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ADDENDUM V. INTERVAL FUNCTIONS

Lamberto Cesari

We give below a brief but self-contained account of the Banach theorems
on the derivatives of normal interval functions. For the sake of simplicity
we shall deal with interval functions on the Euclidean xy-plane E2, though

arguments and results hold in any En'

V 1. NORMAL INTERVAL FUNCTIONS

We shall deal with a subset A of the xy-plane E2, with certain collec-
tions (G}, (I}, {a), {a} © (I} of subsets of A and with a set function F(I)
defined for all I € (I}, -» < F(I) < +oo. We.shall refer to A as an open set
of EE; (G} as the collection of all open sets G < A; (I} asvthe collection of
all closed intervals I = [a <x < atl, b <y<b+'], i C A; {q} as the col-
lection of all intervals I ¢ (I} which are squares, i.e., g = I',:F(I) any
real single-valued interval function defined for all I e {I].- (See Remarkl.)

The function F(I), I e (I} is said to be subadditive, overadditive,
additive in A if for every I ¢ (I} and every finite subdivision § of I into
(nonoverlappiné) sets I' ¢ {I} we have, respectively, F(I) <, or >, or =
YF(I'), where 2 ranges over all I' ¢ S, where we use the usual conventions
for the sum of real numbers (even +wand - ») and where we suppose explicitly
that never may happen to add +wand - . All subadditive, overadditive, and

additive functions are said to be normal functions. Obviously the additive

functions are both subadditive and overadditive; if F is subadditive



[overadditive], then -F is overadditive [subadditive]. We shall denote by

|A| the usuel plane measure of any set A C £

Remark. .The collections (G}, (I}, {q} we have mentioned may héve
meaning different from the ones we have designated. For instance, the set A
abqve could be a closed domain, and {G} the collection bf all sets.G C A open
in A; The theorems below are still valid even if the aforemenﬁioned colleé-

tions have different meaning. For instance:

(1) The collection {I} could be the collection {x} of all simple
closed polygonal regions n € A; or of all simple and not

simple polygonal regions n C A.

(2) The collection g could be the collection of all intervals
I ¢ (I} with sides parallel to the axis and side lengths /[,
' such that 1/A < £/4' <\, where A, 1L <\ < +w, is any

fixed number (coefficient of regularity).

(3) The collection (I} could be the family {I}R of alliintervals
I= [a <x<atl, b<y<b+'] A, where a, at+f and D, bt
are elements of given sets (£}, {n} of real numbers every-
where dense.  In this case we could take for {q} the collec-
tion of all I ¢ [I]R of a given coefficient of regularity

N> 1.

For other possible cases of some relevance we refer to the original



paper by S. Banach [9b]|, or the books by 8. Kempisty [05] and H. Hahn and

A. Rosenthal [%3].

V 2. BV AND AC INTERVAL FUNCTIONS

Given any function F(I), I e (I}, as iﬁ Vi let S aenote any finite
system of nonoverlapping sets I ¢ {I},‘I C A. By total variation of F(I) in
A we shall denote the number

v(A) = V(A,F) = sup 2 |F(I)|.
' S TIeS

Since the same definition holds if we replace A by any of the sets G e
(G}, or I e (T}, we have defined a set function V(G), G e (G}, or V(I), Ie
(I}. Obviously, we have |F(I)| < V(I) and V(I) >0 for all I e (I}. MoreQ
over, V is monotone increasing in (I} and‘in {G}, fhat is, IcI', I, I' ¢
{(I) implies V(I) < V(I'), and the same holds for the sets G. We shall denote
the set function V(I) as the total variation}(set function) of F(I).

The function F(I) is said to be of bounded variation in A, or BV in A,
if V(A) < +o. The function F(I) is said to be absolutely coﬁtiﬁuous in A,

or AC in A, if

(a) Given € > O there is a & > O such that for all finite systems

S of sets I ¢ (I} we have Z|F(I)| < e, provided X|I| < 8;
- (b) F(I) is additive in A.

Remark. In the definition of absolute continuity S. Banach [9bj re-

quires only condition (a), but he adds condition (b) in the main statements.



L. Cesari [24e, pp. 216-17] proved by means of examples that conditions (a)

and (b) are independent.
V 3.  SOME PRELIMINARY STATEMENTS

(V 3.i) If F(I) is any arbitrary interval function and V(I) the correspond-
ing total variation, then for every sequence G, Gi’ i=1,2,..., of sets G,

. = . . U b .
G, e (6) (V1) with G, N Gj 0, i#3J, , @ € G, we have Zi V(Gi) < v(a)

(Vv 3.i1) If F(I) is any arbitrary function, then the corresponding total

variation V(I), I € (I}, is overadditive.

The proofs are left as exercises for the reader. Note that if a func-

tion F(I) is nonnegative and overadditive, then F(I) = V(I).

(V 3.iii) Each BV normal function F(I) is the difference of two nonnegative

overadditive function.

Proof. If F(I) is overadditive, then F(I) = [V(I)+F(I)] - V(I) where
both F+V and V are nonnegative overadditive. If F(I) is subadditive, then -
-F(I) is overadditive and F(I) = V(I) - [V(I)-F(I)], where both V and V-F

are nonnegative and overadditive.
(V 3.iv) A function F(I) satisfies (a) if and only if V(I) satisfies (a).
(V 3.v) Any AC function F(I) is BV, provided |A| < *o.

The proofs are left as exercises for the reader.



.V 4. VITALI'S COVERING THEOREM

A subset E of E2 is said to have parametér of regularity r(E) if r(E) is
the supremum of the quotients |E|/|J| when J denotes any squaré containing E.
Thus 0 < r(E) <1, and r(Q) = 1 for every square Q. Also, we denote by S(E)
the diameter of a set E.

We shall now consider a fixed subset A of E2 and a family & = (E} of
closed sets with the following properties: (I) r(E) >a > O for a given con-
stant a > 0; (II) for évery point p € A there is a sequence [Ek, k=1,2,...]

of sets E e Cwith p ¢ E

K K k =1,2,..., and S(Ek) + 0 as k + o,

(V 4.1) (a form of Vitali's covering theorem). Under hypotheses (I) and (II)

there is a finite or countable collection_[Ei, i=1,2,...] of sets Ei e C

such that E. 1 Ej = ¢ for i # j, and |A-UiEi| = 0. Moreover, given any
€ > 0 there is a finite system [El,...,EN] of sets B, ¢ C such that E. N Ej

| L oW
= for i # j, and IA--U,l::L Eil < g.

Proof. First, let us suppose that A is bounded, that ié,.éontaine@ in
some fixed square Q C E2. We may well assume that all sets E are'aiso con-
tained in Q. Now we define the sequence [Ei, i=1,2,...] by the following
induction process. For E we take an arbitrary set E e C. 1 IA-ElI -0

the construction is completed. Otherwise, we proceed to the choice of E2 as

’ k
follows. Suppose that [El,...,Ek] have been chosen. If lA-—Ui_ Eil =0,

1

the construction is completed. Otherwise, we denote by Gk the supremum of

v ' k
the diameters of all sets E ¢ Cwhich have no point in common with Ui_l Ei'

Let us choose for E any one of these gets with diameter E

i1 > 6k/ 2.

k+l
Such a set must exist unless the sets E_,...,E

1
>

K already cover A and in



such a case they already form the requested sequence. Thus, we may well
suppose that the inductipn_process can be continued indefinitely.

To show that the sequence [Ei’ i=1,2,...] covers A-almqst entifely, 
let B=A = UiEi’ and assume, if possible, that |B| > Of Because of condi-
tion (I) we can associate to each E, a cube J, such that E < J,, lEil > aIJiL,
Let Ei be the cube concentric to Ji and of diameter five times'the‘one of Ji.-

Now the series -

~ 2 2 -1 2 -1 o
Lol <™ Lo <57 o 4B | <57 aTlq]

converges, and hence for some integer N we certainly have Z§LN+1 |Ei| < IBI.»

Hence, there is some point po in B which belongs to none of the sets&i with 3

i > N+l. On the other hand, pO € B, hence po € A, but po is not contained in

U? E., in particular p is not contained in the closed set UN E.. Thus,
i=1l i o . i=1 1

po ¢ A and has a positive distance from-UhiT_l Ei. ‘Hence, by property (II)

there is some set E_ e ¢ with EO n Eib= P, i=1,...,N.
Note that the convergence of the series above implies IJiI +0as i+ w,
1/2 . o |
hence 6(Ji) = IJiI > 0as i » +o, and hence S(Ei) > 0as i > o
Let us prove that we must have E NE, # P for some i > N+1. Indeed, in
the contrary case, EO N Ei = p for all i, we first take any i with i > N+l
and Si/z < diam E, < diam EO, and we note, on the other hand, that since 51,15

B

the supremum of the diameters of all sets E ¢ € free of points of El,...,

i-1’

we have Si > diam Eo’ a contradiction.
Let i be the smallest integer with E N E, # f. Then E NE =0,

i=1,2,..., io-l, so that diam Eo <®,

i-1

. On the other hand, E_ N E, =
0 . o) 1



for i =1,2,...,N, and hence io > N+l, and consequently po does not belong to
310. Thus, we see that the set EO has both points outside 310 and points in
the set Jio' Thus, diam Eo-z 2 Sio while we have proved above that diam EO <
610-1’ a contradiction. The hypothesis |B| > 0 has lead to a contradiction.

We have proved therefore that |B| = 0, that is, IA-U:* E,| =0. The state-

1
ment is proved for A bounded. If A is unbounded, we divide the plane E2'into

countably many squares, say of side-length one, and then we repeat the process

above on each square.

Remark. The statement above is due to G. Vitali [112], who stated it
:for a family'c'of squares. The argument given above is due to S. Banach
[9b]. Note that the statement is true under the following more general
hypothesis replacing both (I) and (II): For each p ¢ A, there is a sequence.
[En, n=1,2,...] of sets E ¢ C with p ¢ E_ and r(En) > a(p) > 0 where a(p)

may depend on p. For a proof see S. Saks [103].

V 5. DERIVATIVE OF AN INTERVAL FUNCTION AND DENSITY THEOREM

Given the interval function F(I), I e (I}, (V 1), let p_ be any point
P, € int A. Let q denote any closed square q € {q} with P, €q and let 8 =

8(q) be the diameter of q. Then by upper and lower derivatives ﬁ'(po), E'(po)

of F(I) at the point p_ We denote the numbers

. F(q) = _ T Fq)
O T HET FR) = MR

-0 < F' < P < two, If F' = F', then their common value is denoted the deriva-

tive F'(po) of F(I) at P



(Vv 5.i) (lemma). Any set expressible as the union of a family of intervals

is measurable.

Proof. ILet J ve any family of intervals I and let S be the union of all
the intervals I of Cﬂ Let C denote the family of all squares q each of which
is contained in at least one interval I of J. The set S is clearly covered
by ¢ and properties (I) and (II) of V L are satisfied with o = 1. By Vitali's
covering théorem (V 4.i) S is the union of countably many squares q and of a

set of measure zero, and hence S is measurable.

(V 5.ii) For every function F(I) the upper and lower derivatives F'(p), F'(p)

are L-measurable in AO =-int A.

Proof. For every a > 0, let J denote the set of all points p e'AO where

F'(p) > a. Then, for each p ¢ A° there is a sequence Kn(p), n=1,2,..., of

-_']_'
squares K (p) such that p e K (p), K (p) = A°, F(Kn(p))/IKn(p)I >a-n ",

IKn(p)| < n-l, n=1,2,.... For each n let J denote the set J = U Kn(p),
where U ranges over all points p ¢ J. Let H = ﬂizl Jn. Obviously, J < Jn

for every n; hence J © H. Let now p be any point of H. Then p € Jn for all
n and hence p ¢ Kn(pn) for at least one point p e J . We have F(Kn(pn))/
IKn(pn)I > a-n-l, and since p € Kn(pn), we have F'(p) > a. Thus, each point
p € H is also a point of J, that is, H < J. Thereby we have proved that H=J.
Now each set Jh satisfies the conditions of the lemma, and hence Jh is measur-

able. As a consequence, also H = J is measurable and ?'(p) is measurable.

Analogously for F'(p).



(V 5.iii) (Density theorem). If A is any subset of EE’ and for’any interval
I < E, we denote by F(I) = |A N I tﬂe outer measure of A N I, then F(I) is
an interval function, the derivative F'(p) exists a.e. in Eg,‘O <F'(p) <1,
and F'(p) = 1 a.e. in A. If A is measurable and Xx(p) denotes the character-

istic function of A, then F'(p) = x(p) a.e. in E2'

Remark. This is a form of Lebesgue'sydensity theorem. ‘However, the
statement holds also in a stronger form (S. Saks [103], p. 129) with F'(p)
computed as the limit of |H ﬂvI|/|I| with p € I, I any interval with sides
parallel to the axes and no regularity condition, and the limit is taken as

5(1) » 0.

Proof of (V 5.iii). It is not restrictive to assume A contained in a

closed square Q and all I contained in some larger square Q', Q € int Q'. By
set function theory there is a measurable set H with HD A, |H| = |4],

[Hn M =|ANM for every measurable set M (see, e.g., H. Hahn and A.
Rosenthal [53], p. 96, (8.2.5)). If A is measurable, we can take H = A.
Since H is measurable, then F(I) = FA(I) =|An1I|=]HNI| is an additive
nomnegative BV and AC interval function for I< Q', 0 < F(I) S III, and its
lower and upper derivatives F'(p) and F'(p) are measurable, O < F'(p) <

F'(p) < 1. Let o, € be arbitrary numbers, 0 < a <1, € >0. Let H, denote
the set of all points p e Ha where 0 < F'(p) < a. Then Hd is measurable, and
there are two sets K closed, G open, such that K ClHa<Z G, IG-KI < €. .For

every point p € K there are squares q of diameter as small as we want and

with p € q such that |q N Ha[ <lanH < (ate)lq|. We may well assume



qQ © G. By Vitali's covering theorem (V 4.i) there are countably meny dis-

joint squares 1 such that |K-quj| = 0, 4 CG, j=1,2,0e.. Then

8|

IN

K| +e<|kK-Uqg.| +2.|lqg. NK| +¢
|X| < | JqJI JIqJ l

IN

Z%Iqj n Hal +e< (ate) ZGIqjl + €

IA

(a+e)lal +e < (are)(|H | +€) +e.

Since € > 0 is arbitrary, we obtain | Hal < a Hal with 0 < @ < 1, and hence

IHal = 0. Thus, a < F'(p) <F'(p) <1 a.e. in H, for every 0 < @< 1, and

hence F'(p) = F'(p) = 1 a.e. in H. This proves that F'(p) =1 a.e. in H, and
hence the same holds for almost all point p € A.

Let us assume A measurable, hence H = A. Then B = Q-A isialso measur-

able, and for every interval I we have FA(I) + FB(I) = |1|. Hence FA(p) +

Fﬁ(p) =1 a.e. in Q with FA(p) =1 a.e. in A, and Fﬁ(p)'= 1 a.e. in B, hence
FA(p) = 0 a.e. in B, and Fé(p) =0 a.e. in A.

We have proved that FX(p) x(p) a.e. in Q.

(V 5.iv) Each BV normal function F(I) has derivative F'(p) almost everywhere

“in A° = int A.

Proof. By (V 3.iii) we can suppose F overadditive and nonnegative.b
Thereby 0 < F' < F' < +weverywhere in A%, By (V 3.iii) the set JC A of‘all‘
poiﬁts p e A° where F' < F' is measurable. Suppose, if possible,.|J| > O..
If (un,vn), n=1,2,..., is any sequence containing ali couples of rational

numbers 0 < un < vn < +ow, and Hn is the subset of J of all p € H whére

10



0<F'< u < Vo <F < to, then J = Uan. As a consequence there is at
least one n such that IHnl =m>0. By (V5.1ii) there is in H at least one
- point po € H of outer density one. If q is any squére with'po e‘q, q C:Ao,
we have lim|qH|/|H| = 1, lim F(q)/|a| < u as ®(q) + O. Therefore, given

€ > 0, there is a square q = K with the following properties: () D € K,

Kk < 2%, |Kn /K|l >, F(K)/|[K| <u. For every point p ¢ K° N H, let us
denote by q any square such that p e q, q C AO; thus lim F(q)/|a| > v as
®(q) - 0. Therefore, there is a sequence qk(p), k =1,2,..., of squares with
peq(p), q(p)c< K’ 8lqy (p)] > 0 as k > w, F(q)/|q| >v. By Vitali's'v
covering theorem (V 4.i), there is a finite system of nonoverlapping squares
K ye0 K such that B) K, cKc %, F(Ki)/lKi| >v, i =.‘l,...,N, Z.llKil >

|K nH| - elK

. The system {Ki, i=1,...,N} can now be completed by some
system of nonoverlapping intervals [Jj’ j=1,...,M] in such a way that
[Ki] U [Jj] is a subdivision of K into a finite system of nonoverlapping
intervals. Since F is nonnegative and overadditive, and because of () and

(B), we have now successively
ulK| > F(K) > 2, F(K,) + Zj F(IJ,) >, F(K,)
> Zi leiI > v|K N H - ev]K|
> (1-2¢) v |K]|.

As a consequence u > (1-2¢)v, when € is any positive number, and hence u>v,
a contradiction. Thus it is proved that IJI = 0, and thereby (V 5.iv) is

proved.

11



(V 5.v) For each BV normal function the set of points D € A0 where F' = + oo,

or F' = ~ohas measure zero.

Proof. By (V 3.iii) we can suppose F nonnegative and overadditive. We
have only to prove that the set J of the points p € AO where F' = +whas mea-
sure zero. By (V 3.iii) we know that J is measurable. Suppose |J| =m >0,

if possible. For each point p € J and any number a > O there is a sequence

qn(p), n = l,é,..., of squares such that p e qn(p), 6[qn(p)] > 0, F(qn(p))/
|qn(p)| > a. By Vitali's theorem (V 4.i), given € > 0, there is a finite
system of nonoverlapping squares Ki’ i=1,...,N, such thgt (a) Ki C A,
F(Ki)/|Ki| > a, Z]Kil > |J| -€, [or > e-l if |J| = +»]. Consequently we héve
to > V(4)> Zi(Ki) > Zi alKiI > a[|J]-e], (or >a s-l), a contradiction,

since a, € are arbitrary numbers. Thus we have proved that |J| = 0 and

(V 5.v) is proved.

(V 5.vi) (Derivative of the indefinite integral). If a is any measurable
subset of E2, if g(p), p € A, an L-integrable function in A, and F(I) the

interval function defined by F(I) = [ (p)dp, I E,, then F'(p) exists

AnT &

a.e. in A, and F'(p) = g(p) a.e. in A.

Proof. (a) Let us suppose first g(p) bounded. It is not restrictive to
suppose g nonnegative and hence 0 < g(p) <L for all p ¢ A and some L > O.
For every integer k and i = 0,1,...,k-1, let Hk, be the subset of all p € A

i

where iL/k < £(p) < (i+l)L/k for i = 0,1,...,k-2, and iL/k < f(p) < (i+1)L/k

for i = k-1. Let xki(p) denote the characteristic function of H .. Then

ki

12



k l i

-1
|Hk NIl <F(1 Zﬁ o (i+1)Lk lgk nil.

Since F(I) is obviously additive, BV, AC, and nonnegative, the derivdtive

F'(p) exists a.e. in A, and hence, by force of (V 5.iv),

ZF -1 1Lk lx (p) < F'(p) < Zk 1+l)Lk D)

kl(
again a.e. in A. Since f(p) verifies the same inequalities, we have

|F'(p) - £(p)| < Ik T

a.e. in A. Since k is arbitrary, we have F'(p) = f(p) a.e. in A.
(b) If g is unbounded but still L-integrable in A, then the statement is

an immediate consequence of a Banach's theorem which is proved in (V 6) below.
V 6. BANACH'S THEOREMS

(V 6.i) Theorem. For each BV normal function F(I) the derivative F'(p)
exists a.e. in A° and is L-integrable in A°. If F(I) is overadditive and
nonnegative, then V(Ao) > IAO F'(p)dp, and for every I e {I}, also V(I) =

FI)>/[

>/ F'(p)dp.

Proof. By (V 3.iii) we can suppose F(I) overadditive and nonnegative in
both parts of the theorem. Let Q denote any closed square 6f the p-plane E2
and m any positive number. Let g(p), p ¢ AO, be the function defined as

follows: g(p) = m if F'(p) exists and F'(p) > m; g(p) = F'(p) if F'(p)

exists and O < F'(p) < m; g(p) = O otherwise. Thus, g(p), p ¢ A, is bounded

15



and measurable in A, and g(p) is also L-integrable in the bounded set g n A°.
Let U(I) be the additive intervai function U(I) = fIgdp. For almost all
points p e @ N A° we have lim U(a)/|a| = &(p); lim F(a)/|a| > g(p) es

5(q) - 0 and q denotes any square with p e q, 9 A°. The first statement
was proved in (V 5.v, (a)); the second one is a consequence of (V 5.ii) and
of the definition of g. Let J denote the set of the points p ¢ Qo N A which
have both properties; thus, |J| = [q N AOI . Given € > 0, for each point

p € J there is a sequence of squares qn(P); n=1,2,..., such that U[qn(p) 1/
la, (P)] < &(p) +e; Fla (p))/|a (p)] >e(p)-e; Bla (p)] > Oasn>w By
Vitali's covering theorem, applied to the set J C QO n a° , there .is a finite
family [pi ,1i=1,...,N] of points 1 and corresponding system Ao'f nonover=-
lapping squeres K, such that (o) p, € K., K, € an A%, Uk, )/Ix | < e(p,) +e,
F(Ki)/|Ki| > g(pi)-e, i=1,...,N, and (8) [@ N A° - UiKiI < m . By (a)

o
and (B) we have now, successively, with S = QN A - UiKi’

[

ye®dp = L U(K) + [ e(p)dp

< I, le(p,) +el || +n@e)
< I R(x) v LK | +e
< v(a%) +ela’nq| *e,

o
where € > O is any number. As a consequence we have fJ g(p)dp < V(A”), where
Jcqn AO, 3| = |an A(_)l . Hence fQﬂAO g(p)dp < V(A®), where Q denotes any

square of the p-plane EE' If Q is made to invade E2 we have also on g(p)dp

1k



o
< V(A"), where g depends upon the number m > 0. As m + +o, we have on

F'(p)dp < v(a°). Theorem (V 6.1) is thereby proved.

(V 6.11) Theorem. If F(I), I € (I}, is a nonnegative, overadditive, BV

interval function, then a necessary and sufficient condition in order that
(0] .

V(AT) = on F'(p)dp is that F(I) is AC in A°. In these conditions we have

also V(I) = F(I) = [_ F'(p)dp for all I ¢ (I}.

I

Proof. By Theorem (V 6.i), the function F'(p) is defined a.e. in A° and

is nonnegative and L-integrable in AO; hence the interval function U(I) =

/

I F'(p)dp is nonnegative, additive and AC in A°. By Theorem (V6.1), we

have also V(I) = F(I) > U(I) for every I e (I).

Necessity. Suppose V(AO) =/

40 F'dp and let K be any closed interval,

Ke (I}, K< A%, Iet [Mn, n=1,2,...] be any sequence of sets such that
Kc Mh c AO, Mz 4 Ao as u » «, and each Mh is a finite sum of nonoverlapping
intervals I, Then for each n we can divide Mn into a finite system Sn of
intervals I one of which is K. By Theorem (V 6.i), we have V(K) = U(XK) + o,
0> 0, V(I) > U(I) for every I ¢ § - Hence, if 2, denotes any sum ranging
over all T ¢ §_- (K), we have ’V(AO) > V(M) > V(K) + 2 V(I) > U(K) + o+

LU(I) =g + an F'(p)dp. As n » », the last integral approaches [ . F'(p)dp

AO

1}

v(A°); hence V(A°) > ¢ + V(A°), o > 0, and finally ¢ = 0. Therefore, V(K)
= F(K) = U(K) and this relation holds for all intervalé Ke (I}, Kc A°,
Thus, F(K) as well as V(K) are additive and AC in A°.

Sufficiency. Suppose F(I) be AC in A°. Given & >0 let & > O be the

number defined defined by condition (a) of (V 2). Let K be any closed
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interval X C:AO, K € {I}. Almost all points p ¢ K have the following prop-
erties: p ¢ K, F'(p) exists, and O < F'(p) < +o; lim U(q)/|q| = F'(p) as

5(q) » 0 and q is any closed square with p ¢ q, q < A°. Let J denote the set

of all points p e K which have the properties above; thus |J| = |K|. For
each point p ¢ J there is a sequence qn(p), n = 1,2,.;., of squares such that
pea (p); a(p) SK, Ula (p)/la (»)| > F'(p) -&5 Fla_(p))/la_(p)| < F'(p)

+t g5 6[qn(p)] + 0 as n + o By Vitali's covering theorem applied to the set
J, there exists a finite system of points pi ed,i=1,...,N, and a corré—
sponding system of nonoverlapping squares K.l such that pi € Ki, Ki(: K,
U(Ki)/IKiI > F'(p,) -, F(Ki)/|Ki| <F'(p,) *e, L=1,..0,W, |K-UiKi| =
IJ'-UiKiI < 8. Let us denote by [Ij’ j=1,...,M] any finite system of in-
tervals such that [Ki] U [Ij] is a finite subdivision of K into overlapping
intervals. Thus 25 IIjl < 8, and, by (a), Zj F(Ij) < €. On the other hand,
by condition (b) of (V 2), we have U(K) = Zi U(Ki) + Zj U(I,), F(K) = Zi F(Ki')-'

J X
+ Zj F(Ij). We obtain now

[F'(p,)-€]

U(k) >2, U(K,) > zi,lKil i

- 1 1

> k]| (F'(p,) *e) -2 [K| > I, F(K,)-2e [K]

= [F(K)-ZJ_ F(IJ.)]-28 |X| > F(K) -e-2¢e |K].

Since € is any positive number we have U(K) > F(K), while, by Theorem (V 6.i),
F(K) > U(K). Hence, U(K) = F(K) and this relation holds for every interval

Kc Ao, K e {I}. Let € by again any positive number. By defintion of V(AO)

there exists a finite system S of nonoverlapping intervals I CZAO,such that

16



0< V(AO) -L F(I) < €, where L ranges over all I ¢ S. Hence, V(Ao) <X F(1)

+e <[y Fldp+e < [ o F'dp+e, and finally v(a°) < [, F'(p)dp since € is

AO

any positive number. On the other hand, by Theorem (V 6.i), we have V(AO) >

fAO F'dp; hence, V(AO) = on F'(p)dp. Theorem (V 6.ii) is thereby proved.

An interval function S(I) is said to be singular if §'(p) exists and

= (0 a.e. in A.

(V 6.iii) (Lebesgue's decomposition theorem). Every BV normal function F(I)
has a unique decomposition F(I) = C(I) + S(I), where C(I) is AC and S(I) is

singular. If F(I) > O, then both C(I) and S(I) are nonnegative.

Proof. It is not restrictive to assume F nonnegative. By force of
(V 5.i1), we know that F'(p), p e A, exists a.e. and is nonnegative and L-

integrable in A. We shall take

Then C(I) is AC in A, by (V 6.i) F(I) > C(I) > O for every I, and by (V 5.v)
c'(p) = F'(p) a.e. in A. Then S(I) = F(I) - ¢(I) > 0 and S8'(p) = F'(p) -

C'(p) = 0 a.e. in A. We have proved the existence of the decomposition

F = C+I. To prove uniqueness note that, if F = c ¥ si, F=C,*+8, then
Cl - 02 = Sl - 82, where Cl - 02 is AC, Sl - 82 is singular, and Ci - Cé =
Si - Sé = 0. By force of (V 6.ii) Cl - 02 is the indefinite integral of its

derivati h - = -8 =0.
rivative, hence Cl 02 0, and Sl S2 0
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Bibliographical Notes. The theory above is due to S. Banach [9b].

For numerous application of normal functions of intervals, in particular for
questions of differentiation, we refer to S. Banach's paper just mentioned
and to the books of §. Saks [103], L. Tonelli [109h], S. Kempisty [63], C.
Carathéodory [21b], and L. Cesari [24c].

We mention here that the concept of normal functions with related prop-
erties has been widely extended by L. Cesari [24fg] (quasi additive, quasi
subadditive set functions), with applications to the theory of integration, in
particular to the concept of Weierstrass integral in surface area theory.

The same concept of quasi additive set functions with values in locally convex
topological vector spaces have been proved to have far reaching applications
by G. Warner [1l5ab]. The same concept has been developed in different direc-

tions also by T. Nishiura [85b] and J. C. Breckenridge [15ac].
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