))dr
k tlk o k k
(2.10.3)
t t
ST U () +u(lar - ] v(mar,
where fo + y > 0, and thus if
R (t) = Qm[ghﬁﬁﬂmgﬂ>+wﬂMn t StSty
(2.10.4)

we have

0<F (t) <Ly +L
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for all s, and Fk (t) is a nondecreasing continuous function in [t 1.

S

lk’t2k

We shall actually extend these functions in the fixed interval [t; - £,

1.

ts + 2] by continuity and constancy outside [tlk,t2k

By Helly's theorem there exists a subsequence, say still [ks] for the
sake of simplicity, such that Fk (t) > F(t) as s + o pointwise in [t; - £,
s

t, + £]. Then F(t) is a monotone nondecreasing function in [ty - £, tp + ],

with 0 < F(t) <L + L.

Since
o t
x (t) = F (t) -/ y(r)ar , (2.10.5)
k k t
s s 1k
s
we conclude that xi (t) »~ xo(t) pointwise in (ti,ts), and that
s
o] t
x (t) = F(t) - ft y(T)dr, ti1<t<ts. (2.10.6)
1

Note that the sequence xo(t k) is bounded, hence we can extract the subsequences

2

(k ) sbove, so that the limit X9

o
lim x (t2k ) exists. Let us define xo(t)
S-»o0

o
at t; and at t, by taking xo(tl) 0 and xo(tz) = X5. Let us prove that

(0]
x(t1) =0 < x (t1 +0) and x*(tz - 0) < xa = x (t2). Indeed, given € > 0, we

have Fk (tlk ) =0< Fk (t, +€), and, as s + + o, also O < F(t; + €). Finally,
S S S

as € > 0, we have O < F(t; + 0), and by (2.10.6) also xo(tl) =0 < xo(tl + 0).

Analogously, we have ty - € < t2 for k sufficiently large, hence Fk (ts - €) <

s

k

), hence, by (2.10.3), and (2.10.4), also
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As s -+ + ©» we have
to-c t
x(tz - &) + [27° y(n)ar < xz + [2 y(r)ar
1 1

and, as € - O +, also
o
x(tz - 0) < X9 = x(ta) .
Now

F(t) = x°(t) + /7 y(r)ar

is a monotone, nondecreasing, nonnegative function in [t;,ts] with F(ty) = O,
and hence F possesses a unique decomposition F = F* + S into an AC function F*
and a singular function S, both F*, S monotone, nondecreasing, nonnegative func-

tions in [t;,ts] with F*(ty) = S(t1) = 0. If now we set

X(t) = Px(t) - [, w(1)aT, ta <t <ta,
we have
F(t) = x°(8) + [° y(rar = Fx(t) + 8(8)
(t) = (Fx(t) - [0 y(n)ar) +s(t)
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xO(t) = X(t) +s(t) ,

where X is AC and S(t) > O is monotone, nondecreasing, and singular. Let
x(t) = (X,x), t1 <t < tp. Then dX/dt = dx_/dt, X(t1) = O.

By Closure Theorem 2 we conclude that

x'(t) = (X'(t),x'(t)) € Q(t,x(t)) a.e. in [ty,tz] ,

and by Implicit Function Theorem (1.6.i) there is a measurable function

a(t) = (W), t1 <t < tas, such that

T(t) e U(t,x(t)), x'(t) = F(t,x(t),a(t))

or
u(6) > £_(6,x(e),u(t)),  u(t) e U(t,x(t)) ,
ax/at = u’(t), dx/at = £(t,x(t),u(t))

a.e. in [t3,ts]. On the other hand

[%2 £ (t,x(t),u(t))at < [72 oO(t)at

I[x,u] = t) fo £y
o
= X(tz) - X(t1) = X(t2) = x (tz) - S(tz)
e o o
< = = i
< x (tz) X5 lim x (tak )
s*o 8 s
= lim I[xk . ] = 1 =1lim I[xk,uk] .
500 s s k00

Remark 2. In the sufficient condition for lower closure (2.10.i) it is enough
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to request that the sets a(t,x) are closed, convex, and have property (Q) at
the points (t,x(t)) € A for almost all t ¢ [ti,t5]. In this form, and under
suitable regularity hypotheses, the convexity assumption of this sufficient con-

dition for lower closure will be shown to be also necessary [App. A.5].

Remark 3. Condition (y) in statement (2.10.i) is certainly satisfied if, for
instance, fo(t,x,u) > 0 for all (t,x,u) € M, or fo(t,x,u) > v for all (t,x,u)

€ M where v is some real constant. Nevertheless, condition(y) in (2.10.i) can
be reduced. For instance, we may replace it by the following weaker assumption
(¢'): for every compact subset Ao of A there is a locally integrable function
wo(t) (which may depend on AO) such that fo(t,x,u) > wo(t) for all (t,x) € AO,
u € U(t,x). The proof is the same since we can include all trajectories x and
xk in a unique compact subset AO of A.

A more drastic generalization of (2.10.i) will be given below (2.10.ii)

where we shall use the following much weaker form of condition.

Condition (y*). For every (t,x) ¢ A there are a neighborhood N(t,x) of (t,x)

in A, a locally integrable function y(t), and real numbers bi,...,b, (all

bi,...,b, and | may depend on t,x,N) such that

n

f(t,x,u) = fo(t,x,u) - Zj=l bj fj(t,x,u) > y(t)

for all (t,x) e N(t,x), u € U(t,x), with exception perhaps of a set of points

(t,x) whose t coordinate lies on a set of measure zero on the t-axis.

Remark 4. We shall note here that, under condition (y*), it is natural to
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consider the sets

~ o o
Qt,x) = [(z7,2)lz" > £ (t,x,u), z = £(t,x,u), u e U(t,x)] ,
or the analogous sets

ax(t,x) = [(z°%,2)]z° > fo(t,x,u), 7 = £(t,x,u), u e U(t,x)] .

It is easy to see that the sets 3 are closed, or convex, or satisfy property
(Q) if and only if the same occurs for the sets Q*. Indeed, the sets above

are transformed into one another by the fixed affine transformation

o o
Z =z - bz, z = z.

(2.10.ii). Let A, B, U(t,x), M, f£(t,x,u), fo(t,x,u) as in (2.11.i), and
let us assume that condition (y*) holds. With N(t,x) as in condition (y*),
and for every (t,x) e N(t,x), let E(t,x) denote the set of all z = (z°,z%, ...,
zn) = (zo,z) with z° Z‘EO(t,x,u),z = f(t,x,u) for u € U(t,x), and assume that
the sets a(t,x) are closed, convex, and satisfy property (Q) at all points
(t,x) € N(E,i), with exception perhaps of a set of points whose t-coordinate
lies on a set of measure zero on the t-axis. Then the integral (2.9.1) has

the property of lower closure at every AC vector function x(t), ti <t <ty

which is the limit in the p-metric of admissible trajectories.

Proof. Let x(t), t1 <t < tp, be any AC function as in text, and xk(t),

uk(t), t.. <t <t

1k ST St k =1,2,..., be a sequence of admissible pairs with

p(xk,x) + 0, lim I[xk,uk] < + . Let AO be a compact neighborhood (containing
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the graph of x and all xk). By hypothesis, for every (%,x) ¢ Ao there are
numbers & > O, bl,...,bn real, and a locally integrable function y(t),

- 0 <t < + o, such that %O(t,x,u) > y(t) for all (t,x) e NES(E,Q) and

u € U(t,x). We consider the smaller neighborhoods NB(E,i) which we consider as
open (in A). These too form a cover of the compact set AO. Thus, finitely

many of these N

g cover A , say Ny (ty’xy)’ ¥y = 1l,.0.,s8. Let 67 > 0, byl"“’

4
byn’ Wy be the corresponding elements, so that

- (o]
f (t = f (¢ -
os( sX,1) O( »X51) 25=l b7j fj(t;x;u) > Wy(t)
S
for all (t,x) e N287(t7,x7), u e U(t,x), y =1,...,s8, and U7=1N67(t7,x7) > A

Let b = ma b i = 1l,e.. =1,... 5 = mi = e .
max [| ’)’jl, J p) 0, p) »8], o min [67; 4 1, s8]

Since (t,x(t)) € A for all t; <t < tp, we can divide the arc C.:
x = x(t), t1 <t < ty, into finitely many subarcs, say Cc’ c=1,...,N, each

Cc completely contained in some neighborhood N (ty’xy)‘ Thus, we have for the

o)
4

arcs C_ the representations CO: x =x(t), T <t < T with t; = 7, < 11 <...

o-1

< Ty = t5, and each Cc lies in a certain N6 (ty,xy) which now remains asso-
4
ciated to Cc' Since p(xk,x) + 0 as k » o, hencet

> ty, t. > ts, we see

1k 2k

that for all k sufficiently large we have tlk < T3 < .60 < TN_l < t2k' Thus

for all k sufficiently large, the arc Ck: X = xk(t), tlk <t< tek’ is divided
into the same number N of subarcs, say Cko: X = xk(t), To_l <t < To,
c=1,...,N, where now TS = t; must be replaced by tlk and TN = t, must be

replaced by t Also, for all k sufficiently large, say for k > ko’ the arc

ok’

Ckc is completely contained in N26 (t ,x ) for the same vy we have already
Y 7

V4
3L



associated to C . Thus, for k >k , C 1lies in some N (t ,x ) and C in
o - o 0 6777 ko

N, (t ,x ). Also, C, +C _ as k » o in the sense that p-distance approaches
20 Ty’ y ko o

zero as k + o». We shall now consider for each o = 1,...,N, the auxiliary func-

tional

J = ft? fo(t,x(t),u(t))dt

for all admissible pairs x,u with the graph of x lying in N26 (ty,x ). Here
4
4

by admissible we mean that the conditions a-d of (1.1) are satisfied with A

replaced by N (ty’xy)’ and of course fo(t,x(t),u(t)) L-integrable as usual.

2%
4

For each o we may now apply (2.11.i) to arc Cc’ the sequence Ckc’ k=1,

2,..., and functional J. We conclude that each Cc is admissible and that

J[Cc] < lim J[c0 ], o = 1,...,N. (2.10.7)

ko0 k

More precisely, for each o, there is a measurable u(t), T <t < Ty such

o-1
that the pair x(t), u(t), Tool S t < TS is admissible for the functional J, in
particular u(t) e U(t,x(t)), dx/dt = £ (t,x(t),u(t)), Tl S t < T, (a.e.),
o=1,...,N, and the expression
- n
Fo(t,x(t),u(t)) = £ (t,x(t),u(t)) - 2, . b . £ (t,x(t),u(t
(Ex(®),u(6) = £ (ex(e),u(e)) - T b o £ (x(t),u(t)

is L-integrable in [T0

,T ]. Since the functions f, here are certainly L-
-1 o J

integrable in the same interval (as derivatives of the AC functions xl(t)
in [TO l,Tc]), we conclude that fo(t,x(t),u(t)) itself is L-integrable in each

[Tc l,To] and hence in the whole of [t;,ts]. We have proved that the pair x(t),
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u(t), t1 <t < tp, is admissible for the original integral I.
Now, given € > O, we deduce from (2.10.7) that there is some K > ko such

that, for k > E, we have

- - = LN . . I8
J[Cko] J[CU]> g/N, p(Ckc,Co)<s/Nnb, o l,...,N . (2.10.8)

Now we have

Il = 2 2 (6x(8)u(t)as = T 7 Eolx(e)ute)a
- {sz_l F(&x(t),u(e))at + T b [x9(r ) - xj(To_ln}
Ixoud = [P g (6x (6 (8)as = 5 10 ¢ (t,x (t),u (t))as

1k o-1

o {flz_l (6 (6)u (e)at + 5 b [x)(r) - xj(TO_l)]}

where we have written boj instead of byj with y the index we have associated to

0, and where we have written 11 = t; and T

N - to instead of t and t in the

1k 2k

expression for I[xk,uk]. By difference we have now, remembering relations

(2.10.8),

I[xk,uk] - I[x,u] > - N(g/N) +

=1 j=1 oJ

T D SR _<{in(70) - Xj(To)] + [Xi(Tc_l) - Xj(Tc_l){}

where each bracket is now in absolute value < (Nnb)-le. We conclude that for
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all k > k we have
I[xk,uk] - I[x,u] > - & - Nnb[2(Nnb)~1e] = - 3¢
Because of the arbitrarity of &, we have proved the lower closure of I at x.

Remark 5. Statements (2.10.i) and (2.10.ii) have corollaries for generalized
solutions. Let A, U(t,x), M, B, fo(t,x,u), f(t,x,u) = (fl,...,fn) be defined
as in (2.9). Thenx(t), p(t), v(t), t1 <t < ty, is said to be an admissible
generalized system (generalized solution) provided x(t) is AC and p(t), v(t)
are measurable in [ti,tz]; (t,x(t)) € A for all t € [ty,to]; p(t) = (pl,...,py),
p,(t) 20, p.(t) = 1 (that is, p(t) € I), v(t) - W), 521,00,

u(J)(t) e U(t,x(t)) a.e. in [ty,tpz]; provided the differential equation

axfas = T p(6) £tx(e),0 P (0))

is satisfied a.e. in [ti1,t5], the function Z§=l pj(t) fo(t,x(t),u(a)(t)) is L-
integrable in [ti1,t5], and (ti,x(t1),t2,x(t2)) € B. Then the corresponding

functional is

I[x,p,v] = ftf Z§=1 pj(t) fo(t,X(t),u(j)(t))dt .

The sets E(t,x) of all points z = (2%,z) = (2%2%,...,2") with 2° > P,
fo(t,x,u(j)), z =2 pj f(t,x,u(j>) for some (p,v) € I' x (U(t,x)7 are exactly
the sets co a(t,x) if y = n + 2. We take for y the smallest integer for which
this occurs for all (t,x) e A, 1 <y <n + 2.

(2.10.iii). (A lower closure theorem for Lagrange problem and generalized

solutions). If the sets A, M, B are closed, and fo’ f are continuous on M,
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let us assume that the convex sets E(t,x) are closed and satisfy property (Q)
at every point (t,x) € A with exception perhaps of a set of points whose t co-
ordinate lies on a set of measure zero on the t-axis. Let us assume that for
some locally L-integrable scalar function y(t) we have (y) fo(t,x,u) > y(t)
for all (t,x,u) € M, with exception perhaps of another set of points whose t
coordinate lies on a set of measure zero on the t-axis. Then the integral
(2.10.7) has the property of lower closure at every AC vector function x(t) =
= (xl,...,xn), t1 <t < ty, which is the limit in the p-metric of generalized
trajectories. In other words, for every AC function x(t), t; <t < tp, and

sequence, x (t), pk(t), vk(t), t

<t<t
k = =

k=1,2,..., of generalized sys-

1k 2k’

tems with p(xk,x) >0 as k > oo, lim I[xk,pk,vk] < o as k » o, there are meas-
urable functions p(t), v(t), t1 <t < tg, with p(t) = (Pl;--‘:P7): pj(t) > 0,
z pj(t) =1, v(t) = (u(j)(t),j = 1,000,7), u(j)(t) € U(t,x(t)) a.e. in [ta,t5],
such that I[x,p,v] < lim I[xk,pk,vk].

We leave to the reader to state the analogous corollary of (2.10.i) for

generalized solutions.

2.11. A VARIANT OF THE LOWER CLOSURE PROPERTY
Statement (2.10.i) holds in a slightly stronger form. To formulate it we

need, besides the sets Q(t,x) c En of (2.10), also the sets Q(t,x) = f(t,x,

+1

U(t,x)) < En. These sets Q(t,x) are the projections on the z-space En of the

sets Q(t,x) of the z°z-space En Thus, if the sets Q(t,x) are convex, so

+1°
are the sets Q(t,x). On the other hand, the sets Q(t,x) may be closed, without
the sets Q(t,x) being so. This is shown by the example n = 2, m = 1, U =

=[- 0o <u<+ o], fo = (1 + u2)1/2, f = arctan u, - n/2 < f < /2. Then, Q
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and a are the fixed sets Q = [z| - n/2 < z < n/2]  Ea, a = [(zo,z)| 2° > sec z,
- /2 <z < n/2] c Ep, and E is closed, but Q is not. This example shows also
that property (Q) for the sets 3 does not imply the same property for the sets
Q. In the statement below we shall require that both the sets a(t,x) and the
sets Q(t,x) have property (Q).

(2.11.i). If we assume, in addition to the hypotheses of (2.10.i), that

both the sets Q(t,x) < En and the sets Q(t,x) < E are closed, convex, and

+1
satisfy property (Q) at all points of A with exception perhaps of a set of points

whose t coordinate lies on a set of measure zero on the t-axis, then for every

sequence X

(t), uk(t), t.. <t < t2k’ k = 1,2,..., of admissible pairs, and any

k 1k

AC vector function x(t) = (x*

yeesxX?), t1 <t < tp, with p(xk,x) - 0 as k > o,
there is a measurable function u(t), t1 <t < tz, such that u(t) e U(t,x(t)),
x'(t) = £(t,x(t),u(t)) a.e. in [t;,t-], and

I[x,u] < lim I[xk,uk] . (2.11.1)
k00

If 1lim I[xk,uk] < + o, then certainly the pair x,u is admissible, and (2.11.1)
holds.

An analogous variant of theorem (2.11.i) also holds.

Proof of (2.11.i). First note that fo(t,x(t),u(t)) is measurable in [ti,ts]

and > y(t), hence, I[x,u] is finite, or + w. If the second member of (2.11.1)
is finite, then I[x,u] must be finite, hence fo(t,x(t),u(t)) must be L-integra-
ble, and the conclusion of (2.11.i) reduces to the conclusion of (2.10.i) in
the case under consideration. If the second member of (2.11.1) is + o, then

(2.11.1) in itself is trivial, but we still have to prove that a measurable
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u(t), t1 <t < tp, exists with u(t) e U(t,x(t)), x'(t) = £(t,x(t),u(t)) a.e.
in [ti1,t5]. This, however, is a consequence of closure theorem 1 of (2.5)
applied to the AC n-vector function x, the n-vector function f, and the sets
Q(t,x) E - Statement (2.11.2) is thereby proved.

Finally, let us show by an example that an integral I[x,u] may possess
the properties of statement (2.10.i), and thus the property of lower closure
as defined at the beginning of (2.9), and yet not possess the stronger property
of the present section (2.11).

Indeed, take m =n =1, U = [u| - ®w<u < + »], f = exp(u), £ = exp(u®),
A = Ep, and take x(t) =0, 0 <t <1, xk(t) =k, 0<t<1, k=1,2... .
Here X, *X uniformly in [0,1] as k + « and I[xk,uk] = exp(log k)2 » + » as
k > + . Obviously, there is no measurable u(t), 0 <t < 1, with - o < u(t)
< + o, such that 0 = x'(t) = exp(u(t)) a.e. in [0,1]. The integral I has not
the strong property represented by the conclusion of statement (2.11.i). Yet
the integral I has the property of lower closure as defined in (2.9) as a con-
sequence of theorem (%.6.1). Indeed, here 3 = [2° > exp(u®), z = exp(u),
ue E;], or a = [zO > exp(log z)2, 0 <z < + w], is a fixed closed convex sub-
set of Eo, and all conditions of (2.10.i) are satisfied. Instead, Q = [z =
exp(u), u € E1] is the set Q = [0 < z < + »], a fixed convex set, and Q is not

closed.

2.12. CRITERIA FOR PROPERTY (Q) OF THE SETS 3(t,x)
We assume here that the sets A, U(t,x), M, Q(t,x), Q(t,x) are defined as
usual, that the sets A and M are closed, and that the functions fo(t,x,u),

£(t,x,u) = (f1,...,f,) are continuous on M.
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(a) We say that a function g(t,x,u) on M is of slower growth than fo(t,x,u)

as }u| - o in a subset Ao of A if, for every € > O there is some number H, which
may depend on g, f_ and AO, such that (t,x) € AO, lu| >H, u e U(t,x) implies
gl <ef.

(2.12.i). If 1 and f are of slower growth than fo as Iu] + o in a neigh-
borhood NS(E,i) of (t,x) in A, and E(E,i) is convex, then the sets E(t,x) sat-
isfy property (Q) at (t,x) (in particular, a(ﬁ,i) is closed).

This statement is proved in (App. A.L4.i). Note that, if 1 and f are of
slower growth than £ as |u| > » in A, then not only the sets E(t,x) of (2.10.1)
satisfy property (Q) in A, but also condition (y) of (2.10.i) is trivially sat-

isfied with y = constant.

Remark 1. As mentioned in (2.10), for generalized solutions of Lagrange prob-
lems we consider the convex sets E(t,x) = co a(t,x), and we have to verify that
these sets ﬁ(t,x) are closed and satisfy property (Q). Statement (2.12.i) can
be completed as follows:

(2.12.ii). If 1 and f are of slower growth than fo as |u| +> o in a neigh-
borhood NS(E,Q) of (t,x) in A, then the convex sets E(t,x) = co E(t,x) satisfy
property (Q) at (t,x) (in particular, E(E,i) is closed).

The statement is proved in (App. A.4. ). Thus, if 1 and f are of slower
growth than £ in A, then the convex sets ﬁ(t,x) of (2.10.iii) certainly are
closed and satisfy property (Q) in A, and even condition (y) of (2.10.iii) is
trivially satisfied (with y = constant).

(b) In the criterion (2.12.iii) below we shall use a different set of
hypotheses. At the beginning of (2.11) we noticed that the sets Q(t,x) < En

L1



are the projections of the sets Q(t,x) c En+ on the z-space En; hence, the

1

convexity of any set 3(t,x) in En+ implies the convexity of the corresponding

1
set Q(t,x) in E_. Nevertheless, as we proved by an example (at the beginning
of (2.11)) the sets S(t,x) may be closed and even satisfy property (Q) at any
given point (t,x) without this being the case for the sets Q(t,x).

However, the following holds: if the sets E(t,x) satisfy property (Q) at
(t,x), then (o) (zo,z) € 08 cl co E(E,i) implies z € Q(t,x). Indeed (zo,z) €
06 cl co E(E,i) yields (zo,z) € a(f,i) by property (Q) at (t,x), and then
z € Q(t,x).

We shall say that condition (a) holds at the point (t,x) € A provided:

(@) (z°,2) e n_ cl co E(E,i) implies z € Q(%t,x)

5

As mentioned, this condition is necessary for property (Q) of the sets E(t,x)
at (t,x). This same condition (a) alone is not sufficient for property (Q) as
the following example shows: Take m =n =1, U = E,, fo = t%u3, £ = tu,
0 <t <1l. Then 3(0) = [(zo,z)|zO >0, z = 0], 3(t) = [(zo,z)lzo > 7125,
z € E;] if t > 0, the sets 3 do not satisfy condition (Q) at t = 0, but condi-
tion (@) certainly holds at the same point. Note that condition () is trivially
satisfied for free problems (m = n, £ =u, U = En), since Q = U = En’ and all
points z € En are in Q.
Now we shall say that condition (X) holds at the point (f,x) e A provided:
(X)rFor every z e Q(t,x) there is at least one point u e U(%,x) with
z = £(t,x,u) and the following property: given € > O there are numbers & > O,

and r, b = (b1,...,bn) real, such that
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(x') fo(t,x,u) >r o+ Zj bj fj(t,x,u) for all (t,x) e Na(E,i)
and u ¢ U(t,x);

(x™) fo(£,i,ﬁ) <r + Zj bj(%,i,ﬁ) + €.

As we shall see in (App. A. 4), this is a very weak requirement. For free
problems, for instance, this condition reduces to a weak form of the well known
"seminormal convexity condition” (App. A.6).
(2.12.iii). If conditions (a) and (X) hold at a point (t,x) e A, then
the sets E(t,x) are closed, convex, and satisfy property (Q) at the point (t,x).
This statement will be proved in (App. A.L.iv). We shall see there also,
that under a slight requirement, the union of (o) and (X) is necessary as well
as a sufficient condition for property (Q) of the sets E(t,x).

(c) The case of f linear in u. We shall assume here that A is a given

—_— — — — — —

closed subset of the tx-space El+n’ that U = E&, that fo(t,x,u) and f(t,x,u) =

= (f1,...,f ) are continuous on M = A x E , and that f is linear in u, that is,
n m

m j .
£, (t,x,m) = Zj:l bij(t,x)u‘J te (%), i = L...n,
or
f(tJX)u)' = B(t)x)u + C(t)x) )

where B, C are nxmand nx lmatrices with entries continuous in A. For every
compact subset AO of A, the functions bij’ ci are continuous and bounded on Ao;
hence, there are constants Gb’ FO such that |f(t,x,u)| < Golul + FO for all
(t,x) € A end u € E .

(2.12.iv). If fo(t,x,u) is convex in u, and f linear in u with U = E ,
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then the sets Q(t,x) are convex.

Proof. If E = (CO,Q), 1 (no,n) are any two points of Q(t,x), and O <a<l,

~

let z = (zo,z) =qat + (1 - a)ﬁ. Then there are vectors u, Vv € Em such that

¢ > fo(t)x:u); £ = Bu+C,
o —
n 2 fo(t)x)v)} n = Bv+C,
z = af+(1-an 22 = o’+@Q-a1°, z = o+ (1-a)y.

ou + (1L - a)v, we have

i

If w e Em denotes the vector w

z = af +(L-a)n = ofBu+C)+ (1L -a)(Bv+cC)
= Blow + (1 -a)v) +C = Bw +¢C

2° = ot + (1 - ) 20f (,xu) + (1 - a)F_(t,%,v)
> fo(t,x,au + (1 -~ a)v) = fo(t,x,w) .

Thus 2z = (zo,z) € a(t,x) and a(t,x) is convex.

(2.12.v). If A is closed, U = Em, M=Ax Em, if fo(t,x,u) is continuous
on M, convex in u, and "seminormal in u at a point x ¢ A (see definition (SN)
in (d) below), if £(t,x,u) = B(t,x)u + C(t,x), where the matrices B, C have

(@)

~ o
entries continuous in A, then the sets Q(t,x) = [(z ,z)|z > fo(t,x,u),

z = £(t,x,u),u € Em] satisfy property (Q) at (%,x).
A proof is given in (App. A.4.(v)). This statement for f linear in u, or
f = B(t,x)u + C(t,x), is much stronger than the analogous statement (2.12.i).

Indeed, we would deduce from (2.12.i) an anologous statement as (2.12.iv) under
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a growth condition fo(t,x,u) > o(|ul) with o(f)/t + + w as § > + o.

Example 1. Takem =1, n =2, U = E,, fo =1, f1 =u, fo = tu, -1 <t < 1.

Then the sets Q and 3 depend on t, and

Q(t) = [z = (2%,2®)|z' = u, 2% = tu, u e Eq]
= [z = (24,2%)|2% = t2*, 2% ¢ E1] € Ep,
Qt) = [z = (z°,2z%,22)| z° >1, 2% =t z*, 2t € E1] Cc Es .

Each set Q(t) is a straight line in E, of slope t, and for each & > O the set
Q(0,8) contains both lines z2 = #8z', and the convex hull of Q(0,8) coincide
with the whole plane Eo. Thus Q(0O) is the z'-axis and 06 cl co Q(0,8) is the

whole z'z®-plane. The set Q(t) does not satisfy property (Q) at t = 0, and

the same holds for Q(t). Here fo 1 does not satisfy the weak growth condi-

tion requested in (2.12.iv).

Example 2. Takem =1, n =2, U=Ey, £ = |tul, £1 =uw, £f2 = tu, -1 <t < 1.
Then

1
z*, z* ¢ E,] Cc Ep ,

+

a(t) = [z = (2%,2%)]2% =
a(t) = [z = (zo,zl,zz)lzo > 28|, 2% = tz', z' ¢ E;] c Es .

As before the set Q(t) does not satisfy property (Q) at t = 0. Analogously,

for any 8 > 0 and - & <t < B, we see that

1 1

(2°,2 ,28 ) = (1,67%,1) € a(s) ,

N2
I

n 1 "

~,, le) - =~
z" = (Z ;Zl )22 ) = (l;"5 l:l) € Q('B) b)
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and for o = 1/2, also
Z = az' +(1-az" = (292%23) = (1,0,1) € co Q(038) .

Hence

= (1,0,0) £ Q(0) ,

N2

z = (1,0,1) = N clco 2(0;8)

and a(t) does not satisfy property (Q) at t = O. Here f_ does not grow at t = O.

Example 3. Take m =1, n=2, U = E;, fo = |u|, fo =tu, - 1<t <1l. Then
Q(t) = [z = (Zl)zaﬂza = tzl: z' € E1] © Ez
Qt) = [z = (2°2%,23)|2° > |2'], 2® = tz*, 2* € B1] c Es .

As before Q(t) does not satisfy property (Q), while Q(t) does satisfy property

(Q) at every t because of statement (2.12.iv).

Example 4. Teke m =n =1, U =Ey, f_ = tu®, £, =u, 0<t <1l. Then

Q(t) = [z]z

u, u € E;] CcEp,

[z = (zo,z)lzO >tu®, z =u, ueE)cE .

Q(t)

Here Q(t) = U = E; for every t, O <t <1, and obviously Q(t) satisfies prop-
erty (Q). On the other hand, 3(0) is the half plane [zO >0, z ¢ Ej while a(t)
for t > 0 is the set 3(t) = [zO > tz2, 2z € E1]. Obviously, 3 satisfies prop-

erty (Q) at t = 0 (and at every t as well).

Exemple 5. Teke m =n =1, U=Ey, f = t3u®, f; =tu, 0 < t <1l. Then



tu, u € E;] € E; ,

a(t) = [z|z
E(t) = [z = (zo,z)lzo >t%%, t = tu, ueE]cEs.

Here Q(0) is reduced to the single point z = 0, while Q(t) for every t > O

coincides with E;. Thus Q(t) does not satisfy property (Q) at t = 0. Also,

(e}

30) = [z° >0, z = 0], while Q(t) for t > O is the set Q(t) = [z° >t 22,

z € E;] and cl co 3(0;8) is the entire half plane [zO >0, z € E;]. Thus,

neither Q nor S satisfy property (Q) at t = O.

(d) The free problem case; m=n, £ =u, U = En. Here the sets Q re-
duce to the fixed, closed, and convex set Q = U = En. The sets a(t,x) reduce

here to

S(tlx) = [(Zoxu)lzo > fo(t)x,u); u e En] .

These sets are closed whenever fo is continuous, and convex whenever fo(t,x,u)
is convex in u. As mentioned, condition (@) is trivially satisfied. Condi-
tion (X) at a point (%,x) € A reduces to the following simple (and well known)
requirement:

(Xx.) ( = weak seminormality condition) For every u e E and g > 0 there

f

are numbers & >0, and r, b = (by,...,b,) real such that

(Xf') fo(t,x,u) >r + beu for all (t,x) e NS(%,X)

and u € E_;
n

(x.") fo(%,é,ﬁ) <r+bu+e.

Then statement (2.12.ii) yields:
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(2.12.vi). For free problems (m =n, £ =u, U = En), if A is closed, if
fo(t,x,u) is continuous on M = A x En and convex in u, and if fo is weakly semi-
normal at a point (%,x) e A, then the sets Q(t,x) satisfy property (Q) at (t,x).

Convexity of fo alone does not imply that the sets 3(t,x) have property

(Q) in A. This is shown by the following simple example. Take n = 1, fo(t,u)
=tu, 0<t<1l, ueU~=E;. Then fo is continuous and convex in u for every
t, but at every t, 0 <t < 1, we have a(t) = [(zo,u)lzo > tu, u € E;], a half

plane in E5, while N_ cl co E(t;&) is the entire plane E,. Thus the sets Q do

o}
not satisfy property (Q) atanyt, 0 <t < 1.
The usual seminormality condition is a somewhat stronger requirement. By

a nonessential modification of the condition used by L. Tonelli and E. J. Mc

Shane we shall say that the seminormality condition at a point (E,i) € A is

satisfied provided:

(SN) (seminormality condition) For every u e En and € > O there are num-

]

bers 8 >0, v >0, and r, b (bl,...,bn) real such that

(sN') fo(t,x,u) >r + bu+ v|u - u| for all (t,x) e Nﬁ(E,ﬁ)

and u € E_;
n
(SN") fo(E,i,i) <r +beu+e.

Seminormality condition has a very simple and elegant characterization:

(2.12.vii). For free problems (m =n, f =u, U = En), if fo(t,x,u) is
convex in u at some (t,Xx) € A, then fo is seminormal at (t,x) if and only if
for no u, uj € E, w + 0, it occurs that fo(f,i,ﬁ) = g-1 [fO(E,i,ﬁ +auy) +

fO(E,i,ﬁ - Auy)] for all A > 0.



A proof of this statement is given in (App. A.6.i). Note that, if we de-
note by Q(t,x) the set [(zo,u)lzO = fo(t,x,u),u € En], then a(t,x) is often
denoted as the "figurative" of fo (at the point (t,x) e A). Statement (2.12.vi)
then states that f_ is seminormal at (t,x) if and only if the figurative con-
tains no straight line. In particular, if say fo(E,i,u) > +oas |ul >+ o,
and fO(E,i,u) is convex in u, then the figurative a(f,i) cannot contain any
straight line, fo is seminormal at (t,x), fo is weakly seminormal, and cer-

Q

tainly the sets Q(t,x) satisfy property (Q) at (t,x).
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2.D. LOWER SEMICONTINUITY THEOREMS

2.1%3. LOWER SEMICONTINUITY OF FUNCTIONALS IN INTEGRAL FORM

Thé rather general concept of lower closure defined in (2.9) is a natural
extension of the usual concept of lower semicontinuity. Indeed, the defini-
tion of lower closure in (2.9) reduces to the usual concept of lower semicon-
tinuity whenever the strategy u is "determined" by the (admissible) trajectory
x, and then the functional (2.9.1) can be thought of as depending on the (ad-
missible) trajectory x only:

ta

I[x] = [ fo(t,x(t),u(t))dt . (2.13.1)

t1

This occurs, for instance, for free problems where u(t) = x'(t) (a.e.). Pur-
pose of the present section (2.13) and next one (2.1L4) is to clarify the con-
cepts, to deduce theorems of lower semicontinuity from our previous theorems
of lower closure in (2.10) and (2.11), and to show that the usual theorems of
lower semicontinuity for free problems are corollaries of our theorems of lower
closure.

(a) As mentioned in (1.5) it may happen that the data A, U(t,x), B,
fo(t,x,u), f(t,x,u) = (f1,...,f,) are so arranged that, for any admissible pair
x(t), u(t), t; <t < tp, the trajectory x determines uniquely the strategy u
(a.e. in [t1,t5]). Then the functional (2.1%.1) can be thought of as being de-
fined for every admissible trajectory x, and we may denote it as I[x]. 1In

(1.5) we referred to these systems as TDS systems. The free problems are in
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this class. For all these systems the concept of lower closure (2.9) reduces
to the one of lower semicontinuity. Let x(t), t1 <t < tp, be any AC vector
function which is the limit in the p-metric of a sequence of admissible tra-

jectories x (t), t.. <t<t_, k=1,2,..., with p(xk,x) + 0 and lim I[xk] <

k 1k = — 2k

+ 0 as k > o (thus, of course b b, by t5). The functional (2.13.1) is

2k
said to be lower semicontinuous at x provided, from any such sequence we can
conclude that x is admissible, and that I[x] < lim I[xk] as k »> o.

(b) For general TDS systems statements (2.10.i) and (2.11.i) reduce to
the following ones.

(2.13.1i). For systems TDS, and under the same conditions of (2.10.i) any

AC function x(t), t; <t < tp, with (t,x(t)) € A for all t e [t;,t>] and which

is the uniform limit of admissible trajectories xk(t), t., <t<t

1k S k=1,

2k’
2,440, With p(xk,x) ~ 0, lim I[xk] < + oo as k » o, then x is admissible and
I[x] < 1lim I[xk].

(2.1%.ii). For systems TDS, and under the conditions of (2.10.i) and
additional hypotheses in (2.11.i), any AC function x(t), ti1 < t < tp, with
(t,x(t)) € A for all t € [t1,to] and which is the uniform limit of admissible
trajectories xk(t), t

<t<t 1,2,..., that is p(xk,x) + 0 as k » o,

1k o’ BT

then x is admissible and I[x] < lim I[xk].

In the last statement we understand that there is a measurable function
u(t), t1 <t < tp, such that x(t), u(t), t1 <t < ty, satisfyingall conditions
for admissibility but perhaps the L-integrability of fo(t,x(t),u(t)) in [ty,t2],
and that this condition too is satisfied whenever lim I[xk] < + o,

Statement (2.10.ii) also has its counterpart here, but we leave its formu-

lation to the reader.
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2.14. THEOREMS OF LOWER SEMICONTINUITY FOR FREE PROBLEMS

Let us consider here free problems, that is, systems with m =n, f = u,
U = En; hence, the strategy u(t) = x'(t) (a.e.) is determined by the trajectory
(a.e.). If A and B are as usual closed sets, then M = A x En is also closed,
and fo(t,x,u) is a given continuous scalar function on M. Here a function

x(t) = (x%,...,x%), t1 <t < to, is an admissible trajectory provided x is AC
<ttt

in [t1,t2], (t,x(t)) € A for all t ¢ [t1,t2], (tl:x(tl);t2ix(t2)) € B, and
fo(t,x(t), x'(t)) is L-integrable in [t1,t-]. Then the cost functional is

ta

Ix] = [

fo(t,x(t),x'(t))dt . (2.14.1)

The corresponding sets Q(t,x) and E(t,x) have been already discussed in (2.12)
(d), and the concept of weak seminormality has been introduced there.
Our general statement (2.10.ii) in conjunction with (2.12.v) yields:
(2.14.1i). (A theorem of lower semicontinuity for free problems). For
free problems (m =n, £ =u, U = En), if A is closed, if fo(t,x,u) is contin-
uous on M = A x En’ convex in u, and weakly seminormal with respect to u in
A, then the functional (2.1L4.1) has the property of lower semicontinuity; that
is, if x(t) = (x},...,x"), t1 <t < tp, is an AC function which is the limit

in the p-metric of admissible trajectories xk(t), ., <t <t

lk— k, kzl,e,.l‘,

2
with p(xk,x) + 0, and lim I[xk] < +oas k >+ o, then x is admissible, and
I[x] < lim I[xk].

The condition of weak seminormality is certainly satisfied if fo(t,x,u) >

+ o as |ul > + o for every (t,x) e A.

Theorem (2.14.i) is due to L. Tonelli [ 1 ] who proved it for fo of class
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C' in u. A proof under the present sole continuity hypotheses was given by

L.Turner [ 1]. The lower semicontinuity theorem (2.1k4.i) is here a corollary

of theorem (2.10.ii) for lower closure of general Lagrange problems.
Statement (2.1L4.i) without the hypothesis of weak seminormality is not

true, as the following simple example shows. Taoke n =2, A = Eg, fo = yx' - xy',

X,y state variables. Then fo is certainly convex in (x',y'), namely linear.

G

+ (yx' - xy')dt is not lower semicontinuous. Indeed, if
1

Nevertheless, I =

we take C: x =0, y =0, 0<t <2x, and C x = k™'sin kat, y = k™ tcos kzt,

k:

0<t<an k=1,2..., then ¢, »C, I[C,] = -2n, k = 1,2,..., and I[C] = O.

An analogous example for n = 1 has been given by L. Tonelli [3 ]. Never-
theless, Tonelli proved that, for n = 1, and fo continuous in t,x,x' with con-
tinuous first order partial derivatives, statement (2.14.i) holds without weak
seminormality requirement [ 1 ]. Again, the example above shows that this is
not the case for n > 2.

Remark 1. Generalized solutions for free problems form no TDS systems since
the strategy (p,v) is not determined by the strategy as mentioned in (1.9).
However, our general closure theorems (2.10.ii) and (2.10.ii) apply, and we
state below, as an example, a corollary of (2.10.1i) for generalized solutions

and free problems. Here A is as usual a subset of the tx-space E +n’ U = En’

1
M=AX En’ we assume A closed, hence M is closed, and we assume fo(t,x,u) con-
tinuous on M. A generalized solution is as usual (see (1.9)) a system x(t),
p(t), v(t), t1 <t < tp, with x(t) AC and p(t), v(t) measurable in [ti,t2],

(t,x(t)) € A for all t e [t1,t2], p(t) = (Pl:"':Py): Pj(t) >0, ijj(t) =1

(that is, p(t) e I'), v(t) = (u(j),j = 1,000,7), u(j)(t) € En a.e. in
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[t1,t5], satisfying

dx/dt = Z§=l pj(t)u(j)(t) a.e. in [t1,ts] ,

and such that Zﬁ pj(t)fo(t,x(t),u(J)(t)) is L-integrable in [t;,t5]. Then the

corresponding functional is
- [ta 57 (3) L
I[x,p,v] = J . _ p,(t)f (t,x(t),u (t))at , (2.1k.2)
t1 J=1 7] °

(cfr. (1.9.3) and (1.9.L4).

Note that the sets R(t,x) E,, of all z = (2°,2) = (2°,2%,...,2") ¢ E__ with

1 n+l
(3)

z° > Zj pj f (t,x,u'v’), z = ZG Pj u'Y’for some (p,v) € I' x Eny’ are exactly

o
the sets co a(t,x) if y = n + 2. We take for y the minimum integer for which
this holds for all (t,x) e A, L <y <n + 2.

(2.14.ii). (A theorem of lower closure for free problems and generalized
solutions). For free problems (m =n, f =u, U = En) and fo(t,x,u) continuous
on M = A x En’ if the convex sets ﬁ(t,x) are closed and satisfy property (Q) at
every point (t,x) ¢ A with exception perhaps of a set of points whose t co-
ordinate lies on a set of measure zero on the t-axis, let us assume that (y) for
some locally integrable scalar function ¥(t) we have fo(t,x,u) > y(t) for all
(t,x,u) € M, with exception perhaps of another set of points whose t coordinate
lies on a set of measure zero on the t-axis. Then the functional (2.14.2) has
the property of lower closure; that is, if x(t) = (x%,...,x%), t1 <t < tg, is
any AC function which is the limit in the p-metric of the trajectories x

k

of generalized admissible systems xk(t), pk(t), vk(t), tl <t<t

k 2k’
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k =1,2,..., with p(x, ,x) > 0 as k + », and lim I[xk,pk,vk] < + >, then x is a

k¥
generalized admissible trajectory, that is, there are measurable functions
(3)

p(t) = (Pl;'--;py)) v(t) = (u ) = l)“-,')'): t1 <t < ty, with P(t) eI,

u(J)(t) 5 En’ such that x(t), p(t), v(t), t1 <t < tp, is a generalized admis-
sible system, and I[x,p,v] < lim I[xk,pk,vk] as k - oo.
A corollary of (2.10.i). Note that if |u| is of slower growth than

f (t,x,u) as |u|] > ©» in A (or in some compact neighborhood AO of the graph of

o
Xx) then certainly all sets E(t,x) are closed and satisfy condition (Q) in A
( or in AO), and condition y is satisfied (with y = constant in AO), as re-
quested in (2.14.ii). This is a consequence of (2.12, Remark 1).

2.15. THEOREMS OF LOWER SEMICONTINUITY FOR PROBLEMS DEPENDING ON HIGHER

DERIVATIVES

Let us consider here problems concerning a functional of the form

(n)

Iy] = [ e (ey(e), v (6), oy (6)at (2.15.1)

where y denotes a scalar function of t, where fo is a given function of its

n + 2 arguments, where we assume constraints  of the form

(66, He)) cacr,

n

boundary conditions of the form

(n-1)

(b1,5(61), o7 P (61) 203 (82), ooy B (82)) e B E

en+2 ’
and where A and B are given subsets of the indicated spaces. Thus, no con-
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straint on the values of y(n)(t).

n (n'l) (n)

2 =y sy W=y , and the

By the substitution xt = Y, XT = y',.00,X
use of the vector notation x = (xl,...,xn), the problem above is reduced to a

Lagrange problem for the given n > 1, with m = 1, functional

t
I[x] = ftf fo(t,x(t),u(t))dt , (2.15.2)
differential system
-1
ax*/at = x2,..., dx  /at = x, adx/dt = u,  (2.15.3)

constraints (t,x(t)) € A, and control space U = E;. As mentioned in (1.7) this
is a TDS system, that is,the trajectory x determines the strategy u (by means
of (2.15.3). This is the reason we have written I[x] instead of the customary
I[x,u] in the first member of (2.15.2).

Both statements (2.10.i) and (2.10.ii) yield corollaries for the situa-
tion above. We state here a corollary of (2.10.ii) which is rather general.

Note that A is a subset of the tx-space E U=E, M=AxE;, Ba

1+n’

subset of the tixi1tox,-space E , and fo(t,x,u) is defined on M. For any

2n+2
(t,x) € A we denote as usual by a(t,x) the set of all z = (z°%,2z) € Es with
z° > fo(t,x,u), z =u, u € E;. We see that these sets E(t,y) c E, are the
same as those we would consider in an analogous 'free problem" concerning
fo(t,x,u) (though here n > 1, m = 1). We can speak of the seminormality and

weak seminormality of fo(t,x,u) with respect to u for u ¢ E; and (t,x) € A,

as we did for free problems.
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An admissible trajectory x(t) = (x',...,x%), t1 <t < tp, is now any
vector function satisfying the following requirements: (a) xl,...,xn are AC
in [t1,tz] and dx'/dt = x2,...,dxn'l/dt = xD for all t € [ti,to] (thus
u(t) = dxn/dt, or equivalently u(t) = dyn/dtn,y = x', is certainly measurable
and L-integrable in [ty,to]; (b) (t,x(t)) e A for all t e [ti,t2]; (c)
(t1,x(t1),to,x(ts)) € B; (d) fo(t,x(t),u(t)) is L-integrable in [ti,tz]. The
corresponding functional is 1w (2.15.2).

Of course, we shall use the p-metric on the vector functions x(t),

(n-1) 4} in the old notation).

t; <t <ty (that is, on y(t), y'(t),...,¥
(2.15.1). (A theorem of lower semicontinuity for problems (2.15.1)).

If A c:El+n is closed, if fo(t,x,u) is continuous on M = A x E;, convex in u,

and weakly seminormal with respect to u in A, then the functionél (2.15.2) has

the property of lower semicontinuity; that is, if x(t) = (xt,...,x7),

t1 <t <ty, is an AC function, satisfying (a) above, is the limit in the p-

<t<t

metric of admissible trajectories xk(t), t k=1,2,..., with

1k ok’

p(xk,x) + 0 and lim I[xk] < + was k > o, then x is admissible, and I[x] <
1lim I .
im [xk]
The condition of weak seminormality is certainly satisfied if fo(t,x,u) >
+ o as |u|l » + o for every (t,x) e A.

As a particular case of (2.15.1) we may consider a functional of the form

Myl = J}2 R y(e), () (4))at (2.15.4)

where Lis a linear differential operator of the form

o7



(n) (n-1)

(Ly)(t) = y () +a(t)y (t) +...+a (t)y .
If we take x = (xl,...,xn), xt =y, .,x0 = y(n'l), and
fo(t,x,u) = F(t,xt,u + al(t)xn oot an(t)xl)

we have the same situation as above. Essentially the same theorem (2.15.1)
holds where now we may require weak seminormality and convexity of F with re-
spect to its third argument. The condition of weak seminormality is certainly
satisfied if F is convex in u, and F(t,y,u) > + » as |u| > + o for all (t,y).
A great many possible extensions of problems (2.15.1) and (2.15.L4) can be

left as exercises for the reader.

58



3 9015 02082 0

774

THE UNIVERSITY OF MICHIGAN

DATE DUE

N4 6 10p




