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ADDENDUM VII. SOBOLEV FUNCTIONS AND SOBOLEV SPACES

VII 1. THE TEST FUNCTIONS

Given any open subset G of the t-space E,s t = (tl,...,tv), v>1, we
shall denote by ¢ (G) the family of all real valued functions ¢(t), t e G,
which possess (continuous) partial derivatives of all orders in G. We shall
denote by C:(G) the family of all ¢ ¢ Cm(G) with compact support K@ C G. The
support Km of a function ®(t), t € G, is the closure of the set of points
t € G where o(t) £ 0.

The following examples are of some interest., For v = 1 let us define
a(t), ~=«< t < +o, by taking o(t) = 0 for [t| > 1, and a(t) = exp (tg-l)'l

for |t| <1. Then a e C:(El)' If we take
t
o(t) = c [ ofT) aT, =<t <,

then o(t) = 0 for t < -1, and by choosing the constant ¢ > O suitably we can
arrange that o(t) =1 for t > 1. Then, O < o(t) <1 for all -1 < t <1, and

g € Cm(El). Finally, given any two numbers s rg, O<r < r2 <+, Jet

1
* a let us define B(t), - < t < +o, by taking
MY
- B(t;rl,rg) = 1-o(-1+2(]|t| -rl)/(re—rl)).
‘4-— t >
e I t Then, B(t) = 1 for |t| < T B(t) = 0 for |t| >
A B
4/__—\‘* r2, and 0 < B(t) < 1 for rl< |t| <r2, and B €
" —y ©
—r2 N " fzf CO(E]_)'



Now, given any open set G C Ev’ v > 1, and any point t e G, let us take
any number €, O < € < dist (t, ), and let us define @(t), t € G, by taking
o(t) = cy(ss'l [t - £]). Then o(t) = 0 for |t - t] > €, @(t) >0 for |t - t| < g,
and @ ecz(G).

Analogously, let us take any two numbers rl, r2, O0<r < rg < dist (E, Aa),

1
and let us define W(t), t ¢ G, by taking W(t) = B(|t - t|; r, T ). Then

Wt) =1 for t e Guwith [t - ] <r, Wt) =0forteGuwith [t -ti>r

1’ 2’

0<¥t) <lforr <|[t-%]<r, andwecz(G)-

We shall denote by multiindex a = («

1,..qav)any set of v nonnegative

integers « ...,05, and by lal the integer lal =Q +...ﬂ1v. If ¢ € Cw(G),

1’ 1

we shall denote by Dj¢ the partial derivative ap/ata, J=1,.4.,v, and in

general by Dab the partial derivative of order o = (al,...,o$) of ¢ in G,



VII 2. GENERALIZED DERIVATIVES

Let G by any open subset of the t-space Ev’ t = (tl,...,tv),v > 1, As
usual we say that a real-valued function x(t), t € G, is locally integrable
in G, and we write x ¢ Lloc(G), or x ¢ Lioc(G),if x ¢ L(K) = Ll(K) for any
compact subset K © G. Analogous definitions hold for Lp-integrability, 1<p
< +x, and even for p = +©, where then we understand that x is essentially

bounded in every K < G,

If x € Lp(G), 1< p< +~, then by ”x”p g Ve mean the number
)
Il = U Ix() [Pae1"/P.
p,G G
If x ¢ L (G), that is, x is essentially bounded in G, then
Hx”oo c - Ess Sup |x(t)| for t ¢ G.
J

1
Given any function x(t), t € G, x € L oc(G), we say that another function
1
y(t), t eG, y e L oc(G),is the first order generalized partial derivative of

x with respect to tl provided
[ v(t) o(t)at = - x(t) (dp/3t )at  for all ¢ e C:(G). (VII 2.1)

Analogously, given any multiindex o = (al,...,ox), we say that a function y(t),

loc
t €G, y e L' (G),is the generalized derivative of x of order a = (& ,...,0&)

1
provided

|
fG y(t) p(t)dt = (1) 'alfG x(t) Do‘cp(t)dt for all @ « C:(G).
(VII 2.2)



As we shall see these definitions generalize the usual concepts of dif-
ferentiation, and hence we shall use the same notations y = Dix, ory = Dak.

With this notation (VII 2.2) will take the symmetric form

o o a ®
IG p(t) D x(t)dt = (-1)I | fo(t) D op(t)dt for all ¢ « CO(G)
(VII 2.3)
(VII 2,i) If v =1, if x(t), a <t < b, is AC in every closed interval
- - 1
[a, b] < (a, b), then x, x' € L o¢ (a, b), and x'(t) is the generalized deri-

vative of x in (a, b).

[o¢]
Proof: If ¢ € Co(a, b), then the compact support §$ of ¢ is contained

in some closed interval [5, 5] c (a, b), and by integration by parts with

Lebesgue integrals we have

(o) e0)ar = [0 o(0)as = -[° x(t) p(6)a

1}

b 1
-fa x(t) ¢'(t)dt.

For t = (t ,...,t ) € E, and i = 1,...,v, we shall denote by t; the (v-1)-

-1 i+ . :
vector ti = (tl,...,t , " l,...,tv). If T = [a, B] is an interval of Ev’

1 v 1 v i i, .
a-__(a ’.0.’a ),6=(B ,'l"B,a <B’ 1=l’0l.’v, andl:l’.'.’v, we

shall denote by Ii the (v-1)-dimensional interval Ii [OF < £° < BS, s #1i,

i- i+
s =1,...,v]. If dt = at'...dt", we shall write at; att...att "t ettt LatY,

We shall denote by Gi the projection of G on the ti-space E 1’ that is,
v—

the set of all t! ¢ E such that (t!, tl) € G for some tl € E,. Then G, is
i v-1 i 1 i

an open subset of Ev 1’ i=1,...,v. Also, for every ti € Gi we shall denote



i i
by G,(t;) the open subset of all th e B, with (t), t) € G.

Al
' 1 . . .
(VII 2.ii) For v > 1, if x(t), y(t) e L ¢ (G), and if for a given i =1,...,v,
and almost all ti € Gi’ the function x(ti, ti) of t~ alone is AC in every
i
closed interval [a, b] € Gi(ti)’ with derivative y = dx/dt™, then y is the
generalized partisl derivative of x with respect to t in G, ory = ax/ati =

D.x, 1 =1,000,yV.
i ) b )

Proof: To simplify notations we shall limit ourselves to the case v = 2,

1
and we shall write (t, s) instead of (t ,...,tv). Let us prove that

[14 (8, 8) o(t, s)atds = -Jf, ®(t, s) (/pt)atas for all @ C:(G).
(VIT 2.4)

Note that, if K¢ is the compact support of @, then both x and y are in
L(K(P) and ¢ and Jdp/dt are continuous on ch’ hence yp and x(dp/dt) are integrable
on K&, identically zero on G - K&, and finally L-integrable in G. Let Go be
the projection of G on the s-axis, that is, let Go be the set of all s ¢ El
such that (t, s) € G for some t, and thus Go is open. For every s € GO let
G(s) denote the set of all t with (t, s) € G for some t; hence G(s) is open,
and therefore the union of countably many disjoint intervals (o, B). If Kb(é)
has analogous definition, then the intervals (a, B) form an open cover of the
compact set K@(E); hence, finitely many of such intervals (o, B) cover K&(E).

By Fubini's theorem we have

Hl,voatas = [, as [y voae = f as (L] yeab),



and an analogous relation holds for x(3¢/dt). Here L ranges over the finitely
many intervals(a, B) above with (o, B) N gp(s) # o, If [ao, BO] is any closed
interval with (a, B) D [ BO]ZD (o, B) N Kb(y), then m(ao, s) = @(Bo, s) =0,

and by integration by parts

B 3 Po _ Po B
fa y ¢ dt = fa yodat = -fao xQo/3t)at = -f x(dp/dt)at.

(o)

This holds for any s € Go such that x(t, s) is AC with respect to t on each

[ao, Bo], that is, for almost all s € Go' This proves that

/

I

flyvoatas = [, as(Z /P yoat) - Jg_ ol 1Px( 2/2t)at)

o]

1

IG x(d@/3t) dtds,

that is, y = ax/atl is the generalized first order partial derivative of x
with respect to £+ according to the definition (VII 2.1).
. \ loc . . :
In particular, if x,y ¢ L~ (G), and x is continuous in G together with
. . i | loc

its usual partial derivative y = Xx/3t™ (or x,y ¢ L' (G)N ¢(G)), then y =
ax/atl = Dix is the generalized first order partial derivative of x with respect
to t* in G according to (VII 2.1).

Analogously, if x(t), t € G,1s Lipschitzianin ¢ (or on every compact subset
K of G , then the usual first order partial derivatives Dix(t), i=1,...,v,
of x, which exist a.e. in G and are measurable in G, and bounded in G (or on
every compact subset K of G), are also the generalized first order partial
derivatives of x in G.

A statement analogous to (VII 2,ii) for partial derivatives of order m is



as follows:

(VII 2.iii) For v > 1, m > 1, if x is continuous in G with usual continuous
partial derivatives of all orders < m - 1, if for each « with la] =m -1, and
almost all t{ € Gi’ the function Da x(t{, ti) of ti alone is AC in every closed
interval [a, b] < Gi(ti)’ i=1,...,v, then the usual partial derivatives of
order m certainly exist a.e. in G. If these derivatives are known to be in
L1oc

(G), then all usual partial derivatives DO§ of orders 0 < la] < m are also

N .
generalized partial derivatives (and all are in L OC(G)).

A corollary of (VII 1.i) and (VII 2.ii). Formula (VII 2.4) need only be
applied lal times.

A first remark concerning generalized partial derivatives is that if y
is the generalized partial derivative of x of some order o, then the same holds
for any other two functions & and i, where § differs from y and x from x at
most in sets of measure zero in G, In other words, the relation between x and
y defined by (VII 2.2) is a relation between the equivalent classes in Lebesgue

integration theory defined by y and x.

(VIT 2.iv) If two functions y,, ¥, e 11°(G) are such that

2
- a
fG y, © at fG y, © at

for all test functions ¢, then y, = ye a.e. in G, In particular, generalized

1

derivatives in G, if they exist, are uniquely defined (up to a set of measure

zero in G).



00
Proof. We have here fG (yl - y2) @ dt = 0 for all @ € CO(G). Since

V- ¥, € Lloc(G), then for almost all points t € G we have

-1 - -
- d t) -
lal™ [, (3, - v)dt >y (%) - v (P)
as € » 0, where q is the sphere of center t and radius g > 0, and t e q <G,

For every such t and € > O such that t e q € G, we can well determine a number

0, 0< o<1, 0 =o0(g), so small that

1
[groq Wy - vplat < ela], teaqca' cq,

1]

where q' is the sphere of center t and radius (1 + o) €'. Now let us consider
o] -
a function ¥(t; €, €'), t ¢ G, with ¥ ¢ Co’ ¥y =1 for lt - tl <€, ¥ =0 for

It - t] >e', 0<y<1fore<|t-%t]<e' (cf. VII 1). Then we have

0 = fG (v, - v,)¥ dt fq, (v, - y,)v dt

[y = vp)at + e e

for some -1 < © <1, and finally

0 = Sy, - v)al T war = oS Gy

o a 1-y2)dt+98.

As € > O we have 0 = yl(E) - yz(E). This holds for almost all t ¢ G. Thus,

we have proved that yl = y2 a.e, in G,

loc . a
(VIT 2.v) If x, y e L' (6), if y =D’% in G, and G_C G, then y = p% in ..

Proof. Every element ¢ ¢ C:(Go) can be extended to an element ¢ ¢ C:(E )
—_— v



(or ¢ e c: (6)) by taking 9 =0 in E - G (¢ =01nG -G ). By ( )

we have now

Q
fovea = foyest = (0Pl xemar - (nlly xo%a,
o) o
(VII 2.b4)
and this proves that y Dax in GO.
Example 1. We are now in a position to exhibit a function z(t), 0<t <1,
(v = 1), which has no first order generalized derivative y = z' in (0, 1).
Consider the usual function z(t), 0 < t < 1, defined in association with the

ternary Cantor set S in [0, 1]. Then, z is continuous and monotone nondecreasing

in [0, 1] with 2z(0) = 0, z(1) =1, and z(t) constant on each interval (o, B)

of the open set G = [0, 1] - S, with |G| =1, |s|] = 0. Let us prove that z

possesses no first order generalized derivative y = z' in (0, 1), Indeed,
assume that y is such a function. Then y is a generalized derivative of z

also in each interval (o, B) where z is constant, and hence has derivative

zero in (@, B). Thus, by force of (VII 2.i) we have y = 0 a.e. in each interval
(o, B), and hence y = 0 a.e., in G, and y = 0 a.e. in (0, 1). By (VII 2,1)

we have now fi z(t) ¢'(t)dt = O for every ¢ ¢ C:(O, 1). Now take any two
intervals of constancy for z(t), say (a, B) and (a', B'), O<a<B<a' <p'

< 1l. Then z takes on values c, c', respectively, 0< e <ec'< 1, in (a, B)

and in (a', B'). Take any two intervals of the same length 7, say [a, a+n] C
(o, B), [b, b¥n]l c (@', B'). Take a function o(t), -o <t < +w, with 0 = 0

for t <0, 0=1fort>n, 0<o<1lforO0<t<m, and o ¢ Cw(-an’-w]

(efr, VII 1). Finally, let us define ¥(t), 0 < t <1, by taking W(t) = 0O for



0<t<a, W{t) =0 for byn <t <1, ¥Wt) =1 for atn < t < b, Wt) = o(t - a)
for a <t < atn, Wt) = o(b+n- t) for b <t < b+n. Then y ¢ c:(o, 1),

V'(a +t) ==y'(b + 7 - t) =0'(t) for 0<t < m, ¥' = 0 otherwise, and finally
1 b
0 = [oa(t) w(tat = (2 Nz v at = (e - e)flow)at <o,

a contradiction.

Example 2, We can now exhibit a function x(t, s), 0<t<l, 0<s<1,
(v = 2), posessing generalized mixed partial derivative agx/atbs but no first
order generalized partial derivatives x/dt and x/ds. Let us take the same
function z(t), 0 < t < 1, considered in example 1, and define x(t, s) by taking
x(t, s) = z(t) + z(s), (t, s) eG=[0<t<1l, 0<s<1]. Let us prove that

the generalized mixed partial derivative y(t,s) =0 in G. Indeed, for y =0, we have

ffG y(t, s) o(t, s)dtds = O for all ¢ « C:(G).

On the other hand, for every ¢ ¢ C:(G) we have also

I, (e e)(Fofande) = I a(t)a J(Fo/auae)as

4
(o)

0

+ fi z(s)ds fﬁ(agw/atas)dt
because the two interior integrals are both zero for every t and s, respectively,
Thus (VII 2.2) holds for y = O and all @ € C:(G); hence y = 0 is the generalized
mixed derivative aex/atas. On the other hand, the same argument used in example

1 shows that x has no first order generalized partial derivatives Xx/dt, x/ds.

(VII 2.vi)(Partition of unity).. Given any compact set K and any finite open

. m 00
cover U, , G, of K, there are functions Wi(t), teE, ¥ € Co(Ev)’ with

10



supp Wi <G, 1=1,...,m such that Z:;l Wi(t) =1 for every t ¢ K.

i,

Proof., First, all we have to do is to construct suitable compact sets

Ci’ ¢,, 1t=1,.,..,m such that K c e

d c 'c Q! c i =
i 11 Ci’ and C int C Ci Gi’ i

i i
l,...,m. To do this we note that every point t eK belongs to some Gi’

we can take a well determined sphere S(E, 25) of center t and some radius 25

such that S(t, 28) € G,. Now the spheres (s(t, 8))} form a cover of K, and

i.
hence there is some finite cover S(tk, Sk), k=1,...,N, and for every k =

1,...,N, we can shoose a well determined i, say i = i(k), such that S(tkgsk) c
S(tk,EBk) c Gi(k)’ k=1,,..,N, Now let Ci be the union of these spheres S(tk,Sk)
such that i(k) = i, and let Ci be the union of the corresponding spheres S(tk,26k).

Then all sets Ci’ Ci, i=1,...,m as finite unions of spheres, are compact,

For every k = 1,,..,N, let mk(t) = B(t-t 82k) be the function defined

k, sk)
in (1.1); h “ (B ) =1 on S(t ,5 ) =0in E - S(t_,25 )
n (1.1); hence ¢ eC (E), 9 =1on ?B)s ¢ =0 inE - 228,)s
0 <@, <1 otherwise, Now we take ¢ = )5 0, = (1-¢l)¢2, ¢3 = (l-@l)(l-¢2)¢5,

ooy Oy = (1-¢l)...(1-¢N_l)¢N. It is immediately seen that

N
Zk=l ¢k - q)l + (l-q)l)cpz +"‘+ (1-@1)"'('1-¢N_l)q)N

1- (l-¢l)(l-¢2).-.(l-mN)

0 N
. d) d ¢ =
for all t ¢ E . On the other hand, 6 € Co(Ev)’ 2 04inE, ean Zk=1 o -1
for every t € K, since t ¢ K implies t ¢ S(tk,Bk) and =1 for at least one k.,

Finally, for every i = 1,...,m, let wi(t) = ¢k(t), where ), ranges over all k

m ‘ 00
with 1(1) = 1. Then Zﬁ=1 wi(t) =1 for all t ¢ K, ¥ € C, (EV), ¥, 20 on Ev.

11



Also, the support of Wi is contained in the union of the spheres S(tk,26k) with

i=1,...,m, Statement

i(k) = i, all these spheres are in G and supp wi cG

i’ i’

“(VII 2.vi) is thereby proved.

We are now in a position to prove a statement which is essentially the

converse of (VII 2.ii).

l »
(VII 2.vii) If x, y € L oc(G), if there is an open covering (I'} of G such
that y is the generalized derivative of order o of x in each I', then y is the

generslized derivative of order o of x in the whole of G.

Proof, Let @ be any element of C:(G) with compact support K&. Let G,
be an open set with compact closure such that K@ CIGo Ccl GO C G. Then (I}
is an open cover of cl Go, and hence there is a finite subcover, say [PS,
s =1,...,N]. By force of (VII 2,vi) there are functions ws(t), t € G, with
compact support KWs < I, such that ¥_ € C:(G), s =1,..0,N, and such that
Zsﬁlws(t) =1 on cl Go' Now we have

_ ) N
[qvodt = [, 6 VO at = [ G, v(Z ) ¥ e

N @ N
=X/, 6 ¥ v, 0 dt = Zs=lfrs y(p ¥ )at

00
where @ ¥_ € CO(PS). Hence

1ovevpae = (01 1 0% v e
s s s S

because of the property of y to be the weak derivative of order o of x in each

Ps. Finally,

Jovea = (nlly I (2, () o” v 0% Po)at

1]

(0l ez P () P
(o)

12



Since sts =1 in Go’ all derivatives DB (sts) with |B| > 0 are zero in GO
and
[yyodt = (-1) ol y xofmar = (D 1, x (0%) at.
o

Statement (VII 2.vii) is thereby proved.

1
(VII 2.viii) (Leibnetz rule). If x ¢ L ;c(c;), 1<p<+o,ye¢ Ll'oc(G),

1<qg< +», 1/p + 1/q < 1, possess generalized partial derivatives Dax, Day
of all orders O < |a| < m, and of classes L;OC(G), Lzoc(G), respectively, and
1 <A< +® is so chosen that 1/p + 1/q < 1/A, then xy Li'\oc(G) possesses
generalized partial derivatives Da( xy) of all orders O < ’(xl < m, all in

loc

Ly (G), and they are given by the Leibnitz rule

Nxy) = X (g‘) oPx 0%Py a.e. in G, (VII 2.5)

where o = (al""’av)’ 0< ’al <m B = (Bl,...,Bv), where ), ranges over all

0 < B <, that iS,Osﬁisa i=1,...,v, and

i’

(g) = aifBi(a - B)} = aptee. t/B B Mo - B () - B)

Proof, It is not restrictive to assume (Ap) +HA/q) = 1., Then x ¢ Lp/x(K)’
v e Lq/x( K) for every compact subset K of G. By Holder inequality with exponents

p/\, a/\ we have

(U Dl et < (7 I[P ae)® (1 ly]® a6/,

Thus xy ¢ LK( K) for every compact K € G, and xy ¢ Lioc(G). The same holds for

15



By which appear in (VII 2.5).

(0} =
each of the products D x D
First, let us prove (VII 2.5) for y ¢ C:(G). Let ¢ be any element of

C:(G) and note that

1}

o (5 (@ Px0Pypas = T () 1,0P0(0°Py)o) at

2, (-0 Pl 1w oP0™Pyroar

A xtzszy(-l)'B'(g)(ﬁ)D%D"""y)dt,

(VII 2.6)

where ZBranges over all 0 < B <@, and Zy over all 0 <y < PB. In these trans-
formations we have applied the Leibnitz rule on the products (Da-ﬁy)cp of functions
of C:(G). For y = oo we have y = B = 0 and the corresponding term in brackets

is (-1) IOlly Dacp. The remaining termsin brackets have sum zero because of the

a

identity ZB (-1) e ,(ﬁ

)(s) = 0, Thus
Io(Zg Qx5 g a6 = (1)) () 1% (VII 2.7)

for every ¢ ¢ C:(G). Thus, by force of (VII 2.iv), the derivative Da(xy)

exists and is given by (VII 2.5) a.e., in G. We have proved relation (VII 2.5)
o0

for y € CO(G), 0< |af < m,

Now let us assume y € Lioc(G). The same argument above applies since now
we can use the Leibnitz rule on the products (Da-ay)cp and partial derivatives
of orders O < y < B which appear in (VII 2,6). We obtain thus relation (VII

o
2.7), which shows that D (xy) exists, O < Iozl < m, and is given by formula

(VII 2.5) again by force of (VII 2.iv),

1L



B loc

loc
( V€ LP (),

(VII 2.ix) If x ¢ Lp
+BX.

Q 1l
a), ify=DxeLp°c(G), and z =D

then z = Da

Proof., For every @ € C:(G) we have

[, x0™Po)at = [, x 0% oPp)at = (-l)|a|fG(Dax)(DBq>)dt

()l soPar = (nleh Pl P a

1

(-I)IOH‘BIfG z ¢ dt.

+
This proves that z = Da Bx.

(VII 2.x) Given functions ya(t), t € G, for every « ='(ozl,...,0tv) with

0< la| < m, v, € L:IL)Oc (G), and a sequence of functions xk(t), t eG, k =

1l
1,2,..., possessing generalized derivatives Daxk(t), t €@, DOtxk € LPOC(G),
k =1,2,..., such that, for every compact subset K of G, ||Dlek - yoz“p x> 0
1

as k > o, then the function y = yo has generalized partial derivatives of all

orders < m, and Day =Y, in G, 0< Ial < m,

Indeed, if ¢ is any test function, with compact support ch C G, then,
for 0 < chl < m, we have
a a Q
J %0 ot = (0 5 P, k=1,

where the integrations can be made on ch. By a passage to the limit on the

integrals ranging on ch, and then writing G again instead of an’ we have

[4v,@at = (-1)’“' o y(0%p)dt.

Thus, Vo © Day for all 0 < IO(I < m,

15



Remark. Statement above holds even if we know only that in every bounded

- a
open subset G with G ©cl G _c G, we have D x_~y as k + o weakly in L (¢)
0 o o a P o

k
(or even only weakly in Ll(Go)). The proof is analogous.
VII 3. MOLLIFIERS

We shall consider any function j(t), t € En’ of class C:(Ev) such that

j(t) >0 for all t e Ev, j(t) = 0 for |t| >1, and [ (t)dt = 1. An exam-

J

EV
ple of such a function is of course j(t) = c exp (|t|2-l)-l for |t| <1, j(t)
= 0 for |t| > 1, where c is a suitable constant (cfr. VII 1.1).

For every € > O we shall now define je(t) by teking js(t) =g’ j(e'lt).
Then j (t) >0 for all t e E , j (t) = 0 for |t| > €&, and [ j (t)at = 1.

€ - v € i - Ev €
We shall now denote by Je the operator defined by
y(t) = (9x)(t) = [ j_(t-1)x(T)dT,
€ G €

where X ¢ Ll°°(G) and where y(t) is defined for all t ¢ G with dist (t,dG)

>e. If x e LO%

Ev)’ or x € L(G) for some G C Ev and we extend x to an ele-
ment x ¢ Lloc(Ev) by taking x = 0 in Ev - G, then y is defined for all t € Ev
and y € Lloc(Ev).

If x € LlOC(G) and x has compact support K < G, then x e L(G), and even

X € L(Ev) if x is extended to all Ev by taking x = 0 in E - G. Moreover
v

l .
(VII 3.i) If x e L _°(G) and has compact support K _C G, then for every e,

0 <& < dist (K ,3) ve have y e C:(G).

The proof is left as an exercise for the reader.
Below, we shall always assume that x is extended in Ev by taking x = 0
in Ev - G. With this convention, if x € Ll(G), then y = Jex is defined for

00
all t ¢ G (and even for all t € Ev)’ and JE: L (G) » ¢ (G).

1
16



(VII 3.ii) If x ¢ LP(G){ 1<p<+w theny=Jxe Lp(G) and “JEXHP,G <
x L
| HP,G
Proof. Let us assume 1 < p < + o. By HOlder inequality we have
[@ @I = IS 5 (e-D)x(t)at|”

G

< 1 G 0P x() - (5 (e0)) P
G

)P/q

IA

(é Je(t-T)lx(T)IpdT)(fG j(t=T)aT

IA

(/ 3_(6=7)|x(7)| Par)
G

where 1/q + 1/p = 1. Then, by Fubini's theorem we have
. P..\1/p
o, o = (é | (5 x)(¢)]"at)

<(at/ a€<t-w>|x<w)|PdT)l/P

G G

< (f |X(T)|PdT f je(t-T)dt)l/p
G G

=4 ROTCORCE N F

The cases p = 1 and p = o are left as exercises for the reader.

1
(VIT 3.1ii) If x e Lpoc

(G), L <p <+ o, then Jex > X in LP(K) as € + 0 for
any compact K € G; if x ¢ Lp(G), 1<p< +», then Jex + x in Lp(G); in any
case Jsx(t) > x(t) as € > 0 a.e. in G, If a compact set K € G is made up of

points of continuity for x in G, then Jex + x uniformly in K, If x ¢ Lp(E )
v

then J x> xin L (E ).
€ D v

17



Proof. Again, let us assume first 1 <p < + o. Let K be any compact
subset of G and let G0 be ény open set with compact closure cho such that
K< G <clG =G Thenxe L(GO). Let & = dist (K, bd Go), and take 0 < ¢
< ®. Theny = Jéx is certainly defined in all of K. Let n > O by any arbi-

trary number. By Lebesgue integration theory we know that there exists a

1/p

continuous function z(t), t e clG_, with (fG Ix-zlpdt) < n/3. Then z(t)
o

is uniformly continuous in cho and there is some &' > O such that t, t' ¢

-1 -1)1/p_

cho, |t-t'] < &' implies lz(t) - z(t")| < (3 nIGo| Let us assume

0 < € < min[%,5']. Now, for t ¢ K, we have

(Jéz)(t) -z(t) = [ jE(t-T)Z(T)dT - z(t),
G

and since the sphere q of center t and radius € is completely contained in Go

and hence in G, we have fG js(t-r)dT = 1 and finally

|5.2(t) - 2(8)] =[] 3_(t-1)[z(7) - z(t)]ar]
G

<1 3 (e0)2() - z(s)|ar< (37 hle | HYE
q

p

1
for all t ¢ K. Finally (fG |J€z-z|Pdt) / < 1/3, and since
(o]

|9 ekl < 15 (xe2)| + xea] + |3 g2,
by Minkovsky's inequality and (VII 3.ii), we have

élJ x-x|Fat < [ |7 x-x|Pat < (J (3 (x-z)lpdt)l/p +(f Ix-zlpdt)l/p
€ € .
G, Gy G,
+ (f fJez-zlpdt)l/p <n/3 +/3 +1/3 = q

Go

18



for all € > O sufficiently small. The first part of (VII 3.iii) is proved

for 1 < p < + o, We leave the cases p = 1 and p = » as an exercise for the

reader, To prove convergence almost everywhere in G, we note that, given
X € Lloc(G), then almost every point t ¢ G has the property that ]ql-lfqlx(T) -
x(t)IdT +> O as € + 0, where q denotes the sphere of center t and radius €, and

g <G for all € > 0 sufficiently small, Then

g (£) - x(®)] = [J, 3 (t-7) x(T)av - x(t)]
< 1y 3= Ix(7) - (%) ]ar
< e M Ix(0) - x(t)lat = ce la ™S J(x) -x(6)]at,

where ¢ is an absolute constant. This proves that [Je(t) - x(t)] » 0 as
€ +» 0, and this holds a.e. in G,
The second part of (VII 3.iii) is immediately proved by taking K so
large that, if G' = G-K, then fG,lxlpdt < np. Then, by force of (VII 3.ii),

p

we have fG,IJexlpdt <7, and finally

(19l Pa)® = [+ )3 xx) Pae) /P

G &' K
< [2%f |J€x|pdt + 2P [ |x|Pat + [ IJEx-x|Pdt]l/P
G' G' K
1
< GPRYR L MR,

Here we have used the inequality la&BIP < ep(op_+sp) for all o, B real
which is immediately proved by taking y = max(|a|,|B|), and noting that

|| P < (20)F < 2P(|a|P+[p]").

19



Now let us prove the third part of (VII 3.iii), which requires a more
subtle argument. Let K be a compact subset of G made up of points of conti-
nuity for t in G. First x(t) is certainly continuous on K, hence uniformly
continuous, and given n > O there is some § >0 such that t, t' e K, |t-t'|
< &, implies |x(t)-x(t')] < 1. Moreover, for any t e K, there is some open
sphere U(t) of center t such that |x(t)-x(%)| < 7 for all t e U(E) N G. We
may well assume that each sphere U(t) has closure clU(t) © G and radius
< 5/2. Then finitely many of these spheres, say U(ti), i=1,...,N, cover K,
and hence their union is an open set Go with compact closure and K< Go c
clG < G. Let 3" = dist (K, bd Go), and let si be the radius of the sphere
u(t,), i =1,...,N. Let us assume 0 < e < min[a,'é/e,s",ai,i = 1,...,N].
Then, for every t ¢ K we have as before

[ (g ) (8)-x(t)] = |/ 3 (t-T)x(T)aT - x(t)]
G
< J 3 (6=7) | x(7)=x(t) | a,
q
where q is the sphere of center t and radius €. For every T € q we have
|T-t| <& <B/2. On the other hand T ¢ G, Te U(ti) for some i = 1,...,N,

and hence l’r-til < Si < 8/2. Thus |t-ti| < |t-1| + |T-ti| < 8/2 +§/2 = 5§,

with both t and t, points of K. Then Ix(t)-x(ti)l < 7 and
|x()=x()] < [x(v)=x(t )| + [x(t,)-x(t)] <n+n = o
We have now

| (3 x)(t)-x(t)] < an [ §_(t-T)ar = en,
q

20



and this relation holds for all t ¢ K and € > 0 sufficiently small.
The proof of the fourth part of (VII 3.iii) does not present difficul-
ties. Indeed, given m > O, we take R > O so large that f|x(t)|pdt < 1/2 when

the integration is performed in |t| > R/2. Now for 0 < € < R/, we have

[ |3 xx|Pat = [ + |7 x-x|Pat
€ € .
E |t] >38/4  |t| <3R/4
<2f J |x|Pat + 2P f | x| Pat
|t] > 3R/4 lt] >®/2
+ [ | 7 x-x|Pat.
t <3R/k ©

The first two integrals in the last member are < 1, and the last integral
approaches zero as € » O by force of the first part of (VII 3.iii) already

proved.

Remark 1. In the third part of (VII 3.iii) the hypothesis that the com-
pact set K is made up of points of continuity for x(t) in G is clearly
stronger than the hypothesis that x be continuous on K. The conclusion would

not be true under the latter.

Remark 2. We mention here that, if f ¢ LP(E ), L<p<+o, and h
femarx 2 v SP=

denotes any vector in Ev’ h = (h ,...,hv), then ”f(t+h)-f(t)“p + Oas h + 0.

1

In other words,

[ £(t+n)-£(t)|Pat > 0 as |n| » o.
E
v
The reader may consult, for instance, E. J. McShane [77q], p. 230, (42.4s).

This remark may yield a new proof of the second part of statement (VII 3.iii).
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We need the following properties of uniformity.

(VII 3.iv) If (f) is a family of functions f ¢ LP(G), 1<t<+ o, all zero

in E - G, and such that “f(t+h)-f(t)||p > 0 as h > 0 uniformly with respect
1%

to the element f ¢ (f}, then ||J€f-f||p + 0 as € + 0 also uniformly with

respect to the element f.

Proof. We assume first 1 < p < + », and we understand that the smooth
functions Jsf(t) are defined for all t ¢ EV. Hence, Jef(t) =0 for all t ¢

EV-G at a distance > € from clG. We have now

[ 15 £e)-2(8)Fae = [ [ §_(e=7)(2(v)-£(t))ar)Pa
E E

E
v
<J U3, (u)] £(t-u)-£(t)|aulPat
E E
v A%
- T u))l/Plf<t-u>-f<t)|<ae<u)>l/qdu1pdt
E E
FECEROIECRE. (6)1Pau) (/3_(w)au)? e
E E

v
The last integral is equal to one. Now, given 1 > Q, we can determine ¢ > 0
such that [If(t+h)-f(t)“p <7 for all |h| < o. Now we have, for 0 <e < o,

lo -6l < 7 5 (wau [ |2(e-u)-2(t)| Pat,

E
v 12

where ja(u) = 0 for all |u| >e. Thus, we may restrict the first integral to
the solid ball |u] <€ < o, and then for any |u| < € < g, we have

”f(t-u)—f(t)”p < 7. Thus,

22



)l/P -

-f]] < s (u)d
kaﬂg__ﬂf,aéu)u 1

E
v
for all 0 < € < 0, and any element £ ¢ {f}. The analogous proofs for p =1

and p = = are left to the reader.

(VII 3.v) If (f} is a family of functions f e Lp(G), 1<p< +o, all zero
in E - G, and such that “f(t+h)-f(t)“P > 0 as h » O uniformly with respect
to the elements f ¢ {f}, then, for every fixed € > O, the smooth functions

Jaf(t), t e Ev’ are equicontinuous in EV.

Proof. Let € > O be a fixed number. We assume first 1 < p < + . Let

K denote the maximum of the function j(t), t ¢ Ev’ of the first lines of (VII

3). Then ,Je(t)l < e for all t ¢ Ev.
Let 1 > O be any positive number, and let ¢ > O be so chosen that
-1 1
e’) /?

“f(t+h)-f(t)”p < n(k for all |h| < g and f ¢ (f}. We have now, for

Ihl < o,

|3 £(t+n)-9_£(t)| [ 3 (t¥n=T)e(T)aT - [ §_(t-7)£(T)ar]

E, Ev
= |J 3 (t-T)[£(T+n)-£(7)]aT|
EV
= 1] 3 (0)[£(t+h=u)-£(t-u)]du]
EV

P (3, )Y Pl(erne) <z (e-u)| (5_(2)Y G0
E €

IN

(3, ()] £(tmmn) (o) [PY /R (15_(w)aw) /P,

E, E,

INA

where jE(u) = 0 for |u| > €. Thus, we can restrict the first integral to the

solid ball |u| < €, where certainly l3 ()] < e 'K, and then
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|3 2(em)-3_2(6)] < (ke™IYP ([ [ e(ermen)-s(e-u) | aw)*/?

E
v

(Ks-v)l/P . n(K-lev)l/p

IN

for all |h| < 0, and the fixed value of €. Analogous proof holds for p = 1

and p = oo,

1
(VII 3.vi) If x ¢ Lpoc(G), 1 <p < + o, possesses generalized derivative y =

1
D% e LPOC(G) of some order o = (ai,...,ob), then for every compact subset K

of G and all 0 < € < &, where & = dist (K,dG}, we have

o Q
(D Jex)(t) = (JéD x)(t), t ek,
end J_x ¢ C (K).
Proof. For t ¢ K and 0 < € < ® we have

.

0% x)(t) = DX [ § (t-m)x(t)at = J (D3 _(t-T))x(7)dw.

€ t € t e
G G

Here ja(t-T) € C:(G) since je(t-T) = 0 for |t-1| > €, and the solid ball

| t-7] < € is completely in the interior of G. By force of (VII 2.2) we have

then

(Dobex)(t) = (-1)'0‘| é nge(t-r)x(r)dT

02 15 e 0(m)ar
G

(JEDOk)(t)

and this relation holds for t ¢ K and o < € < ® = dist (K,dG).

oly



loc
(

(VII 3.vii) If x e LT (@), 1 <p < + o, possesses generalized partial de-

q .
rivatives DX € L;OC(G) of all orders |a| < m, then for every compact set
K < G, we have ||Dozx--DaJ€x||p g > 0 8s € > 0+ for every |al] < m and compact
)

subset K C G.

L a
If X is made up of points of continuity for x and all Dx in G, 0 < Ial
o (0 .
<m, then J x > x, D'J x > D'x as € > 0 uniformly on K, 0 < la) < m.

A corollary of (VII 3.iii) and (VII 3.vi).

(VII 3.viii) If G is connected, if xl(t), x (t), t € G, are elements of

2

Lloc(G) possessing the same generalized first order partial derivatives a.e.

. . loc
in G, that is, Dixl, Dix e L (

5 G) and Dixl(t) = Dixz(t) a.e. in G,

i=1,...,v, then xl(t) = x,(t)+c a.e. in G for some constant c.

2

Proof. By (VII 3.vi) we see that for every closed interval I = [a,b] CG

and every € > O sufficiently small, (Jéxl)(t), (Jéx )(t) are of class C [a,b]

2

and have the same first order partial derivatives on [a,b]. Thus, (Jéxl)(t)

= (JEx2)(t)+cE for all t ¢ [a,b]. Since G is connected, the constant c. is

independent of [a,b]. By (VII 3.iii) we have ||J x_ =X + 0 X =X

0 a -+ 0. £ tant ¢ a - =
>0as € Hence c_ > ¢ for some constant c as € > 0, and Hxl XEHI,I
c meas[a,b], where ¢ is independent of [a,b]. Thus, X, = x2+c a.e. in G.

A corollary of (VII 3.viii) is that, if X5 X, € Lloc(G) possess general=

2

ized partial derivatives of all orders @, 0 < |a] < m (all in Lloc(G)), and
the derivatives of orders Ial = m coincide a.e. in G, then x -x2 =P is a

1

. . 1
polynomial in t ,...,tv of order < m.

2>



(VII 3.ix) If x € L;OC(G), 1<p<+w and y is continuous in G with com-
pact support Ky,c.G, with Lipschitzian partial derivatives of all orders
< m-1 (and hence bounded partial derivatives of orders < m in G), then for
any a with 0 < |a| < m we have
Q a a
[ (Dx)y dt = (-1)| | [ x(Dy)dt (VII 3.1)
G G

Proof. Let Go be an open set such that Ky<2 GO<: CIGb C G, and let
e_ = dist (G_,3) >0. For 0 <& <e_, then we have Da(Jsx(t)) = JéDO&(t)
for all t ¢ Go. On the other hand relation (VII 3.1) is elementary for x(t)
replaced by (Jéx)(t). Then

[ 5%y as = f @%@y a = (Y1 (@ 00Yat.
€ GO € £

Go Go

Now || (DO&)-DQQH + 0, |7 x-x||_ > O where the L_ norms are taken in G . By
€ P € p P o
- . Q |al a
a passage to the limit we obtain fG (D%x)y dt = (-1) fG x(Dy)dt, and
o o
either integral is equal to the corresponding integral in (VII 3.1).
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VII 4. SOBOLEV FUNCTIONS AND SOBOLEV SPACES Wg(G)
For any pand m, 1 <p <w, m=1,2,..., let us denote by W?(G) the set

of all real-valued functions x(t), t € G, possessing generalized partial de-

(04
rivatives Dx € LP(G) of all orders Q (al""’av)’ 0 < |al <m For every

X € W?(G) we denote by Hx”? the number

m (0 1 VII 4.1
O I R N (e &)
| <m G
As we shall see below W (G) is & Banach space with norm %™ This norm
p P
m m m
x| may be indicated also by |x or norm (|x|| in G.
I v I Bl
Anslogously, for any p and m, we shall denote by W? (loe, G) the set of

Q
all x(t), t € G, possessing generalized partial derivatives Dx € L;OC(

G) of
all orders O < |a| <m If G0 is any open subset of G with}compact closure
cl G0 in G, Gd: cl(i)c G, then every x € Wg(loc,G) has a restriction in Go
which is an element of Wg(Go)' Functions z € Wg(G) need not be continuous in
G, though we shall see in (VII 8) that this is the case if mp > v. Alsc, we
shall prove in (VII 9) certain "fine properties” of functions z ¢ W?(G)
which are mild continuity properties with respect to the single coordinates
xl,...,xv. Functions z € Wi(G) which are continuous in G are said to be ab-
solutely continuous in the sense of Tcnelli, or ACT in G. As examples of
functions z ¢ W?(G) which are not continuous, take z(x) = |x|°h, h > 0, for
xe G=[]|x| <1]. Then z ¢ W?(G) whenever (h +m)p <v, p>1, m>1l For

b, 2(x) = x| "Y/2

instance, for v = 2, z(x) = le-l/? belongs to Wi(G); for v

L.

belongs to w2

We shall say that a sequence of functions xk(t), teG k=12,...,

a7



converges in Wg(G) toward a function x(t), t € G, if x, X € W$(G), and
+x, D% » D% in L (C) foralla, 0 < |a] <m, that is, ||x_ - x|* » 0

% > 2% P ? T = - % P
as k » o,

We shall say that W?(G) is & Sobolev space, and that its elements x
are Sobolev functions.

From (VII 2.i) and (VII 2.ii) we deduce immediately the statements:
For v = 1, if x(t), a <t < b, is AC in any closed internal [a,b] < (a,b),
then x € Wi(loc,(a,b)). In particular, if x(t), a <t <b, is AC in [a,b],

1

then x € Wl((a,b)). Here a, b are finite.

For v > 1, if x(t), t € G, G C:Ev, G open, is LipschitzianinG, then

X € Wi(G) if G is bounded, and x ¢ Wl(loc,G) if G is unbounded.

1

(VII 4.1) Wg(G) is a Banach space with norm qug.

Proof. If N is the total number of (distinct) partial derivatives of

order @, 0 < |a] <m, then obviously

Wz(G) c Lp(G)x...pr(G) (N times).

A1l we have to prove is that W?(G) is complete. Indeed, if [xk] is a Cauchy
m m
sequence in W (G), hence |x. - x || + O as h, k + », where the norm |x||
P k h'p )Y
Q Q
is defined by (VII L.1), then ||xh - xkllp >0, ||ID X, - kallp +0ash, k>o
in LP(G), for every 0 < |a] < m. Since the space Lp(G) is known to be com-

plete, there are elements x ¢ Lp(G),”y

o€ LP(G), such that X T X and

(0 Q
D'x, * ¥y in LP(G), for 0 < |a] <m. All we have to prove is that Yo = DX,

o<lal <m



Q 0]
Now X, > X in LP(G) certainly implies fG X, Do dt + fG x Do dt
(0]
for every fixed ¢ € C:(G) and any |0of <m Similarly, D X * Y, in LP(G)

a
. D .
certainly implies fG( )ﬁ{)tp -> fGyoc @ dt. Since X € WI;(G) we have
o o' o
fG(D xk) ® dt = (-1)' 'fG X, (D@) dt, k=1,2,..., |of <m,

and hence, as k + », we have also

a a
Jovgeat = (0% x(0%) at, o <m

That is, ¥, = Dax, 0 < |a] <m We have proved that x € WJ;(G) and that
wm( G) is complete.

1Y

(VII 4.ii) (Leibnitz rule in Sobolev spaces). If x € Wg( G) and y € w’:( G),
l/p + l/q <1, and 1 <N <+ o is so chosen that l/p + l/q = l/h, then the

: (04 (0 (0!
product xy € w;n(G) and D (xy) = ZB( B) ]Fx D '@ a.e. in G.
A corollary of (VII 3.viii).

(VII L.iii) If x e W:(G), y = Dax, z = DBy, 0< |l <m, 0<Z 18] <m,

a+p .
0<|a+p| <m, thenz =D x a.e. in G

A corollery of (VII 2.ix).

The following criterion is often used.
(VII k.iv) Let y (t), t € G, O < |a| <m, be given functions Yy € LP(G),

l1<p<+x, let R, k=1,2,..., be a sequence of open subsets of G with

k,
R SRy RkT G as k > «, and let Xk(t), te R k=1,2,..., be a sequence of



functions x € W;(RX) such that Hyd - ﬁxxk”p R, >0as k +o, 0< |a| <m.
)

m 0
Then y = y_ is an element of WP(G), and y, = Dya.e. inG, 0< |a] <m.
A corollary of (VII 2.x).

Let us consider now the class L of all functions x(t), t € G, which are
Lipschitzian in G together with all their partial derivatives Dax,
0<|al <m -1, and hence possess bounded partial derivatives of order m

a.e. in G. Then L is certainly a normed space with the norm Hxﬂz defined by

(VITI 4.1). We shall denote by Hg(G) the completion of L with respect to the

norm | x| We shall prove in (VII 10), under mild conditions on G, the basic

m
p.
identity

w’;(s) = H’;(G). (VIT b 4)

A1l we can deduce from (VII b.1) is that H(G) = W(G) and this is true for
P P
every open set G C EV. Indeed, L C:WS(G); hence, the completion HS(G) of

L, certainly is contained in Wﬁ(G), or H?(G) C:W;(G).

L with respect to the norm Ig, being the smallest complete set containing
Anslogously, we may consider only the class Lo of all those éiements

x of L having compact support Kx C G, We shall then denote by Hgﬁ the com-

pletion of Lo with respect to the norm Hxﬂg. We shall prove in (VII 10),

under the same mild restrictions on G, that HZP(G) is the subset of all those

functions x ¢ W?(G)"whichare zero on the boundary" oG together with all

their partial derivatives of orders 0 < |a] <m - 1, according to the defi-

nition of boundary values we shall discuss in VII 7, 8.
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Relation (VII 4.4) is easy to prove for G a half plane, say the half

1

+ 1l
plane EV of all t = (t ,...,tv) witht~ > C. All we have to prove is the

following statement:

+
(VII b.v) Ifxce wz(Ev>’ then there is a sequence X, k=1,2,..., of

+ '
functions x_e w’;(Ev) n C°°(Ev) such that ||x - x”g +0as k + .

To prove this statement we first denote by h = (h} 0,...,0) a vector

1
with h~ > C, and we note that, if y(t) = x(t + h), then y ¢ Wr;(F) where
1 +
F is the half space t~ > -h; hence, also y € WJ;(E]-). By Remark 2 in (VII 3)

a Q
we know that ||y - x|| ++>0, Dy -D x| * +0 as h1 + 0+ 0L lal <m
.k DE ==
Thus, it is enough to prove our statement for y. Now we take a function

1 1

Ve C°°(EV) with the following properties ¥(t) = y(t ) - © <t~ <t w,

\y(t]') = 0 for t' < -5h1/u, \y(tl) =1 for t' > -hl/u, 0 < ¥ <1 otherwise. We

1
define now z by teking z(t) = 0 for t < - h, z(t) = y(t) v (t) for £t > ol

Now z is defined in Ev and we have to prove that z has generalized derivative
a Q
Daz in E given by Y = O for tl < -hl, Y = ZB(B) DBy D '% for tl > -hl,
1%

) (Py) (02 P)p at,

z(a
F BB

)¢ are actually in CO(F). Then

. m -
0< |al <m Indeed, if ® € CO(EV), then vaY ®dt = [

where all functions (Da-B

[ 8| a-p :\
vaya at iFY ZB(-l) (a) DB((D v)e) dt
= [ zgy(-l)'“(?)(i) Do Da‘yﬂ dt,

where ZB ranges over 0 <P < and 27 over 0 <y <P, For y =Q we have

a a
y =B = 0 and the corresponding term in bracket is (-1)' |1|; (D). All other
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%E o

terms in bracket have sum zero, because of the identity ZIB(-l)IB'(B a

Thus

proa = (0¥ @y,

o
for all @ ¢ C:(Ev)’ and we have proved that Y = Dz in Ev* 0<|al <m By

(0 o
force of (VII 3.4ii) (fourth part) we conclude that ||D (Jéz) - zHP 0

E*)
>y

a Qa
as € >0+, 0<|al] <m In particular, we have ||D (Jéz) - Dz gt ” 0 es
2
1%

€ - 0. We can now easily choose hi and sk sufficiently small, and take

xk - J8k

VII 5. EMBEDDING THEOREMS IN Wi(E:)

The Sobolev embedding theorems are particularly easy to state and prove
for Sobolev functions in a half space. We shall introduce below (VII 9)
the concept of regions G of class K in Ev’ and then the embedding theorems

will be translated immediately in terms of Sobolev functions x € Wg(G) in

a region G of class K.

1 +
In the T-space E , t = (t,...,t"), we shall denote by E, the part of E
1% v

with tl > 0. Then E: is an open subset of EV.
We shall often use polar coordinates in Ev, say (r, o), r = |t] >0,
w = (wl,...,wv) € S, where S is the unit sphere |t| = 1. We denote by st
the half unit sphere [t|(t) = 1, tl 2> 0], by dw the usual area measure on S
modified by a constant factor so that fS +dw = 1. We have then, for every

L (E)
X € l(V’
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4 -1
jE+ x(t) dt = fb oofs+ x v’ " drdw.
v

+ +
(VII 5.1) Let x(t), t € E , be an arbitrary function x € Lp(Ev)’ 1<p<+o,
v
1
with compact support, say contained in the half solid ball [tlt > 0,
|t| < R], and possessing generalized first order partial derivatives Djx,

+ :
j=1,...,v, in E of class LP(EV). Then, there are functions h (t),

J
+
), h, € Ls(E ) for every 1 < s < v/(v-1), hj of compact
3 v

< 4+ < +

+ 00
teE,h e€C(E
v J

support [t|tl >0, |t| <4 R], such that

= v X - .e. .
x(t) = - Zj=l fF:(t)(D. )(T) hj(T t) dt a.e (VII 5.1)

+ +
and where Fv = Fv(t) denotes the part of the T-space where Tl > tl. For

v=1we have h =1 for 0 <T <4 R and (VII 5.1) reduces to

x(t) = - [t "Dx(1) b(1) o1 = - f:RDx(T) ar.

Proof. Let b(r), 0 <r < +w, be a function of class C on 0 <r < + w,
equal to one on [0, 5R] and zero on [6R, + »)]. Let ¢ (t), t ¢ E:, be any
function ¢ ¢ C:(E:) with compact support x contained in [tlt1 >0, |t] < er].
It is convenient to extend ¢ to the whole t-space by taking @ = O in EV-E:,

00

t ,
so that © so extended is now in C (Ev)' For every t ¢ E_ with |t] < 2R and

o

wes we certainly have (T - r®) = O for r > 4R; hence
1% (3/3r)9(t-rw}) b(r)dr = [° (3/3r)p(t-rw)dr = §(t).
+ o0 4R

+
Then, by integration on S we have also
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[ 4t 2 o(T-rw) b(r)dr
S + o ar

P (w)

+ o Vv
fs+@w !, Zia (Djw)(t-rw) wjb(r)dr

-v+l v-1

Y ) r “dr

+
= I fs+fo (D.@)(t-rw) (w; b(r)r

= = [, (0@)(t-Dh(r) ar,

-yv+l

+
where hj(T) = ah b(r)r , TE Ev, j=l,¢..,v. As we shall see below

+
h, € L_(E ). By Fubini's theorem we have now
v

I = é: x(t)p(t)dt = Zia é: x(t) dv é: (Djw)(t-r)hj(T)dT
= Iia é+ hj(T)dT é+ x(t)(DJQ)(t-T)dT. (VII 5.2)

Note that ¢ has compact support certainly contained in a slab

1 + 1 v +
0<a<t <b<+w of Ev' hence, for every fixed T = (1 ,...,T ) of Ev’

Tl > 0, and the function 9(t-T), as a function of t, has compact support

contained in the slab defined by a < tl - Tl <b, orat Tl < tl <b + Tl,
with a + Tl > 0. Thus, ¢(t-T) as & function of t, has compact support in

+
Ev, and (VII 5.1) yields

H—
]
'

é+ hj(T)dT £+ Djx(t)@(t-T)dt
1% v

hj(r) Djx(t)Q(t-T)det

and the latter is a double integral which can be restricted to the part of

+ + 1 i 1 1l
Ev X EV where t~ - 77 > O (and of course t~ >0, T > 0). By writing



o+
1
A
(]
‘E
o+
1]

v, then the same double integral is transformed into

2oy Iy (v - W) Dx(v)y(u)dudy,

H
I

where now the integration is performed in the part of the uv-space where

1
ot >0, v 20, W ﬁl > 0. By Fubini's theorem we have now

I = -z f .,

=1 Djx(v)hj(v-u)dv o(u)du.

uck veE |, v1>u1
v v -
+
By replacing v by T and u by t, then we have t ¢ Ev, TeE, Tl > tl. If for
P v b

1

+ + +
any t € EV we denote by Fv = Fv(t) the part of the T-space where Tl >t7,

then by Fubini's theorem we have

é+ x(t)p(t)at = é+ -ZJ=1 £+ DJX(T)hj (t - t)dr o(t)dt.
v v 1%

This relation holds for every ¢ € C:(E ) with compact support in

[tltl >0, |t| < 2R]. By force of (VII 2.iv) we conclude that

x(6) = -5, £+ Dx(m)hy (r-t)ar

v

at least for almost all t with t. > 0, |t|] < 2R.

+
It remains to prove that hj € IE(EV) for every s with 1 < s < v/(v-1).

Indeed
S + o -v+l S v-1
[, 1n(8)] at = [ [ |a>J. b(r)r 7| r Tdr d
E S o
v
LR - -
¢ R D)

(o}

and (v-1)(1-s) > -1 reduces to the assumed inequality 1 < s < v/(v-1).
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Note that in the integral (VII 5.1) we may assume Tt >0, |1| < 2R,
1 1
T -t >0, |T-1t| <2R Inanycase,0<r =T -t| <R
+
(VII 5.ii) If1<p<+w, if x ¢ W;(EV) has compact support contained in
+
the half solid ball [tlt1 >0, |t| <R], then x € Lq(EV) for every q,

1<q<+w, with 1/qg > 1/p - 1/v, and there is a constant, K depending only

on R, p, 4 such that

v

<KZ D . VII 5.

Iy <2 o, (V1T 5.3)
+
In particular for p > v, qQ =, x € L&(EV) and
-

ess sup |x| <K I, D.x VII 5.4

plxl <x 2 ol (V1 5.1)

+ +
In other words, if Wp R(Ev) denotes the set of all elements x ¢ Wg(EV) with
)
compact support in the solid half ball [tltl > 0, |t| <R], then the identity
+
transformation carrying an element x eW? éﬁb) into the same function x as an
)
+ + +
element of L (E ) is & bounded map W _(E ) » L (E ). We shall see in
q v PR v q v

(VII 5.v) that the same map is also compact (for p > 1, and even for p = 1

under restrictions).

Proof. First, let us assume 1 < p < +», take q <w ., and define p' by

means of l/p + l/p' = 1. Note that, for A = v - 1, we have
2e = (v/Q) - (n - v/p') = 1+v/a-v/p>0

Also, note that p can replace g in the relation 1 /g > 1/p - 1/v* hence, we

1

-v+ -\
can assume p < q. Then, for r = |t-t|, we have lhjl < Kr = Kr  for

some constant K, and then, by (VII 5.1), we also have
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Ix(+)] <X ZJ N f( |p/q E- v/)( lp(l/p 1/q> Ce v/P) ar,

(VII 5.5)

where Djx = (Djx)(T), r = |t-7], and the integration is performed in the

solid ball |r| < 2R If we take N = 1/q, N, = 1/p - 1/q, XB = 1/p', we have

By Holder inequality for three factors we

1/q 1/p-1/q
| x( 1<KZ [w x| P w%%} DDﬂ%J

l/p
E}'V+€p di] , (VII 5.6)

where again the integrals are taken in lrl < 2R. Since -v + €p' > -v the

A, N, A >0, N +N_+ = 1.
1’ "2’ 73 s | 2 K} 1

have then

third factors are below a fixed constant. The second factors are also

- 1
finite and equal to HDij; p/a . By taking powers q in (VII 5.6), by integra-

tion in G, and interchanging the order of integration, we have

1

- -V+E
|x(+)]%at < x z;=1 D ”q Crp.xPat 7V ™

/
r<R r<R r<R
Since -v+eq > -v the last integral is below a fixed number. By Torelli's

theorem then |x(t)|q is L-integrable in G, and by Fubrini's theorem the

transformation above are valid. We obtain now

[ x(t)t at <k zr_, D €2
r<R J= J P

for some constant X", and (D5.4) follows.

If v<p, q =x, then we take 26 = 1 - v/p > 0, and instead of (VII 5.5)

we write
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- 1
|x(t)] <k =" 2e-v/p' g

and by HOlder inequality

- J

1/p 1/p'
-v + 2ep’
[x(t)] <K z‘f_l Q|Djx|pd'r [r v P d—r> .
The argument is now similar to the one above.

Let us consider the case p = 1. Again we take A = v-1. Finally, the

reletion 2 = 1 + v/q - v/p > 0 reduces to 2e =1 + v/q - v, and

|x(t)] <K Z;=l f (!Djxll/q r2€_v/?> <!Djx|l-1/q) dr.

If we take A = 1/q, N, = 1-1/q, we have N >0, A

L >0, A, +A

> 1 5 = 1, and,

by Holder inequality,

v B -v+2 1/q 1_1/q
| ()] <K Zj=l [{|Djx|r %ﬂ [E'DJXI%E] .

As before, by taking powers q, by integration in r <R, and interchenging

the order of integrations, we have

-v+2eq

JIo)l% < 2 Inadi™ 7 I elar fr7 "y,

r<R J= r<R r<R

where -v+2€q > -v. The last integral therefore, is below a fixed number,

and the estimate above shows, by force of Tcnelli's and Fubini's theorenms,
q +

thet |x(t)|* is L-integrable in Ev' Finally,

q n Vv q
[, Ix(t)]%at < x 2 ||1)J,x||1

E
12

and (VII 5.2) follows for p = 1.
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+
(VIT 5.4ii) If v>1,1<p<+eo, m>1, if x¢ WE(EV) with compact support
+
contained in the solid half ball [tltl >0, [t] < R], then x ¢ Lq(Ev) for

every 1 <q < +« with 1/q > l/p - m/v, and there is a constant K depending

only on R, p, v, m, q such that HxHq <K ZIBI - ”DBX| Also, every gen-

p.
o
eralized partial derivative D x of order O < || <m - 1:is of class Lq(E+)
- - 1%
for every 1 < q <+« with 1/q9 > 1/p - (m-|e|)/v, and there is & constant K

depending only on R, p, v, m, @, @ such that
a
Dxjj <KZ ﬁBX , O0<|al <m - 1. VII 5.
I, <x 2 _JPxl . o<l <m (Vi1 5.7)

+ +
In other words, we have here bounded maps Wg R(Ev) - Lq(Ev) as mentioned
after statement (VII 5.ii), and, as we shall see further; these maps are also

compact (for p > 1 and even for p = 1 under restrictions).

Proof. If € = 1/q - l/p - m/v, let p0 =P, P ,...,pm = q be the num-

1

bers defined by
1/ps+l=l/ps-l/V+€/m) S=O,l,...,m-1.

o
Then, by (VII 5.ii) we conclude that all derivatives D x with || = m - 1 are
a
in Lp , all derivatives D x with |®@| =m - 2 are in Lp , and so on. Thus x
1 2
isinL , or x € Lq’ as stated. The corresponding statement holds for the
m

derivatives since € > O above can be any positive number. The remaining part

is & corollary of (VII 5.ii).

+
(VIT 5.iv) If1<p<+w,y>1, m>1, mp>v, if x ¢ W:(EV) has compact

support contained in half solid ball [tltl >0, |t] <R], then x and all
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Q
partial derivatives D x of orders O < |&| <m - v/p are continuous in the
+
closure of EV. Also, there are constants K, depending only on R, P, 4, m, v,

a, such that

a
Dx(t)| <K Z|B| i} m”ﬂBX”p’ O<|a| <m-v/p, teecl E:.

(VII 5.8)

Also, there is a function x(h) >0, h = (h_,...,hv) ¢ EV, depending only on

1’
+ +

R, p, 9, m, v, &, such that, for a8ll t € Ev’ t +heE, we have
v

|D x(t +h) - Dx(t) | <k x(h) HIPxﬂ (VII 5.9)

“lp| -
+
This is Sobolev's imbedding theorem for WE(EV). It will be translated
in terms of arbitrary regions G Ev (of class X) in (VIT 11). This state-
a
ment shows that, not only x and all partial derivatives D x with O < |a|<:m-v/p
+
are continuous on the closure of E , but also that the identity transformation
v
+
carrying an element x ¢ W?R(E ) into the same function X, or into its deriva-
v
. Q ) +
tives Dx, 0 < Ial < m-v/p, as an element of C, is a bounded map W?R(E ) >
- v

C(clE ). Moreover, the same map is compact. Namely, the functions x ¢

m
W
PR(

< +< +

) with Hx“ < M for some constant M, certainly are continuous and equi-
. . + . . . (04
continuous functions on cl E (and so are their derivatives Dx, O < lal <

m-V/P.

Proof of (VII 5.iv) For any multiindex g = (ai,...,av) with 0 < |a| < m-v/p.

0<|a] <m-1, let g = Px. Then the , first order partial derivatives
ng, j =1,...,v, are derivatives of order |a| + 1 <mof x. If |a| <m - 2.
then D.g ¢ Lq(E:) J=1,...,v, for every 1 < q < + e with 1/q > 1/p -

(m - la| - 1)/v. If1/q' +1/qa =1, and we take q > p with 1/q > 1/p -

Lo



(m - |a] - 1)/v, then

1-1/qg<1-1/p+ (m=- o] -1)/v

(1/v)(m = fee] - v/p) + (v - 1)/v,

1/q'

where m - lal - v/p > 0. Thus, if we take q > p with l/q larger than and

sufficiently close to 1/p - (m - |o| - 1)/v, then 1/q' > (v - 1)/v, and
1<q' < (v=-1)/v
If |@] =m - 1, then |Ja| + 1 = m, and ng € Lq(Ev) forq=7p, j =

Again, for 1/q' + 1/q = 1, then

"

1-1/p=1-1/p+ (m- |a| +1)/v

(1/v)(m - Jee| - v/p) + (v - 1)/v,

1/q' =1-1/q

and again 1/q' > (v - 1)/v, and 1 < q' < v/(v - 1). In any case we have

o g Ve

determined q, q' > 1, with 1/q + 1/q' with 1 < q' < v/(v - 1), and this shows

that q > 1.

+
The functions hj are known to be in Ls(Ev) for every 1 <s < v/(v - 1),

+ +
hence hj € Lq,(E ), and on the other hand ng € Lq(Ev)’ for the chosen

+
@ >pand 1/q' + 1/q = 1. By (VII 5.1) we have now, a.e. in E,
v
g(t) =3 ., J, D.g(T) h
S NORE J
and by HOlder inequality also

/ 1/q v \1/a!'
la(®)] <23, k#wfuon> Qg%umnqdﬁ
v Vv

14
K Z, D,
Yo Il

(t-t)dT,

By force of (VII 5.iii) we have then

o/ 1
[Px(6)] = lee)| < ¥ 25 o Ik

This proves relations (VII 5.7).

+
For t ¢ E and every h = (hl

by

+
,..,h’) ¢ E witht + h e E , we have now
v v



gt + 1) - a(t) = -2 1E Dja(r)h(T=-)ar - [ Dyg(F)n (r-t)ar,

. J= + + J
+
 (t+h) P (t)
+ +
F (t) =E’|T€E, 71>t1], F (t+h) =E|T€ E, > t1+hEI.
v 1% - 1% v -
Let El = min [tl, t1+ h1 P il]:=max [tl tl + hl], and let Hl’ H2 be the sets
+ - = + =1 1
H1=[t|teEv, tlgtlgtl] H2=[t|teEv.t <t]. Then

lg(t + n)-g(t)] <= | Ty D 8-l

(3. +J_ ).

' v v
£ [ Dt [h.'r-t—h -h,r-t]dr=z, __ _
J=1 ,Hg Jg( ) J( ) J( ) J=1 " j1 Jo

We have now
o \Y9 o \ M4
|Jj2| _<_(£+|ng(1')| dT) (P{+|hj(r-t-h) - hj(T-t)l dT)
12 v
<Ipgell In(u-n) - n ()l = 11D gl %, (h).

By Remark 2 in (VII L4) we know that xi(h) >0as |h] 0, j=1...v. To

estimate le we may well observe that we can replace the domain of integration

H by the subset H_of all points t ¢ Hwith |t] < 2R. Then |H0| < V1 gt

:1_51

(% 2v-1 Rv-l'

) < h|. Also, we shall take numbers s' and A so that
Q' <s' <v/(v-1), x >1, 1/A =1/q' - 1/s'. Thens'>1,q >1, A" >1,
1/N +1/q + 1/s' =1, and by HS1der inequality we have

\ 1/x . 1/q s' \1l/s'
1741 < (fH 1 d'r> <IH I2,8(7)] dr) fHolhj(r-h)! at

(o] o

sl gl 1n | <Ipo w2t # ) A,

L2



These estimates for le and Jjg’ together with (VII 5.1ii) yield (VII

5.8). Statement (VII 5.iv) is thereby proved.

Remark 1. Statement (VII 5.iv) is certainly not valid without the as-

sumption mp > v. For instance, for v=1, m=1, p =1 the AC functions

xk(t), t € I =1(0,1], defined by xk(t) =1 -kt for 0 <t < k'l

=0
» % (t)
-1 | -1 .
for k ~ <t <1, are all in Wl(I) with llxu1 = (2kx) 7, ||x ,!1 =1, k=1,2,....

Clearly, they are not equicontinuous on [0,1].

+
(VII5.v) Ifv>1, m>1, p>1, if x ¢ w’;(Ev) is any function with compact

support contained in the half solid ball [t|t1 >0, |t| < R], then there are

1

+
functions X(h) >0 h=(h ... h") e E with X(h) + 0 as |h| > 0 depending

only on R v, m, p, q, such that
(o o
D x(teh) - D x(t < x(h) & I? , O0< lal <m -1 (VII 5.
ID"x(teh) x( )Hq_x( ) |B|=m” XHP <lal <m (VII 5.10)

provided, 1 < g <+, 1/q9>1/p - (m-|¢|)/v and either p >1 or p > 1 and
la] <m - 2.

Forp=1, |¢] =m -1, letw_ (o) o > 0, |IB] = m denote the supremum

B
+
of [, IDB x(1)|dt for all measurable subsets X of E_with |X| < 0. Then there

are functions x(h) > 0 as above and constants K17 K_ depending only on R, q

2

v, m, such that

1P| +x

Q a
|ID"x(t+n) - D X(t)“q < X(h) 1 1 =|B|=m

|8|=m ah(K2|h|),

(VII 5.11)

provided 1 < g < +«, 1/q9 > 1/p - (m-|a|)/v =1 - 1/v.
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0, 1/¢ > 1/p - 1/v and also

Proof. We assume first p>1, m=1, &

1 v 1

h=(h,... h) with i > 0. Take 1/p' + 1/p =1, n = v/(v-1) and note that

1/q + 1/p' - 1/n =1/q - 1/p + 1/v > 0. If we define € by taking
e(1/qa + 1/p') = n(1/q + 1/p' - 1/n). then we see that O < & < n, and that

(n-¢€)/a+(n-¢€)/p' =1. From (VII 5.1) we have

x(t+h) - x(t) = - [f D X(T) h (T-t-h)dt - [ DJX(T) J(T-t)dT],
F (t+h) F (t)
+ +
Fv(t) = [1]71 € Ev’ > tl], F (t+h) = [1]T ¢ Ev, Tl > tl + hl].
Z v zZ
-1 1 = ‘
Let t7 = min [tl, tl + h'], tl = max [tl, tl + hl], and let Hi, Hé be the sets
+ - = + =
H = [t|t e E, tl <l < tl], H =[t|t e E, < tl]. Then
1 y == 2 v
(t+h]|-x(t <% (1) h (T-h)dT
[x(esnlx(6)] <77 | [ Dx(e) b (rmar]

21y (3 (004 (1)),

Ty | f () Thy(t-t-h) - n(7-t)]dr|=
In in the range of integration H1 can be restricted to the set Ho of all
points t ¢ H with |t] < R]: hence, |H0| < thll < K|n| for some constant K.
Note that l/q > l/p - 1/v, that we can well assume 1 < p < q, and that .
. A A A
a relation 1/q > 1/p - 1/v must hold for some number p, 1 <p <p < q. suf-
ficiently close to p.

As in the first part of the proof of (VII 5.ii) we take 1/p" =1 - 1/6,

N=v-1, 2= (v/a) - (A -v/p") =1+v/qg - v/p>0, and

A

r/a p(1/p-1/a) ’
3,0 1< £ (Il 2577 (1o (=)
(o}

Ly



If we take A_ = 1/q, A_ = 1/p - 1/q, A

1 = 1/p", we have A

A, A\, >0,

2 3 12?3

Mot Myt kB = 1, and by Holder inequality also

A 1/q A 71/P-1/q
B3 (t)l‘:[} |Dx| ¥ r ™" {? ID.x|pdﬂ
Jl g J J

O HO

v —1/p"
[r v¥ep dt )
HO

where |t| < R. Since -v+gp" > -v, the third factor is below & fixed con-

stant. By taking powers q, integrating with respect to t in Itl < R, and

noting that then r = |t-1| varies in [0,2R], we have
A
1 5 73(1/p-1/a)
[ 13 (e)"as <k 1] |D.x|"ar
t<r Y Hy, ¢

A
[ |px|Par rV %,
H, r <2R

Since -v +teq > -v, the last integral is below a fixed number, and thus

| b /%
I lo e)fae <k [ |px|aq .
t<r ¢ g Y
= 0
Again, by Holder inequality with exponents M o= /D, M, = 1-5/p, Mo Ay >0,
we have
A a/p
/ |J.l(t)|th_<_K'l'|HO|q(l/p 1/p) [ |px|Par ,
t<R Y B

and finally, since |H0| < K|h|, also

1/ . 1/p-1
j lel<t>|qd«> <xg ol nl P,

|t] <R

We shall now consider sz' We have
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|Jj2(t)l < Hf2|DJ.x(T)| |hj(T't'h)‘hj(T-t)|dT
</ (IDJ.X(T)IP/q Ihj('r-t-h)-hJ_(T_t)I(TI‘S)/q

Hp

(lex(T)|P(l/p-l/Q) (I, (3=t-h) - b (5-5)] (=€)/2"y 40

If we take A_ = 1/q, N, = 1/p-1/q, A

1 = 1/p', we have A\

5 10 hor Ry >0,

A, PNt A, =1, and by Holder inequality with three factors, also

1 2 3

lo. (&) < (] IDJ.x(T)IP |hj(T-t-h)-hj<1-t)|"'€d§l/q

je H

2

] lD.x(T)IPdT>l/P'l/q<f |n, (1-t-h) - n_(1-t)] "Ear) /2",
H J H J J

2 2

The second factor is equal to HDjx“éq-P)/q.

Since 1 = v/(v-1), and hj €L
for every s < 1, we see that the last factor is finite. If we take T-t = u,
the last factor is < th(u—h)-hj(u) “g?;s)/p'. Thus, by taking powers q and
integration, we have, for some constant K,

114 q-p ) -n (o)) (1-E)/P
lt|f<R |9,5(6)]"at < K, Il 7 flny (u-h) - g (il 2

[FIDJX(T)IPdT J 'hj(T-t-h)"hj(T't)In-edt.

EV EV

If we take u = 7=t in the last factor we have

q '
I 13,01 7at < k) [l xdl il (u-n) - b, ()]

l(n-s)(q/p’+l)
|t| <R e '

Since n = v/(v-1), and hj € Ls for all s < n, we see that the last factor is

a function Xj(h) with Xj(h) >0 as |h| » 0, and X depends only on R, D, v, q.
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1/p-1/p

By taking X(h) = max[Ki" (| + Ké Xj(h)] we have relation (VII 5.9),

and statement (VII 5.vi) has been proved for m = 1, p > 1.
Let us assume nowm = 1, @ = O, p = 1. Hence, q is any number such that

1/a > 1-1/v, or 1 = p < q < v/(v-1). Concerning J _ we have the estimate

J+

5,0 < T D ()] = a

H,

7 D) Y2 ) (1o ()
H

[{ IPg<(o) r('V+l)qdf]l/q [jf |D3x<f>léf]l'l/q.

J
H, H,

o

IA

By taking powers q and integrating on [|t| <R, t' > 0], we have

-1 ’ -yt
I 1o 1% <[1 [oxtlas] [ 5 x(r)far [ 2 l)qa{}.
|t| <r ¢ Ho O 5 r<2R

Since g < v/(v-1), hence (-v*+l)q > -v, the last integral is below a fixed

constant, and

SNEMOILIESS [? lnjx<1)|df]q

|t| <R H,

<k Lo (lr Y,

1/ :
gtf lel(t)ith> Posk) o).

| <R

Concerning Jj2 we have the estimate

T



|3,,(8)] < }{2leX(TH Ihj(’r-t-h)-hj('r-t)|d7

< 1 (x0T |n (r-ten) 0 (1-6)) (|0 x(0)| 7Y Dar
Hy J J J

< [1Ipx(7) |h.(T~t-h)-h_(T-t)|qul 1/a

< 5 5 ;
|
[ [ |p.x(t)|ar 1-1/a
LI

and, by taking powers q and integration, also

[ 1o )%t < [f[px(v)er|

|t] <R I Hy ’ ]
Wi |D x(1)|at [ |h,(T-t-h)-h,(T-t)|thJ_
H, J r <2R J J

+
Since hj € Ln(Ev) for n = v/(v-1), and 1 < q < v/(v-1), we see that hj €
+
L (E and hence X .(h) = ||lh.(u-h)-h _(u -+ 0 as |h| » 0. Thus
L) (8) = lIn (a-1) - (@) = 0 s 1] :

a.\l/a __ 1/a
,t{qlJJ?—(t” at) 7 <x (n) o

From these estimates for J,

i and Jj2 we immediately obtain (VII 5.10) for

m=1, =0, p=1. So far we have proved (VII 5.v) for m = 1 and p > 1.
Let us assume m > 1 and O < |a| <m-1l. Let g= DOQ, and note that the

first order partial derivatives ng, j=1,...,v, are derivatives of order

|a|+1 of x. If |a| = m-1, then |a|+l = m, and we can apply (VII 5.v) to

g € wll)(E:). Theﬁ either (VII 5.9) or (VII 5.10) hold according as p > 1 or

p=1. If |a] <m-2, then ng € LE(E:) for every p with 1 <P < + » and

1/p > 1/p - (m-|a|-1)/v, and we can take D to be > 1 and as close to 1/p -,

+
(m-|al-1)/v as we want. We now apply (VII 5.v) to g e w%(Ev) with P > 1.
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le(t+n) - g(0ll < x(n) ZL_) IDell5

for every q with 1/q > 1/P - 1/v. Thus, for every q with 1/q > 1/p -

(m-|a|)/v and by the use of (VII 5.9) and (VIL 5.iii) we have

10%(t+n) - D% (¢)]| < x(n) Z 107

7l =laln
<x(h) K Z|B|==m HDPXHP.

Statement (VII 5.v) is thereby proved.

Remark 2. Relation (VII 5.10) of (VII 5.v) is not valid for |a| = m-1,

p = 1, as the following example shows. In other words, the exceptional case

p=1, |o] = m-1, for which we have proved (VII 5.10) instead of (VII 5.9)

cannot be disregarded. In the example we consider below we have m = 1,
p=1, =0, v =1, and hence we can take for q any number q > 1. We shall

denote by x (t), 0 <t <1, k =1,2,..., the usual piece-wise linear func-

k

tions which converge uniformly to the ternary Cantor function x(t), O <t<

1, on the interval [0,1]. Namely, if I , I, I ,I_,1I

11’ IEl’ I22 31’ T327 T3z’ T3l

I .+.,L k-1 are the intervals of constancy of x of lengths 1/3,

k1’ Tio’ k2
k
1/52,...,1/5 , respectively, let xk(t) = x(t) for t in these intervals, and

. . k .
let xk(t) vary linearly in the 2 complementary intervals Jkl’ Jk2""’Jk2k'

k k
Then x, has a variation jk==l/2 oneach interval Jeg? S=1,00.,27, all of

: k
length 1/3". Then each xk(t), 0<t<1l, k=1,2,..., is absolutely contin-

uous and nondecreasing in [0,1] with xk(o) = 0, x, (1) = 1, hence ”Xk“l <1,

¢
“xé“l = |x(1) -x(o)| = 1, for all k. If we define each xk(t) for t < 0 by

L9



1 . .
taking xk(t) = 0, then each x, is of class Wl(E) where E is the half interval

k
('°°; l)'
. -2 . . k
For any given h, 0 < Ihl < 3 7, let k denote any integer with 1/3 < lh].
Then the displacement operation t » t+h takes each point t ¢ Jks = [a, B]
into a point t+h either t+h > B or t+h < . Thus, each t of the interval
. k+l ' .
Jis concentric to Jks and length (l/B)IJkSI = 1/5 is mapped into an interval
either at the right of B or at the left of . In any case we have lxk(t+h) -
. k . k+1
xk(t)l > (1/3)5, = (1/3)(1/2") for all t « gy with ]Jksl =1/3 . Thus,

k
for any k with 1/3 < |h| we certainly have

e Y O] N Ca R C R DR

571 5=(kt1)/q (1-1/q)k

Let us prove that it is not possible that

e (e0) - x (O] < x(b),

-k -2
for all k with 3 = < |h|, for some function x(h), 0 < |h| < 3 °, with x(h) > 0,

x(h) > 0 as lhl + 0. It is enough to prove that it is not possible that
-1 _-(k+l 1-1/q)k
571 5-(1)/a 5(1-1/a) < x(h) (VIT 5.12)

-k
for all k with 3 < In|. Indeed for the minimum k for which this relation

-k -k+1
holds, we have 3 < ]hl <3 , hence

k log 3 > -log |h| > (k-1) log 3, (VII 5.13)
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while (VII 5.12) can be written in the form

A = -log 3 - ((k+1)/q)log 3 + ((qa-1)/q)k log 2 < log x(h) = B.

In view of (VII 5.13) we have

b
1

- log 3 - (1/q) log 3 - (1/a)(1log 3)((1og 3)™" 1log |h])
+ ((a-1)/q) log 2 (log 3 - log |h])

(- log 3 - (1/q) log 3 + ((a-1)/q log 6) - log |n],

and the last expression is certalnly positive for all lhl > 0 sufficiently
small. On the other hand yx(h) > 0, x(h) > 0 as |h] + 0, hence B = log X(h)
must be negative for all |h| > 0 sufficiently small. Thus, A >0, B O,

A < B, a contradiction. We have proved that relation (VII 5.10) does not
hold for the elements x e wji(E).

The following variant of (VII 5.i) is relevant.

+
(VII 5.vi) Let x(t), t e Ev’ be an arbitrary function x ¢ Lp(Ev), 1<p< +x,
with compact support contained in the half solid ball [t]t' > 0, [t] <R],

+
and possessing generalized partial derivatives Da& in Ev of all orders lal <m

+ +
all of class Lp(Ev)' Then, there are functions ha(t),t € Ev’ forevery |o| = m,

+
Ex € dx(Ev), ha of compact support contained in [t]t' >0, |t| < UR] such that

x(t) = (Dok)(T)ht§T=t)dT a.e. (VI 5.14)

+
Z,af=m jF (t)
v
+ + 1 1
where Fv = Fv(t) denotes the part of the T-space with 7~ > t~. In addition

+ . 0 +
ha € LS(EV) for every 1 < s < v/(v-m) if v > m, and h, € C(cl E,) if v < m.
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Proof. We use the same notations as in the proof of (VII 5.i). Then for

+ +
¢ as assigned in that proof, t ¢ Ev’ ftl < 2R, and w € S , we have

((m-1") f (3" /ar Y ¢ (t-rw)) b(r)dr
- ((w1)! fZR“(a/ar)cp(t-rw)
- ((m2))7t I 2 L™l O rayar = L

[ ¥&) @ (t-ra)ar = o(t).

As in the proof of (VII 5.i) we have now

o(t) = ((m1)))7" Zgfen 15 1, OO0 Ere)(0™o(x)r ™ ™) ar e
EV S
= Zial (0%)(t-1) n (T)dT,

V

v+ +
where h (T) = wp(r) r V" T e E, 0= (0,050 ), la| = m, o = (wl)al...
o
(wv) V. The proof proceeds now exactly as for (VII 5.i). It remains to prove

+
that ha € Ls(Ev) for the stated s. We assume v > m. We have

—v+m,s rv-l

® kﬁx b(r) r dr dw

h (t)]°

, Ing
1%

R -ys+ms+y-
K ff Lovstmsty 1 4

IN

r,

and -vs + ms +v - 1> -1 reduces to the assigned inequality 1 < s < v/(v-m).

We are now 1n a position to prove the following useful variasnt of statement

(VII 5.1ii):
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+
(VII 5.vii) If x ¢ WE(EV) has compact support contained in the half solid
ball [tltl > Q, [t <R], if A.U is any hyperplane of dimension ¢ in Ev’
+

1<ogv,and G CA NclE is an open set in A contained in [t|t' >0,

S0= v 2
ltl < R], then the restriction x* of x on GO belongs to Lq*(Gg) and

a
[l ]| < KZX D%, , (VII 5.15)
Lq*(G - 'Oél=m p
o)
where K is constant depending only on R, p, o, Ab’ m, q*, provided v > mp,
+

o > v-mp, and g* < op/(v-mp). If v < mp, then x is continuous on cl Ev’ and

so is x* on cl Go'

In other words, the identity transformation carrying an element x ¢

m
p,R

The seme map 1s also compact with a few restrictions as we shall mention below.

Proof. We may replace GG be a region, say still Gc’ well contained in
the solid ball |tl < 2R. Let us assume first 1< p<+w, 1/p +1/p' =1,

g* < +o, and note that, for A = v-m, we have
2e = (o/a¥) - (» - v/p') = o(1/q* - (v-mp)/op) > O.

Also note that p < cp/(v-mp), and therefore we can certainly take p < g*
=Y+ -
< op/(v-mp). Then, for r = ’t-T' we have ha} <Kr VT ko > for some
constant K and then, by (VII 5.14) we also have
t
Ix(t)| < & Zla|=m

(VII 5.16)
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where D x = (DOQ)(T), r = |t-7|, and the integration is performed in the sclid

ball lr! < UR. If we take A, = 1/q%, Xg =1/p - 1/q*, = 1/p', we have

1 KB

A+ Xe + N, =1, Kl’ x2, XB > 0. By Holder inequality for three factors

1 3

we have then

|x(t) | < K Zﬁa|=m [f[DQQ{p r-c+eq* dT]1/q* f IDaxlp del/p - 1/q*

[ 2V gepl/P"

where again the integrals are taken in Irl < LR. since -v+e p' > -v, the
third factors are below a fixed constant. The second factors are also finite

1-p/q*

and equal to HDO§HP . By taking powers q¥*, integrating on Go’ and inter-

changing the order of integration, we have

/

Q* ' aa*=P QP 4 -o+Eq*
'y [x(t)]7dt < K zﬁa|=m Ip x“p [ x| at IG r T.

r<iRr g
Since -o+egq* > -0, the last integral is below a fixed constant. By Tonelli's
theorem the multiple integral in dtdtT above exists, and by Fubini's theorem
the change of order of integration performed above is valid. We obtain now
Jo I 1Ta < gy I

for some constant K", and (VII 5.15) follows.

The remaining cases, in particular the case p = 1, can now be treated
analogously.

A theorem analogous to (VII 5.v) holds here, too, and guarantees that

+
the map WER(EV) > Lq*(Go) is compact. A relation analogous to (VII 5.10) must
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be proved, and we leave the proof to the reader. Again the casem =1, p=1
is exceptional, and for this case the reader will be able to prove a relation
analogous to (VII 5.11).

The case m = 1, p = 1 is actually exceptional as we can see from the
following example with v = 2, m =1, p = 1. Let o(u), - <u < e, ®(0) = 1,
be a function of class C:(-OO,OO), and let zk(t, u), (t, u) eE =[-0 <t <1,
-® < u< +®] be the functions defined by taking zk(t, u) = xk(t) o(u) for
0<t<1l, -® <u< +o, and zk(t, u) =0 for ~o < t < 0, where xk(t),
0< t <1, are the functions defined in Remark 2. Then z, € Wi(E) NC(clE),

szlll <M, llazk/ét”l <M, IIBZk/au”l < M for some constant M, and actually

zk € WiR(E) for a suitable R. On the other hand, the restriction z; of zk

on the hyperplane u = 0, is the function of Xk(t) for which no relation

analogous to (VII 5.10) holds.
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VII 6. SOBOLEV FUNCTIONS AS THE INTEGRALS OF THEIR DERIVATIVES

We begin with a statement for v = 1 to the effect that any function x of
one real variable possessing first order generalized derivative y coincides
almost everywhere with a function which is locally AC, and x' = y almost every-

where, This statement will be the converse of what we proved in (VII 2).

(VII 6,i) If v =1, if x(t), a<t < b, is an element of Wi(loc, (a, b))
with generalized derivative y(t), a < t < b (thus, x,y € Lloc(a, b)), then
there is a function f(t), a < t < b, which is continuous in (a, b) and AC in
every closed interval [a, b] € (&, b), such that x(t) = £(t), y(t) = £f(t) a.e.
in (a, b). In particular, if x ¢ Wi(a, b) (hence, x, y € L(a, b)), then f(t),

a<t<b, is continuous and AC in [a, b].

Proof, Let o, B be any two points a < @ < B < b, and denote by n any
integer sufficiently large so that n_l <o - a, n-l <b-B., Let ¢(t), t ¢ El’
be defined by taking ¢ =1 in [a, B], ¢ = O otherwise, Let ¢n(t), t e Es be
defined by taking ¢ =1 in [a, B], ¢ = O outside [a - 1/n, B + 1/n], o =
1 +n(t-a)in [a-1/n, a], and 6 =1+ n(f - t) in [B, B +1/n]. Then, o,
¢n are in Ll(El)’ ¢n is continuous, and both have compact support. Also, ¢n
is AC with bounded derivative ¢! =n in (a - 1/n, a), ¢! = -nin (B, B + 1/n),
and ¢£ = 0 outside [a - 1/n, @] and [B, B + 1/n]. Also, 6 >0 in Ll(El) as
n > o, since

fEll¢n - olat = 2(1/en) = 1/n,
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Note that, for any x € Ll(El) we have

J_ x¢é at > [ x o6 dtasn > (VII 6.1)
E1 n El
Indeed,
[ x(e - oat] < (fg;l/n + fg+l/n)ix[dt | (VII 6.2)
1

and the last expression certainly approaches zero as n + o,

Let us prove that
fb yo dt = -fb x ¢' dt (VII 6.3)
a n. a n

. b b , 00

First, we know that fa y ¥ dt = -fa x ¥' dt for every V¥ ¢ Co(a, b). Thus,
b

for any fixed n and €, 0 < € < 1, sufficiently small we have fa y(J€¢n)dt =

b
-/ x(J 6 )" dt, As € > O we know that J ¢ > ¢ , (J ¢ )' > ¢' a.e.in (a,b)

a ' €n En n nn n
as n > », with 0 < (J€¢n)(t) <1, 0< (Js¢n)'(t) <n for all t ¢ (a, b), Thus,

by dominated convergence theorem, we have
b b b :b
¢ )dt o d ¢ )'dt o' dt
[qy(edat > [ yo at, [ x(J0)'at~ ] xo dtase-o,

and (VII 6,3) is proved,
As stated by (VII 6.1) the first member of (VII 6.3) approaches fz y ¢ dt

as n > «, or fz y dt. The second member of (VII 6.3) equals

-1 B+l/n -1 .«
dt - dt;
n fB X n fa-l/n x dt;

hence, the second member of (VII 6,3) approaches x(B) - x(a) for all a, B
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outside a possible set E of measure zero, or o, B ¢ (a, b) - E. Thus, as

n-o, and a, B ¢ (a, b) - E, we obtain from (VII 6.3)
P _
fa y at = x(B) - x(a).

In other words, if t ¢ (a, b) - E, we have

x(t) = x(T) + f; y(t) dt

for all t ¢ (a, b) - E. Thus, x coincides a.e. in (a, b) with the AC function
- t
£(t) = x(t) + fE y(t)dt,

or x(t) = £(t), y(t) = £'(t) a.e. in (a, b)., If y ¢ L(a, b), then the last
expression defines f as an AC function in [a, b].

A property (2) is said to hold for almost all intervals I = [a, B] < G,
o = (Q},...,Oy), B = (Bl,...,Bv), ai < Bi, i=1,.,..,v, if P holds for all
intervals [a, B] as above with (o, B) € Ev X Ev - E where E is a subset of Ev
X Ev of measure zero,

To make this definition more precise, one may observe that the set of
points (a, B) € Ev X Ev such that I = [@, B] € G, is an open set, namely,

G* <G x G»C:EV X Ev’ and thus E is a subset of measure zero of G*,

1
(VII 6,i4) If v > 2, if x(t), t € G, t = (t ,...,tv), Gc Ev’ is any function
1
in L Oc(G) with generalized first order partial derivatives vy = Dix, i=
lo
l,...,v, (also in L c(G)), then for almost all closed intervals [a, B] € G

the following relation holds:
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B

o yi(t)dt, 1=1,...,v. (VII 6.4)

By : N1 =
fai [x(By, t5) - x(ay, )1 = [

Proof, If is enough to prove this statement for v = 2, and then we can

. 1 2
write (t, s) for (t7, t°), [a, b; ¢, d] for (o, B), x,, X for y,, y,+ Then
the proof is analogous to the one for (VII 6,1i) where intervals I = [a, b, c,

d]<G, I = [a - 1/n, b +1/n, ¢ - 1/n, d + 1/n] € G are used, and functions

1l fortel,

o, ¢n defined by ¢ =1 for t e I, ¢ = 0 for t ¢ Ev - I ¢n

[(t, s)l b<t

¢n =0forte EV - In’ ¢n =1 -n(t - b) for (t, s) ¢ L

<b+1l/n,c-(t-Db)<s<ad+Ht-Db)], ete.

(VII 6.1ii) Lemma. Let x(t), yl(t),...,yv(t), te(},befhnctionsileloc(G)such
that relations (VII 6.4) hold for almost all closed intervals [q,8] < G. Let
[A, B] be any closed interval [A, B] € G. Then for each i = 1,...,v, there
is a function fi(t)’ t € [A, B] such that (a) fi(t) = x(t) a.e. in [A, B];

(b) for almost all t' e [A'!, B!], f.(t! tl) is AC in ti on the linear interval
i i? i 74

i)
i i i

. 1 ! 1 1 — 1
(A5 B 15 (c¢) for almost all by e [Ai’ Bi] we have afi(t , tT)/tT = yi(ti’ t7)

(t!, ti) with respect to t .

where afi/atlis the usual partial derivative of f i

i

Proof, Let [A, B] and i be fixed., Then the relations

b

/

He -

1 1 b
[X(ti: bi) - X(tiJ ai)] dti = fa yi(t) dat, 1 =1,...,v,
(VII 6.5)

o]
He =

for all intervals [a, b] < [A, B] such that the point (a, b) does not belong
to a certain set E or 2v-measure zero in [A, B] x [A, B]. By Fubini's theorem,

if the point (ai, bi)’ A, < a; < b, < B,, is not in a certain set F of 2-mea-

i i i

sure zero, then the set E(ai,bi) of points (ai’bi) such that (a,b) € E is of
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(2v - 2)-measure zero. Let H be the set of values ti, Ai < ti < Bi, for which
x(ti, ti) is not integrable in ti on [Ai, Bi]. By Fubini's theorem H is of
linear measure zero, Let I be the union of F and of the set of points (ai, bi)’
Ai < a, < bi < Bi,such that either ai or bi is in H., Then, I is still of 2-
measure zero, Moreover, if <ai’bi) ¢ [A,B] - I, then the integrals on both sides
of relation (VII 6.5) are continuous in (ai, bi) on [Ai, Bi], and hence rela-
tion (VII 6.3) Lolds for every interval [a, b] < [A, B] such that (ai, bi) is
not in I,

<a

Now let ai be any number, A, 5

< Bi’ such that the set of values bi

for which (ai, bi) ¢ I is of linear measure zero, (such an a, exists by Fubini's

i

theorem), Then éi is not in H, and we define fi by taking

i
i - t i
£,(t5, 7) = x(t, a,) + [y, (%], t7)at

1 a.
1

i

(VII 6.6)

for each t{ € [Ai, Bi] for which yi(ti, ti) is integrable in ti on [Ai’ Bi]’
(this being the case, by Fubini's theorem, for almost all ti in [Ai, Bi]. We
define fi = O otherwise, C(learly, fi is measurable on [A, B] and AC in ti
on [Ai’ Bi] for almost all ti € [Ai, Bi]. Furthermore, for almost all ti €
[Ai, Bi], the first order derivative afi(ti, ti)/at:.L exists and is equal to
yi(ti,ti) for almost all ti € [Ai,Bi]. Hence, we need only to show that
fi(t) = x(t) a.e. in [A,B]. |

By integrating the right-hand side of relation (VII 6.6) with respect to
ti (this is possible by the choice of éi), we see that fi(ti’ ti) is integrable

1
in ti for each t°, and that the relation
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B! . B!
1 ' 1 ' 1 1 ! B
fAi. Ity (e ) lat) < S x(t), a lat; + [y, (t)]at

"holds independently of tl. Thus, by Fubini's theorem, f, is integrable on

i
[A, B]. Moreover, relation (VII 6.5), with x replaced by fi’ holds for every
interval [a, b] © [A, B]. Hence, if bi is not in a certain set of linear
measure zero, then fi(ti’ ti) and x(ti, ti) are (by Fubini's theorem) integrable
in ti. Thus, by taking a; = ;i and b, as above in relation (VII 6.5), we have,
by (VII 6.5), that

1] !

b
i ' [ i ' '
fai x(t!, bi)dti fai f (ti, bi) at

i i

for every [ai, b£]<: [Ai, Bi]. Hence, for such a bi’ we have x(ti, bi) =

fi(ti’ bi) for almost all ti € [Ai, Bi]. Since x and f, are both integrable

i
on [A, B], it follows that fi(t) = x(t) a.e. on [A, B], and lemma (VII 6,iii)

is théreby proved.

(VIL16.5v) Lemma.  Let x(t), ¥ (t),...,¥ (1), t € G, be functions in L°°(a) such
that relations (VII 6.4) hold for almost all closed intervals [a, B] < G.

Let [a, b], [A, B] be closed intervals with [a, b] < int [A, B] < [A, B] c G.
For each i = 1,...,v, let fi(t), t € [A, B], be the function defined in (VII
6.111). Then (a) (3%) (8) > x(¥) = £,(%), (B(Jex)/bti)(t) > y,(t) as €+ 0

a.e, in [a, b], i =1,...,v; (b) for almost all t'

! ]
i € [ai, bi] we have Jex -

fi(t) as € >~ O uniformly for t e [ai, bi]'

Proof. From (VII 3,iii) we know that JEX > x as € > 0 a.e. in [A, B].

Since x = fi a.e, in [A, B] we have also Jex > fi as € > 0 a.e, in [A, B].
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Now (Jsx)(t) = fi js(t T)x(T)dt, for t € [a, b] and € > 0 sufficiently small,

Hence

&Juv&i fﬂmébqva%ﬂﬂu = I (613 e (et

-2 (6-) /o7 )e (at

B{

By i
' s v '
-fAi dTi fAi(aJe(ti Ty t

1]

- Ti)/aTi)fi(Ti, 'ri)dTi

[ vy (Mat = (33,)(8),

where we have integrated by parts in the interior integral by using (VII 5.iii).
Now, by (VII 3.iii), we conclude that aJEx(t)/ati_+ yi(t) as € > 0 a.e, in
[a, ], 1 =1,...,v. Part (a)of (VII 6.iv) is thereby proved,

To prove part (b) let us assume first that yi(t) is of constant sign on
[A, B], say yi(t) > 0. Then fi(ti’ ti) is continuous and monotone nondecreasing
with respect to ti for each ti € [Ai, Bi] not in a certain set Zl of (v - 1)-
dimensional zero, By (VII 3,iii) and (VII 6.iii, part (a)), Jex(t) > fi(ti’ ci)
for all ti not in a certain set Z(ci) of (v - 1)-measure zero, Let S be a
countable set of such values c; such that S is dense in some interval [éi, Si],

A, <a,<b, <B, witha,, b, ¢ S, Let Z_ be the union of Z. and of the sets
i i i i i’ i 2 1

Z(ci) with ¢, €S. Then Z, is still of (v - 1)-measure zero. By (VII 6,6)

i
we see that for each ti € [Ai, Bi] not in Z_, the functions Js(ti’ t7) as well

2)
— . i
as fi(ti’ t”) are continuous and monotone nondecreasing in t. Moreover, for

i i
ti I Z2’ we have Js(ti’ t7) - fi(ti’ t7) for all t; €5, and hence, by the

monotonicity and continuity, the convergence is uniform for t ¢ [ai, bi].
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If Dix(t) changes sign on [A, B], then choose Ei’ Ai < éi < Bi’ so that

fi(ti’ tl) is integrable with respect to ti on fAi, Bi], and define

i
+ .00 iy ' 7 o+, i1
i
N PO e B |

for each ti for which fi(ti’ tl) is AC with respect to ti, and where

+ -1,
g = ° (le;| + &), &

-1 ) i
L= 2 eyl -g), g = of/3t.

+ - + -
Let fi = fi = 0 otherwise. Then fi fi - fi on [A, B], and as in the first
+ -
part of the proof, both fi and fi are AC and monotome nondecreasing with
N + -
respect to t- for almost all t'. Since Jx = Jf, = Jf, - Jf,, the
i € ei €i el

proof reduces to the case of the preceding paragraph.

(VII 6.v) Theorem. If x(t), teG, isanelement of wi(loc,G), then there is a
function xo(t),'te G, such that (a) xoe;wi(loc,G); (v) xo(t) = x(t) a.e. in G;
(¢c) for every i = 1,...,v and for almost all Eie Gi the function xo(Ei,ti) is
AC with respect to ti on the linear open set Gi(fi); and (d) axo(Ei,ti)/ati =

Dix(Ei,tl) a.e. in G. In particular, if wewl(G), then xoewi(G).

1

Proof. Let xo(t) = lim (Jéx)(t) as € + O whenever this limit exists and
finite, and set X = 0 otherwise. By (VII 3.iii) we have xo(t) = x(t) a.e.
in G, and parts (a) and (b) of (VII 6,v) are thereby proved. Let R Rg,
=1,2,..., be two f = U
m=1,2,..., be two sequences of closed intervals Rm [am, bm], Rm LAm, Bm],

R cint R' cR'c G, with UR =G, and for each i = 1,,.,,,v let £ (t),
m m m m m mi
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t € R', be the functions defined in (VII 6.iv) in correspondence of the in-
m

terval R' and the given function x. Then, for each m and i, by (VII 6.iii)
m

and (VII 6.iv), for almost all ti € [aéi’b"]’ (t t ) t ,t ) is AC
int" on [a _,b .1, and & (t!,t7)/dt" = 3 (b}, Ly - ROR: 1y for almost
mi’ mi o' i
i = . i two m. m writh
all t7 ¢ [ami,bmi]. Also, fmi fmli a.e. on Rm N le for any two m, m, with

N i i
R N le # ¢, and hence by continuity we have fmi(ti,t ) = fmli(ti’t ) for

i 1 1 !
all t~ € [ami,bmi] N [am i ] for almost all t € [a ,b ] n [a’ i m 1]
1 l 1 1
Since G is covered by the countably many intervals R " we conclude that, for

almost all ti, X (t t ) is AC on G, (t ), and ax t' t )/Bt (ti,tl) for

almost all t= e 6, (t]).

Remark. We are now in a position to state and prove the following
statement which is the converse of (VII 6.ii): If x(t), yl(t),...,yv(t),
t € G, are functions in Lloc(G) such that relations (VII 6.4) hold for almost
all closed intervals [Q,B] € G, then x € Wi(loc,G) with generalized first
order derivatives Dix = yi, i=1l,.e.,v, a.e. in G.

Indeed, by repeating the argument in (VII 2.ii), we see that relation
(VII 2.1) can now be proved with x replaced by fi and y replaced by Bfi/ati =
y; 8- in G; hence relation (VII 2.1) holds for x and Yo i=1,...,v, that
is, Yy is the generalized first order partial derivative of x with respect to

t' in G, according to the definitions of (VII 2), i = 1,...,v.

6h



VII 7. BOUNDARY VALUES OF SOBOLEV FUNCTIONS ON THE BOUNDARY OF INTERVALS

We initiate here the study of boundary values of Sobolev functions. For
the sake of simplicity it is convenient to begin with boundary values of such
functions on the boundary of intervals. This will apply immediately to func-

+

tions defined in Ev and their boundary values on the hyperplane tl =0, by

. . . . 1 i i i,
considering arbitrary intervals [0<t <b,a <t <b,i=2,...,v]CE.

v

In the next section we shall introduce the concept of regions of class K, and
then we will be able to define boundary values of Sobolev functions in such
regions.

Let R = [a,b] be a closed interval in Ev’ and let R denote the interior

o] . wl o]

of R. Let x(t), t ¢ R', be a function of class P(R ), p>1, and let xo(t),
t e RO, be the corresponding function defined in (VII 5.v). Then, for each
i=1,...,v, and almost all ti € [ai,bi], the function Xo(ti’ti) is AC in .

on the linear interval (ai,bi) and the limits exist

1 - 1 + 4) ! = ! - . R

Any change of values of x in a set of measure zero in R0 may imply a change
of values of xo also in a set of measure zero, but—as one could retrace from
the proof of (VII 6.v) and previous lemmas, and as we shall prove indepen-
dently below—the limits (VII 7.1) may be altered at most in a set of (v-1)-
measure zero in [ai,bi].

¢, , 1i=1,...,v, define—up to a set of measure

The 2v functions oil’ io

zero on dR—a function ¢(t), t € dR, on the boundary of R. We think of ¢

as defining an equivalent class on bd R. We say that ¢ is the set of
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boundary values of x on oR. If ¢ coincides a.e. on OR with a function which

is continuous on OR, we say that x has continuous boundary values.

(VII 7.i) If x(t), t e RO, is an element of W;(RO), p > 1, then the boundary
values ¢(t), t ¢ dR, of x are in Lp(aRo). The function ¢ will be often de-

noted by 7x.

Proof. It is enough to prove that ¢(ti,ai) is Lp-integrable on the face

= = ' ! t s . -
Fil [ti a,, ti € [ai,bi]} of R. To prove this, let us consider two num
bers til’ ti2’ a, < til < ti2 < bi. Then for almost all ti € [ai,bi] we have
tiZ i i
' - 't = [ .
xo(ti,ti2) xo(ti, il) ftil Dix(ti,T )at, (VII 7.2)

where X is the usual function defined in (VII 6.v). For p = 1 we have

b!
1 ' - 1 '
fai |2 (8558;5) = % (6],8,,)]at]
b o i, i b o
= l ! '
fa! dtilft' Dix(ti,T yat | < fa! ft. IDix(t)|dt. (VII 7.3)

il i il

Since D.x is L-integrable in R, the last member certainly approaches zero as
1
i i
. i that the limit x (t!,t o, _(t!) as t a
til’ ti2 > a, This proves he lim o( i ) » il( i) s > 8,

occurs, not only pointwise almost everywhere on Fil’ but also strongly in

Ll(Fil). Thus, as t,, > a,, we deduce from (VII 7.3) that

1

b/

f :,L lx (t!,t

bt
Lot
o lx (et ) - e (81)]at! < I [F Ipx(t)]at. (VIT 7.4)
i ! e,

1

For p > 1, we deduce from (VII 7.2) and Holder inequality that
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1 1 o ' p
[ = (6158,0) = x (41,6, )] at

! i 2
1
b o iy i,p p-1 b o P
= 1 1 U - -
= fai dtilftil Dix(ti,T yato |t < |ti2 till fai ftil |Dix(t)| at.

i i .
Thus, xo(ti,t ) > ¢i (ti) as t~ ~» a, strongly in LP(F, ). As t, > 8, we

1 i1” il

deduce as before

b! b! .
i ' - N Pl 12 P
fai % (558,50 = 0 () [Taty < [t e | fai fai |D,x(¢)| “at.
(VII 7.5)
(VII 7.ii) If x(t), xk(t), t e RO, k=1,2,..., are functions in W;(RO),

p>1, if fRIDixk(t)lpdt < M for some constant M and all m = 1,2,..., if x_

->

>

strongly in Lp(R), then ¢

, ~ ¢ strongly in Lp(aR), where ¢(t), ¢k(t),

t ¢ OR, denote the boundary values of x, xk. The same result is true if

ko]
1]

1 provided the generalized derivatives D.x (t), t ¢ R®, k = 1,2,...,

i=1,...,v, are known to be equiabsolutely integrable on RO.

Proof. Assume p > 1 and note that relation (VII 7.5) holds for xm as

well as for x. Then from (VII 7.5) and the uniform boundedness of the numbers
b b P .
I IDix(t)|pdt, [, Ipx (e)|Fat, i=1,...9, k=1,2,...,

we see that, given € > 0, there is some & > O such that for each ti2 with

a, <t < ai+8, we have

i i2
(D! 1/p
[ 5 x(tr,t, ) - o (t1)|Pat! <€, i=1,...,v, and
ai i’7i2 ilti i ’ rree0
(b! 1/p
1 1 (] P (] .
fa' |xk(ti,ti2) - ¢kil(ti)| at! <g, 1i=1,...,v, k=1,2,....
i
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Since x + x strongly in R , there is a k such that
1
[f (8)-x(¢)]| d{ll/p<6/ps

for all k > ko. By Minkovski's inequality we have now

bi D l/p
t! - ¢ ' !
fai [o,,(2)) - &, (e)]Tae!

[ 8, +9 b' AL
= 18Tt s e (en) -0 (s2)|Paeratt &
a, a' il' i kil 1 i

L i i

yp | 2P R i i i
- 1 1 A ' ' - [
) fai fa:':_ E¢il(t ) x(ti)t )l + Ix(ti’t ) Xk(ti’t )l

IN

+

|x £ t) (tl)ﬂdti'dti

al+6 b iop i 1l/p
A ' '
<?® f il(ti) x(t],t )] at}dt
a,+d b' . \1/p
+ 5'1/1’{] 1 |%(8],% )-x (t ,tl)lpdtidtl
8. +9d b' . l/P
"l/P NS T |
+ { k t ,t ) kil(ti)l dt!dt

IN

3¢,

and this relation holds for all k > ko. We have proved that, for p > 1,

).

+ ¢, as k + o strongly in LP(F

o
kil il il

If p =1 and the functions Dixk’ i=1,...,v, k =1,2,..., are equi-

absolutely integrable in RO, then from relation (VII 7.4) which holds for x

as well as for XK’ we see that given € > O there is a & > 0 such that for
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< + 3, we have
each ti2’ ai < ti2 < ai ’
b'
i 1] 1
-9 t!)|dt! <€
fa!'x(ti’tiQ) il( l)l i )
i
bl

1 1
t
fa:{lxK(ti)

-0 t')ldt! < €.
o) ™ %eqn Platy <e

Also, for some ko and all k zko we have

fZle(t)-x(tHdt < de.

The details are now analogous to those of the previous case, and the state-

ment (VII 7.ii) is thereby proved.

The case p = 1 in statement (VII 7.ii) is actually exceptional, as it
can be seen by the following example. Let v =1, p =1, xk(t), 0<t<1, be
defined by taking xk(t) = 1-kt for 0 <t < k"l, xk(t) = 0 for kT <t <1,

1
Then kanl <1, “xiul =1, k=1,2,..., and X_ € wl(x) where I = (0,1). If

k
x(t) =0, 0<t <1, then X, > X strongly in Ll(I). On the other hand ¢k(o)
=1, ¢(o) = 0, and ¢, does not converge to ¢(o).

Statements (VII 7.i) and (VII 7.ii) extend immediately to functions

z € Wr;(RO), p > 1. Indeed we have

(VII 7.iii) If z(t), t € R, is an element of wi(R°), p>1, m>1, then z
and each of the generalized partial derivatives Daz with 0 < Ial < m-1,

possesses boundary values ¢a(t), t € R, and 0% ¢ LP(R).

(VII 7.iv) If z(t), zk(t), t e RO, k =1,2,..., are functions in WI;(RO),

. 0]
p>1, m>1, if fROID zk(t)lpdt < M for some constant M and all 0 < |a| < m,
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°)

’

and k = 1,2,..., if Daik > D% as k + w strongly in LP(R for all 0 < |a| <
(04 a . o Q
m-1, then ¢k + ¢ strongly in Lp(aR) where ¢ (t), ¢k(t), t € AR, denote

the boundary values of z, z The same result is true if p = 1, provided the

-
generalized partial derivatives Daék(t), t ¢ RO, with |&f = m and all k =

1,2,..., are known to be equiabsolutely integrable in RO.

We are now in a position to prove a statement similar to (VII L.iv)

which we shall use in (VII 10):

+ Q
(VII 7.v) If xezwi(E ) and all partial derivatives D x, O < |a| < m, have
v = =
boundary values 7DO§ = 0 on tl = 0, then there is a sequence of functions

+ +
x, < w;(Ev) n CZ(EV) with ka—xnz >0 as k + c.

1
Proof. As in the proof of (VII 4.iv) we take h = (b ,0,...,0) with
1 . \ 1
h™ > 0, and we denote by y the function defined by y(t) = O for t' <h,
- Vst WNED) with 0% (1) =
y(t) = x(t-h) for t' >h . Let us prove that y e p(Ev) with Dy(t) = 0, for
Q 0] 1
t < tl, Dy(t) = D x(t-h) for tl >h . It is enough to prove that corre-
' a
sponding relations (VII 6.5) hold for all Dy O < |a| < m-1, and their first
order partial derivatives. This is trivial, of course, up to a displacement,
a . 1 1
and the use of the boundary values yD y which are all zeroon t =h . Now
a 1
we know that ||[Dy -D X“p g T 0ash >0+ 0< || < m,and, on the other hand,
v

1
for any h™ > O fixed, we also have “Da(Jéy)-Do§“p ~0ase~0+ 0<|a <m

For suitable values of hl = hi, € = ek > 0, we can now take xk = Jey.
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VII 8. INVARIANCE OF SOBOLEV FUNCTIONS WITH RESPECT TO TRANSFORMATIONS OF
CLASS K '

1 v
(VII 8,i) Theorem, If z(x), x = (X ,...5% ) € G, is a given function z ¢
1 1 v
WP(G), p>1l,and T: U>G, or T: x =x(u), u=(u,.e0,u) €U, is a trans-
formation of class K (see (VII 2)), that is, T is one to one and Lipschiztian
-1
together with its inverse T = : u = u(x), x € G, then Z(u), = z(x(u)), u € U,

1
is a function Z ¢ WP(U)’ and

v
D1 zZ(u) = Zj=1 ij x(x(u)) Dui xj(u), i=1,...,v, a.e. in U,

Proof, First assume p = 1, We have !Tu - Tv' < Klu - vl for all u, veU
and some constant Mj hence the functions x'j(u), j=1,.0.,v, are Lipschitzian in
u with the same constant K, and finally lDui x(u)l <Ka.,e. in U, i,j =1,...,v
(see (VII1.i)). Then we have also |dx/du] < M a.e. in G,where dx/du is the
Jacobian, and the constant M is certainly < v!K'. Let us consider a sequence

R, k=1,2,...,, of open sets invading G, that is, R, C Rk+1’ RkTG, the

k’ k

closure of each Rk being the finite union of closed intervels in G. For each

k we shall consider also an analogous open set R}'{ such that Rk Cecl Rk c Rl'{ c

cl Rl'{ C G, the closure of each Ri{ being again the finite union of closed

intervals in G. By (VII L.iv) we know that there is also a sequence zk(x),

X € Rk’ k=1,2,..., of functions, each 2, continuous in Rk with its first

order partial derivatives D ; z (x), x € R

A% K i=1,...,k, such that

ka[lz -z, ]+ Z;:l IDXi 2= D z Jlax < 1k, k=1,2,...,
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and actually each Zk is continuous with its partial derivatives in the open
neighborhood Rl'{ of Rk (indeed, we can take 2, = Jez for € < dist(R}'{, 3a))
and € sufficiently small,

If Zk(u) = zk(x(u)), u € Sl'{ = T-l(R}'{), then Zk(u) is a continuous function

of u, and for every i and every ui' the function Zk(u:,'L, ul) of u1 only is AC

with respect to ul in the one-dimensional open set S!{

) a9 i
k\u;) of all u~ such that

(ui, ul) € SI'«:' Indeed, the same functions are AC as superpositions of a function

which 1s continuous with all its first order partial derivatives, and a Lipschitzian
function, and BZk(ui, uj')/&A:L exists for almost all u ¢ Sl'{(ui') and admits of
a bound which is independent of u:,L and u1 (but may depend on k). Thus, Zk €

1 , -1 , ,
Wl(S}'{), and if Sk =T (Rk), we have SkC cl8§ < S}'{ < el§ < U. Since cl§

is a compact subset of Sl::’ by (VII L4.iv) we know that Zk(u) and its first

order partial derivatives are the uniform limit on Sk of the mollified functions
Jezk(u) and their first order partial derivatives, For every k we shall take,
therefore, an € = g(k) > 0 sufficiently small so that, if vV, = JsZk(u), e = g(x),

u € Sk’ we have

fsk[lvk - zkl + L ]Dui v, - DuiZk]]du <1l/k, k-=1,2,...,
(VII 8.1)

where, by force of (VII 4.i), we have

D2, = D,z (xw) = LD 2 (x(w)D ixj(u)

u u X u

J J
Zj ijz(x(u)) Duix (u) +Zj[ijzk(x(u)) —ijz(x(u))]Duix (u).

il
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Hence, for k < p <q,

70 =D 7)< T D () <D e )P x),

u u Xj d u

fsk [Duin(u) - DuiZq(u)ldu < K ZJ. fsklnszp(x(u)) - ijzq(x(u))[du
= K ijRleszp(x) - ijzq(x)l |au/ax |ax
< K MZJ, ka[ lejzp - ijzl + lequ - ijz”dx
< KM1l/p +1/q) < 2K M/p. (VII 8.2)

Analogously we have, for k < p <q,

Jo I = v | < [ () = 7]+ V() - 7,(0)]

+ IZp(u) - Zq(u),]du

< 1l/p +1/q + kalzp(x) - zq(x)l |du/dx |ax
< 1/p+1/q +M fRK lzp(x) - zq(x),dx

S 3pvfa vty ey ol + leg - 2l

< 1/p + 1/q + M(1/p + 1/q)., (VII 8.3)

By combining (VII8.1), (VII8.2), (VII 8.3) we see that for every k<p<qwe have
[V -v | +ZIp,v -D v |jdu
Sk P q i ui P u,i q

< [lvp - Vql + ZilD V.- D izpl +ZiID 1y " Duiqu

sk u P u u

+2Ip,z -Dp .7
iluip ulql]du
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< (M +1)(1/p +1/q) +1/p + 1/q + K M(1/p + 1/q)
< 2(M+2+KM/p = Mo/p.
Hence, there are functions V(u), Qi(u), ueU i=1,...,v, such that
vl + %D - du < M /p for all p> k. (VII 8,4
fsk[lvp vl + % uivp Qllau < M /p all p > ( )

By combining (VII 8.L4) with p = k and (VII 8.1) we have
- + - d +1)/k
fs {Izk V| Zi|D Ly Qil]u < (M) )/ %,
k u
for all k =1,2,..., where

2 (x(w))D ixj(u) a.e. in S,

D iZk(u) = D N x(u)) = Zj D 3
u x u

u
and i =1,...,v. Relation (VII8.k4) for p = k and k = 1,2,..., implies by force

1
of (VIIk4.iv) that Visan element of wl(U) and that Q5 i=1,...,v, are the

generalized first order partial derivatives of V, or Qi D4V, 1=1,...,v.
u

On the other hand, for every interval S € U and m sufficiently large so that

S c Skwe have now

fS IQi(u) - Zj ijz(x(u)) Du_lxj(u) |du

- - J
< fS ,Qi DuiZkldu + fS IDuiZk Zijjzk(x(u)) Duix (u) |au

"I 2, Iijzk(x(u)) - a(x(w) | D x(wa

X u

< (Mo +1)/k + 0 +K Zj fleszk(x(u)) + ijz(x(u))ldu

< (Mo +1)/k + KM/k = (KM + M+ 1)/k,

Th



where m can be as large as we want, Thus, the integral in the first member
is zero and
Duiz(x(u)) = Qi(u) = ZS kaz(x(u)) Duixj(u)
a.e. in S and hence a.e. in U. Statement (VII8.i)for p =1 is thereby proved,
The proof for p > 1 is analogous, and is left as an exercise for the reader,
Theorem (VII 8.i) can be expressed by saying that functions of classes
W;(G) are invariant with respect to transformations of class K. In particular,

they are invariant with respect to transformation of class Cl

1’ or of change of

orthogonal coordinates, and finally, by force of (VII L4.iv), with respect
to passage from Cartesian to polar coordinates.

We shall now state an extension of (VII8.i) to functions z ¢ WZ(G. We
shall consider one to one transformations T : U+ G, or T : x = x(u), u =
(ul,...,uv) € U, with inverse Tt :u=ux), x = (xl,...,xv) € G, such that
all functions Dokj(u), u e U, and Dauj(x), X €Gy J=1yeea,v, 0Z lof < m-l,
exist and are continuous in U and G respectively, and the same functions with
la, = m-1 are uniformly Lipschitzian in U and G, respectively. We shall say
that T is a transformation of class Km. Thus, the transformation of class K1

are the usual transformations of class K considered above, The following

theorem holds:

1
(vIirs.ii) Ifz(x), x = (x ,...,xv) € G, is a given function z ¢ W;(G), m>1,

1
p>l,and T: U~>G, or T: x =x(u), u=(u ,...,uv) € U, is a transformation

of class Km’ then Z(u) = z(x(u)), u € U, is a function Z ¢ w?(U) and usual

>



(0
formulas for the partial derivatives D Z, 0 < ,ozl < m, hold almost everywhere

in U.



VII 9. OPEN SETS OF CLASS K

We shall now introduce the concept of open set of class K, or K., and

17
of class Kom>1, in the t-space Ev’ t = (tl,...,tv). We shall often denote
these sets as regions of class K or Km.

A bounded open set G C Ev is said to be an open set, or region, of class
K or Kl’ if (a) G can be covered by finitely many open sets 7.y 8= 1,...,N;
(b) If I denotes the interval I = [0 < ul < 1, -1 < ui <1, 1 =2,.iee,v],
there is an N', O < N' < N, and for each s = 1,...,N' a positive transformation
T of class K (see (VII 2)) defined on I such that 7 = TS(I), s = 1,.0.,N';

(¢) If N denotes the segment A = [ul =0, -1< ut < 1, i=2,...,v] and I'

denotes the interval I' = [0 < ul <1, -1< ui <1l, i=2,00a,v] =T UM\,
then for each s = N'+1,...,N, there is a positive transformation Ts of class
K defined on I' such that 7g = TS(I), rs = Ts(x), and rs C &G; (d) the sets
FS, s = N'+1,...,N, form a finite cover of JG.

Note that the sets {7S = TS(I), s = 1,...,N", 7;: = TS(I') =7 U r's,

s = N'+l,...,N} form a finite cover of cl G. Note that each part FS of the
boundary of G is in one-to-one correspondence with the(v-1)-dimensional cell
A and this correspondence is certainly Lipschitzian with its inverse.

If G is of class K, then we can say that cl G is a v-dimensional manifold
with boundary of class K, and that a3 is a (v-1)-dimensional compact manifold
of class K. In both cases "of class K" expresses the fact that only trans-
formations of class K are used (one-to-one and uniformly Lipschitzian with

their inverse. Any system [y , Ts’ s =1,...,N] as above will be said to be
s

a typical representation of G as a "region of class K,"

T



If in all definitions above we use only transformations of class Km,

m > 1, (see (VII 2)), then we say that G is a region of class K, inE .

Let G be a region G C Ev of class Km’ m>1, and let [7S,Ts,s =1,...,N]
be a typical representation of G. Thus, [yl,.. .,7N] is a covering of G, and
[y., i =1,...,N", 75 U Fi, i=N'+,...,N] a covering of clG. We can always

i

think of 74 U Ti, i =N'+l,...,N, as a part of an open set 7£ with 7'i' - Fi -

n

74 c Ev_G’ i=DN"'+l,...,N, so that [71,. ..,yN] is a covering

o ’7N|) 7].'\}""1’.

of c¢lG. We shall now consider a partition of unity [wl,...,\lfN], where Vg €

C:(E ), 7s has compact support Ks c Vg for s = 1,...,N', Vg has compact sup-
v

port K. <y, = 7S+r'S for s = N'+l1,...,N, and ZI:=1 \ys(t) = 1 for every t e clG.

'
S

If x(t), t € G, is of class Wr;(G), then we have
x(t) = I x(t) v (t), teG, (VIT 9.1)

and the same relation holds even on &G whenever x(t) has boundary values cn
dG. Note that x(t) ws(t), t € G, has compact support I—{S c KS <7y if s =
l,...,N', and compact support Rs ceclGAN y; =7 U Ps if s = N'+1,...,N,
By force of (VII 4.ii) the functions x(t) \lrs(t) are of class WI;(G) and their

derivatives are given by the usual rule

) DPx D“'Bws,

a a
D (x \,lfs) = ZB(B

where o = (ocl,...,ozv), 0< lo <m B = (Bl,...,Bv) and 2, ranges over all B

Thus, if we choose a given representation of G and a corresponding parti-

tion of unity, then we can find constants K, K' such that
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lDa(X \I!s)(t)l <K Z,B, < ,al’DBX(t), a.e, in G,

o , a
x vl s & B o g%,

for all s = 1,...,N,.

Finally, TS : I > 75, S = l,ico,N', T : I, g 7q U Fq, S = N'+l’..0,N,

S

and we consider the functions
-1
2 (2) = T (x(t) v (), (VIT 9.2)

s=1,...,N. For 1 <s <N' these functions Zs are of class Wi(I), and have com-
pact support ﬁ CI. PFor N'+tl < s < N these functionszsare of class W;(I) but
s >= 2
have compact support E CI'=IUMAN. 1In either casewe can extend these functions
S

+ + + m, +
in allof E by taking them equal to zero in Ev -I, or Ev -I', and ZS €wp(Ev)'
v

If the functions Zs(u) € WS(E:) have continuous boundary values 7Zs on
the cell A\, then the corresponding functions x(t) 7s(t) have continuous
boundary values y(x(t) ws(t)) on I', and so x(t) has continuous boundary values
yx on G. The same holds for the derivatives Dok, 0< lal < ml,

If these boundary values are not continuous functions, we must show that
they are measurable with respect to the natural hyperarea measure o on the

boundary oG of G. This hyperarea o can be introduced rather straightforwardly
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by means

of the following statement.

(VIT 9.i) If G is a class of Km in Ev’ m > 1, then there are completely

additive set functions Si(E)’ Vi(E)’ i=1,...,v, and o(E), defined on a suitable

class € of sets E c &, with the following properties:

(2)

(b)

-1=1,...,v, are the usual Jacobians of the transformetion TS t A>T .

(d)

v,(E) > 0, o(E) > 0, [si(E)l < Vi(E) < o(E), i =1,...,v, for all

E ¢ €.

If o(E) = O and Ei denotes the projection of E on the hyperplane Xi =
[ti = 0] of Ev’ then &Eil = 0, where ,Eil denotes the (v-1)-dimensional

Lebesgue measure on X,, i = 1,...,v.

i’

If [73, Ts’ s =1,...,N] is any representation of G, and Ts s T U
7 U T s = N'+l,...,N, hence T, maps X onto I' < &G, and F is any

measurable subset of A, then E = TS(F) € & and

Si(E) = fF(dt:"L/dul'L)duf'L’ Vi(E) = fF 'dt;_/dui’dui) i=l,..:,v,'
—_ v 1 1] 2 1/2 1

o) = JGIZ,_,(at{/au)"T" "au,, (VII 9.3)

where t! = (60, ..65 ey, u = (v2,...,u") and at; /au!,

S

IfT: ¢l G +cl H is a transformation of class K , then sets measurable
m
with respect to o on oG and to ¢' on H correspond, and there exists

a constant K > 1, depending only on the transformation, such that
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Kt o(E) < o'(E') < X o(E)

whenever E on &G and E' on H are corresponding measurable sets.

Proof. If E, F, T, are as in (c) above, let T denote the natural pro-

jection operation of Ev onto the hyperplane X, = [tltl = 0] of Ev' Then

i

TiTs tN > Xi’ or ti = t:'L(u), u € A\, certainly is a continuous mapping non-
1

necessity one-one, from the (v-1)-dimensional cell A = [u” =0, -1 < u <l,

h
2,...,v] into the (v-1)-dimensional hyperplane X, = [-o» <t <, h #1i,

1

J 1

h=1,...,v, £ =0], and T Ts is certainly Lipschitzian on A of the same

i
constant M as T,. By force of (VII 2.iii) with v-1 replacing v, the set Ei =

Ti(E) = TiTs(F) is measurable. We take ai(E) as given by first relation (VII
9.3), as defining a signed measure function. We must show, however, that such

a definition does not depend upon the representation. Indeed, if [;h, ih"

h = l,...,fI] is any other representation of G, and we assume that for a given

subset E of oG, we have

R 1 M. o+ = 3
TiTs : ti ti(u), uexr T,T : ti gi(u), u € A,

If t is any point of E, then t is an interior point both of I’s and I-‘h, and we

S -
denote by u= TS t,u =T "t the counterimages on A and A\, respectively. We

h
/—E———————y N can even take a neighborhood N of t in
LT ! -
A A cl G, such that Nc¢y Ur,Ncy UT,
gU s s h h
u -— -
[ DU eand we denote by U and U the corresponding
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S R — | -
counterimages U = Ts N, U=T N. NowT T

h b TS is a one-one transformation of

- -1 - .
U onto U, certainly of class K (and TS Th is a one-one tranformation of class

- - - -1 -
K of U onto U). Then T 1 T, and T, T, are positive transformations (as

h
products of positive transformations), and they certainly induce positive
transformations between A and A, or dui/dﬁi > 0 a.e. in A, and dﬁi/dui >0

a.e. on A, and the same must hold, in view of (VII 4.iii), a.e. in F and F

respectively. By (VII 5.i) we have then

dt! dti dui dti dui
s;(B) = [r-Fau = [-—F |=Flau' = — —=5du
du! 4u!
i F dui 1 F du1 dul 1 F ul ul 1
ny at,
= I C -
F dﬁi dul si( E).

This shows that Si(E) does not depend upon the representation (and even for
the same representation we may choose any of the overlapping neighborhood
elements PS). It is clear now that all these set functions join up to form
a completely additive set function Si(E) over the whole of aG.' The same
argument, with obvious simplifications, holds for Vi(E), i=1,...,v, and for
o(E). The formulas in (a) for any representation follow by addition. Part
(a) of (VII 9.i) is thereby proved.

If E is as above and o(E) = O, then the v Jacobians dt{/dui, i=1,...,v,
must be zero a.e. on F, and this in view of (VII 4.iii) again, implies |F| =0,
and finally lEiI =0, inviewof (VII2.iii). This proves part (b) of (VII 9.i).
Part (c) was proved above. Part (d) is a consequence of (VII 4.ix) on the

multiplication rule for Jacobians. Statement (VII 9.i) is thereby proved.
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We are now in a position to prove the identity H?(G) = WE(G) for any
region G of class Km, and to prove for such regions the interpretation of
HE(G) we have mentioned after relation (VII L4.4). All this is a consequence
of the remarks already made at the end of (VII L), and of the following

statement.

(VIT 9.ii) If x ¢ w?(g) with G of class K , 1 < P < +®, then there is a

is Lipschitzian

m
sequence of functions x,_ € WP(G), k =1,2,..., and each x

k k

. 0/
in G together with all generalized partial derivatives D X, 0< }oﬂ < ml,
m
hence the derivatives Dokk with Ial = m are bounded, and ”xk - x“p + 0 as

k + oo,

If in addition, the boundary values 7Dax are known to be zero a.e. on
the boundary &G of G for O < Ial < m-1, then we can choose the sequence xk

so as each X, is identically zero on and near &XG.

Proof. If we consider as at the beginning of this section any given
representation [78, TS, s =1,...,N] of G and a corresponding partition of
unity ws, s =1,...,N, then we know that the corresponding functions Zs(u)
belong to W;(E:). We can now apply (VII 4.v) to each function Zs(u), u e E:,
to obtain a sequence Zsk(u), u e E:, k =1,2,..., of functions of class Cw(Ev)
such that [z, - ZSHE >0 as k+ @ Finally, the functions x_ = T (7 ) have
the required properties on each 7s and Ps and we define them to be zero every-

where elseoncl G. Finally, the functions X, = ngks WS have the required

properties onG U &G.
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If the boundary values ¥ DOQ, 0< la] < m-1, are all zero, then the
+
functions Zs(u), u e Ev’ have boundary values zero on the straight line ul =0
and so have the derivatives Dois(u), 0< [oﬂ < m-1. We can apply (VII 7.vi),

and thus we can choose each sequence Z

(04
o k=1,2,..., so that all D Z_,

l .
0< fa[ < m-1, are identically zero on u = 0. Then the functions Z and

. . . a
their derivatives D Z g2 0< lal < m-1, are zero on and near &G.
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VII 10. WEAK COMPACTNESS IN LP FORp >1

As seen in Chapter 4, we need compactness theorems in Lp(G) and WE(G)
for p > 1 as well as for p = 1. For the convenience of the reader we state
and prove below some of these theorems for Lp(G) with p > 1 and with p = 1,
and in (VII 11) we shall state and prove corresponding compactness theorems for
wz(G) with p > 1 and with p = 1.

1
We shall denote by t the real vector variable t = (t

,...,tv) € EV, and
by z(t), t € G, a real-valued function defined on a subset G of Ev. By the

notation z ¢ LP(G), p > 1, we shall mean, as usual, that z is measurable and

that |z|® is L -integrable in G.

(VII 10.i) Let G be a measurable bounded subset of E , and zk(t), t e G,
v
k=1,2,..., a sequence of real-valued measurable functions such that
(a) z, ¢ Lp(G), k=1,2,..., (B) fG |zk|Pdt <M, k =1,2,..., for some con-

stants p > 1, M > 0. Then there is a measurable function z(t), t € G, and a

subsequence [z, ] such that
kg

7 € Lp(G); (VII 10.1)
P lim P
[ |z|Fat < == [ |z, |"at;
— 8- k
G G S
lim
[zlat <= [ |z, |at; (VII 10.2)
G G ]
lim
[zoat = [z odt; (VII 10.3)
G G s

for every real-valued measurable function ¢(t), t ¢ G, with ¢ € Lq(G), l/p +

1/q = 1. All integrals above are finite.
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Remark 1. This theorem is usually proved as a consequence of general
statements of functional aﬁalysis. Indeed the space LP(G) with the usual
Lp-norm is a uniformly convex normed space and hence symmetric by remarks of
J. A. Clarkson, and consequently any strongly bounded sequence is weakly com-
pact by a theorem of L. Alaog concerning weak topologies in normed linear
spaces (see E. Rothe, Pacific Math. Journ. 3, 1953, h95-h99). Nevertheless,
there are direct proofs of statement (VII 10.i) and of the corresponding state-
ment for p = 1 (see (VII 10.ii) below and its proof), and these direct proofs
are based on the remark that hypothesis (B) implies that the function Xk are
equiabsolutely integrable in G, that is, given € > O, there is some d =
5(e) > O such that H< G, H measurable, |H| < &, implies fH |zk|dt <€,

k =1,2,.... Indeed, by Holder's inequality

J lzglat < (f %00 |2, |Pan) P <ot/® (w0,
H H H

a/p

4y VP,

and it is enough to assume ® = g

Remark 2. There is a statement underlying (VII 10.i), namely that, for
G bounded, (or at least G with finite measure |G| < + w), the integrability
of IZIP, p > 1, implies the integrability of every power |z|®, 1 <r<p.
This statement is not valid for G unbounded, as simple examples show (see for
instance [24r]). All statements of this Section VII 10 have a slightly modi-
fied counterpart for the case in which G is unbounded. Tor the sake of sim-
plicity we limit ourselves to the case G bounded, and we refer the interested

reader to [24r] for extensions.
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Remark 3. For p = 1 statement (VII 10.i) is not true, as the following

-1
well known example shows. Take v =1, G = [0,1], xk(t) =kfor 0<t<k~,

0 for KT <t <1, k=1,2,.... Then we can take x(t) = O for all

>
—~
t
S
]

t
0<t<1, and now for ¢ =1, 0 <t <1, we have fi z,dt = 1, fo z dt = 0, and
(VII 10.3) is not valid. For p = 1 and G bounded, statement (VII 10.i) can

be replaced by the following statement (VII 10.ii).

(VII 10.ii) Let G be any measurable bounded subset of Ev’ and x (t), t € G,

k

k =1,2,..., a sequence of real-valued measurable functions such that (y) the

functions xk are equiabsolutely integrable in G. Then there is a measurable

function x(t), t € G, and a subsequence [x; ] such that
kg

X € Ll(G), (VII 10.4)

[ |x|dt < 1in [ |x. |dt (VII 10.5)
< e kel 9t )

G G

[ x¢dt = 1lim [ xksq>dt, (VII 10.6)

G S0 G

for every measurable bounded functions @(t), t ¢ G. All integrals above are

finite.

Remark 3. Since G is bounded and has, therefore, finite measure, condi-
tion (y) certainly implies fG |xk|dt <M', k=1,2,..., for some constant M',

and thus a condition analogous to (B) of (VII 10.i) is superfluous here.

Proofs of (VII 10.ii) and of (VII 10.i). It is note restrictive to assume

that G is contained in the hypercube 0 < tl <N, i=1,...,v, for some integer
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N. Let us define each function x in Ev by taking x

= E -G.
. (t) =0 for t e v G

k
Then the function xk are Ll-integrable in every interval RO‘: Ev’ and
. . 1
IR |xk(t)|dt <M, k=1,2,.... Given any interval R = [a,b], a = (a eensa’),
0

L"), by fz x,(t)dt we shall denote the integral of x, in R with

b= (b
the usual conventions concerning signs. Let RO be the interval [o,N], O =
(0,...,0), N = (N,...,N), N> 0. For every k = 1,2,..., let us consider the

function Xk(t) = fz xk(T)dT, defined for every t = (tl

ee,tY) € R, and
where the integral ranges over the interval [o,t]. Then, for every interval

RC Ro the interval functions
Y (R) = [ xk(T)dT, k=1,2,..., R = [a,b]c Ro,
R

can be expressed in terms of the usual differences of order v of the function

Xk with respect to the 2" vertices of R, say

= 7z = - =
Yk(R) 62, Zk(b) Zk(a) for v = 1,
1.2 1.2 1 2 12
= = - - +
Yk(R) B2y Zk(b ,b7) zk(a ,b7) Zk(b ,a zk(a ,a°)
for v = 2, ete.

As a consequence of (y) the interval functions ¥ (R) = ARZ

k k=1,2,..., are

k)

equiabsolutely continuous in the usual sense, that is, given € > O, there is

some & = 8(e) > O such that, for every finite system R . ,R_ of nonover-

S
lapping intervals Rj SR, §=1...,d, with Zlejl <®, we have

| < €.
ZjlYk(Rj), <e

L ot)), o= (0t ,8tY), and |t-t'] =4, let

Ift, t' eR, t=(t
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1 i=0,1,...,v, be the v+l points P = t, P = t', p, = (t7,ee0,t” 7,

=i+
t'v + l,...,t'v), i=1,...,v-1. Note that

' _ v
X (') - X (8) = Z (X (p,)-X (p, ;)]
_ TV Py pi-%]
= g [}o PR AL

and that the two intervals [o,pi], [o,pi l] differ by the single interval

r. = (qi,pi), where
v=-i+l
Q; = (0ye04,0,t 305044,0),
1 v-1l _ v-itl v
p, = (t7,000,t Lt yeaost'),
and hence
X (') - x () = % fpi x (T)dT
k k i=1 a; k ’
- -i+ -i+ - -1
where |ri| < N lltv * l-t'v * l| < N’ l|t-t'| = N, Thus, given € > O,
, v-1 , v=1 v-1
whenever |t-t'| = d <8/N ~, we have |Xk(t)-Xk(t ). <N 7(e/N7) = g for

every k = 1,2,.... This shows that the functions Xk(t), t e Ro, k=1,2,...,
are equicontinuous in RO. Since Xk(o) = 0, the same functions are equi-

bounded in RO. By Ascoli's theorem there is, therefore, a subsequence st,
s =1,2,..., with ks + o, which is uniformly convergent in RO toward a con-

1

tinuous function X(t), t ¢ R . Since Xk(t) = 0 for every t = (t ,...,tv)

1,2
with t ¢ R_and t7¢ ...t = 0, we deduce that X(t) = O for the same t.

For any interval R = [a,b] C RO, we have
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= = +
1_£ st<T)dT ARXkS Zj + st(aj),

where Zj ranges over the 2" vertices 03 of R with the usual sign conventions
as mentioned above. As s > o we deduce
¥Y(R) = 1i z, (T)dt = X = + X
(R) m [ 7 (1) bX = By 2 X(ay),
s+ R
and the convergence is uniform with respect to RC< Ro. Since the interval

functions Yk(R) =AZ

2L are equiabsolutely continuous in Ro’ then the interval

function ¥(R) = ARX has the same property.
By Banach's theorem (V 6.ii) there is a measurable and Ll-integrable func-
tion x(t), t ¢ R, with

¥(R) = aX = [ x(t)at
R
R
for every RC Ro’ and
lim [ xp (T)at = [ x(7)at.
s
s»o R R

This relation proves (VII 10.6) for every function ¢ which is the char-
acteristic function of an interval.

Thus (VII 10.6) is proved also for functions ¢ which are characteristic
functions of a finite union of nonoverlapping intervals. If E is any measur-
able set, we can approach E in measure by means of a sequence of finite
unions of nonoverlapping intervals, and then (VII 10.6) éan be proved for
functions ¢ which are the characteristic functions of measurable sets. Then

(VII 10.6) is proved also for measurable step functions ¢. Finally, any



measurable bounded function ¢ can be approached by means of a sequence of
measurable step functions with the same bound and thus (VII 10.6) can be
proved in general. Relation (VII 11.5) is now a consequence of (VII 10.6).
Indeed, if ¢(t), t € G, is defined by taking ¢ = 1 if x >0,9=-1if x <O,
then @ is bounded and measurable, hence by (VII 10.6)

é |x|at = é xpdt = iiz é kaQ)dt < %%E é [xks|dt.
Thus, statement (VII 10.ii) is completely proved.

Let us now prove (VII 10.i). First, let us prove that for every P €
Lq(G) the product x¢ is Ll-integrable. Let @N(t), t € G, be defined by taking
@N =@ if -N<o <N, @N =Nif ¢ > N, @N = =N if ¢ < -N, where N is any in-
teger. Then P is measurable and bounded in G. Also, let ¥(t), t € G, be
defined by taking ¥y = +1 if x¢ > 0, ¥ = -1 if x¢p < O. Thus, ¥ also is mea-
surable and bounded in G, and so is @NW. Note that @N and ¢ have the same
sign, that |x| I@NI = |x¢N| = xpy¥, and hence, by force of (VII 10.6)

é x| loglae = é xp ¥ dt = 2i2 é X, P¥ 9t
where

1 1
|] %, op¥ at] </ Ixe | lolat < (/f lxkslpdt)L/p (f o] %t)¥/9
G G G G

<1® (] |o|%t) /P,
G

Thus [ |z| I¢N|dt is below a fixed number independent of N. By Lebesgue

G
monotone convergence theorem, we conclude that zp is L-integrable and that
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[ Ixolat < M (1 o) %a6)C,
G G

+ -
If E , E denote the subsets of G where zp > 0, or zp < O, respectively, then

+ - .
E and E are measurable. By Lebesgue monotone convergence theorem we deduce

4: ® dt = lim [+ wadt,

E Nooo E™

and by addition also

[ xpdt = 1lim [ xp dt.
G N+oo G

Thus, given € > O there is some No such that

|/ xpdt - [ xcdet| <e for N>N. (VII 10.7)
G G

Also
ot - L oy atl = 1] x o-gad

< (f Ix_[Pa)™® (s Icp-cleth)l/q <M/ Icp-qulth)l/q,
¢ ° G G

where the last expression certainly approaches zero as N + «. Thus, we can
take No such that

|/ % pat - [ x_ @ dt| <e for all N>N_and all s.

G G (VII 10.8)

Finally, from (VII 10.6) we have

{ xp, dt = lim J X, Oy 9t
G s~ G
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for every N, in particular for N = No’ and hence there is some sO such that
|/ X at - [ Xg @NO it| < e, (VII 10.9)
G o G

We have now, from (VII 10.7), (VII 10.8), (VII 10.9),

|/ x@dt - [ xksq>dt| <3e foralls>s .
G G

We have proved that relation (VII 10.3) holds for every @ e Lq(G) with 1/p +

1/q = 1. Let us prove that

1] xoat] < wP(f]g] %)/
G

for every ¢ € Lq(G). Indeed, for any such ¢,

. 1i 1 1
] xgat] = |tin f x_vat] <22 (7 | [Par)/P (7 o] %)Y/

G s G G G

<P (f |o|%t)Ye.
G

This shows that fG x@dt is a continuous linear operator in Lq(G) (and thus

X € LP(G)). This can be seen as follows. For every N > O let mN(t), tegG,

be defined by taking ¢ lx(t)lp'l sgm x(t) if |x(t)| < N; @N(t) =
Np-l sgm x(t) if |x(t)] > N. These functions Py are bounded and measurable,
hence
1 1
] xo at] < /P (s 9| “at) /a,
G G

On the other hand

9



1

|/ xp_at| [xp_at = [ |x| o |at > [ |o | |o |p-1 dt
G N G N G N G N N

1]
1

1

£ q
[ loglp-Lat = [ |o | at.
G G

Therefore
[ o % <P (1 Jo |%6)YS (f | |%at)Pas < P,
¢ ¥ - ¢ ¢ v -

for every N. Since +> |x p—l) by Lebesgue monotone convergence theorem
N

we conclude that le(p-l)q is L-integrable in G, thatis, |x|® is L-integrable,

and
[ 1x|Pat < .
G
Now we can prove (VII 10.2). Indeed, if we take ¢ = |x|p-l sgm x, then

p-1)

¢ is measurable, and Icp|q = IXIQ( = |x|p is L-integrable, that is, ¢ €

Lq(G), and by (VII 10.6)

[ lzfat = [zpat = Lin [ z_opat
G G so G °
1 1 1
<8 (1 2 [Pae)® (1 [xPae)?,
G

- ->00
s G

and finally, by algebraic manipulation,

P lim P
élz] dtss_mf |sz| at.
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VII 11. WEAK COMPACTNESS IN W%(G) FOR p > 1 AND G OF CLASS K;, AND

SUMMARY OF THE EMBEDDING THEOREMS FOR W%(G)

We have seen in (VII 9) that every function x € W?(G), 1<p<+om,
where G is a region of class Km (see VII 9), can be decomposed into the
finite sum x = Zszs = ZSXWS of functions zS whose transformations ZS =

-1 + .
TS (st) can be interpreted as elements ZS of WZ(EV). It is now clear that
m,_+
all properties of the spaces WP(EV), 1<p<+w, of (VII 5), (VII 6),
(VII 7), can be transferred to the spaces W?(G). We simply summarize below

the main results.

(VII 11.i) If x(t), t € G, is an element of WE(G) and G is a region of class
Km in Ev’ v>1l, p>1, m>1, then the generalized.partial derivatives Dax,
0< |a| < m, are certainly of class LP(G), and the boundary values 7Dax for
0 < |a| <m-1, are defined ¢-a.e. on oG and are certainly of class LP(BG).

However:

(a) Each derivative 0%, 0 < |a| <m-1, is actually at least
of class Lq(G) for every q, 1 < q < + «, with 1/q > 1/p -

(m-|c|)/v, and

1%l

Q
Iy <X 200 < Ja) < 17755

where the constant K depends only on G, m, p, q, & 1In
particular, for @ = O, we have X ¢ Lq(G) for every q,

1<q<+ow, with 1/q > 1/p - m/v, and
m
<K .
Il < 5l
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Thus, the identity transformation carrying an element x of
WY(G) into the same function x as an element of Lq(G) is a
p

bounded transformation wz(e) > Lq(G).

(0] . .
(b) Each derivative D x, O < |a| < m-1, is actually continuous

on ¢lG, provided 1/p < (m-|a|)/v, and then

lDak(t)| <KX ”DPXHP’ t € clG,

la| < |B] <m

where the constant XK depends only on G, m, p, Q.
In particular, for o = 0, x is continuous in clG pro-

vided 1/p < m/v, and
|x(8)] < K llxl -

Thus, the identity transformation carrying an element x of
Wﬁ(G) into the same function x as an element of C is a

bounded transformation wg(c) + ¢(clG).

If p > 1, the transformations defined in (a) and (b) are not only
bounded, but compact. In other words, under the condition of (a), a =0,

m m m
W (G) » L (G), and if [x is a sequence of functions x,. € W (G X <M
P( ) q( ); [ k] q P( )) ” k”p s M

k

then a suitable subsequence converges (strongly) in Lq(G). Under the condi-
tions of (b), a = 0, WZ(G) > C(G) and [xk] as above, then the functions x_

are equicontinuous in clG. These statements hold even for p = 1, provided

. . o}
the derivatives of maximal order D xk, |a| =m, k=1,2,..., are known to be
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equiabsolutely integrable in G. A more precise form of these results will be

given below in (VII 11.ii).

(VII 11.ii) If p > 1, G is a region of class Km in Ev, v>1,m>1, if [xk]

is a sequence of elements x_ € Wg(G) with kaﬂi <M, k =1,2,..., for some

k
m
constant M, then there is a subsequence [ks] and an element X ¢ WP(G) such

that:

(a) If v >mp, then Xg, > X strongly in Lq(G) for every q with

1/qa > 1/p - m/v.

(b) If v < mp, then all xk and x are continuous on clG and xks

+ x uniformly on clG.

(o o
(¢) For every O < |a] <m-1, if v > (m-|a|)p, then D Xg, * D'x
strongly in Lq(G) for every 1 < q < + » with 1/q > 1/p -

(m-|a )/ v.

(0

(d) For every 0 < |a| <m-1, if v < (m-|a|)p, then all D X,
a ] o a ]

and D x are continuous on clG, and D xks -+ D x uniformly

on clG.

Q a
(e) For every |a|l =m, D Xy D x weakly in LP(G) as s > o.
. o (&
Concerning the boundary values 7xk, yX, 7D xk, yDx, 0<

Ial < m-1, we have also

(f) If v >mp > 1, then Mg * VX strongly in Lq*(aG) for
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every 1 < g% < + oo with 1 < g* < (v-1)p/(v-mp). (The case

v < mp is included in (b).)

. (0
For every 0 < |a| <m-1, if v > (m-|a|)p > 1, then 9D X
> 7Da§ strongly in Lq*(aG) for every 1 < gq* < (v-1)p/(v-

(m-|af )p)-

Statements (abcdefg) above hold even for p = 1 provided we know the par-

tial derivatives D'k, of maximal order |a| = m are equiabsolutely integrable

in G.

(n)

(k)

k

For p > 1, in all cases it is true that the sequence [ks]
(0 (04 .
can be so chosen that xks +x, D xks + D x strongly in
Q (04 .
LP(G) for all 0 < |a] < m-1, and D X, > D x weakly in

L (G) £ Qal = m.
p( ) for | | m

For p > 1, in all cases it is true that the sequence [ks]
a e v s
can be so chosen that 7xks +> yx, yD xks + yD x strongly in

LP(G) for all 0 < o < m-1.

Statements (h), (k) hold even for p = 1 provided we know that the par-

tial derivatives Do‘xk of maximal order |a| = m are equiabsolutely integrable

in G.
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VII 12. BIBLIOGRAPHICAL NOTES

The initial idea of what today are called Sobolev functions can be
traced in B. Levi [123] (1906), who used them in problems of the calculus of
variations and elliptic differential equations. A more systematic theory of
functions x € Wi(G) can be seen in G. C. Evans [119] (1920), who used them in
potential theory. The absolute continuous functions of LL Tonelli [ ]
(1926), or functions A C T, are the functions x e Wi(G) N ¢(G), that is, those
Sobolev functions x € Wi(G) which are continuous in G, or in clG. Tonelli
used these functions systematically in two dimensional problems of the cal-
culus of variations (free problems) and in surface area [ ] theory. The
full use of Sobolev functions in the calculus of variations and partial dif-
ferential equations started with C. B. Morrey [73bc] (193L-L42), and continued
with G. Stampacchia [95abcd], and many others. Meanwhile S. L. Sobolev
[94ab] discovered the embedding theorems, and his work was soon continued by
V. I. Kondrosov [122].

In the presentation above section VII 6 contains essentially the
ideas of G. C. Evans and C. B. Morrey. Concerning the embedding theorems we
have essentially used the pattern of N. Dunford and J. T. Schwartz [121],
proving these theorems first for a half space (section VII 5 above), and then
extending to arbitrary open sets (section VII 11) (of Morrey class K here, of
class C°° in N. Dunford and J. T. Schwartz. Nevertheless we have improved the
presentation, eliminating a few oversights, and including the weak compact-
ness theorems for p = 1, which have been left out both in S. L. Sobolev as

well as in N. Dunford and J. T. Schwartz. The case p = 1 is particularly
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relevant in the calculus of variations(Tonelli's existence theorems, and

some of the present extensions to Lagrange problems.)
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