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A CRITERION FOR THE EXISTENCE IN A STRIP OF PERIODIC SOLUTIONS
OF HYPERBOLIC PARTTIAL DIFFERENTIAL EQUATIONS

By
Lamberto Cesari

As in a previous paperl we take into consideration a canonical system of

hyperbolic partial differential equations (with fixed characteristics) of the
form

Uy = £(t,x,U,U4,Uy), -0 <t <40, ~a<x<a, - (0.1)
or
Ujgx = fi(t:x:U:Ut:Ux): i=1,...n, (0-2)

where U = (Ul,...,Un) is an unknown vector function of the two independent
variables t, x, where Ui,Uy,Uryx are the vector functions of the partial
derivatives with respect to t, to x, and to t,x, where f(t,x,z,p,q) =
(f1,...,fp) denotes a continuous vector function of its arguments for (t,x)
in a strip A = [- @<t <+ oo, - a<x<al], and (z,p,q)eEBn, and f is
periodic in t of some period T:

f(t'HT)X)ZJP)QD = f(t:X:Z)P:Q): (t)X)GA: ‘(Z)P:q)eEjn . (05)

Let u(t) = (u1,...,un), = © <t <+ o, be a continuous function of %,
periodic in t of period T, and v(x), - a < x < a, a-continuous function of
x, both with values in Ep, and

u(t+T) = u(t), -o<t<+o, v(io) = O.

In the present paper we give criteria (Section 2) for the existence of
a periodic solution @(t,x) = (d1,...,6n) of period T in x for the Darboux
problem
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¢tx = f(t)xi¢}¢t7¢x)) (t)x)eAJ

#(t,0) = u(t), =-owo<t<+o,

(0.5)
¢(t+T)X) = ¢(tyx) P (t)X)EA:
#(o,x) = @(T,x) = u(o)+v(x), -a<x<a

Namely, given u(t), the criteria assure the existence of a number a > O suf-
ficiently small, of a function v(x), - a < x £ a, as above, and of the cor-
responding solution ¢(t,x) of the Darboux problem (0.5) in A, 4(t,x) being
periodic in t of period T.

To obtain these criteria we make use of previous results in Ref. 1 con-
cerning a modified Darboux problem. Namely, in Ref. 1 we gave existence,
uniquenesses, and continous dependence theorems in order that, given u(t),
v(x) as above, there exists a pair of vector functions ¢(t,x) = (d1,...,8,),
m(x) = (m1,...,my) such that

¢tx = f(t:x:¢:¢t:¢x)‘m(x)1 (t,x)eA,

¢(t;°) = u(t): mo<t <+ o, (0.6)
¢(t+T;x) = ¢(t;x): (t;x)eA,

é(o,x) = #(T,x) = u(o) +v(x), =-a<x<a.

In Section 1 of the present paper we restate and improve the theorems proved
in Ref. 1 for the problem (0.6). In Section 2 we prove the criteria for the
existence of a solution ¢ tothe problem (0.5). These criteria show that we
can choose v(x), - a < x < a, in such a way that m(x) =0, - a<x <a. In
Section 2 we shall make use of an implicit function theorem of functional
analysis we proved in a previous paper (Ref. 2).
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SECTION 1. THE MODIFIED DARBOUX PROBLEM

1. WE PROVED IN REF. 1:
THEOREM I (Existence theorem for the modified Darboux problem (0.6).

If a, T >0, and N, N;, No, L, M, b, My, Mz, M3 > O are constants, if
A and R are the sets

A = [0<t<T, -a<x<al,

R = [0<t<T, -a<x<a, |z <M, [pl <M, o] <Ms, z,p,q¢E,],
if

My > N+ 27lNT + Nza + ITa, (1.1)
Mo > Nj + 2La, (1.2)
Ms > Nz + IT, . (1.%)

if u(t), o <t <T, v(x), - a < x £ a, are vector functions which are con-
tinuous with u'(t), v'(x), if £(t,x,z,p,a), (t,x,z,p,q)eR, is continuous in
R, and '

w(1) = wo), |uw(o)] < W Ju(ty)-u(t2)] < Mfti-tz], (1.4)
v(o) = 0, [v(x1) - v(x2)| < Welxi-xz], (1.5)
f(T:X:Z:PJQ) = f(O)X:Z)PJQ)J If(t;x;Z;P:Q)I < L (1.6)
If(t;X;Z:PlJQI) - f(t;x;Z)PZ)QZ)I < MIPl’PE[ + lel‘qZI (1.7)
2Tb <1, Ma <1, (1.8)

then there exists a vector function ¢(t,x), (t,x)eA, continuous in A to-
gether with ¢t, ¢x: ¢txi and a continuous vector function m(x), -a < x < a,
such that



g(t,0) = u(t), (1.9)

¢(O:X) = ¢(T:X> = u(o) + V(x)) (l.lO)
T
m(x) = T'lf £(t,%,8(t,x),4:(t,x),44(t,x) )dt (1.11)
¢}
¢tx = f(t,x,¢(t,x),¢t(t,x),¢x(t,x)) - m(X) (1-12)

for a1l1 0 <t < T, -a < x < a. Thus, by extending both ¢(t,x) and
f(t)x)zyp;Q) for all - o <t < + o, lxl < a, IZI < My, IP[ < Mg, IQI < Mg,

by means of the periodicity of period T in t, Equation (1.12) is satisfied in
the strip -~ o <t <+, - a<x<a.

2. In the proof of Theorem I (Ref. 1), we denoted by wi(a), wz(B), ws(y)
continuous monotone functions ino < a<®, 0 < B <®, 0 <y <o, such that

w1(0) = we(0) = wg(o), and

wy( ] ta-ta])

IN

If(tl:X:Z)P:Q) - f(tZ:XJZ;P:Q)l
|£(t,x1,2,p,0) - £(t,%x2,2,0,a)| < wo(lxi-x2])

‘Ds( IZl‘Zal)

IA

If(t:X:ZlJP:Q) - f(t;x)ZZ)P:Q)I

for all o < t, t1,t2 < T, -a <x, x1,x2 < g, |Zl;121];122| <M, [Pl < Mg,

Iql < Mg, 2z,21,22,p,9€E,. Analogously, we denote by wga), 0 < a <,
ws(B), o < B < », continuous monotone functions such that ws(o) = ws(o) = O,
and

[u'(t1) - u'(t2)] < wallti-ta]), [v'(x1)-v'(x2)| < ws(|x1-x2]),

for all 0 < t1,t2 < T, -a < x3,x2 < a. Finally, we take

ni(B) = (1-2Tb) *ws(p)+2Twn(p)+2Twg(MaB) + LIMTB] , (1.13)
ne(a) = (l-aM)'l[w4(oz)+am1(a)+a(b3(Mga) + 2Labal , (1.14)
na(B) = wa(B) + wa(Map) + 2IMB + bni(B) , (1.15)

Both ni(a), o <a<w, n2(B), o0 < B <, are continuous monotone functions
with n1(0) = nz2(o) = 0.



We proved in Ref. 1 that the functions ¢,m of Theorem I satisfy the
following relations

[e(t1,%) - flta,x)| < nallta-ta]) (1.16)
|e(t,x1) - $(t,x2)| < 2L|xi-x2| , (1.17)
|fe(t1,x) = x(ta,x)| < 2Llti-ta| , (1.18)
[gx(£,x1) = dx(t,x2)| < mallxa-xz]). (1.19)

|4(t1,x1) - #(t1,x2) - Blta,x1) + d(ta,x2)| < 2L|ty1-tz| [x1-x2| , (1.20)

18(t,x)] < M, [A(t1,x) - d(t2,x)| < Ma|ti-tz| , (1.21)
lfé(tyxl) = ;Ié(t,X2)I < M3|X1-X2l, (1.22)
(%) < Mz, |dx(t,x)] < Ms, (1.23)
lm(x)| < L, Im(x1) - m(x2)| < na(lxi-x2]|) - (1.24)
5. Under the conditions of Theorem III, if f,u,u',v,v' are Lipschitz func-

tions in their arguments, then @,di,@x,btx,m are all Lipschitzian with con-
stants depending only on the Lipschitz constants of f,u,v,u',v', and the
constants listed in Theorem III.

Indeed, if wi(a) = kio, we(B) = koB, wa(y) = ka7, wala) = kso,
ws(B) = ksB, then

n(B) = (1-2Tb) N(ks+toTko+2TkaMa+4IMT)B = haf, (1.25)
na(a) = (1-aM) L(ky+aki+aMokstelab)a = hooy (1.26)
na(B) = [kotMgkg+2IM+b(1-2Tb) 1(ks+2Tko+2TkaMa+hIMI) ] = hap (1.27)

and the other relations of the Remark 1 show that @,@¢,@yx,Ptx,m are all
ILipschitzian.
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4. THEOREM II (Uniqueness theorem for the modified Darboux problem (0.6))

Under the hypotheses of Theorem I, and wg(7) = ka7 for some constant
ks > O, there is only one vector function ¢(t,x) continuous in A with ¢t)¢x:
¢tx and one vector function m(x) continuous in [-a,a] satisfying (0.6).

THEOREM III (Continuous dependence upon the initial data for the modified
Darboux problem (0.6))

Under the conditions of Theorems I and II (ws(y) = ksY), the unique
solution ¢(t,x), m(x) of (0.6) depends continuously on u(t), u'(t), v(t),
v'(t). In other words, if (ui(t), vi(x)), (u=(t),ve(x)) are initial data,
and (g1(t,x), m(x)), (#2(t,x),mo(x)) the corresponding solutions, and

n = max|ui(t)=ua(t)| + max|ui(t)-us(t)],

x = max|vi(x)-va(x)| + max|vi(x)-v&(x)],

e = x+,

o = max|gi(t,x) - d2(t,x)|, (1.28)

p = maXl¢lt(t;x) - ¢2t(t:x)l,
Y = max,élx(t)x) = ¢2x(t;x)l)
5 = max|mi(x) - mo(x)],

then there is a constant K depending only on the constants a,T,N,N;,No,L,M,
b,M;,Mz,M5 such that

a,B,7,8 < Ke. (1-29)

5. In the proof of Theorem III given in Ref. 1, we proved this theorem for
a strip Ay = [0 <t <T, o <x <c] with ¢ = a/P, P integer sufficiently
large. The resoning has to be repeated for the remaining strips

Ai[o;gt < T,(i-1l)c < x < ic], i = 0,1,...,P. The same reasoning holds for
-a<x<0. let & =ic, i =0,1,...,k, (Eg =0, &p = a). If we take



k = (1-2Tb)™t, k' = 1 + 2kTb,
and

c < (th')_l , c¢< (MTksk’)_l(l+Mk'Ma)_l .

We proved in Ref. 1 that, for the strip Ay we have

Qo < MW(1+Tbe+TMk'c(1l+2be))e = Qie,

By < 2(1+2bc)e + lbkgk'ea < (2(1+2bc) + (Lbkgk'c)Qi)e = Qge,
7o < ke + 2kTkgo + 2KIMB < (k+2kTkgaQ1+2kTMAz)e = Qge,

8o < kaa + MB + Dby = (katMAz+bQg)e = Qe

where Q5,B0,70s00 are the numers a,B,7,d relative to the strip Ay only. ILet
us denote by Q the largest of the numbers Q;,Q2,Q3,Q4. In the strip A; we
can take the same number X, but n = ng, € = €5 have to be replaced by

N1 max|dy (t,61) - do(t,b1)] + max|¢1t<t;§l) - ¢2t(t;§2)l < o,

I

€1 ntx < a + B+x.

Hence, the corresponding numbers, say o1, Bi, Oz, Bz become

a1,B1,71,01 < Qei < Q(a+p+x)

< Q(2Q(x+n)+x):

(Q+2Q3)x + 2@3q

In the strip Az we take the same X but 7n1, €1 are replaced by

M2 < o1 +tB1, €2 = Mma2t+tXx < o1 +B1+X,

and then we have



O2,B2,72,02 < Qez < Qai+Bi1+x)

Ql2(Q+2Q®)x + 4Q%n + x]

IN

(Q+2Q+25Q3)x + LQ3n

After P of these operations we have

P P+l +
QpsPp, 7p,0p = (Q+2Q3+...+27Q" ")y + QPQP lﬂ-

Thus we have only to determine ¢ = a/P with

P > (WMk')a, P > (4Tksk')(1l+lk'Ma)a ,

and take
2 3 P P+1
K = Q@ +2Q +2Q +...+2 Q .

Then we have
Q,B,7,5 < K(x+n) = Ke . (1.30)

This remark completes the proof of Theorem ITII given in Ref. 1.

6. We shall now improve formula (1.29) concerning the continuous dependence
on the initial values u,u',v,v' so that a much sharper estimate can be de-
duced when u,u' do not vary, that is,then n = O. Indeed, if we denote by
QcsBes7csde the same numbers (1.28) relative to the strip [0 <t < T,

-c <x < c], (o < ¢ < a), then, for a convenient constant K," we have

QesBe < K"(Tl*Xc); Bcpc < K'(n+x0 . (1.31)

We shall show that the continuity of v' can be relaxed by allowing an arbi-
trary set [E] of P points of discontinuity of the first type for v'(x) in
[-a,a]. The number a of Theorems I,II,III and all other constants, in par-
ticular K" in formula (1.31), can be chosen independently of [£] and P.



A form of Theorems I,II,IIT answering the question above reads as fol-
lows for discontinuous v' and Lipschitz data.

A Modified Form of Theorems I,II,TIITI:

If a, T > O, and N, Nl) Ng, L, M, b, Ml’ Mg, M3, kl; kg, kSJ k4, ks, are
constants, if A and R are the sets

A = [o<t

IA
‘l—:‘l
1
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]
IN

al,

R = [o S a, lzl < Ml:IPI < M2)IQ| < MSJZJp)qun] P
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ot
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3

-

1
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if
M; > N+27MN,T + Npa + 2LTa + ksa, (1.32)
My > Ny + ila, (1.33)
Mg > Np + IT, (1.34)

if u(t), o<t <T, v(x), -a <x <a, v(o) = 0, are vector functions, if u(t)is
continuous together with u'(t), if v(t) is continuous and v'(t) sectionally
continuous, if

w(T) = u(o), lu(o)l < N, Ju(ty) - u(tz)l < Mlti-tzl,
(1.35)
v(o) = 0, |v(x1) - v(x2)| < WNalxi-xz2| , (1.36)
£(T,x,2,0,4) = £(o0,x,2,p,2), |£(t,x,2,p,q)| < I, (1.37)
|£(t,x,2,p1,q1) - £(t,%,2,p2,92)| < Mlpi-pz| *+ blai-az| , (1.38)
|£(t1,%1,21,p,2) - £(t2,%2,22,p,2)| < k1|t1-tz|+ka|x1-x2| +ks|z1-22],
(1.39)
2ZI’h <1, Ma<1,
if
lu'(t2)-u'(t2)| < kalta-ta] , 0 < ta, t2<T, (1.10)



if -a <&; <€2<...< §3 < a are the points of discontinuity of v(x) in
[-a,a], and

|vi(x1)-v'(x2)| < kslxi-x2| , | (1.41)

for all €3 < x1,x2 <44, 1=0,1,...,Q (g = -a, §Q+l = a), then there is

a vector function ¢(t,x), (t,x)eA, Lipschitzian in A with partial derivatives
#+(t,x) again Lipschitzian in A and partial derivatives ¢X(t,x), Bix(t,x)

also Lipschitzian in each strip A = [0 <t < T, €5 <x <&341], 1 =0,1,...,Q,
satisfying (1.6)-(1.9) of Theorem I.

The functions ¢ and m are uniquely determined by the initial data u(t),
o <t<T, v(x), -~a<x<a. If (u(t),vi(x)), (ua(t),va(x)) are two sets
of initial data, and n,X,€<,,B,7,d are defined as in Theorem IIT (with sup
replacing max where needed), then there is a constant K' depending only on
the constants a,t,...,ks listed above such that ¢,B,7,5 < K'e.

Finally, if ¢ is any number o < ¢ < a, and if Op,Be,7c,0c are defined as
in (1.32) for the strip o <t <T, o < x K c, [or -c < x < 0], then there is
a constant K" > 1 (depending only on a,T,...,ks such that

OesBe < K"(n+Xc>, Besde < K"(n+x) . (1.42)

7. PROOF OF THE STATEMENT OF NO. 6

As we have mentioned, it is not restrictive to consider only the strip
A' = [0<t <T, o<x < al, the points of discontinuity say Q@ < &, <...<tp < a,
of v'(t) in (o,a), and the strips Aj = [0 <t < T, €5 < x < £g+1],
s =0,1,...,P(t, = 0, Epyy = a). Also, it is not restrictive to assume v'(x)
continuous at every x # £1,...,6p, and verifying v'(Eg0) # v'(Eg) = v' (E,0),
s =1,...,P, at the points of discontinuity. We shall apply Theorem I to
each strip Ag, s = 0,1,...,P in succession, where a is replaced by §,,
Eo-€1,...,Ep-Ep-1, a-Ep respectively. The initial conditions for the strip
AO;

#(t,0) = u(t), ft(t,0) =u'(t), o<t <T,
is then replaced for the strip A; by

¢(t)§l) = ul(t) = ¢(t,§;—0), ¢t(t1§l) = ui(t) = ¢t(t,§1-0), 0<t<LT,



and, in general
¢(t:§s) = ug(t) = ¢(t;§s'o): ¢t(t,§s) = ué(t) = ¢t(t’§s'o)’ 0<t<T
for the strip Ag, s = 1,...,P.
Obviously, the initial condition
#lo,x) = ulo) + v(x) , dxlo,x) = v'(x), o<x<Etr,
for the strip Ao 1is replaced by

#0,x) = u(o) + v(x) = u(o) + w(tg) + [v(x)-v(tg)] = uglo)+[v(x)-v(Eg)]

(1.44)
¢X(OJX> = V'(X), €s <x < §s+l: ' (1.45)
for the strip Ag, s = 1,...,P, since
us(o) = ¢(O;§s) = ¢(OJ§S-O) = us-l<0) + [V(ﬁs)-v(is_l)]
= ug_po(o) + [v(Eg)-v(Eg.p)] = ... = wu(o) + v(kg) . (1.46)

Obviously, we can apply Theorem I to the strip A, since all relations (1.22-
1.42) imply the analogous relations (1.1-1.8).

Assume that we can apply Theorem I to Asgl, and prove that we can apply
it to Ag. By (1.46), (1.4), and (1.42) we have

gs gS
ug(o) = ug.y(o) + J[‘ v'(x)ax = u(o) + y/\ v'(x)ax ,
Es_l (0]

g
lui(o)| < fu(o)| + f lvi(t)lat < W+ aks.
0]

By (1.43), (1.20) we have



IN

lus(t1) - ug(ta)] lug-1(t1)-ug-1(t2)| + 2Llt1-t2|(Es-Es-1)

IA

lug_p(t1)-ug_o(ta)| + 2Llt1-t2|(E -t o).
By repeating this argument and by force of (1.31) we have

lug(t1) - us(ta)] < Ju(ty) - u(tz)| + 2Lt1-t2|Eg

< (N;+2La) |t1-tz] .

Thus we can replace N and N; by N+alNp, Ny+2La respectively in each strip Aj.

Let us prove that we can replace k4 by

Kl,s (1-8 M) kgt o (k) *Moka+2Ib) ] (1.47)

in the strip Ag, i = 0,1,...,P. Again this is possible in A, since kso > k4.
Assume that this is possible in Ag.] and let us prove that this is possible
in As. By force of (1.43), (1.16), 1.26), and (1.47) we have

lug(t1) - ug(tz)] |$(t1,65-0) - B1(t2,65-0) < mz(lti-tz])

(1-(Eg-tg-1)M) " Llky go1+(Eg-Eg_1)(ka*Maka*2Ib) ]| b1tz

(1-(Eg-Eg-1)M) T((1-E5_1M) T[ky+ g1 (k1 +Meka+RIb) ]

+(§s'§s-l)(kl+M2k3+2LB)}ltl‘tzl . (1.48)

Since, for all o,p > O with a+B < 1 we have (1-a) 1(1-g)™% < (1-a-B)™%, we
have

(1-(Eg-Eg M) X1t T < (1-g )7L . (1.49)

)

Since 0 < (Eg-E5_1)M < EGM < 1, we have in succession
(1-(Bg-Es-1)M) ™ < (1-E5M)7H,

(1-(E gt )M) H(Eg-bgq) < (1-8 M) H(Eg-Eg.1),

(1-6 M) " 1e g1 +(1-(Eg-tg 1 )M) H(Eg-Ego1) < (1-8M) M. (1.50)
10



By using (1.49) and (1.50), relation (1.48) becomes

1 -1
lug(t1) - ug(t2)] (1-8 M) " [ka+tg(katMakg+elb) ]| t1-t2]

IN

= kyglti-tal,

and we have proved the contention that k4 can be replaced by khs in Ag. The
numbers k), s are of course all smaller than

ky = (1-aM)"M[ks + a(ki+Mokg+2Lb)].

Now the relations (1.32), (1.33) of Theorem I, are obviously satisfied in

each strip Ag, s = 0,1,...,P, since the relations (1.32), (1.33) in the hy-
potheses of Theorem III are obtained by relations (1.1), (1.2) by replacing

N, N, k4 by N+aks, N;+2La, k; respectively. All other constants and relations
are the same.

By induction we conclude that Theorem I can be applied to each strip
Ag, s =0,1,...,P, in succession, and thus the existence part of the theorem
is proved  The uniqueness follows from Theorem II applied to the strips
Ao,A1,...,Ap in succession. The continuous dependence upon the initial data
follows from IIT applied to the strips Ag,A1,...,Ap in succession and where
K' is a constant analogous to K obtained by replacing N, N,, k, by N+taks,
Np+la, ks in the definition of K.

Let us prove now relation (1.42) and, therefore, the continuous de-
pendence of the solution ¢,m on the initial data u,u',v,v'. First we have

¢jtx(t:x) = f(t’x:¢j:¢jt:¢jx) - mj(X):

t X
¢j(t;x) = U—j(t) + Vj(x) + f f [f(t’x’¢j’¢jt’¢jx) - mj(x)]dt dx,

[¢} [¢}

$ic(t,x) = u:j(t) + f [f(t,x,¢j,¢jt,¢jx) - mj(x)]dx s (1.51)
Ot

Fix(t,x) = vg(x) + \jp [f(t,x,dj,¢jt,¢jx) - mj(x)]dt,
(0]

T
mj(x) = 771 %[\ f(t,x,¢j,¢jt,¢jx)dt,

11



forallo<t<T, ~-a<x<a, j=1,2, and where the usual conventions hold
for ¢jt’¢jx’¢jtx at the lines of discontinuity [x=tg, o <t < T], s=1,...,P.
We have taken here as set [Es,s=l,...,P] the union of the two sets of points
of discontinuity of v) and vo. Now, for all ¢, o<c<a, and o < x < ¢,

we have

vi(o) = wva2(o) = 0, [|vi(x)-va(x)| < x,
X

lva(x)-va(x)| = |f [vi(x)-va(x)]ax| < xx < xe,
(o]

lua(t)-uz(t) |, [ua(t)-uz(t)] < m .

By subtracting corresponding relations (1.51) for j = 1,2, and standard esti-
mates, we obtain, as in the proof of Theorem III in Ref. 1,
|42(t,x) - dolt,x)| < n + xe + Te(kaoHMB+b7+3),
16,,(t:%) - dft,x)| < 0+ c(kgaMppy4d),

(1.52)
[0, (£,%) = Boy(t,%)| < X + T(kaatMB+o7+d),
Imi(x) - ma(x)| < kaa + MB + by,
where «,B,7,9 are computed as in Theorem III for the sole strip o <t < T,
0 <x <c (and thus are < the numbers 0o,Bc,7cs0c Of No. 6). For some t
and x, relations (1.52) yield
a < 1+ xe + Te(kaatMB+bhy+3),
B < 1 + c(kaatMB+by+d),
7 < % + T(kgatMp+byr+d),

5 < kaa + MB + by .

By elimination of ® we have
a < 7+ xXe + 2Tc(kzotMB+by),
B < 0+ 2c(kzatMBtby) ,

12



y < X + 2T(kzatMB+by)

For k = (1-2Tb) ™, k' = 1+2kTb, we have

7 <kt + 2kkgTo + 2kMIB
@ < 0+ (1+2kTb)xc + 2k'kgTa, + 2k'MIB. ,

B < n+ (2kb)xe + 2k'k5ac + 2k'MB, .

The same restrictions already used on ¢, o < ¢ < &, namely
2k'Me < 1/2, 2k'kaT(1l+hk'Mc)e < 1/2,

give

B < 2n + (Lkb)xce + (hk'kg)aa,
and finally
o < 2(1+hk'MTc)n
+ 2(1+2kTb+8kk'MIbe) X = Qi + QiXe,
B < 2(1+2k'kaQic)n + L(kb+k'kgQic)Xe = Qazn + QiXc,

7 < 2kT(kaQ1+MAz)n + k(1+2Tc(kaQ1+MAz) )X

Qan + QaX ,

5 < (k3Q1+MQ2+bQ3)T] + (stiC"'méC'*'bQé)X = Qgn + Q:LX-

(1.53)

Let cp, 0 < ¢y £ a, be any number fof which relationsu(l.55) are satisfied.
Let Q be the largest of the numbers Qj,Qg, j=1,2,3,4, above computed for

¢ = ¢cog. Then, for every o < c < cqy, Wwe have

AesBe < Qn*xe), 70,8, < Q(n+x).

This proves (1.42) for o < c < cp, K" = Q.
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We shall now take c = a/P with P integer sufficiently large so that
co- lLet us consider the P strips As = [0 <t < T, (s-1)c < x < scl,
1,2,...,P. We shall denote by ag,Bg,7s,9s the numbers «,B,7,5 relative
to the strip Ag. We have proved above that for the strip Ay we have

¢
S

A

ai1,B1 < Q(n*xe), 71,81 < Qln+x) .

In the strip Az we can take the same number X; = X, but n = ng must be re-
placed by

N1 maxl¢l(£:§) - 752(17)5)] + max|¢lt(tyg) = ¢2t(t:§)|

< a1+ B1 < 2R(ntXe).
The reasoning above implies

dz,Bz < Q(mitXe) < Q[2Q(n+Xe) + Xc]

2020 + (Q+2Q3)Xc ,

72,82 < Q(n*+X) < Q[2Q(n+Xe) + X]

2Q2n + (Q+2Q%e)x .

For the strip As we have

ne < 02 * Bz < 4QZq + (2Q+4Q%)Xc, Xz = X,

and hence

da,Ba < Q(natXe) = Q[thn + (2Q+4Q3)Xe + Xe]

= 4Q3n + (Q+2Q3+4Q3)Xc

v3,05 < Q(nz+X) = Q[4Q3n + (2Q+4Q%)Xc + X]

= 4Q3n + (Q+2Q20+hQ3c)X .

14



By this process we obtain successively Qg,Bg,7g,05ss = 1,...,P. Since
a = max Og, and analogous relations hold for B,y,5, we have

P

a,8 < (2FQF™)n + (Q+2Q3+. . .+2PQP+l)xc

P

(2PQP*1yq + (Q+2Q3c+...+2FQF L)X .

IN

750

Let Q' be the largest of the numbers in parenthesis for ¢ = a/P < co. Then
we have

a,B < Q'(n+Xco), 7,0 < Q'(n+X)-
Now for any ¢, co < ¢c < a, we have Qe < Q, Be < By 7c £ 7, 5. <9, and finally
Qe,Be < Q'(H+XC); Yes%: < Q'(n+X) .

This proves relations (1.42) for co < c < a, K' = Q'. Then relations (1.L2)
hold for every c by taking K" = max(Q,Q').

8. A DIFFERENTIAL RELATION FOR m

We shall assume now that the components of f(t,x,z,p,q) = (f1,...,fy)
possess. continuous partial derivatives fi4. with respect to the components
d1y.-.59n Of @ in R. Iet u(t), v(x) be give% initial data, and let 4(t,x),
m(x) be the corresponding solution. Now let x be any given number, say
0 < x < a. Since we can introduce discontinuities in v'(x) (of the first
kind), we may think to change suddenly the value of v' at X, assigning a new
value y = v'(x), provided we remain within the limitations listed in No. 6,
namely |y| < No. This change does not alter ¢(t,t), m(&) for o < £ < x, but
we get a new function ¢(t,x) = q(t) and a new number m(x) = m, which are the
solutions of the ordinary differential. problem

dg/dt = F(t,q) -m, o0<t<T, q(o) = y
-lfT< ) (1.5%)
= T F(t,q)dt , 1.5
. o)
where
F(t:Q) = f(t;X:¢(t:X):¢t(t’x))q):
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and, for emphasis, we have treated x as a constant. We proved in Ref. 1 that
q(t) and m exist, are uniquely determined by y, and depend continuously on y.
We already proved that the continuous dependence of q(t) and m upon y is uni-
form with respect to x and with respect to v,v' for o < x < a, and for v,v'
satisfying the limitations listed in Theorems I-III (or No. 6).

We shall now assume that the components fi of f(+t,x,y,z,p,q) = (fl,...,fn)
possess continuous partial derivatives with respect to the components
Q1y+-+,9n Of @. Then the components Fj of F = (Fl,...,Fn) have continuous
partial derivatives with respect to qi,...,qn

Fiqj(tJQ) = fiqj(t)x;¢(t:x):¢t(t:x);Q) .

Then, as proved in Ref. 1, all components of f(t) and m (here q,m denotes a
solution of the problem (1.54)) have continuous partial derivatives with re-
spect to the components Vg of the arbitrary initial value y = (yl,...,yn).
In particular

T T T
ajy = 8mi/8yj = |[l-exp -f Fiq d*l) f dt exp (—f Fiq. d‘9
o J o o J

This relation was actually proved in Ref. 1 for n = 1 (and then there was only
one derivative dm/dy). The proof is the same for any n, and we shall not re-
peat it here, since it is based on usual theorems of continuous dependence

and differentiability with respect to parameters and initial values for ord-
inary differential systems (as in Ref. 4, pp. 155 and 161). In Ref. 1 we as-
sumed F to be of class C' (both in t and q) but the existence and continuity
of Ft was never used. Thus (1.55) stands under the condition just stated

that the partial derivatives fi _ exist and are continuous in R. Here we only
add that the continuity of the pQrtial derivatives aj j is proved uniformly
with respect to x and with respect to v,v' with the usual conventions.

-1

9. THE FUNCTIONAL G(x,y,v')

We shall now assume u(t), o0 <t<T,as fixed, and study the dependence
of m(x) on v(x), v'(x). Obviously, v'(x) determine v(x) since v(o) = O.
Thus, for each x, say o < x < a, m(x) = (my,...,m,) depends on the values
taken by v'(€) for o < &€ < x. At & = x we can always take an arbitrary value
y = v'(x) for v'(x) introducing a new point of discontinuity, and the de-
pendence of m(x) on y has been studied in No. 8. Thus m(x) is precisely a
vector valued ‘functional depending on v'(€), o <& <x, ony = v'(x), and x
itself:

16



m(x) = G(x,y;v'(£), o <& <x), o <x < a.

For the sake of brevity we shall write sometimes'G(x,y;v'). It is understood
that all the variables are assumed to satisfy the limitations listed in No.
6. We shall prove for G certain properties Gioas.

Gl. There is an M > O such that
|G(X;Y3V.rl.(§)) 0o <& <x) - G(X;YJV'Z(g)) o Sﬁ <X)I < Mg,
where Xy = sup|vi(&) - va(t)]| for all o <t < x.

This is only a different form of the statement 8 < K'X Qf No. 6.

G2. There is a constant M such that for any two x1,xz2¢€[0,a] and y we have
I—G(Xl)Y:V'(g): 0<E&<x) - G(XE;Y;V'(E): 0<E< Xg)l < Mlxl'x2| .

Indeed we have seen in No. 3 that m(x) satisfies a Lipschitz condition with
constant M which depends only on the constants a,M,...,ks. Therefore, if
v'(&) denotes the function which is equal to v'(&) for o < & < x, and is con-
stant and equal to y for x < § < a, then

IG(Xl;Y;V') - G(XZJy)V')I < Mlxl-xzi:

IG(Xl;Y;V') - G(X2:Y)V')I < MIX1-X2I ’

G(x1,y,7') = G(x1,y,v') .

The last relation is trivial since V'(§) = v'(€) for all o < & < x;. Finally,
we have

|G(x1,y,v") - G(x2,y,v')] < 2M|x1-x2

G3. For x = 0, G does not depend on v', and G = (G1,...,Gy) is only a
vector valued function of the vector y = (yl,...,yn). We shall write
G(O’Y; ).

17



GL. For each t, o < t < a and continuous function v'(t), o <t <a,
with values Iv'(t)l < N2, the components G4 of G are real valued continuows
functions of y with continuous first order partial derivatives
a;j(t,y,2) = BGi/Byj, i, =1,...,n.

This is only a rewording of statements proved in No. 8. Note that for t = O,
all ajj are functions of y only, and we may write aij(o,y,-). Actually, G,
can be modified as follows:

G5. There is a constant M > O and that, if ¢, o < ¢ < a, is sufficiently
small, then y,vi(&),v2(&) as in No. 6 and o < x < ¢ imply

|G(x,y,vi(E), o <& <x) - G(x,y,vA(E), 0 <& <x)| < Moxg.

To prove this, let us observe that n = O, and that, by No. 6, a.,B. < KcXyg,
hence, if ¢l,ml,¢2,me are the solutions corresponding to v; and vs,we have

|¢1(t)x)'¢2(t:x)|: |¢lt(t’x) - ¢2t(t}x)| < KeXg.

Then we have to solve the two differential problems

dQ/dt f(t}xy¢i<tyx))¢it(t}x),q) - m, q(o) =¥,

71 fT £(t,%,45(t,%),8;4(t,x), a(t))dt.

(¢}

m

With the same initial value y. If qi(t), mi, g2(t), mp are the two solutions,
we have, with obvious notations,

t
la1(t)-az(t) ] If (f1-f2)dt + (my-mp)t|
[e]
< (kgTMI)(KeXy) + |my-mp|T,
Imi-mz| < (ka+M)(KeXy)

and hence

Imi-mz| < K(Mtka)eXe ,  laa(t)-az(t)| < 2K(Mtkg)eXy .
The first of these relation obviously proves GS.
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SECTION 2. CRITERION FOR THE EXISTENCE OF PERIODIC
SOLUTIONS TO THE ORIGINAL PROBILEM

10. AN IMPLICIT FUNCTION THEOREM OF FUNCTIONAL ANALYSIS

In Ref. 2 we have proved an impliéit function theorem, a corollary of
which will be stated here and applied in No. 1l.

Iet H(t,y,z(E), o < & < t) be a functional, with values in Ep, depend-
ing on the real variable t, the real vector yeEpn, and the values in Ep taken
by a function z(€) in the variable interval o < & < t. We proved, under the
hypotheses below, that there is a continuous function ¥(t) with values in Ep
such that

H(t,¥(t),¥(E), o <& <t) = O. (2.1)

We state now, with precision both hypotheses and contentions. Iet I be the
interval T = [0 < t < a] for some a > 0, let p be a point of Ep and Yy the
sphere Yo= [yeEn| |y-n| < B] for some B > 0. Let Zy be the family of all
continuous functions z(€), o < & < a, with values 'in Yy, or z:I > Yo. Then
H: IxYyxZo + Ep. For the sake of simplicity we shall write H in the form
H(t,y,z). We shall take in Zg the topology of the uniform convergence in
[o,a]. : ‘

We shall assume that, for t = O, H does not depend on z, and then we may
write H(o,y,-). As in the implicit function theorem we assume H(o,u,-) = 0.
The following statement holds (Ref. 1, Cor. 1, Section 5, No. 2).

(A) 1f H(t,y,z) = (Hy,...,Hp) is uniformly bounded and continous in t,z,
if all Hj have partial derivatives with respect to yi,...,yn, say
ajj(t,y,2) = BHi/Byj, i,j = 1,...,n, which are bounded and continuous in
t,y,z, if H(t,u,-) = O, and det Ao + O, with Ag = [aij(o,u,-)], then there
is some ag,Bp, 0 < ag < &, 0 < BT < B, and a continuous function V¥(t),

0 <t < ag, such that V(o) = u, [¥(t)-u| < PBo, and £(t,¥(t),¥) = O for all
O_St_<_ao. : :

Also we proved in Ref. 2 that, if there are numbers a',B', o < a' < a,
o <PB' <B, such that o < t <a', |y-ul <B', [z2(¢)-ul, lza(t)-ul <B",

o<t<a', imply

16(t,y,21) - 6(t,y,22)| < (1/24) max [22(8)-z2(8)] (2.2)
o<LE<t
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with [|Ag]] <M, then the function ¥(t), o < t < ay < a', of statement (A) is
unique. Finally, if G depends uniformly and continuously on some parameter
o describing a topological space , and the conditions above hold uniformly
with respect to a (in particular, ||ASl]] <M for some constant M independent
of a),then the unique function Vo(t), o < t < a', above depends continuously
on ¢ in Q.

11. AN EXISTENCE THEOREM FOR THE ORIGINAL PROBLEM (0.5).

We shall now use again the notations of Section 1.

THEOREM IV

Given constants a,T,...,ks, and functions u and f as in No. 6 (thus,
satisfying all relations but (1.36), (1.41)) let us assume that, for some
peEq, Iul < Nz, we have

T
m(o;u) = Tl[q(T)-q(0)] = Tt f £(t,0,u(t),u'(t),q(t))at = o,
o}
where q(t) is the solution of the initial ordinary differential problem

dg/dt = f£(t,0,u(t),u'(t),q), 0<t<T, a(o) = mu. (2.3)

Assume also that det A % O, where A = [aij] and
T \ T t -1
ajy = 1l-exp ( f fiq dt> f dt exp <— f fiq- dt>
o) J o) (o) J

fiqy = fiqj(t,o,u(t),u'(t),q(t)), o<t <T.

(2.4)

Then there is some ag, 0 < ag < a, a function v(x), -ap < x < a5, continuous in
[-a0,80] with V(o) = 0, v'(0) = u, satisfying (1.36), (1.41), and a function #(t,x)
continuous in the strip [-» <t < + o, - ap < x < ap] with @i, ,4,, satis-

fying
Brx(tsx) = 2(t,x,4(¢,%),8,(t,%),8,(t,x)), (t,x)eh,
d(t,0) = u(t), -0 <t<+w,

#(o,x) = #(T,x) = v(x), - ap < x < &,



F(t+T,x) = ¢(t,x), (t,x)eh.

In addition ¢(t,x) together with ¢t(t,X), ¢#(t,x), ¢tx(t,x), p, vix), v'(x)
are uniquely defined by u(t), and depends continuously on u(t).

Proof of Theorem IV. We have first to prove that the function G of No.
9 verifies the hypotheses of statement (A) of No. 10. Indeed, Gl2 assure
that G is uniformly bounded and continuous in t and z, and G34 assure that
G satisfies the remaining hypotheses. Thus, by applying (A) to both inter-
vals [o,a] and [o,-8] we conclude that there is some ag > 0, B, > O, and
a continuous function v'(t), - ag < t < ag, with v'(o0) = u, [v'(t)-ul < Bos
such that T

G(t,v'(t),v'(E), o<E<t) = 0, o0<t<ag,

G(t,v'(£),v'(E), o 2 & > t)

1
O
.
- O
v
ct

2 -ag5.

Since lp[ < Nz, by reducing a, if needed, we can satisfy lv'(t)l < Nz in
[-a0,a0]. If v(t) = ét v'(E)at, - ag <t < ap, then v(o) = O, and, again

by reducing ap if needed, v(t) satisfies (1.35), (1.41). Finally, if 4(t,x),
m(x) is the solution of problem (0.6) corresponding to u(t), v(t), we have
m(x) = 0, -ap < x < a5, and @(t,x) satisfies (0.6 ). The uniqueness of the
function v'(x) so determined, and therefore of u,v,d,di,@x are a consequence
of the remark following statement (A) and property G5 proved in No. 9. Then
W, v,v',4,0t,Px are continuous functions of u and u', that is, the difference
between any two corresponding elements are small when n is small.

12. EXAMPIE OF A DIFFERENTIAL EQUATION (0.1) WITH PERIODIC SOLUTION,

Take T =2n,n=1, f = sin t+\q, N + O. Then Equation (0.1) becomes

U, = sint + hux . | (2.5)

Let u(t) be a periodic function of period T, continuous in (-,+) together
with u'(t), and let v(x) be a continuous function in some [-a,a) with v'(x),
v(o) = 0. Then the relations g(o,x). = v(x), ¢(t,0) = u(t), drx = sin t+\dx
yield

1]

x sin t + N(t,x) - eg(t,0),

¢t(tix) - ¢t(t10)
¢X(tyx) - K¢(t,X)

x sin t + u'(t) - au(t)
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By integration we obtain

: t
(t,x) = eXt{;¢(0:X) + \/P [u'(7)-Mulr)+ x sin T]e—xi} dr

)

and, by manipulations, also

d(t,x) = u(t) + v(x)e™ + (1028) " Ix[e™ - A sin t - cos t]
Thus, @¢(t,0) = u(t), #(o,x) = u(o) + v(x),

d(2r,x) = ulen) + v(x)eP™ + (13) k(1)

and hence ¢(2r,x) = ¢(o,x) if and only if

v(x) = -(192)71 x.

With this function v(x), then ¢(t,x) is periodic in t of period 2w, for all x,
-» < x < +0. Also we have v'(o) = -(1#2)71.

If we apply Theorem IV to Equation (2.5), we see that we have to consider
first the ordinary differential problem

dg/dt = sin t + Aqg, q(o) = p.
Hence

t
a(t) = pett + M ‘/D e™ sin 1 dr

[e]
[p+ (192)"17eM + (13)" (N sin t - cos t)
b

-1
and m(o,p) = O if and only if u = -(1+A%) ~. Then

T T _(* -1
[1-e'£ Mt [;f . [ xaﬁ] b,

)

a = dm/du

1]
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The conditions of Theorem IV are then satisfied, and the existence of a solu-
tion @(t,x) periodic in t of period 2x in a some qtrip A can be deduced from
Theorem IV, with 4(t,0) = u(t), ¢ (0,0) = g, (2n,0) = p = -(l+>\.2)'l

13. EXAMPIE OF A DIFFERENTIAL EQUATION (0.1) WITH PERIOD SOLUTION IN A STRIP

Take T = 2x,n=1,f = sin t+A\q+xL(t,x,2,p,q), where L is an arbitrary func-
tion, and f satisfies the general hypotheses of No. 6. Then Equation (0.1)
becomes

uty = sin t + Auy + xL(t,x,u,ut,ux). (2.6)

For x = O, both f and fq are the same as those of No 12 Hence, the condi-
tions of Theorem IV are satisfied with p = -(1+x2) , and (2.6) has a solution
#(t,x) periodic in t of period T, with ¢(t,o0) = u(t) ‘for any periodic func-
tion u(t) of class C', in the sense of No 6 and Theorem IV and therefore in
a strip A euff1c1ently narrow.

14. EXAMPIE OF A DIFFERENTIAL EQUATION (0.1) WHICH HAS A PERIODIC SOLUTION
IN A STRIP A BUT NOT IN THE WHOLE PLANE
Let us take T = 2x, n=1, f = x+(1-x)(sin t+Nq). For x = 0, £, fq reduce
to the ones of No. 4, and an application of Theorem IV assures the existence
of a periodic solution in some strip A. On the other hand for x = 1, the

equation reduces to utx = 1, hence uyg(2r,1) * ux(o0,1), and the strip A cannot
include x = 1.

An equation as (0.1) may have no solution periodic in t in any strip as
for example utx = 1, (t,x)eEs.

15. AN HYPERBOLIC EQUATION REDUCIBIE TO (0.1).

We shall consider the differential equation
A(th)utt T ugy = f(t:xyu:ut)ux)) (2’7)
where both A and f are periodic in t of period T.

Here one set of characteristic lines is x = constant. The other set can

be obtained by solving the differential equation
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at/ax = A(t,x), -a<x<a, (2.8)

and we shall assume A(t,x) > O.

Let us assume A(t,x) continuous in (t,x) and Lipschitzian in x in the
strip A = [-0 <t < +», -a < x < a]. For every real 7 let t = X(x,7) be
the solution of (2.7) with X(a,r) = 7. Then, for some constant H > O we
have ‘
IX(x,7) - | < Hlx|, -a<x<a,
Xx(x,7) = A(X(x,7),x), |XX(X:T)I < H.
If y(v) denotes the line t = X(x,T), then 7(T) cuts the line x = constant at
a point (t,x) with t = X(x,7). On the other hand, each point (t,x)eA belongs
to one and only one line y(7) for some T = ®(t,x). We have defined, there-

fore, a change of coordinates 7 = ®(t,x), x = x, or t = X(x,71), x = x.

From (2.8) we deduce
Xog(x,7) = (%)X (x,7) = Ag[X(x,7),x]X.(x,7),

and since X(o,7) = 7, we have X (o,7) = 1. Hence,

XT(X)T) = eXp [f A(X(E,T),g)dﬂ
Xx(x,7) = A(X(x,7),x)

On the other hand, from t = X(x,7), T = ®(t,x), we deduce x = X(x,0(t,x), hence
1 = X0, 0 = Xy+X0,

and finally

A¢t + ¢X = O)

X
ot = X;l = €exp Ef A(X(Q}T))E)d{l}
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oy = = X;lxx = - A(X(x,T),7) exp {—- J[ A(X(E,T),é)d;]

— [0)

If U(7,x) is obtained from u(t,x) by means of the change of coordinates
above, we have

U(r,x) = u(X(x,7),x), u(t,x) = U(4(t,x),x)

and |

ug = U Oy, uy = Udx + Uyx ,

ugt = Ugr0f + Urdex,  Uge- = Upe®@tlyg *+ Upydy -

Equation (2.7) is then changed into

Ux = g(T:x)U;Ux;UT) (2.9)
with
= (X U.X21, U XTI AU )X, - U XX
g = FlE,x,U,UX;™, -UpX "Xy tUx )X ToTXAT )
€&qg ~ fq(X}X)UJUTX;’l}_UTX‘T’lXX B UX)XT .

For x = O then X(o,7) = 7, X.(0,7) = 1, Xx(o,7) = A(r,0), Xx:(0,7) = A;(7,0)

g(r,0,U,U;,a) = £(7,0,U,U;,-AU+Uy) - AU, ,

gq(T)O)UJUTJq) = fq(T;O)U)UT:'AUT+Ux)°

Relations (2.3),(2.4) become, with U(t,0) = u(),

dg/ar = f(r,o0,u,u',-Au'+q) - Au' , glo) = p (2.10)
T
m(o) = q(T)-q(o) = T-l\/\ {(£(7,0,u,u',-Au'+q) - Au'jar = 0,
0

T -
l-exp(—f fq d'r>
e} _

AT t -1
'_JJ exp ([ £q dT>H! # 0 (2.11)
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As an example, if we assume A(t,x) = xB(t,x), hence A(t,o0) = O, then Equa-
tions (2.10), (2.11) are the same as those of Theorem IV. In particular, the
equation

xB(t,x) ugty + Uy = sin t + My + xL(t,x,u,ut,ux)

has a periodic solution ¢(t,x) in some strip A with ?(t,o) = u(t), u(t) arbi-
trary of class C', and ¢y(0,0) = gy(2n,0) = -(1+A2)7".
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