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PERIODIC SOLUTIONS IN A THIN CYLINDER OF WEAKLY NONLINEAR
PARTIAL DIFFERENTIAL EQUATIONS*

Lamberto Cesari

1. INTRODUCTION

We consider here partial differential equations

L(t)zlu) =0, 2 = (ZlJ"‘}Zv)) u = (ul)"':un) (1)

which are defined in some cylinder Po‘ =[-w<t<+ w, |z] < o], for which
L(t + T,z,u) = L(t,z,u), and for which the Cauchy problem u(o,z) = uo(z), |z| <o,
makes sense. By this we mean that given uo(z),lzl < 0, in a suitable class\j\i
there are numbers s and b, o < s‘gli; b'> 0, and a solution u(t,z) to the Cauchy
problem in some set I'' = [o Svt < b;:lzf'gls o); where s may be rather small.
Actually, we limit ourselves,:to'that,lérge classﬁof Cauchy problems, which, as
proved in J. G. Petrovsky ([5],pp; l6-l7),§éh bevréduced by suitable substitu-
tions to Cauchy problems f;n.fifgt ofder»p;rtial differential equations.

The problem of the periodic solutions of (1) can then be posed in a form
which is similar to the one which is traditional for ordinary differential equa-
tions. Indeed, we may first ask (a) whether we can take b = T for a suitable

)

class. of initial data uo(z),]z| < o0, and then we may ask (b) whether we can

I\

choose u in . so that u(T,z) = uo(z) for all |z| < s o, so that the periodicity

" .
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of L guarantees the existence of the solution u(t,z) in the whele thin cylinder

I =[-w<t<+wo, |z| <sdl.
so -

Problem (a) actually belongs to the general theory of partial differential
equations. Most methods for the treatment of the Cauchy problem yield criteria
under which we can take b = T or b large. Each method concerns of course dif-
ferent classes of partial differential equations, different smoothness hypotheses
for the equations, different smoothness requirements for the solutions (usual,

or generalized solutions, and so on).

Problem (b) is a problem of functional analysis, since the mapping uo(') > u(T,-),
is a mapping froma class J" of functions uo(z), lz| < o, intoaclasss) ' of func-
tions u(T,z), |z| < so, with the complication that s may be smaller than one,

and thus we are dealing with functions, uo(-) and u(T,+), defined in two dif-

ferent sets.

In the present paper we discuss the argument recently proposed by L. V.
Oveyannikov [2] for proving the convergence — in a suitably reduced domain—
of the usual method of successive approximations, when L is assumed to be con-
tinuous with respect to t and holomorphic in z, and the solution u is required
to be of class C* in t and holomorphic in z.

We show first (Nos. 2,%) that the same Ovcyannikov's argument-—based on
functional analysis—can be applied to nonlinear partial differential equations,
and we obtain existence theorems for the Cauchy problem in a nonlinear and very
general setting. We then give criteria in order that we can take b large, in

particular b = T for L periodic of period T. Finally, we obtain (No. 4) criteria

2



for periodic solutions of partial differential equations by the use of a recent
implicit function theorem in functional analysis and we consider a few ex-

amples.

2. A NONLINEAR FORM OF OVCYANNIKOV'S THEOREM.
For every s, o < s <1, let Xs denote a Banach space of elements x with norm

x| such that
s
(a) X, 2 X forall o< s' <s <1

(b) the inclusion operation js's: X »X

< o has norm < 1, where o <s' <s < 1.

Thus, XO D XS D X3 for all o < s < 1. Let Ia denote an interval o <t <a if ¢
is real, or a disc [tl <a if t is complex. Let Xo be any given element of X;.
Let £(t), t ¢ Ia, be a bounded continuous function of t, valued in X,, and , if
t complex, we assume also that f is holomorphic in t in the open disc I:.

For every t ¢ I let A(t) be an operator—nonnecessarily linear—with the

following properties:

(c) A(t):XS > Xs" for every t ¢ Ia and 0 < s' < s <1, and A(t) maps the

zero element of XS into the zero element of Xs"

(d) There is a constant C > o such that for all t e I, X1,%2 € Xs ,

o<s'<s <1, we have

I a(t)xa - a®)xall , < Cls-s)™ Il xemall |



(¢c) A(t) is a continuous function of t, that is, given € > o0, 0 <s' <s <1,
there is a ® = 8(e,s,s') such that for all t;,ts e I, |ty - to| <8,

X e X we have || A(ts)x - A(tl)x||§ < €.
Note that A(t) may not map XS into itself. We consider the Cauchy problem

x'(t) = A(t) x(t) + £(t), tel (2)

a )

Note that the second part of requirement (c) is not restrictive since, in the

contrary case, we can, write (2) in the form
x'"(t) = [A(t)x - A(t)(0)] + [A(t)(0) + £(t)]
and now the operator B(t) defined by B(t)x = A(t)x - A(t)(o) has property (c).

Theorem 1. Under the hypotheses (abcde), and for every number b such that
o <b<a, Ceb <1, there exists a continuous function x(t), t e Ib, with values

in X satisfying (2) for every o <t <b, o <s <1 - Ceb.

Proof. Let us take x_;(t) = o, and let xk(t), t eI, k=0,1,2,... be the

sequence defined by

t

x (t) = x o+ fo [A(T)x

. l(T) + f(t)]dr , t e I .

k-

Let us prove that xk(t) € XS for all o < s <1, t ¢ I ,k=0,1,2,.... First,

by the definitions of Xo and f. Also,



x1(t) = x o+ f T)X (t) + £(7)]ldT,

hence A(T)XO(T) € Xs forallo<s <1, t eI, and x1(t) « X for all o < s < 1,
t ¢ I. From (%) by induction argument we conclude that xk(t) € Xs for all
0<s<1l, te Ia’ k =o0,1,2,...

Now we have

t
x (t) =x (t) = x + [ f(1)dr
o -1 o 1)
and we take
. t
o= mex fx_+ [ f(v)ar, ()
0
where the maximum is taken for t ¢ Ib. Then
le (8)-x_ (o)l <= (8)-x_ ($)ls <M, 0<s <1, eI, (5)
From (3) we obtain
t
xk(t) - xk_l(t) = fo [A(T)Xk l(T)—A(T)xk_2(T)]dT, k =1,2,..
and we shall prove that
Ix (t) - x_ (&) < M[(2-s) *ce|t| 1"
k k-1 s — ’ (6)

0<s<1l, te Ia , kK =0,1,2,...

As shown by (5) this relation (6) is true for k = o. For k = 1 we have,

by the use of (c),



£ T
x1(t) - Xo(t)Hs = | {)A(T) [x, + [ f(o)doldr Hs

-1t
< C(1-s) * [ Madr
0]

= M(1-s)"" c|t] < M(1-s)"" ce|t|,

and again (6) is proved for k = 1.
We assume that (6) is true for k-1 and we prove it for k. Indeed, for all

s;n, 0 <s<s +n<1, from (6) for k-1 and by the use of (c),we obtain

-1 b

e e (D Ol e

IN

I, ()-x,_ (0]

- t - -
cnt {) M[(1-s-7) * CeT]k t dt (7)

IN

k k k-1 -1
e

MC Tt -(k-1), -1

n (l-s-1) k

I}

-1
If we take n =k (1l-s), then s + 1< s + (1-s) = 1 since now k > 2, and (7)

becomes

k k k-1

MCt e (l-s)_k(

1) ey

~
ct
=
[

k k k-1 -k -1, k-1
= MCte (l-s) (1+(k-1) )

k k -k

k
MCt e (1-s)

IN

and (6) is proved.

-1
For o <t <b, 0 <s <1-Ceb <1, we have 1-s > Ceb, and (1-s) Ce|t| <

-1
< (1-s) “Ceb < 1.



We conclude that the series

converges for all o < s <1 - Ceb, t € I, that
-1 -1
e, () 5 ()l <M [1-(1-8) "Cet] ™, (8)

() -x, (0] < MI(1-8) et [1-(1-5) cet]™ (9)

k

for all 0<s <1, t e I, k =1,2,..., and thus x(t) e X for all o < s < 1-Ceb,

'b)

t e Ib. The theorem above is thereby proved.

Remark. In the reasoning above the assumption that the norm of A is

1
< C(s-s') plays an essential role. The argument could not be repeated with

the exponent -1 replaced by any other exponent < -1.

Conditions (cde) will turn out to be too restrictive in applications, and

we modify them, therefore, as follows.

1l

For a given T >0 let X! X _be the set X! [x(x € X ”XHS < 1], and

let us assume (instead of (cde)):

(¢') A(t) : X;A > XS for every t e I_and o < s' <s <1

(d'),(e') The same as (d), (e) for the elements x ¢ Xé only.

Theorem 2. Under hypotheses (abc'd'e'), and constants T, b, M, C satisfying
o<b<a, Ceb<1l, M<T[1l-Ceb], where M is defined by (3), there is a con-

tinuous function x(t), t e I , With values in X; satisfying (2) for every

b

0<s <1l - Ceb.



The proof is the same as for Theorem 1, where now we note that on(t)HS =
= on + [ f(t)dT Hs < M, hence xo(t) € X! . Analogously, each successive
0

approximation xk(t) belongs to Xé' because of (8), and so does x(t).

3. THE CAUCHY PROBLEM FOR PARTIAL DIFFERENTIAL EQUATIONS

The local Cauchy problem (I. G. Petrovsky [ 3], p. 14) is known to be re-
ducible to an analogous problem for systems of first order partial differential
equations (I. G. Petrovsky [ 3], pp. 14-17).

Let t and z = (zl,...,zv) the v + 1 independent variables, t either real
or complex, all zi complex. Let u(t,z) = (ul,...,un) be the n unknown functions,
let u = (aui/at, i=1,...,n) denote the system of n first order partial deriva-

tives with respect to t, and let u, = (Bui/azj, i=1,0e.5n, J =1,...,v) be

the system of ny first order partial derivatives with respect to z1,...,2 .

v
We shall consider a Cauchy problem of the form
n v
du. /ot = L L h. (t,z,u)du./dz, + g (t,z,u)+£(t,2), (10)
1 . ij4 J ) 1 i
J=1 I=1
ui(o,z) = ui(z), i=1,...,n,
or in vector form
u = h(t,z,u)ux +g(t,z,u) + £(t,z) ,
u(o,z) = uo(z>;
where h is an n x nv matrix, and g and f are n-vectors.
For any n-vector u = (ul,...,un) we define |u| by taking |u| = max |g |.
Jd J

For any matrix h = (hij) we define |h| by taking |h| = max ZJ_ |hij! , SO that

[huf < |nffuf.



For the sake of simplicity let us consider only the case where t is real.
Let Ja denote a real interval o < t < a, and by BU any polydisc Bo = [zl[zi|§<n
i,ess,v] in the complex z-space CV. We shall denote by u and v also any complex

ny

n
n- or nv-vector variable, and by BT, B corresponding polydiscs in C or C

h

We shall now consider the following assumptions:

(h,y) Let a, o, T be positive numbers. Let us assume that the functions
h(t,z,u), g(t,z,u), f(t,z) are continuous in J, X BO x B and J_ x B
o

regspectively, and that for every t ¢ Ja they are holomorphic with

o} o)
respect to (z,u) or z in the open set B0 X BT, or BO respectively.
o

(ho) There are constants No’ N;, No > o such that for all t© ¢ Ia’ z € B,
- o

u,u;,us € BT we have

Ih(tyz)u)l < NO )
|h(t,z,u1) - h(t,z,us)] < Nplui-ug|

|g(t)Z;ul) - g(t,z,u2)| < N2|ul‘uZI .

For every s, o < s <1, we denote by HS the space of all functions g(z),
7 = (zl,...,zv), with values in Cl, which are continuous in BS , holomorphic
o

o ,
in Bsc , equipped with the maximum norm topology in Bsé .

Lemma 1. For every o < s' <s <1, g(z) ¢ Hso , We have ag/azj € H

S'O—"

and for all z ¢ BS,0 we have also

-1

lag(z)/azjl < G_l(s'si) max [g(§)| y 3 0= lyeee,v, (ll)

where max is taken for { ¢ B
so



1

Proof. For z ¢ BS 5 we have

d(2)/dzy = (1) [ (t122) (tomz2) oo (t -2 ) a(E)ats.at
r

where we can take for I the oriented manifold T = [§||§i—zi| = (s-s")m,
i=1,...,v], and T < Bso' Analogous relations hold for the other first order
partial derivatives. By taking absolute values we then have (11) for all z ¢ Bs'o )
o0<s'<s <1

Lemma 1 can be interpreted as a property of the linear operators B/BZJ.

Namely, for all o < s' < s < 1 we have

5/8zj poH,o» H,

-1 -1
and the operational norm of B/BZJ is <o (s-s')

n
We shall denote by H the space of n-vector functions u(z) = (ul,...,un),
s

zeB withu, eH, i=1,...,n, and norm |ju] = max, [|u.| . We shall denote
SO i s s i "l

t n n
by Hsn the subspace of . made up of all u ¢ H_ with Ju] < 7.

1

Then for every t e J_and u e Hsn the following function U = U(t,z) = A(t)u

is defined

U(t,Z) = (A(t)u)(t;z) =
= h(tJZ:u>uZ(t)Z) + g(t)ZJu(t)Z)) = g(tyz)o)) (l2)
with t e J_,z eB, ,0<s'<s<1.
a S'CO - -

Lemma 2. Under the hypotheses (hi), (hp), the operator A(t) defined by
(12) satisfies

n
A(t) : H' - Hs , and



HA(t)ul—A(t)uZHS, < [NOG_l + Nl(TG—l + l)]Hul—ugﬂs ’

for all uj, us € H; ,o0<t<a,o<s'<s<l.

The first part is a consequence of Lemma 1. For the second part we have
”A(t)ul"A(t)uZHS. < H[h(t:z:ul)'h(tyz:uZ)]ulz”S, + Hh(t)ZJuZ)(ulz'uzz)Hs, +
+ Hg(t;zyul)"g(tyz)uz)ns|
(13)
-1 -1 -1 -1
< Walluyugl 0" (s-s") uall | # N o™ (s-5") Mug-udl | + Nllug-ud

-1 -1
< M+ (e (s-) 7 Jugeug

If we take

then (13) becomes

Ae)ur-Ae)ual |, < Cllug-ud (s-s1)7F,

r

since
1 -1 -1 v=-1
< [Nz + (NgtNiT)o “I(s-s') = C(s-s')

-1
Ny + (NotNiT)o ~(s-s')
Let M denote the constant
t
M= max fu (2)64f [g(1,2,0) + £(v,2)at| (15)

where the maximum is taken for o < t < a.

From Theorem 2 we deduce now

11



Theorem % (Cauchy-Kovalevsky). Under hypotheses (h;),(hs), and C, M defined

by (14) and (15), let us assume that M < 7. Then for all numbers b, s such that

M<T.
o<b<a,Cb<l,o<s<l-Ceb, (16)

-1 -1
M[1-(1-s) Ceb] <= (17)

there is a solution u(t,z) = (ul,...,un) to problem (10) which is continuous
in J, x Bs ,and for every t ¢ Jb holomorphic with respect to z = (zl,...,zv)
o

b

in the open set BO
so

Proof. First note that M < T by hypothesis, and now we can always choose
numbers b, s satisfying relations (16) and (17). Indeed, first we can take
b > o0 as small as we want, and then we can take s as close to zero as we want.
The left hand member of relation (17) can now be made as close to M as we want
and thus < T.

Note that with the definition of A(t) in (12), the Cauchy problem (10)

takes the form

ut = A(t)u + [g(t,Z;O) + f(t)Z)] )

u(o,z) = uo(z)

and now we apply Theorem 2.
The method of successive approximations mentioned in No. 2 for the abstract

formulation reduces now to the usual method

12



u (t,z) = o
1
t

uO(Z) + f [g(T)Z)O).+ f(T)Z)]dT )

uo(t,z)

O
(t;Z> = uO(Z) + fz [h(T)ZJuk—l(T,Z)]uk-l Z(T)Z)+g(T)Z)uk_l(T;Z)+f(T)Z)]dT;

Y%

)

k =1,2,...

For problems of the form

du, /ot = 321 lél aijl(t,z)éuj/azl * e, (t,z,u) + £(t,2) ,
ui(o,z) = uoi(z) , 1= 1,i00,n
we take constants Nlijl, N ., such that
Ihijl(t’z)l SNy

|gi(t)z)ul) - gi(t}z’u2)| S N2j_ Iul-uel

for all t teB B nd
or € Ja’ € 5’ U, Ui, Uo € o~ a

n v
= 2 L N N, = No = max N

NO maXi J=1 I=1 lijl’ ' v ) i i’
C = No +N o

= 2 OG )

t t

= + +

Moo= max fug(2) ¢ [ Ly (8,m,0) + [ £ (v,2)Jat]

where the last maximum is taken for all i = 1,...,n, t € Ia’ Z € BG.

Remark. 1In Theorem 3 we can take b = a whenever M < T, Cea < 1, and then

u(t,z) is continuous in Ja X BS and for every t ¢ Ja holomorphic with respect

g

O . -1 -1
to z in BS for any § such that o < s <1 - Cea, M[1-(1-s) Cea] = < T.
0

13



For linear problems

NR=
M <

0 ,
hijl(t’z)auj/azl + .Z gij(t,z)uj +fi(t,z) ,

du./ot =
. =1 j=1

[
1]
=

(18)

u(o,z) = u .(z) , 1i=1,...,n,
Theorem 3 yields

Corollary. For linear problems (18) where the functions hijl(t’z>’ gij(t,z),
ﬁﬁ%,z) are continuous in Ja Xx B and for every t ¢ Ja holomorphic with respect
o
o
to z in BO , and the functions uoi(z) are holomorphic in BO , there is a unique
o]

solution u(t,z) which is continuous in Ja x B and for every t ¢ Ja holomorphic

SO

0
in Bs for all s, o < s < exp(-Cea).
o

Proof. We have here |h,,£(t,z)| <N lg. . (t,2)] < Nzij for suitable

1] = T1ige’ ij
constants N ., , N ., andall t € J, z € B . We then take
11j4 21i] a o}
n v
My mmaxy By gl Ny o M=o,
n
= Y. N C=Tp +N o
Vo =maxy o Ny o 2" %0

M= max |u_,(z) + £ £ (1,z)ar| ,

where the last maximum is taken for all t ¢ Ja’ Z € Bo’ i=1,...,n. Let p>1
be an integer such that, for b = a/p we have Ceb < 1, that is,u > Cea, for

(Ny + Noc'l)ea < u. Then the solution u(t,z) is continuous in [o,b] x Bso’ and
for every o <t < b holomorphic with respect to z in Bzo for o < s <1 - Ceb,
say for all o <s <1 - Ceb - n, where o < n <1 - Ceb is arbitrary. We can

now repeat the argument in the interval b <t < 2b, where now uo(z) is replaced

14



by u(b,z) and t = o by t =b. Then u(t,z) can be continued in [b,2b] x BSCj for
all s with o0 < 8 < (l-Ceb-n)g, and so on. By repeating this argument u times,
we conclude that the solution u(t,z) exists and is continuous in [o,a] x Bso
and for every t ¢ [0,a] is holomorphic with respect to z in B:c for all s with
0<s< (l—Ceb-n)“. Since 1 is arbitrary we see that the statement is true for
every o < s < (l-Ceap_l)H where u is any integer pu > Cea. As p > +® we see

that the statement is true for every o < s < exp(-Cea).

L. APPLICATION TO PERIODIC SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS

We consider now a partial differential system as (10), or (15), where the
second members are periodic in t of some period T =.2ﬁ/w. The question of the
periodic solutions of period T of such systems in a thin cylinder E; x Bso for
s, 0 <s <1, sufficiently small, can be reworded as the problem of determining

-a function uo(z) holomorphic in B® such that the solution u(t,z) with u(o,z) =
o

= uo(z) can be continued in a cylinder [o,T] x Bso such that

u(T,z) = u(o,z) = uo(z), z € BSU . (19)

Then, by periodicity, u(t,z) can be extended to the whole of E; x Bso'

For linear systems (16) we have seen that the first,requirement is always
satisfied.

Note that u(t,z) depends functionally on uo(z), and we shall denote it by

u(t,z;uo). Thus, relation (19) becomes

u(T, * s5u) = u_, (20)

15



where u in the first member is a holomorphic function in Bo , Or u, € H;, while

u_ in the second member is only a holomorphic function in BS , Or uo € Hs 9
o o

o< s < sO < 1, and suitable so.

A situation where problem (20) can be handled easily in the case where system
(10), or (18), contains a small parameter, and for € = o the reduced system is
known to possess periodic solutions of period T.

In two of the examples below we use an implicit function theorem in func-

tional analysis we have proved elsewhere [1b].

Example 1. Let us consider the problem of periodic solutions of period

T = 2& of the equation
u = eu + sin t , (21)

where € is a small parameter, v = 1, n = 1. If we take an arbitrary function

uo(z), Z € Bn’ uo € Hy, then the method of successive approximations

u (t:z) =0 s

t
N (t,z) = uo(z) + g [Euk_l Z(T,z) + sin 7]dT, k = 1,2,...,

Y

J

yields

= + -
uo(t,z) uo(z) 1-cost,
up(t,z) = uo(z) + Etué(z) +1 -cos t, (') =a/at ,

-1
us(t,z) = uo(z) + 8tué(z) +2  €2t%u"(z) + 1 - cos t,

and hence

uk(t’z) = 1‘- cos t + uo(z) + gtué(z) + (egtﬁﬁﬂ)u"(z)+...+(ektk/k!)u(k)/z).

16



By the previous analysis we know that the series

> kk (k)

u(t,z) = l-cos t + 2 (et /ki)u "(z) ,

k=0
is uniformly convergent in [o0,2n] x BSO for all s, 0 <s < So’ and €, |€| < 80,
and suitable sO > o, Eo > 0. The problem of determining uo(z) in such a way
that u(2n,z) = uo(z) in B reduces here to

o

L (e
k=1

ktk/k.')u(k)(z) =0, z¢€B ,

for all € in absolute value sufficiently small. The only solution is ué(z) = o,
or uo(z) = ¢, a constant. Thus, all periodic solutions of (21) for e in absolute

value sufficiently small are of the form
u(t,z) = C+ 1 - cos t.

Example 2. Let us consider the problem of periodic solutions of period

T = 2n of the equation

u = e(u + uZ) + sin t,

where € is a small parameter. If we take an arbitrary uo(z), Z € Bc’ uo e Hy,

then the method of successive approximations

t

u_l(t:z) =0, uk(t:z) = UO(Z) + [ [e(u

l(T,z)+uk_l Z(T,z)) + sin 1] dt,
0

)

k-

k =o0,1,2,..., ylelds

t = + -
uo( ,2) JO(Z) 1 - cos t

17



up(t,z) = uo(z) + etuo(z) + stué(z) + g(t-sin t) + 1 - cos t ,

us(t,z) = uo(z) + etuo(z) + (€2t2/2)uo(z) + Etué(z) + eztzué(z) +

+

(82t2/2)u;(z) +1-cost +e(t-sint),
where (') = d/dz. At the limit as k + o we have
u(t,z,e) =1 -cos t +e(t - sin t) + uo(z) + Et(uo(z) + ué(z)) + o(e®)

for all (t,z) e [o0,2x] X B, and all s, g, 0<s<s <1, |e] < e » and suitable

o
s and € positive.
o) o)

We now discuss the question as to whether uo(z) exists such that u(T;z,e) =
= uo(z), |z] < s'c, at least for all | z| <s'o, o<s'<s <1, and s' suf-
ficiently small. If uo(o) = C, an arbitrary constant, we see that a necessary

condition is that ué(o) = - C. We shall now write u in the form u(t,z,c;

uo(g), |t] < o) to emphasize that u depends functionally on uo(z). Also, we

take v(z) = uo'(z) as a new unknown function, and we write p for v(o) = ué(o).

Then the functional equation u(2n,z,e) = uo(z) takes the form

W(Z,E;V(C), ,C' < 0) = 5-1 [u(2n,z,e,uo(§), |C| < a) - uO(Z)]

z
= u(en,z,e, ¢ + [ v(a)da, |t] <o) -c - [ v(a)da =o, |z|] <so,
o} - o -
where W is holomorphic in z, where W(o,0,*) reduces to ¢ + u = o, and the
functional determinant OW(o,0,*)/du = 1 # o. By an implicit function theorem

similar to the ones in [lb], we know that there are numbers s', g, and a function

uo(z;e), lz |[< o, |e] < € 0% s' <s <1, €, >0, such that u(2n,z,a)-uo(z,s) =0

18



for all |z| <s'o, |e| < e - Also,
uo(z,e) =c -cz + 0(e) +0(2%) ,
u(t,z,e) = uo(z,s) + et(uo(z,s) + ué(z,s)) +l-cos t *+e(t - sin t) + O(g)

Example 3. Let us consider the problem of periodic solutions of period

T = 2n of the equation

Uy + 0y = e(l-ue)ut + epw cos(wt + ) + e B u (22)

where v =1, n=1, T En/w, w > o0, p, B are real constant, and € is a small

0, equation (22) reduces to the usual van der Pol

real parameter. TFor B

equation with a forcing term ([19], (8.5.26), p. 1%3). The usual transformation

yi1 = 1lwu tu y Y2 = 1lou - u_ o,

yields the system of partial differential equations

yit = 1wy, +ef , Vot = -laye - ef,
-1 -2 5 Lo -1
f=2 [1+(20) (y2ty2)7] (va-y2) * pw cos(at + a)+(2iw) ~ 8y +v_)
. . -iwt iwt )
Finally, the transformation ¥Y; = e Vi, Y2 = e yso, yields
-iwt _ iwt
Ylt = ge F, th = -ge F,

-1 -2 it -iwt Lot
F(t,z,Y) = 27 [1+(2w)” (e*'ry + e " %v0)2] (e™y, - 7 %)

+ po cos(wt + ) + (2iw)  gle ¥, + e Ys),
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where Y = (Y1,Ys). If Ylo(z), Y O(z), |z| < o, denote arbitrary functions,
- <

the method of successive approximations

(-1) (-1)

Yy = 0, Yo = 0,
(k) v et (k-1)
Y, (t,z) = Ylo(z) +e [ e F(1,2,Y (t,z))at ,
O
Yg(k>(t,2) = Y (z) -¢ ftei(Dt F(T,z,Y(k_l)(T,z))dT s

o}

k =o0,1,2,..., yields first

2 (6,2) = ¥, (2) +ep (27 &M - (hiw) (ALY
Yéo)(t,z) = Y, (2) - e (2% 71 4 (i)t (2O T A0 10),
Also we have
e, - Y (2) +e L ¥ (2) - (-an»)'le'giwtyeo(z)]
- e‘l<2w>‘2[<em)‘le2i‘“tyl§<z> +40,8(2)Ya0(2) - (-210) " €2, (2)7, 2(2)
- (b)Y 3() ]
o (o7 el (i)t (e7E0BCIE _ioy
+ (2iw) T [t Yloz(z) + (-piw) ™" o2t Y2Oz(z)] +..0.)
1. (5,2) = ¥ (z) - ¢ (27 [(2iw) ™" 2H° Y (2) -t Y (2)]
+ 2'l(am)' [(uiw)‘l oot Ylos(z) + (.Q_iw)'l 20t li z) Yo z)



1 (eziwt + 1o ia) -1 -1l

+pw [ (M)

-1 iwt
ey r by (2) ]+ ... ),

+ (giw)_lﬁ [(ELD) 107 202

o . 0
where we have written only the terms in € and €. Only these same terms in €

(k)

k
and €' are in all successive approximations Yl( (t,z), Yo' ’'(t,z), and thus

in the limits Y1(%t,z), Yo(t,z) as k >« .

The equations & [Y1(T,z) - Ylo(z) ] = o, S-l[Ye(T,Z) = Y2O(z)] = 0, yield
now
2 2 i -1
¥ (2) + () Yio(z)Vao(z) + pwe™ + (iw) Y, + 0(e) = o,
Y (z) + (2&)-2Y (2)Y 2(z) - pwe_ia —(iw)_la Y +0(g) =0 .
20 10 20 20z
‘o 6
If we take ¥, (z) = Mz)e (Z), Y (2) = n(z)e . (Z), N, 6 real, then
. -i6 . -16 )
v = (A +iN0 )e T, Y = (-A_ + iN6 )e 7, and we obtain the real
1oz z z 20z z 4
equations
A - baPh - Lpw® cos(@-9) - MDBKGZ + 0(g) = o ,
(23)

For € = 0, B = o the equations reduce to the usual ones for periodic solutions
of the van der Pol equation with foreing term ([1a]), (8.5.27), p. 133).

Note that the equation A® - b\ - Lpw® = o has certainly a simple positive
root koo If B is small, we shall think 6 close to @, sin (x-8) close to zero,
cos (-0) close to 1, and A close to ko,

For every vector A = (A;,As) in a suitable neighborhood V of (o,0) let us
denote by A(A) and 6(A) the rcots close to xo and o respectively of the equations
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A2 - baPh - hpwdcos (a-8) = LwpaA;

. -1
o sin (@-8) = w RAs .

We shall now denote by W = (W1,Ws) in vectorial form the functional defined,

for |z| < so, |e|] < € , by the first members of the equations
- - 0]

]

Wi(z,e; ACE),le] < o) = A2-baPn - bpw® cos(a-0)-lagray + O(e) ,

IN

pw sin (a-8) - w 'BA 5 + O(€) ,

o)

Waolz,e5 A(E),]E

IN

where A = A(A), 6 = 6(A). For z = 0, € = o these equations reduce to the same
equations without the terms O(g), they can be satisfied by taking A(o,0) = A(A),
6(o0,0) = 6(A), and the functional determinant of W(o,o0,+) with respect to A is
then (—Mnﬁk(o,o))(—w_lﬁ) = 4g®\(A), a number close to MBZXO, and hence # o. By
the use of the same implicit function theorems mentioned in example 2 we con-
clude that there is a solution A;(z,e), As(z,e) or A(z,e), ©(z,e), to equations

(23), for all lz! < s'o, Ial < €1, and some s', €1, 0 <83 <s<1l, 0<eg; < €.,

-

- O

The solutions Y;, Ao then have the form

7(6,2) = 2(z0)e P 4 0e), Yaltyz) = alze)e P HE) 1 o),
and hence
x(t,e) = w-l N(z,e) sin [6(z,e) + at] + O(e) ,

is a periodic solution of period T = 2n/w of equation (22), with |z| < s'o,
le| < &1 and where Ay(o0,0) = xz(o,o), As(0,0) = ez(o,o), are arbitrary numbers,

(M,Np) € V.
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