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FUNCTIONAL ANALYSIS AND BOUNDARY VALUE PROBLEMS

Lamberto Cesari

1. A Review of Research

1.1 EXISTENCE AND STABILITY OF PERIODIC SOLUTIONS OF PERTURBATION PROBLEMS

In the years 1952-60 a great deal of work was done by a group of us (Cesari
[5a,b, 1, 6a,b], R. A. Gambill [2, 9a,b,c], J. K. Hale [10, l2a,b,c,d,e,f,g,h,i,j],
and others) in relation to periodic solutions of perturbation problems for or-
dinary differential equations. This work was based on functional analysis, and
particularly on fixed point theorems, projector operators, and bifurcation equa-
tions in terms of functional analysis.

We obtained criteria for the existence of periodic solutions (harmonic,
subharmonics, ultraharmonic) of systems of periodic ordinary differential equa-

tions of the perturbation type
du/dt = Au + ef(t,u,e) ,
u = (ul,...,un), f(t + T,u,e) = f£(t,u,e) ,
criteria for the existence of cycles of systems of autonomous equations

du/dt = Au + ef(u,e), u = (ul,...,un) ,

*Research partially supported by US-AFOSR research grant 69-1662 at The Univer-
sity of Michigan. This paper has been read at the Symposium in Differential
Equations at Western Michigan University, Kalamazoo, Michigan, April 30-May 2,
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and methods for the analysis of the asymptotic stability of periodic solutions,
and of asymptotic orbital stability of cycles. For the particular purpose of
a new and convergent method of successive approximetions was devised.

In particular, J. K. Hale proved that nonlinear autonomous perturbation
type systems of ordinary differential equations mey easily present families‘of
periodic solutions, or cycles, under suitable conditions of symmetry. J. K;
Hale gave also simple criteria for this occurrence, and for the determination
of the dimension of the family of cycles [12c, 5b].

I presented aspects of this first phase of the re;earch in [5¢] and in my
book ([5d], pp. 66-78, and pp. 123-135). Halanay reported the method of suc-
cessive approximations in his book ([11], pp. 308-317) together with the proof
of its convergence and applications. J. K. Hale gave a détailed account of
aspects of this first phase of the research in his books ([12k], pp. 27-94).

This work on periodic solutions of perturbation type problems in ordinary
differential equations was then continued by C. Imaz [17], and by J. Mawhin
[2la,b,c,d]. C. Imaz discussed particularly the case in which the underlying
linear problem has multiple characteristic roots. J. Mawhin, in an extensive
and systematic investigation still underway, has improved some of the results
of J. K. Hale and R. A. Gambill.

In view of numerical analysis C. Banfi [3a,b] and C. Banfi and G. Casadei
(4] considered a variant of the method of successive approximations, suited
for high speed computers, and in which the actual successive approximations
and the analysis and solution of the bifurcation equation are combined. They

successfully experimented with the method.



1.2 BOUNDARY VALUE PROBLEMS FOR GENERAL NONLINEAR PROBLEMS

In my paper [5e] I presented the underlying ideas of the method, in
an abstract form, for general boundary value problems for ordinary and partial
differential equations, even, strongly nonlinear. Also, I showed connections
of the method with Galerkin's approach. In [5e] I essentially considered prob-
lems whose underlying linear formulation was selfadjoint. J. Locker [20a,b],
and J. K. Hale, S. Bancroft, and D. Sweet [13] gave suitable extensions of the
method to "nonselfadjoint" problems.

In [5f] I considered the problem of periodic solutions of systems of
periodic ordinary differential equations nonnecessarily of the perturbation
type, from the view point of the method as presented in [5c]. Also I proved
in [5f] that the method contains as a particular case the much simpler approach
used earlier for perturbation problems only. My work in [5f] was extended to
problems of periodic solutions of ordinary differential equations with time lags
by A. M. Rodionov [25].

S. A. Williams [27] showed that the method under consideration, as described
in [5c], has a strict theoretical link with the Leray-Schauder approach [29].
Hale, Bancroft, and D. Sweet in their paper [13] emphasized other connections
with previous or current work of D. C. Lewis, H. A. Antosiewicz, Jane Cronin,
R. G. Bartle, L. Nirewberg, and Y. Sibuya.

I presented aspects of this second phase of the research in [5L]. Jane
Cronin reported the main idea of the method, as presented in [5f] for periodic
solutions only, in her book ([8], pp. 180-185). J. K. Hale gave a detailed ac-
count of aspects of this second phase of research in his books ([12k], pp. 96-

99, and [12m], pp. 252-290).



For the particular problem of periodic solutions of'ordinary differential
equations, nonnecessarily of the perturbation type further theoretical work was
done by H. W. Knobloch [18a] in connection with the use of the uniform norm,
suitable estimates of the Fourier approximations, and a discussion of the bi-
furcétion equations for any order of approximation by topological considerations
based on C. Miranda's version of Bro wer's fixed joints theorem, version whicp
had been already used in [5b]. H. W. Knobloch proved then simple existencel
theorems [18b] for periodic solutions of nonlinear periodic equations
y" + g(t,y,y') = o, based only on qualitative properties of g, and this anal&sis
led him to comparison and oscillation theorems for the same equations [18c].

In [5g,1,j] I studied periodic solutions in k and y of the partial dif-

ferential equation

¢ U-xy = E(X,Y;u)ux:uy)

where u is an n-vector, in the frame of the same method as presented in [5e].

By assuming g continuous in all its argument and Lipschitzian in ux, uy, or in
4, u, uy, I obtained criteria for the existence of periodic solutions u(x,y)
continuous in Es with U uy and uxy' In [5h] I applied the same approach to
the problem of solutions u(x,y) to the same pértial differential equation above,
which are periodic with respect to x only and continuous with ux, uy, uXy in a

thin strip [- » < x < + o, |y] < a]. The results of [5g,i,j] yield analogous

results for the nonlinear wave equation

- = t
Ber T kx & ,x,u,ut,ux)

By the use of the same method, based on [5f], and actually the same projection



operators, more stringent quantitative estimates have been successively obtained
by A. K. Aziz [Proc. Amer. Math. Soc. 17, 1966]. J. K. Hale [12L], by the same
method applied directly to the nonlinear wave equation, and the use of a dif-
ferent choice of projector operators, obtained perspicuous criteria for doubly
periodic solutions in Es. Recently D. Petrovanu [24a] has used the same method

in the study of periodic solutlons of the equation

uxyz = g(x,y,z,u,ux,uy,uz)

and in the study of the periodic solutions [24b] of the Tricomi system of equa-

tions

u = g(x,y,u,v), VYE = h(x,y,u,Vv)

where u and v are m- and n-vectors respectively.
A. Naparstek [22] has also used the same method for periodic distributional

gsolutions of the nonlinear wave equation

where g is periodic (of period 2m) in x and y, and either o is a rational number,
or an irrational one of a known class of real numbers badly approximated by
rationals and everywhere dense on the positive real line. The result extend

to the problem of periodic solutions of equations of the form

U - ou. = sg(t,x,u,ut,ux)

and required a great deal of mathematical investigation. The bifurcation equa-

tion 1s studied in this work in terms of the theory of monotone operators.

P



In the same line W. S. Hall [14] has recently proved the existence of

doubly periodic solutions of partial differential equations of the form

b 2P - p
g, * (-1) Do u = ef(t,x,u,ut,ux,...,Dx u)

in suitable Banach spaces of periodic functions and distributions. The deep
analysis which was needed for this work includes a discussion of the bifurcation
in the lines of Minty and Browder's theory on monotone operators, a discussion
of suitable boundary conditions for the problem under consideration, and smooth-
ness properties of the solutions.

E. M. Landesman and A. C. Lazer [19] have recently proved a general exis-
tence theorem for the Dirichlet problem for nonlinear partial differential eque-

tions of the form
Lu + au + g(u) = h(x) ,

where L is a general second order selfadjoint uniformly elliptic operator in
a domain G, with bounded measurable coefficients, where a is a positive con-
stant, h is a given function in Ly(G), and z is a monotone continuous real valued
bounded functions on E;. The very subtle proof makes use of a technique which
has points of contact with the one of the method under consideration.

Cesari [5k] by the use of the process described in [5f], has discussed the

existence of solutions u(x,y) for the boundary value problem
pu = g(x,y,u) for (x,y) e A, u=o0 for (x,y) € oA,

where A is the unit circle in the xy-plane, 0A its boundary, g is measurable in



in x,y for every u, and Lipschitzian in u for every x,y, and where the solutions
u(x,y) are required to be continuous in the closed circle A U 0A, with continuous

in the sense of the

b U in the open circle A, and du = Fu/x® + dPu/dy®
theory of distributions—is a measurable function in A.
Recently, W. A. Harris, Y. Sibuya, and L. Weinberg [15] have used the same
approach under consideration here to obtain new and extremely simple proofs’of
the classical theorems of Cauchy, Frobenius, Perron, and Lettenmeyer on linear
ordinary differential equations and systems in the complex field. These authérs
are actually concerned with systems of the form
S

i
z dui/dz = j

™M B

a, . (z)u

, 1=1,...,n,
1 J

It

where z = x + iy, and the coefficients aij are holomorphic functions of z in a
complex neighborhood V = [Izl < ®] of the origin z = o. In the regular case
(all S, = 0) the bifurcation equation is trivial, and the system has a funda-
mental system of holomorphic solutions in V. 1In the regular singular case (all
si = 1) the bifurcation equation reduces essentially to the indicial equation,
and the system has the expected number of solutions of the forms sz(z), o]
complex, P(z) a convergent power series of z. For d = max si < n, the given

system has at least n - d solutions holomorphic in V.



2. A Direct Proof of Cauchy-Kovalevsky's Theorem

2.1 FORMULATION OF THE PROBLEM

The Cauchy-Kovalevsky theorem for partial differential equations in the
complex field is usually proved by the method of majorants, which, for the
problem under investigation, leads to a first order ordinary differential equa-
tion with separable variables, whose solutions are then proved to be majorants
of the solutions of the given system of partial differential equations. All
this is avoided in the following simple proof (No. (2.5) below), based on
functional analysis.

Let S’ denote the class of all functions u of t and z =(z1,...,zv), which
are holomorphic in some complex neighborhood of the origin (t = o, z = o), and

. . l ml mv
thus possess power series expansion u(t,z) = Zl Zm u, t z; ...z )

Im 1%
m = (ml,...,mv), which 1s convergent in some neighborhood of the origin.
For the sake of simplicity we 1limit ourselves to the linear Cauchy prob-

lem, and we know that it is not restrictive (see I. G. Petrovsky [32], pp. 16-

17) to formulate the linear Cauchy problem as follows: Given elements ai

jn’
bij’ c, € S, determine elements u, € J”such that
nov n
u = 2 Y a, . u, + X b, u. +e,, (1)
" i i R :
1 5=1 h=l 1] th =1 ij 3 1
ui(o,zl,...,zv) = o , i = 1,...,n,

in some complex neighborhood of the origin, and where u,

it uth denote partial

derivatives with respect to t and z

g B = L, If U(t,z) = (ul,...,uv),



and U = [uiZ ,i=1,...,n, h =1,...,v], then (1) takes the form
h

U F(t,z,U,UZ) , Ulo,z) = o.

The solution U = (ul,...,un) € \fJn of problem (1) is uniquely determined by

;¢ M m e _
the usual argument: If Zl Zm u, t 2z ...z ', i=1,...,n, are power series

iim v
satisfying formually Ut = F(t,z,U,Uz), and the coefficients U, om are known, then
all remaining coefficients can be determined by induction. Indeed, each power
JARUSY mv

t"2zy ...z ' appears in the first member of (1) with coefficients (4+1)u,
v i,fi+1,m

and in the second member with coefficients Eilm which are finite linear combina-
tions of coefficients ujhs > 8 = (81500458 ), J =1,.40.,n, with o <A < £. For
y SNz
n
a solution U € SY " of problem (1) all u, . 8Te zero.

A proof of the following theorem will be given in (2.5).

(2.1) (Cauchy-Kovalevsky). If all aijh,bij, c, are elements of<f:/

then there is a unique element u ¢ S§~ satisfying (1) in a

complex neighborhood of the origin t = o, z = o.
2.2 BANACH SPACES OF HOLOMORPHIC FUNCTIONS
For 8 >0, 0< o<1, and k > O integer, let Sk = S6 K be the class of

all elements u ¢ S~ with coefficients u, for which

) -1 4 _fl+mp+...tm
= O' I'OC. .' .' +..l + l’ V w Ll
Hunmk Supl,mlluzmll my m., k! ((£+my m k)!) "o B ] <

Then S _ is a Banach space with norm Hqu = ||y Actually, we shall need

k dak

below only SO and S; .



-1
IfueS , thenu, u €8 . with ”ut“k+1 < (k+1)(0B) Hu”k ,

x’ t7 Tz T Tkt
HuZth+l < (k+1)8™" Hu“k, h=1,...,v. Conversely, if v ¢ § ,, and u(t,z) =
{f v(7,2)dT (formal integration), then u e S, and ||u||k = (k+l)-l(05)”vnk+l
If 0<8<o, WweSy , vVeS ,, thenuve 5  and ||uv||5ok < (1-23/c:)'k'1
lallg I
Note that Séa,k+1‘D S 20d that u e 8 implies “unbak > ”uHSa,k+1;;
Also, for 0 < o< B <1, we have Sy, O Sﬁak’ and l|u|l80‘k < ”uubsk .

n . .
For U(t,z) = (ul,...,un) € (SBQK) , that is, each u, e SSOk, we take

n
HUHMk = (X Huiﬂaaok)l/2 . Note that if u ¢ S, then u has the majorant
i=1
lul (187 (t/a + 2atevi2,))

-k-

, the same kind of majbrant used in the clas-

sical proof of Cauchy-Kovalevsky theorem (see I. G. Petrovsky [32], pp. 18-24).

2.3 A PRIORI ESTIMATE

a = Ma a
Let o > o be such that & g’ bij, c, €8 and take A = Max[|| ijh”clo ,

HbiJH < A.

Hbij”olo]' Then, for every o < 8 < 0, o <a <1, we have Haijhﬂaao, oo =

If C denotes the n-vector C [ci, i=1,...,n], then we havg also ”Cuﬁaofjlcucao'
Let us choose ® and o so that o <& < 2-10, o< 5'1, hAnZ(S +v)a < 1l. Let

us prove that for any solution U e Sg = (8 )n of (1), if any exists, we have

dao

Jul | < a(1 - kn2a(v + 8)) el = el - (2)

o]

Indeed, if Ue S, then U, U e 83 =(S. ), h=1,...,v. On the other

7oz doa

o

t
hand, U(t,z) = [ U (T,z)dt, hence ||U| = od||U,|| . Thus,
o T [e] tl

Il = osllull = o8lF(t,2,0,0,)l
1 1

< oB[n?y(1-8/0) A (Maxu_ || + n2(1-6/c)’2AHUIIl +lell 1
h 1

10



;o=1 -1 .
where 1 - 8/0 >[2 7, HUZhIIl <8 il IIUIIl <l 5 lldl, <llcll, . We obtain

-1
ol < adlunvas™ull + oAl + llcl 3

which yields (2).
Note that relation (2) yields another proof that there can be at most one
solution U ¢ S to problem (1). Indeed, any two solutions Uy, Us ¢ 5 must belong

to the same space S 00 for d,a chosen as above, and then U; - Us is a solution

o)

of (1) with C = o. By (2) we have then HUl—UZHO = 0, or U; = Us.

2.4 PROOF OF THE EXISTENCE OF A SOLUTION TO PROBLEM (1)
Let us denote by H the operator of integration with respect to t from o to

t already considered in No. 3. Then, problem (1) is equivalent to
U(t,z) = H F(t,z,U,UZ) .
Thus, if T: S - ‘j"n denotes the operator defined by,
V=TU=H F(t,z,U,UZ)

all we have to do is to find the fixed points of T.
let o, A, ®, o be chosen as in No. 4 so that k = kn®A(v+3)a < 1. Note
. n n n n
that, if U ¢ Sy then UZ € S1, and F(t,z,U,UZ) €8 . Them, HF €8, and T

is actually a map T: Sz > Si. If Uy, Us € SE, then

|TU, - TUéHO od||TUy - TUQIIl =

OCBHF(t)Z:Ul)Ulz) - F(tJZ;Ua:UZZ)Hl

i

11



IN

P -2
o®[n®v(1-8/0) A(ma.xllUth - UéZhH )
1

-2
+n2(1-8/0) " AUy - Ué”l]
< bnA (v#0) ofUy - Ugll =k U - Ul

. n n Co ' n
Since k <1, T : §_ > §_ is a contraction in the norm | | of S, and possesses,
o o

therefore, a unique fixed point U € SE cJ "

2.5 PROJECTION OPERATORS
For fixed integers N > 1, M > 1, let us denote by P; , 3§ : I+ S, the

projection operators defined by

N
t 4 M1 m £ M n,
P(2 L t7 2y veez V) = ) t cee
N( % m uﬂm 21 Zv ) £=0 % uﬂm 21 Zv
M M
z 4 M My, ¢ M m,,
PM( %% u/em t Zl -..ZV ) - % mlz=o“'mvz-‘:o U.Em t Zl ...ZV )

.o

so that we have also P;,P; S, » 8, For fixed N and M, both P;Sk and P;Sk

are subspaces of S, , actually Banach spaces in the same norm Hu“k of S

k k’

For any fixed M > 1 we may consider the Cauchy problem analogous to (1):

z .
U, =P, F(t,2,U,0,) , U(0,z) = 0, (3)

for which we seek solutions U € (P; So)n. The argument of No. 2 leading to the
uniqueness of a solution U, if any exists, repeats in the present situation.
The same holds for the argument of No. 4 leading to an a priori estimate. Thus,

. o . . . . .
and solution U ¢ (PZ SO) of problem (3), if any exists, is uniquely determined

and satisfies relation (2).

12



Analogously, for fixed N, M > 1 we may consider the Cauchy problem analogous

to (1) and (3):

t z '
U, = PN_l PM F(t,.Z,U,UZ) , U(0,z) =0, (4)
t
for which we seek solutions U € (PN P; So)n (polynomials in t and z). Both the

argument leading to the uniqueness of a solution, and the argument leading to
the a priori estimate hold in the present situation. But now U is a polynomial,
and thus we conclude that a polynomial solution U € (P; P§ So)n of problem (4)
exists and U satisfies (2).

2.6 AN ALTERNATE PROOF OF THE EXISTENCE OF A SOLUTION TO PROBLEM (l)

For every M = 1,2,..., let us take N = M in problem (4), and let UM(t,z)
be the polynomials so obtained, e (PE P; So)n. Let u?zm be the coefficient
of the polynomials UM. All these UM are elements of the unique Banach space
Sz, and satisfy the a priori estimate IIUMHO <u, or (2), as proved. Let U,

be the coefficients of the formal power series expansions corresponding to prob-

lem (1), as mentioned in No. 2. Then for every fixed £ and m = (ml,...,mv) and

all M large enough, we have u¥ u, . . Hence, also u, are the coefficients
ilm iim itm

, n n . .
of an element U ¢ So and HUHo < u. Thus U e So<: \SJ, and U is a solution to

problem (1).

2.7 ANOTHER PROOF
Let g(t,z) = (gl,...,gn) be any n-vector polynomial, or element
t _z n .
g € (PN P so) , with g(0, :'Z) = 0, and let 81y’ 0<£<N, 0<m <M, denote
th fficient ] ith £ > i .
e coefficients of gi (all giom’ and all gizm with 4 > N or mh > M, being zero)

13



For every U(t,z) = (ul,...,un) € Sz > levu, o denote the coefficients of the
power series of u, and let H: SO > SO denote the operation of integration with

respect to t as in No. 3, or HU = V(t,z) = (vl,...,vn) with

8

miy m
V.(t,z) = L u ﬁ+l) z+lz1 ooz’ , i=1,...,n .
i im v
£=N m
Then, (J/dt)HU = U - P U ol < ()7 W), and also H: (P;So)n
Z_ \n n

(P.s )°. Finally, let T: (P 8,) (P2 " ve the operator defined by taking
0
V=T0=g + (I-P;) P(%,2,U,U ) .

Note that, for U e (S )" we have U e (P°S ), and U | <M |u] ,
MSo Zy Mso 2y - o)
(o]

h=1,.0.,v. Then, for U, V e (Pﬁso)n we have also, as in No. UL,
lTu - TVH < (N+1) M (2aMn®y + 2an2) ||U - VHO

By choosing N = N(M) sufficiently large, T is a contraction. The fixed point

= TU € ( ; SO) is an element U = TU = 7: g which depends on g, and which
z
. o - o+ . - . c o
satisfies U=g + H Py F(t,z,U,Uz) with U g = & for o < £ < N. By dif
ferentiation we obtain
z
U, = B, F(t,2,0,U) + 4, (5)
t Z . . .
where A = gt - PN N PM F. Thus, U = TU\:’?L g is a solution of (4) if and only
if the determining (or bifurcation) equation
g, = Pt F(t,z,U,U ) (6)
t N-1 7Ty

is satisfied. Here u, g. for all £ < N and g, = 0, and the determination
14m itm - iom

14



of a polynomial g satisfying (6) is a problem similar to (4). Thus g can be
uniquely determined so as to satisfy (6), and correspondingly U = TU =’7:g

satisfies problem (4). If wedenote by UM ¢ (P

" SO)n the element so determined,

and we take M = 1,2,..., we have a sequence [UM] as in No. (2.6) and a solution

U of the original problem (1) can be derived.

15



%. A Direct Proof of an Hormander's Theorem

3.1 STATEMENT OF THE PROBLEM

The proof and the remaining considerations of No. 2 extend to a more
general statement (Hormander [28], Th. 5.1., p. 116), from which Hormander
deduces as corollaries the Cauchy-Kovalevsky theorem, a theorem by Darboux,
Goursat, and Bendon, and & number of other statements ([28], pp. 118-126).
For the sake of simplicity we limit ourselves to partial differential equations
with one unknown function. The extension to systems is easy.

Let $¥ denote the class of all holomorphic functions u(z), z = (Zl’°"’zv)’
which are holomorphic in some complex neighborhood of the origin z = o, and
thus possesses power series expansion L u zm or 2. u zml va m ?

b pa ' Y 20 w g ZLoceE,
(ml,...,mv), |m| = my*...+m . Hormander's problem is as follows:

Given any multiindex B = (Bl,...,BV), |g| > o, and elements f, aa, P e S,

|al < |B|, determine an element u € §~ such that in a neighborhood of

o
IN

7z = 0 we have

) o o
D u Ialglﬁl a (z) Du + f(z), and (1)

k
Dj(u-cp) = 0 when 25 =0 if o<k< sj, J= Lyeee,v. (2)

B

A proof of the following theorem will be given in No. 3.5 below. As usual Du

p p
denotes 5'6! u/azll...azvv .

16



(3.1.i) (Hormender, [28] Th.5.1.1, p. 116). If X ]aa(o)l is smaller
|l =g

than a positive number depending only on ISI, then problem (1),

(2) has one and only one solution u ¢ S

3.2 THE CLASSICAL UNIQUENESS ARGUMENT
The substitution u = v + ¢ reduces the proof to the case ¢ = o so we may

assume that ¢ = o from the beginning. Thus, we replace (2) by
k . .
Dju = o when Zj =0 if o<k< Bj’ J= 1,000, (3)

If o,B are any two multiindices o = (Qﬁ,...,av), B = (Bl,...,ﬁv) we shall say
that a < B [or & < B] provided a < Bi [or ay < Bi] for all i = 1,...,v. If

0 < p we shall write as usual

1

C) = CHoB) win G

o % v i i i1

Given B = (Bl,...,Bv) and any integer X%z |B|, we shall denote by NXB the number

of integral solutions of the equations |£| =Ny, £ 2By, 0or £y teaet h =N,

v 1%

ﬂi > Bi, i=1...,v. Also, we shall denote by “B the number of solutions of

the equations |a| = IBI, or 3 +te..t ab = B; *t.o.t Bv.

The solution u ¢ J” of problem (1-3) is uniquely determined. This can be
proved by a simple modification of the usual argument for the Cauchy-Kovalevsky

theorem (see [5], p. 19). Indeed, if u e S~ satisfies (1-3), and d , A

L ol

. . 4 £ a

A (21,...,zv) denote the derivatives dz = Dy , Adz = D"a”
z=0

derivatives dﬂ with at least one Ei < Bi are zero. In other words, dﬁ =0

, then all
=0

for every /£ k B. For £ > B, the derivatives dz can be obtained from Leibniz

rule by differentiating (1) exactly £ - B lines, that is, applying the operator

17



4-p

D on both sides, and taking z = o. We obtain
a = X 2 (z ) A a ; (W)
Y/ ARSI 2 AR AR o ¢

lol<lgl £'<s

and in this sum we may well restrict to only those terms with ' +a - B > o,
or 4' >B. Note that, for any given £ > B we have in (4) £4' < 4, £ >B, 4' >B,

la] < |B|, and finally

|2'+o-B| = | (£'-B)+a] = |2'-B|+la| = [&']-|p|+a] < |&'] < |2] .

Thus, for any given A > 0, A > |B|, |z| = N\, We may have in (L) |3'+a_5| =\

if and only if |4'| = |#|, |B| = |a

. In other words, the Nh derivatives dl

with | 4] =N, £ > B, satisfy the system of N equations

a - X

E'e;IEI:K; L 28, (5)
lof =[B]

A d =
o Lro~B

where E denote finite linear combinations of derivatives d_ with |s| <A, and

where AQD = aa(o). In each equation (5) there appear, therefore, besides the

unknown dﬂ with coefficient one, at most p_ other unknowns d - with 4+o-B =

B 4+a-p
IKI = |£|, with coefficients Aop whose sum of the absolute values is < 2
ol =[p]

|aa(o)|. Thus, if this sum is < 1, the NX equations (5) have a unique solution

([22] p. 29).

3.3 BANACH SPACES OF HOLOMORPHIC FUNCTICNS

For 8 > o0 and k > o integer, let S, Dbe the class of all elements u ¢ CT:

ok

W=2 U 2] «e02 , m= (my,«s.,m ), for which
m m v v

ml+- .e +m

1 <w. (6)
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Then S.. is a Banach space with norm [ul| s Note that §

c d that
Sk K S and tha

o} O,k+1

Also, 5. €S, C...C8_ C...cJd,

for u e Sy, we have lallg, > [l 80 ~ 51 8k

3} S,k+1’

for u € S, we have Hu“6o > Hu]]81 >0 > Iuol. For any given element u ¢ S

do oo

we can take 8, o < 8 < 0, so small that Hu“ao is a close as we want to Iuol.

If u € S.. then each derivative D. u e S with [|D, ull < (k+l)8-lHu” .
k i - Bk

) Xq B, k+1 B, k+1

Conversely, if v ¢ S and u(z) = D;l v (formal integration), then u ¢ S

0,k+1 i Bk

and “u”5k = (k+1) '8 [| v These are immediate consequences of the defini-

§,k+1’

tions. As a consequence, for every multiindex a = (0g,...,0 ) and u e Sak’ we
v

Q a -
have D u SS,k+|oc| and ||D u“81k+| o < (k +1)...(k+af)d “u||6k. Conversely,
. e’ . : _
if ve SS,k+|a| and u = D v (formal integration), then u e S5, 2nd ”uHSk
-1 -1 |a
(). (vl o] ) 8 %

8,k+|al °

Note that, if 0 <8 <o, u e Sy, Ve 8 then uv € S.. and Huv“5k

4] ok’ Bk

-k-1
I

then

< (1 -28/0) Also note that, if u € 8

u”ak ”v“ O,k' sk}

|um| < Hu”6k (ml+...+mv +k)! (mll...mvlkl)-l )

that is, u(z) has the majorant

-1 My my -my-...-m
”uubk Zh(ml+...+mv+ k)l(mll...mv! k!) “z1 ez 5 L v, (7)

or

-1, -k-1

fullgy (1 - (zaret )67

-1,-k-1
Conversely, if u(z) has a majorant p(l-(zl+...+zv)6 l) , then u ¢ SSk and
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3.4 A PRIORI ESTIMATE

We prove here an a priori estimate for the solutions u e S’ of problem (1-3)
above (that is, for problem (5.1.1) of [28], p. 116).

. . . a
(3.4.1) Given B, there is a number T = T(B) > o and, for all a e \§
la] < |B| with L 1a¥0)] < T, there is another number & > o such
lof = |p]
that, for any f e 8y , 0 < 5 < 80, and solution u e S“of (1-3) (if any)
with u € Sbo’ we have also

ll, <etleln ™ sPlye, . (&)
(o] o}

4-|B|. Given aa € \fl, Ial < IBI, let o > o be such that

Proof. Let T = 2°
2 ¢ S lal < |B|, and let A = Max [”aaloo, |a| < |B|]. Then, for any r integer
. Q
we have Ha%lcr < Ilaoﬂco < A for all a with |o < |B|. If |a|§|6||a (0)| < 7,

then we certainly have

[+ a -3
2 Ialélﬁl Ia (O)I <2 .

Let 80 be so chosen that o < 80 < 2-10,

Jol4, o lel-lal o

laf<[p] "o

and such that

L a % aa o) + o Pt
|al=|8] I O(”50 < la|=|5|| (0)] + 2

for every 8, o < ® < 60. Then

k = 2|6I+l A Z 6LB|'IQ| + 2IB|+1( Z Iaa(o)l + 2-|B|-4) (9)
o<l EEn
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-1
Thus, for o < 8 < 80 we have 1-8/0 > 2 , and if k(5) is the number defined

-1
as in (9) with ® replacing 60 and u(d) = 1 - k(8), we have o < k(d) < ko <27,

-1 -1
1>ud)>1-2" =2

IffesS, anduesS, ue SSo’ is any solution of (1-3), then Dsu €S

%o 5,8’
'B( B

and u = D' (D u) (formal integration as in No. (3.3 )). Then from (1) and the

remerks made in No. (3.3),

ol = (le]5)™ 8l? IPuly jg =

S (el rslBl n ey

o)
o] <] s 18l

AR A
o R (e U [ TR - R T ,Bﬂ

_ | ol <|B]

)
- glBl [ ,lBl+

oy

(Ie]?) (I8]-1af +1)...(|B] )

IN

2
A 1al<l8] 5,1p]-| o

EIRS (8l1) 5Bl (| |Z| | |a%0)| + 2P llallg, + Hfllao:}
al=|p

1

3 S8l e lBl-lad , leln (T |a°‘(o)|+2“6'4)llulfao+ (gl )
la|<|8| lof=g|
ol el

< x(8) ul,, + (el slP! e,

or

g, < (ue))™ (lel ™ 8l e

-1
where p(8) = 1 - k(8) > u, >2 , and (8) is thereby proved.
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5.5 PROOF OF THE EXISTENCE OF A SOLUTION TO PROBLEM (1-3)
Let us denote by H the operation of integration H = D-ts already considered
in Nos. (3.3) and (3.4). Then, problem (1-3) is equivalent to
u(z) = H( X a%p% + f(z)) .
|al<l8l
If T: S » S~ denotes the operator defined by
v=Tu=H( X 2% + £(z)),
la]<|B]
all we have to do is to find fixed points of T.
Let o, A, d be chosen as in No.(3.4), so that o < k(5) < ko < 2-1.

Note that, if u € S _, then 2% e s , 0< o <|p|, and

5:]“'

Yy o o . 5 o
Ialf_lﬁla Due SS,IBI. For f ¢ 86,0 we certainly have H(Ialifﬁla% u+f)e Sao,
and T is, therefore, a map T: S50 > S&o' If uj,us € SSo’ then
a . o
I7ay - 2agllg = (2 a” Dui-ue))ly,
ETSET
-1 a o
U GERC S I T
J

ol <l8

< (el 7olPlae/ay 1Pl 2y oty
olslsl ’

< (I8l )%l [2'5'“A L (18]-lo)-1).r. (8] )e7 ¥ usmug ‘
lal<|5| « IS:IB,'IGI

| 1
r 2P e s Pl n ey ¢ o7 lB) ),
| lal=|B] -

[2;a|+l noslPlelolygleln gy prlel | g
FER =8l .

IN

[

k(a)”ul'uzlao )
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-1
where k(8) <2 . Thus, T: S. ~ S. 1is a contraction in the norm Hu”ao of S

do do 8o’

and possesses, therefore, a unique fixed point u ¢ 8 Theorem (3.1.i) is there-

80"
by proved.

Considerations analogous to the ones in Nos. (2.6-8) could be repeated here,

and are omitted for the sake of brevity.
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