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ADDENDUM IV, GENERALIZED SOLUTIONS AS LIMITS OF USUAL SOLUTIONS

Lamberto Cesari

In the first part of this appendix we show that the generalized solutions
as introduced in (1.8-10) can be uniformly approximated by means of usual so-
lutions. In the second part we give an alternate definition of generalized

solutions and we show that these solutions coincide with those introduced in

(1.8510).

IV.l APPROXIMATION OF GENERAiIZED SOLUTIONS BY MEANS OF USUAL SOLUTIONS

As we pointed out in (1.8) it is relevant that generalized solutions can
be thought of as limits of usual solutions, and that in the same time, the
value of the functional computed on any given generalized solution be the
limit of the corresponding values taken by the functional on usual solutions.
Since the infimum j of the functional on the class of all generalized solutions
is cerééinly less than or equal the infimum i of the functional on the class
of usual solutions, we then are able to conclude that actually j = i as pointed
out in (1.8).

We shall prove the possibility of approximating generalized solutions
(and corresponding values of the functional) for the canonic (Mayer) problem.
The analogous result for Lagrange and other problems will then follow as a
corollary because of the usual transformations of one type of problems to the

other (1.2).

We shall use below the usual notations for Mayer problems. Thus, A,



U(t,x), M, f(t,x,u) = (fl,...,fn) are given as usual. To simplify matters,

we may disregard the usual set B of the tixltgxg-space E2n+2’ or what 1s the

seme, assume for a moment that B = Em+2' Actually, we shall keep the first

point of our trajectories fixed, say (tl,xl) is a fixed point, (tl,xl) € A,

and we shall also keep the terminal point t2 fixed, so that we may simply

take for B the set B = (tl) X (xl) X (t2) x E . Then the usual function
g(ti’xl’tE’XQ) shall be consldered as a given function of x2 only‘in En. Then
the functional has the form I = g(x(t2)).

t .
Note that for Lagrange problems with functional I = fti fodt, reduced to
Mayer problems by the usual additional variable xo, differential equation
dxo/dt, and initial value xo(tl) = 0, then we have a new state variable % =

N ,
(xo,x) = (xo,x ,...,xn), and the functional takes the Mayer form.I = xo(tz),

exactly in the frame of the assumption above.

(IV.1.1) ©Let A be closed, let U(t) be a closed set independent of x and let
M= [(t,x,u)|(t,x,) € A, u e U(t)] be closed. Let f(t,x,u) be continuous on
M and locally Lipschitzian with respect to x in M, and let g be continuous.
Let y(t), p(t), v(t), tl <t< tE’ be a generalized admissible system, whose
(generalized) control function p is bounded, and whose trajectoryy lies in the
interior of A. Then there is a sequence xk(t), uk(t); t

stst k:l,e,..',

1 2’

of (usual) admissible pairs with xk(tl) = y(tl), such that x >y as k > o

uniformly in [tl,t2], and then consequently g(xk(tz))+ g(y(te)) as k > o,

Proof. Tt is not restrictive to assume tl =0, t2 = b, Let 2d be a



positive number which is less than or equal to the distance of the graph G =
[t,y(t)), 0 <t <b] from the boundary of A. Let A be the closed d-neighbor-
hood of G. Then G and AO are compact, G lies in the interior of Ao and Ao C A.
Since v(t) = (u(J)(t), j=1,...,7) is bounded, there is some N > O such
that lu(j)(t)l SN, 0<t<b, §=1,...,7. Let M_be the set .of all (t,x,u)
with (t,x) e AO, 0<t<b,uet(t), ul| <N. Obviously M © M, and M is

a compact subset of El+n+m (as the intersection of ‘M closed with the compact

set [(t,x,u)|(t,x) Ao’ [u] < NJ.
By hypothesis f(t,x,u) is continuous on Mo’ and locally Lipschitzian

with respect to x, hence bounded, say lf(t,x,u)l < N., and there is a constant

l,
L > 0 such that [£(t,x,u) - £(t,y,u)| < L|x-y| for all (t,x,u), (t,y,u) < M.

Given € > 0, let € > O be any number such that € < min [d,e], and take

1 1

L -
o > 0 so that 30 e b < 81. Let nl = (2b) lo and let 61 > 0 be a number such

that |£(t,x,u) - £(t',x',u")| < ny for all (t,x,u), (t',x',u') e M at a

distance < 61.

(

Let N, = (2N)-lo. Since the y functions u J)(t) are measurable in [o,b],

there is a closed subset K of [o,b] with meas K> b - Nys such that the y
functions u(j)(t), j=1,...,7, are continuous on K. Then, K is coinpact, and
the y functions u(j)(t), j=1,...,7, are uniformly continuous on K. Then
there is some 5, > O such that ,u(j)(t) - u(j)(t')l <8 for all 3= 1yuun,,

and all t, t' ¢ K with |t-t'| < 52 . Also, we can take 52 < 61 so small that

t,t' € [o,b], |t-t'| < 3,, implies ly(t) - y(t")] < 5+

1

Let us divide I = [o,b] into k equal consecutive intervals, say I

ks’



s =1,...,k, each of length b/k. For each I o let [stj, J=1,...,7] be

disioi » -
any subdivision of Iks into y measurable disjoint subsets Z&sj IkS (for
instance, subintervals) such that
meas stj = fIks pj(t) dt, 3 =1,.e.,7. (1Iv.1.2)
Then
Y. meas )y . = r. [ pJt)at = [ dt = meas I, .
ks Ips 73 Iks k
We now take
_ () . -
u(t) = u'?'(t) for all t « stj, J=1,000,7, 8§ =1,...,k
(IV-lo})
Then u(t), tl <t< t2, is a measurable function in I with values u(t) e U(t),
tl <t< t2, and |u(t)] < N. Let us consider the differential system
ax/dat = f£(t, x(t), u(t)), 0<t < b, (IV.1.4)

with initial value x(0) = y(0) = X - Since (O;Xo)is an interior point of Ao’
the solution x(t) of (III.1l.L4) exists in a right neighborhood of t = 0, say
[0,t], and (t,x(t)) A

Let k2 be the smallest integer such that b/k2 < 62. Hence, for k > kg,

. 1 - - '
and for any two points t, t' e I =T _ NX, we have [t-t'] < b/k < 8,, and

ey - e <,

leeopve Let I =T NK, stjo = stj N K,

I’:I - ! = - L - . . . .
ks ks K, zzksj Zlksj K, K I - XK. For any triple k,s,j with meas

X >0 lect int T = X . X =
ks jo we select one point 7 Tksj € Lysio If meas qusjo 0 we do



not select any point, and actually we disregard the corresponding term in the
lines below. Obviously, meas K' < Ny

For any interval [0,t], 0 <t < t, let X K! be the sets K, =K N [0,t],

to’ Tt to

K' = t] - K. . - =
£ [0,t] Note that fIks PJ(Q)dC meas stj 0, and hence

DI M p0)at - meas T ]

kso

BIyly my0ar - mens T - Iy

1 203+ mees Les!

+ at + 2 ! .
< 0 Zs fI}i;s ijj(;) t ZSZJ, meas stjs meas K' < 2n,

Now x(t) and y(t) are AC with x(0) = y(0) = X s and

dy/at = H(t,y(6),0(8),5(8) = T p.(t) £(t,5(8) (1)),
0<t<b,
dx/at = f(t,x(t),ult)), 0<t<t, x(0) =y(0) = x .

For any t we have u(t) e U(t), hence f(t,y(t),u(t)) is defined, and

y(t) - x(t) = [

th(¢,y(8),p(t),v(t)) - £(8,x(¢),u(t))lat

= I5ree, () ,u() - £(8,x(8),u(e))1ae

0]

U+ ) TE 20 260, D) - 2(Ea(e)u(0) e

= My + Ky + HB. (1v.1.6)



Since lfl <N in Mo’ we have

(

I

gl = I L2 200 (0 e - s(two),ue et

Doy ] + Jeee,50),u6)) 1l

IA

IK{; [ ZJ PJ( t) lf( t,y(¢),u

| —
< 2N meas Kt < 21\11]2 = 0.

Also, we have

ol = 1 T o000 260, V) - s(t,u(0),ue) 1t

t

= (3) (3)
= lZSZJ[II pJ(g) f( C:y( C),u J (Q))dg - fzksjf(g,y(c)’u J (g))dc]!

kso

- 122 teey() ) 1) p, (Dt - meas T, ]

kso

P LT 0 (000, ih) - ey, Do)
kso
R A S B I I C R CI RAE DI
§ J ksjo

where summations and integrations are extended only over those terms and
intervals concerning [0,t]. In each bracket of the second and third sums of

the last member we have [¢-T| <b/k<B, < 61, hence |y(t) - y(1)| <38

2 1’

10 - D) <8

17 and each bracket has absolute value < nl. By using

- this remark and (III.1.5) we obtain

lu,l < % Z.IJ

P LE pj( t)dt - meas stjol

S

+ nlzs fIkSOijj(C)dg + nlzszj fzksjod(;

< 2Np, +enb = g+o =20,



Finally,

| < IS nlv(o) - x(o) lae.

Thus, (III.1.6)'yields

[v(t) - x(9)] <1 [0 Iy(e) - x(t)lat + 30,
and by Gronwali's lemma,

ly(t) - x(t)] < 30" <30 e <e

and (t,x(t)) e A forall 0<t < t. Thus, x(t) is defined in all of [O,b],

or t = b, the entire graph [(t,x(t)), 0 <t < b] of x lies in A and
x(t) = x ¢ [0 H(Ex(0),u(0)dE,  u(t) e Ut),
|x(t) - y(t)] < min[d,e], O0<t < b,

In particular lx(tg) - y(t2)| <min [d,e], and (tl,x(tl),t2,x(t )) € B. Since

2

-1
€ > 0 is an arbitrary number, statement (III.1l.i) is proved by teking € = k 7,

k = l,g,noon
Statement (IV.1.i) has been generalized so as to include control spaces
U(t,x) depending on both t and x, provided f and U very not too mildly as t

and x vary. Namely, let us consider the two following hypotheses:

(p) Given N > O there is another constant L > O such that [f(t,x,u) -
£(t,y,v) | < L |x=y| + |u-v|) for all (t,x,u) € M, (t,y,v) e M with
-N<t <N, ,xl, lyl <N, ]ul, lvl < N. If U depends only on t,
or U = U(t), then we require only |f(t,x,u) - £(t,y,u)] < L|x-y]|

for all (t,x,u), (t,y,u) e Mwith -N<t <N, |x|, |y] <w, |u] <N,



(@) Given N > O there is another constant H > 0 such that for any two
points (t,x) ¢ A, (t,y) € A, -N<t <N, |x|, |y] <N, and any
u € U(t,x) with |u] < N, there is at least another point v e U(t,y)

with ’u-v,-s Hlx-y,.

(Iv.1.ii) Let A be closed, U(t,x) which may depend on both t and x, and let
M= [(t,x,u)[(t,x) € A, u € U(t,x)] be closed. Let (f(t,x,u) = (fl,...,fn)i
be continuous on M, and let g be continuous. Let us assume that conditions
(p) and (q) hold. TLet y(t), p(t), v(t), tl <tg t2, be a generalized admis~
sible system, whose control function is bounded, and whose trajectory y lies
in the interior of A. Then there is a sequence xk(t'), uk(t), tl <t<t,,

2

k =1,2,..., of usual admissible pairs with x tl) = y( tl) and such that

.

X, >y as k » o uniformly in [tl’t2]'

Remark 1. We have mentioned above that the so called Gronwall's lemma:

(Iv.1.ii1). If u(t) >0, v(t) >0, 0 <t < +w, are given functions, u(t) -
continuous, v(t) L-integrable in every finite interval, if for some nonnegative

constant C we have
t
u(t) < ¢+ ["u(a) v(a)do, t >0, (1v.1.7)
then we have also

t
u(t) < ¢ expfo v(a)da, t

v
S

(1v.1.8)

Proof. If C > 0, by algebraic manipulation of (IV.1.7 ), we have

uv/(C+f§uvdo¢) < v,



and, by integration,
t t
log (C + ﬂ) uvda)-1logC < fo v(a)do
or
t
uvda < C exp fo v(a)da.

If C = 0, then (IV.1.7) holds for every constant Cl > 0, and then we have

0<u(t) <C. exp L: v(a)do, t > 0, This relation, as C. > O implies u(t) = O.

1 1

Thereby (IV.1.ii) is proved.

Remark 2. In Statement (IV.1.i) the hypothesis that the graph G of y be
in the interior of A seems to be requested by the proof, since we obviously
need a neighborhood of G on which to define the sequence of ﬁsual trajectories
approaching y. Actually, it is easy to prove by an example that statement
(III.1.i) may not be true without the hypothesis that G is in the interior of
A, Taken =3, m =1, AO made up of the three segments joining the points

0 =(0,0), 1 =(2,0), 2 = (1,1) in the xy-plane and then take A = E_ x Ao x E

1 1

1]

Let U be the fixed set made up of the two points u = 1 and u = -1, let xyz be

the state variables, and take differential system x' =1, y' =u, z' =y,

fixed initial point Pl: t. =0, x, =0, y, =0, z

1 1 1 = 0, fixed terminal time

1

t2 =2, B =(P1)x (2) x E_, functional I = z(te). Then necessarily x(t) = t,

0<t<2, and x(tg) = 2, This problem has only one admissible usual strategy
u, with u(t) =1 for 0 <t <1, u(t) = -1 for 1 < t < 2, the corresponding

trajectory in the xy-plane isthe polygonal line 021, and I = z(t_) = 1. The

2



problem has only one admissible generalized (not usual) strategy v, with

1

1 2
u( )(t) = 1, u( )(t) = -1, pl(t) pg(t) =1/2, 0 <t <2, the xy-trajectory
is the segment Ol, and T = Z(tB) = 0, Clearly the only generalized (not

usual) solution cannot be approached by means of usual solutions. Here A

has no interior points.

(u(l) (7)),

Remark 3. Unbounded control functions v(t) = geeeyll tl <t<t

2)
are allowed in statements (IV.1.i) and (IV.l.ii) under additional dypotheses,
which are analogous to those used for a similar purpose in the prodf of
Pontryagin's necessary conditions with unbounded controls [see vol.l, App. A].
Namely, statements (IV.1.i) and (IV,1.ii) still hold for v(t) unbounded,
under the additional assumption

(%) There is some number & > O and an L-integrable function S(t),

b, <t <ty such that t e [t),8,], lx' - x(t)], |x" - x(t)] <8,

J =1yee.,7, implies
ot D)) - 2ol < et - 2lsw).

As mentioned, the statements above (IV.1,i) and (IV,1l.ii) for Mayer
problems can be immediately worded for Lagrange problems, For the sake of
simplicity we limit ourselves to statement (IV.1,i). Here A, U(t), M are as
above, fo(t,x,u), f(t,x,u) = (fl,...,fn) are defined on M, Admissible pairs
x(t), u(t), tl <t < t2, are defined in (2.9, first paragraph), and the

functional is now

I[x,u] = Lif fo(t,x(t),u(t))dt.

10



(IV.1.iii) Let A be closed, let U(t) be closed sets independent of x, and

let M be closed, Let fo(t,x,u), f(t,x,u) = (£ ,...,fn) be continuous on M

1
and locally Lipschitzian with respect to x on M, Let y(t), p(t), v(t),

be a generalized admissible system, whose (generalized) control
function v is bounded, and whose trajectory y lies in the interior of A. Then
there is a sequence of (usual) admissible pairs xk(t), uk(t), tl S t < t2,
k = 1,2,f.., such that X, >y as k + o uniformly in [tl’tg] and suqh that

I[Xk’uk] > I[x,p,v].

By introducing the additional variable xo, the differential equation
o) o)
dx /dt = £ » the initial condition x (tl) = 0, and new space variable
' 1

X = (xo,x) = (xo,x ,...,xn) and function f(t,x,u) = (fo,f) = (fo,fl,...,fn),

the problem is reduced to a Mayer problem to which (IV.1.i) applies.

IV.2 AN ALTERNATE DEFINITION OF GENERALIZED SOLUTIONS

(a) Weak Solutions

We shall denote by U any fixed control space, that is, any arbitrary
fixed set U of elements u, and we shall assume that U has a topology, so that
Uis a topo;ogical space. We shall then denote by {¢} the set of all real-
valued continuous scalar functions @#(u), u € U, which are continuous on U.
We shall denote by M(@8), ¢ ¢ (0}, any real valued functional such that (ml) M
is linear, that is, ¢l’ ¢2 ¢ (8}, a, B real, implies M(a¢l + B¢2) =
OWK¢1) + BNK¢2); (m2) M is nonnegative, that is ¢ e (f}, ¢ > O, implies

M(@) > 0; (m3) M(1) = 1, that is, if @ denotes the function #(u) = 1 in U, -

11



then M(¢) = ¢ =1, The following further properties are consequences of these
assumptions: (mh) @, B € (#), f) < 4, implies M(4) < M(B,); (u5) [M(o)] <
MCIA]); (mb) |M(p)] < Sup |#| where Sup is taken in U, (m7) ¢k’ P e (¢),-
Kk =1,..4, ¢k > f as k > o uniformly in U implies M(¢k) > M(P). We shall
denote by F the class of all real valued functionals M(p) as above.

We are now in a position to define the concept of weak solution. As in
all available expositions of the theory we assume that U is a fixed set.

Let A be any closed subset of the tx-space El X En’ let U be an arbi-

trary subset of a Banach space E, and let M = A x U, Let f(t,x,u) = (f ,...,fn)

1
be a vector function defined in M.

We shall consider systems {x(t), t, <t < by D, M(t,P)} where (a) x(t) =

1
(xl,...,xn) is an AC vector function on [tl’t2]; (c) D is & méasurable subset
of [tl’tg] with meas D = t -t (@) for every t ¢ D, M(t,0) is a real-valued
linear functional defined on {f}, that is, on the class of all continuous real-
valued function P(u), u € U, and for every t ¢ D, M(t,p) satisfies the pro-

perties (m) above; (e) x'(t) exists and is finite at least everywhere on D

(hence, a.e, in [tl’tz])’ and

dxi/dt = M(t;fi(t,x(t),u)), i=1,...,0, t €D, (1v.2.1)
or briefly

dx/dt = M(t,f(t,x(t),u)), t e D. (Iv.2.2)

Any such system {x(t), D, M(t,0)} is said to be a weak solution, and x(t) a

12



weak trajectory. It is not necessary to indicate the interval of definition
of x(t) since [tl,t2] =cl D.
It is important to show that every usual admissible pair x(t), u(t),

b, <t<t

1 , 1s a weak solution, Indeed, if we take M(t,f) = @(u(t)), then

2
(IV.2.2) reduces to dxl/dt = fi(t,x(t),u(t)). Analogously, any generalized

WDy

system (x(t),p(t),v(t)) with p(t) = (pl,...,pv), v(t) = seee) |
v > n+l, is a weak solution. Indeed, if we take M(t,{) =ijj(t)¢(u(j)(t)),
then (IV.2.2) reduces to dxi/dt =§:jpj(t)fi(t,x(t),u(j)(t)). Thus a weak

solution appears to be an extension of both usual and generalized solution.

Actually, under mild hypotheses, every weak solution is a generalized solu-

tion, and is the weak limit of a sequence of usual solutions.

(b) Weak Solutions as Quasi-solutions and Generalized Solutions

We shall denote as in Chapter 1 by R and S the sets R(t,x) = co Q(t,x),
S(t,x) = cl co Q(t,x).

Equations (IV.2.1), or (IV.2.2), can be thought of as defining a directof

field, némely
dx/dt e Q*(t,x),
where Q* is the subset of En defined by
Q*(t,x) = M(t,f(t,x,u))|M e F) < E

that i1s, the subset of all vectors

M(t,E(t,0,u)) = ((5,E)), M(t,E,) 000 M8, 5 )],

13



when M describes the family & of all possible real-valued linear functionals

M satisfying properties (m),

(Iv.2.i) For any space U, we have co Q(t,x) < Q*(t,x), that is R(t,x) <

Q*(t,x).

Proof. For every u e U, let M(#) = #(u), in other-words, let M be the
Dirac operator 8. at u, which gives for every § ¢ {f} the values of § at u.
Then M(f(t,x,u)) = £(t,x,u) € Q(t,x), and as u describes U, then f(t,x,u)
describes Q(t,x). Thus Q < Q*., Now F has a linear structure, namely, if
M, Mge'y and 0 < a <1, theanonl+(l—oc)M2€'3. Thus M(@) =
0! M1(¢) + (l—a)Mg(ﬁ), and we conclude that Q* is convex, and-hence Q* contains -

the convex hull of Q.
(Iv.2.i1) 1If U is any metric space, then
co Q(t,x) < Q*(t,x) < cl co Q(t,x)

Proof. For each point u ¢ U let G = G(u) be a neighborhood of u where
f(t,x,u) as a function of u above has an oscillation < €, say |f(u') - £(u™)|
< €, for all u', u' € G = G(u). Then the collection {G} of all these neighbor-
hoods is a covering of U, that is, the union of all sets G is U, say UG = U.
Then we know (see Remark below for references) that U possesses a partition
of unity, that is, U possesses the following important property: Given (G},
there is another covering {Gi, i1 € I}, I an index set, and certain scalar

functions Q&(u), ueU 1ielI, with ai(u) € {#}, such that (a) UGi = U as

1k



above; (b) each open set Gi is completely contained in at least one set

G e {G}; (e) (Gi, i € I} is locally finite, that is, for every u e U there
is a neighborhood V of u in U such that V N G 74 ;Z5 for at most finitely many
i; (e) 0< oci(u) <1lforallueUandiel; (F) ZiEI ozi(u) =1 for all

u € U, Note that for each given u € U the sum in (f) is actually a finite
sum: iﬁdeed, if V is the relative neighborhood as in (c), then V N Gi P
for at most finitely many i, and thus cxi(u) = 0 for all remaining i eI, and

the sum Zi oci( u) possesses at most finitely many terms different from zero

el
(at any given u). Let ui denote any point u:,L € Gi’ i € I, and let g denote
the function g(t,x,u) = ZiEI f(t,x,ui) al(u). Then, if u ¢ U and ozi(u) # 0

for some 1 € I, then u ¢ Gyr Uy € G, =G for some G ¢ {G}, and f(t,x,ui) =

Ig(t,x,u) - f(tyxyu)l lzif(tyx:ui) ai(u) - f(tyx,’u)l

lZieioci(u)l < 5Ziai(u) = €,

or |g-f] < € for all u € U, Let p, = M(oci(u)), i € I. Then, by properties

(m) we have 0 < p, < 1., Also we have

1 = M1) = M(Ziozi(u)) ZiM(oci(u)) = X.p,.

11

On the other hand

IM(g(t,x,u)) - M(£(t,x,u))] < e,

1l

Mg(t,x,u)) M(Zif(t,x,u)ozi(u)) = Zif(t,x,ui)M(ozi(u))

Zipif(t,x,ui). € co Q(t,x).

15



Thus, every point M(f(t,x,u)), that is, every point of Q*(t,x), is a point of

accumulation of points of co Q(t,x). Thus co Q(t,x) < Q*(t,x) < cl co Q(t,x).

(Iv.2.iii) 1If U is any metric space, then whenever R(t,x) is a closed subset
of E , then Q*(t,x) = R(t,x) = 8(%t,x). In particular, this is certainly the

case if U is compact.

Indeed R closed implies R = S and hence Q* = R = S because of (ii). If

f(t,x,U) is compact, and then R is compact

U is compact, then certainly Q
and hence closed, and the statement applies,

We conclude now with the following theorem:

(IV.2.iv) If U is any metric space, and {x(t),D,M} is a weak solution, then
x(t), tl <t< tg, is a quasi-trajectory, that is, an AC solution of the

orientor field
ax/dt e s(t,x(t)), S(t,x) =cl co Q(t,x) = cl R(t,x).

If, in addition, R(t,x(t)) is known to be closed for almost all t e [tl’tz]’
in particular, if U is compact since then R = S is also compact, then x(t),
tl <t< t2, is a generalized trajectory, that is, there is a probability
distribution p(t) = (pl,...,pv), v > n+l, and a vector function v(t) =

(

(u(l),...,u(v)), with pj(t), u(J)(t) measurable in [tl’tg]’ u J)(t) € Ua,e.
v

i t,,t t = =

in [t,, 2], 0< pJ_( ) <1, Zj=lpj(t) 1 for all t ¢ [ti,tg], dx/dt

Z;zlpj(t) £(t,x(t),u P)(t)) ae. in [t,,t,])-
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Proof, The first part is obvious since dx/dt e Q*(t,x(t)) < S(t,x(t))
because of (ii)., If R (t,x(t)) is closed for almost all t, then R = S, and
hence

dx/dt e R(t,x(t)) for almost all t ¢ [tl,t2],

where R(t,x) = co Q(t,x) < co f(t,x,U), and here U is a fixed set which,

therefore certainly satisfies the conditions of Theorem (1.6.i) of Chapter 1.

If h(t;x,p) = X pjf(t,x,u(l)), pel, ve Uv, as in Chapter V, then we have
also R(t,x) = h(t,x,I x Uv) and again I' x U” is a fixed set. By the Theorem

above, we conclude the proof of our statement.

Remark, Both statements (ii) and (iii) above certainly hold for all
topological spaces U for which a partition of unity property holds, thus, in
particular, for all paracompact spaces U, more particularly, for all metric
spaces U [N, Bourbaki, Topologie Générale, Ch. 9, Sec. L, no. 3,4,5]. A col-
lection {G} of subsets of a topological space U is said to be an open covering
of U if the union of all G ¢ {G} is U, say UG = U, Another collection {G'}
of open subsets of U is said to be a subcovering of (G} if UG' = U, and if for
every G' ¢ {G'} there is at least one G ¢ {G} with G' © G. A covering (G} of
U is said to be locally finite provided, given u € U, there is some neighbor-
hood V of u in U such that V N G % 0 for at most finitely many G ¢ {G}. A
topological space U is said to be Hausdorff if for any two distinct points

U th i ! = 0,
€ ere are open sets Gl’ G2 in U with ul € Gl’ u_ e G, Gl na 0

Uy oty o € Yp >

Also, U is called normal, if for any two closed subsets Hl’ H2 of U with

17



H. N
1 H2

0, there are open sets Gl’ G2 in U, with Hl c Gl, H2 c G2,

1}

naG
G 2

1 0. Finally, a topological space U is said to be paracompact provided

U is Hausdorff and every open covering of U possesses a locally finite sub-
covering, Then, every metric space is paracompact [N. Bourbaki, Ibid., Ch. 9,
Sec. 4, no. 5, Th., 4]. Every paracompact space is normai [Ibid., Ch. 9, Sec. &4,
no. 4]. Every paracompact space possesses the partition of unity property

[Ibid., Ch. 9, Sec. 4, no., 4, Cor. To Prop. L4].

(¢) Limit of Weak Solutions
Any two weak solutions, or systems (x(t), D, M}, (x(t), D', M'} are said
to be equivalent (or identical) provided they have the same trajectory x(t),

tl <t<t,, [tl’tg] =cl D =rclD', and provided, giveﬁ any vector function

2

g(t,x,u) = (gl,...,gn) continuous on A x U, we have

H(6) = x(t) ¢ [ u(ne(D,x(0),mar = [ (ne(0),x(9),u))ar

and (t,z(t)) € A for all tl <t< t2. In other words, two systems (x(t),D,M},
{x(t),D',M'} are equivalent, or identical, provided the vectors obtainable by
integration on every function g along the common trajectory x(t) are the same,
This definition establishes an equivalent relation, and we shall denote by C*
any equivalent class of such systems {x(t),D,M}. For the sake of simplicity,

we still call C* a weak solution, and any system {x(t);D,M] of the equivalent

class, a representation of C*.

We shall now introduce in the family (C*} of weak solutions C* a concept

of limit, We shall define this concept by using arbitrary representations

18



{x(t),D,M} for every C*, As we shall see, it is immaterial which of the

representations are used, and thus, for the sake of simplicity, we shall word

the concept of limit as follows,

We say that a sequence [Ck] of weak solutions, say

Ck = [Xk(t)’ tlk S t S t2k’ Dk’ Mk(t’¢)]l k‘ = 1,2""’

converges to a weak solution

provided

(a)

(b)

C = [x(t), t Stgtglmbdh@]

1

Xk converges in the metric o toward X, Or o(xk, x) > 0as k » o,

and hence t >t

1k B o (t

t2, X, lk) > x(tl), X(tgk) > x(tg), as

k > oo,

For every vector function g(t,x,u) = (gl,...,gn3 continuous on A x U

as f, and initial values, say yk(tlk\ = (yik,...,y?k) =Yy such
that yk(tlk\ > x(tl\ as k > », and such that, if

B =yt fttlkMk(t,g(t,xk(t),undt, tSES by, k=12,
y(8) = x(t) + jj:L Mt x(6),0))dE, b < b < b,

with (t,yk(t)) € Afort e [t ,t, 1, (£,y(t)) ¢ Aforte [t,5t,];

we also have p(yk,y3 >0 as k > «,

With this definition, the family {C*} of weak solutions is an L-space
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( see Remark below). TFor A = Box B 1t has been proved that (C*) is metrizable

(E. J. McShane [68 m]).

(d) A Compactness Theorem for Weak Solutions

We shall now prove that, under conditions on A and U, every sequence of
usual solutions possesses a subsequence which "converges" toward a weak solu-
tion. This statement is included in the following theorem, where we show
that every sequence of weak solutions possesses a subsequence which converges
in the sense of the previous section, toward a weak solution. For generalized

solutions a compactness theorem was proved straightforwardly in (2.7).

(Iv.2.v) If A is a compact subset of the tx-space El X En, if U is a fixed
compact topological space, and f(t,x,u) = (fl,...,fn) is a continuous vector
function on M = A x U, then the set of all weak solutions is compact in the
L-topology. We shall precisely prove that, given any sequence of weak solu-

tions {xk(t), b St Sty Dy Mk(t,¢)), k =1,2,..., there is always a

subsequence which converges in the L-topology toward a weak solution {x(t),

t.<t<t

1 , D, M(t,f)) and correspondingly the weak trajectories x, converge

2 .

in the p-metric toward the weak trajectory x.

Proof, The set M is compact and hence there exists a constant MO such
that (t,x,u) € M implies —MO <t< Mo’ x| < Mo’ [u] < Mo’ and also
l£(t,%x,u)] < M. Then, property (m6) implies M(t;f(t,x(t),u)) < M hence,

for every weak trajectory x(t), t. <t < t2, we have |dx/dt| < M0 a.e. in

1
[tl,t2], and x(t) is Lipschitzian with constant M . Also (t,x(t)) € A for
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all t ¢ [tl’tQ] where A is compact. Thus, the weak trajectories x(t) are
equibounded, equicontinuous, equilipschitzian.

Given the sequence above [xk(t), tlk St <ty Dy Mk(t,¢)}, then by

Ascoli's theorem there is a subsequence of weak trajectories, say still [xk],
which converges in the metric p toward a continuous vector function xo(t),
tl <t< t2, and xo(t) is Lipschitzian with constant M s hence AC in [tl,tz].

Since A is closed, (t , xk(t)) € A implies (t,x(t)) ¢ A for all t ¢ [tl,tz].

K
We have le(t,f(t,xk(t),u))l <M_for ell t e D, with D [ty ot s

meas Dk = tzk-tlk' If CDk denotes the complement of Dk in [tlk’t2k] and we

' - '
take D (tl’tg) Uk CDk’ then D' is a measurable subset of (tl’t2) with

' - - I
meas D t, -t If Wk(t)’ tlk <t< tzk’ denotes the function

t .
wk(t) = ftlkMk(t,f(t,xk(t),u))dt, bl STty k= 1,250,
= 1

then wk(tlk) 0, and for all t,t' ¢ [tlk’tzk] also

" g ' 2
v () - v (6] < fe-tt], [ (e)] < 2,

Thus, wk(t) is a sequence of equibounded, equicontinuous, equilipschitzian
functions. By Ascoli's theorem there is a further subsequence, which we still
denote [*k]’ and which is convergent in the metric p toward a continuous °

function wo(t), t < t<t,, and wo(t) is Lipschitzian with constant M and

2.’
hence AC in [tl’tQ]'

We shall now consider the class {F} of all scalar functions F(t,x,u)

which are continuous on M = A x U. Obviously, there is a sequence Fs,
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s =1,2,..., of such functions such that, given any F of the same class and g,
0 < €< 1, there is also some F_ in the sequence with IF(t,x,u) - Fs(t,x,ul <

e for all (t,x,u) € M. For every s we shall consider the scalar functions

t
= k = K
: 1
Since IFSI < NS on M for some constant NS, then for all t,t' € [tlk’tzk] we
have
- - ' _4-t _
v (b)) = 0 v (8) - v ()] <u e8], v (8)] < am N .

Thus, by Ascoli's theorem and the usual diagonal process, we can perform the
selection of a subsequence, so that Wks converges as k » o in the metric p
toward a continuous function Wks(t), tl <t< t2’ which is then Lipschitzian
with constant Ns in [tl,te] with wos(tl) = 0, and this holds for every
8 = 1,2)0000

For every s, the AC function wos(t) has finite derivative wés(t) at all

points t of a measurable set D; c [tl’tg] with meas D; = tz-tl’ and we take

as before D" = (tl’tz) - Us C D;, D=D'ND", and then D C-<t1’t2)’ meas D =

-t_,
t2 1

We have now chosen a well determined subsequence, which we still denote

by [k], and t . >t , t >t  as k > o (along the chosen sequence). Thus

1k 1’ "2k 2

tl and t2 are also well determined.

Given F ¢ (F} let us take

t
¥ (t) = ftlkMk(t,F(t,xk(t),u))dt, by SESty, k=1,2,.,

1k

22



and let us prove that wk converges in the metric o toward some ¥(t),
tl <t< t2, which is AC in [tl’tg]' Indeed, lF(t,x,u)l < N for some constant

N and hence

v (t,) = 0, v () - (e <mle-t ], v (O] cam K,
(1v.2.1 )

for all t,t' e [t k=1,2,,... On the other hand, given € > 0, there

1 S |
is some s such that |F(t,x,u) - Fs(t,x,u)l < € for all (t,x,u) e M, and also

. ] s ] 1
there is some ko such that k,k' >k _ implies p(wks,wks) < e. Now

v (£) - v, ()]

IQZJ(Mk(t’F(t’Xk(t)’u))dt ) ﬂzj(Mk(t’Fs(tka(t):u))dt]

< L, I (R(ex (8),0) - 1 (68 (£,5,(6),0)) |at

1

5 IR, x (8),0) - F (6% (6),0)]]at < 2 e,

and an analogous relation holds with k replaced by k'. Thus

3

o(¥s¥ ) < el ) ol ¥, )+ el o)
< (2MO+1)e,

for all k,k' > ko. This proves that wk(t), k =1,2,..., converges in the
metric p toward a continuous function V¥(t), tl <t< t2. Also (IV.2.1)

implies, for every t,t' € [tl,te],

W) = 0, [u(e) - w(e) | < wle-t'], [¥(e)]| < em N
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Now let us prove that, for any F ¢ (F}, the corresponding function v(t),
tl <t< t2, so determined, has finite derivative ¥'(t) at every point t ¢ D,

where D 1s the subset of <tl’t2) determined above with meas D = te-tl'

Indeed, given F ¢ {F}, let us choose FS as above and note that,
F(t,x,u) - Fs(t,x,u) - £€<0, F(t,x,u) - Fs(t,x,u) +€>0
for all (t,x,u) € M. Hence,

Mk(t)F(t)xk(t);u)) - Mk(t)Fs(t)Xk(t):u)) - £

IA

0 < Mk(t;F(t:Xk(t))u)) = Mk(t)Fs(t:Xk(t):u)) + €

a.,e, in [tlk,t and by integration we conclude that the scalar functions

2k],

b (8) = ¥ (8) - e(tet ), b (8) + (bt )

ks

'~ are monotone nonincreasing and monotone nondecreasing respectively. Passing

to the limit as k +» », we obtain two scalar functions

W) - v (8) - e(t-t)), w(t) - w(t) - v (t) + e(t-t,),

which have the same property. If we denote by D, D the usual lower derivative

and upper derivative operators, of a scalar function, we obtain
D -y - D -y +
W(t) - v - €50, D(t) -y (t) +e>0

at every point t € D, since D DS and wos has derivative in DS. Thus,
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t,)

0 < Dy(t) -DW(t) < 2, teDcC (tl, 5

where D is a fixed set and € is arbitrary, We conclude that V' = 5W = DV
exists and is finite at every t ¢ D. 1In other words, for every F ¢ {F}, the
AC function defined above, say ¥(t) = ¥(t,F), tl <t< t2, has finite deriva-
tive ¥'(t) at least at every point t ¢ D © (tl,t2) with meas D = t_-t_. We

21
shall define M(t,p) by teking

M(t,F(t,x(t),u)) = (da/dat)¥(t,F), t eD, F e (F}.

The properties (ml,2,3) for M can be verified immediately. In addition, since
f(t,x,u) = (fl,...,fn) and each fi is a scalar function of the class (F}, we

have
de/dt = (d/dt)W(thi) = M(t,fi(t,xo(t),u)), teD, 1=1,...,n

We conclude that [xo(t), b St D, M(t,8)} is a weak solution,

2,

Finally, assume that g(t,x,u) = (gl,...,gn) is any continuous vector
. 1 n
mmmminAxmtmt%ﬁ)=wwu”%ﬁtm5tst%{k=L%”qgm

AC vector functions satisfying (a) (t,yk(t)) € A for all t ¢ [tlk’t2k]’ (v)

dyk/dt = Mk(t;g(t,xk(t),u)) a.e. in [tlk,tEK]’

1 n 1 n
and (C) yk(tlk) - ylk - (ylk)"’,ylk) > (yl,...,yl) = yl € En as k—* m'. ‘I‘fh'en

t.,. >t

1k 1’ t

o t,, and for each i = 1,...,n, the function gi(t,x,u) is a

scalar function of the class {F}, and the differences
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i i i
\I'rk(t) - yk.(t) = ylk’ tlk S t _<_ t2k’ k = 1,2,""

are functions ¥, above, and hence converge in the p-metric toward an (AC)

. i 1 n i i i
function ¥ (t)} tl < t < t If Y(t) = (Y geeeyy )) N (t) =V (t) + Y;:

20

i=1,...,n, then p(yk,y) > 0, as k » o,
dy/dt = M(t,g(t,xo(t),u)) t eDC(tl,tg),
HxPyoMsesyyy ) = 0ty (B, )sty, (6))
> ot ,y(t),t,,5(t)) = I(x_,D,M58,Y,)

Thus, (xk’Dk’Mk) converges in the L-topology toward (x,D,M). Theorem (IV.2.V)

is thereby proved,

Bibliographical notes. Statement (IV.1.i) was observed by R. V. Gamkrelidze

[L8 a]. The present proof is by Cesari [24 m], who proved also the analogous
statement (IV.1.ii) for the case in which U, the control space, depends on

both t and x [24 m]. The material of Section (Iv.2) is in L. C. Young's [121]

and E. J. McShane's papers [77 m,n,o0,p].

For a recent discussion of generalized solutions and the question of

approximating them by means of usual solutions, see J. Warga [114].
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