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FOREWORD

The investigation covered in the dissertation by Mr. Y. S. Chae in-
cludes a study of the pressure distribution beneath a rigid footing which
is undergoing steady-state oscillation. The primary objectives of this
study were to evaluate the changes in phase relation and magnitude of the
pressures at different points beneath this footing at the zone of contact
and to establish experimentally values for the displacement functions.

The test results were obtained using a footing one foot in diameter
resting at the surface of a bed of Ottawa sand compacted to its maximum
density. Consequently, the results indicated herein have direct quanti-
tative value for similar footings on sand. However, it is felt that the
experimental values of the displacement function can be used with the
theory for at least modest extrapolations in footing sizes.

The experimentally determined displacement functions are comparable
to those determined theoretically for footings beneath which the pressure
distribution is assumed to remain constant regardless of frequency of
oscillation. However, as shown in the text, important differences exist
in the phase relationship between the pressures at different points along
the surface of this footing. These frequency-dependent phase relation-
ships between pressures on the footing should be of extreme importance in
evaluating the distribution of pressures, or soil structure interaction
pressures, obtained for different rates of loading.

After obtaining these displacement functions experimentally, it is
possible to evaluate the behavior of this footing when subjected to im-
pulsive loadings. This may be done by superposition of a series of
sinusoidal loadings to develop an equivalent pulse loading. In the next
phase of the project it is anticipated that impulsive loadings will be ap-
plied to the footing and compared to the theoretically predicted responses.

It should be noted that this investigation has been restricted to
dynamic behavior of a footing-soil system which is essentially elastic
and does not cause significant penetration of the footing. However, it
is believed that by approaching this problem step by step, beginning
with small magnitude displacements, the procedure may gradually be ex-
tended for study of the footing-soil behavior in the range of inelastic
action with permanent deformations included.

F. E. Richart, Jr.
J. R. Hall, Jr.
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ABSTRACT

This thesis is an experimental study of the behavior of footing-
soil systems subjected to vibratory loads. The base of the footing con-
sisted of six independent concentric circular rings connected through
load cells to a rigid mass. The footing, resting on the surface of a
sand bed, was set into steady state vibration by an electromagnetic
oscillator.

From measurements of the periodic variaticns of loads on each ring,
the inertia force of the mass, and the input force, it was possible to
obtain information on the changes in distribution of dynamic pressure
amplitude, the phase relations for the six segments of the footing base,
and data needed to establish empirical values for the displacement func-
tions associated with the theoretical approach.

The experimental results were analyzed and compared with the the-
oretical work, which regarded the system to be an idealized circular
mass resting on the surface of a homogeneous, isotropic, semi-infinite
elastic body.

It was found that the dynamic pressure was functions of the intens-
ity of applied load, mass ratio (a dimensionless quantity defining a
footing-soil system), and the frequency of oscillation. Under a constant
total soil reaction the dynamic pressure appeared to shift towards the
edge with increasing frequency, changing the shape of distribution from
a parabolic type to that corresponding to a rigid base. Under a given
frequency the effect of an increased intensity of the applied load was
to shift the dynamic pressure towards the center portion of the footing.
The effect of mass ratio was found to be dependent upon the frequency
of oscillation.

Empirical values obtained for the displacement functions also indi-
cated that the dynamic pressure did not maintain the same shape of dis-
tribution curve, but changed with the frequency of oscillation.

Finally, it was established experimentally that the displacement,

the dynamic soil pressure, and their phase relations could be defined
by the dimensionless displacement functions.

xxiii



CHAPTER I

INTRODUCTION

The function of a structural foundation is to transmit the imposed
loads to the ground on which it is placed. In designing such a founda-
tion to carry a static load it is essential to ensure that the ground
is capable of carrying the load without the risk of shear failure and
that the amount of displacement under the loading should not exceed a
specified value.

Such a problem of the bearing capacity of soils becomes Jjust as im-
portant, if not more so, for a foundation carrying dynamic or vibratory
loads. With increasing use of industrial machines, blasting operations
in construction, and the installation of new defense facilities such as
missile launching pads and radar towers, the study of structure-founda-
tion systems under dynamic loads has become increasingly important and
essential in recent years.

In analyzing the problem of statically loaded footings resting on
soil the most critical quantities to be considered are the unit pres-
sure under the footing and the shearing resistance of the supporting soil.
In the dynamically loaded systems, however, there is an additional fac-
tor which cannot be overlooked—the natural frequency of the system.
Resonance will occur when the operational speed of a machine happens to

coincide with the natural frequency of the foundation-soil system, and



at this resonance the amplitude of motion is greatly amplified, which may
lead to structural damage.

The first approximation used in the study of a foundation-soil sys-
tem was to consider the system as being a single mass supported by a
weightless spring. Using a suitable coefficient of subgrade reaction for
the spring constant, and neglecting the mass of the supporting soil, the
natural frequency of the system was computed. The results of such an
analysis, however, disagreed with the experimental results for the simple
reason that the supporting soil did not behave as a weightless spring.

This led to the second approximation, which considered the inclusion
of an "in-phase" soil, that is, that portion of the "foundation soil vi-

" Thus, the oscillating mass was composed

brating with the oscillator.'
of the oscillator and its foundation plus the mass of the "in-phase’ soil.
The past researchers starting with Hertwig, et al., at DEGEBO (Deutchen
Forschungsgesellschaft fiir Bodemmechanik) (9)* found, however, that the
mass of the "in-phase" soil varied with different surface loading condi-
tions such as the magnitude of the applied force and the area of load-
ing, and was frequency dependent. This method is still in practice,
nevertheless, and attempts have been made by a number of researchers to

determine the exact mass of the "in-phase' soil in various ways, but

very little success has been reported.

*Numbers in parentheses refer to references listed at the end of the
text.



A purely analytical solution to this problem was first developed by
Reissner (16) in 19%6. He presented a solution for the system in which
the oscillator rested on a semi-infinite, homogeneous, isotropic, elastic
body (elastic half-space) in terms of two displacement functions defined
in Chapter II. His solution was limited to the case of the vertical
excitation of an oscillator on a circular base, assuming a uniform con-
tact pressure between the oscillator and the elastic body. Reissner's
theory has since been extended: Sung (20) and Quinlan (15) treated the
problem for various types of contact pressure distribution; Arnold et al.,
(1) considered the cases for different modes of oscillation; recently,
Hsieh (10) has transformed the basic equations in the Reissner-Sung theory
into those equations comparable to the conventional one-degree-of-freedom
system with viscous damping.

Richart (17), (18) put these analytical solutions into a very prac-
tical and important use for civil engineers. He demonstrated that the
theoretical solutions could be used to determine the dynamic character-
istics of a foundation-soil system under vibratory loads, if the follow-
ing quantities are known: +the static weight of the oscillator, the
radius of the loading area, the dynamic force applied, Poisson's ratio,
density, and shear modulus of the foundation material, and the pressure
distribution.

Of these quantities affecting the dynamic characteristics of an
oscillator-foundation system, all but the Poisson's ratio and shear mod-

ulus of the material, and the pressure distribution are known or can



easily be measured. The elastic constants such as the shear modulus and
the Poisson's ratio may be determined from measured elastic wave veloc-

ities. There have been numerous studies in the past, both theoretically
and experimentally, on the measurement of elastic wave velocities and on
the factors affecting them. Some of the most recent studies have been

made by Hardin (8), and Hall (6), who evaluated the effects of confining
pressure, void ratio, amplitude, and other parameters on wave velocities

in granular materials.

Purpose and Scope of the Present Research

The primary objective of the present research was to evaluate exper-
imentally the pressure distribution at the base of a footing subjected
to vibratory loads. The pressure distribution is dependent upon the
frequency of oscillation and the characteristics of the oscillator-soil
system; the effects of these factors on the pressure distribution were
to be studied. The experimental results obtained were to be used to
check part of the theory of vibrations based on a semi-infinite elastic
solids.

In the present research the dynamic load employed was limited to
that of steady state vibration (constant force oscillator) in the verti-
cal mode only. The foundation soil was an Ottawa sand compacted to max-
imum density. The cases for other types of dynamic loads such as impact,
different modes of oscillation or for different soil types and condi-

tions are left for future research.



The present research, therefore, includes the following investiga-
tions:

1. Resonant Frequency and Maximum Amplitude

a. Effect of mass ratio.
b. Effect of input force.

2. Pressure Distribution

a. Effect of mass ratio.

b. Effect of input force.

c. Effect of frequency.

3. Determination of Displacement Functions
Experimental results obtained were to be used to determine
the dispiécement functions through a computer program. The dis-
placement functions are defined by Eq. (18) in Chapter II.
For the present research the mass ratio was varied from 5.8 to 24.9,

the magnitude of the input force ranged from 9.0 to 22.5 1b vector, and

the range of oscillating frequency was from 50 to 1000 cps.



CHAPTER II

ANALYTICAL BACKGROUND AND REVIEW OF PREVIOUS WORK

When a rigid body is subjected to vibratory loads six types of dis-
placement can be produced according to the six degrees of freedom in
such a body in space. There can be three types of translational dis-
placement in the direction of three axes in the body, and three types of
rotational motion about the three axes. Due to the complexities of the
problem involved the majority of theoretical and experimental studies in
the past have been confined to the simplest form of motion in the ver-
tical direction.

In this chapter a review of both theoretical and experimental studies
made in the past is presented. The first part of this chapter deals
mainly with the theoretical development of the theory of vibrations based
on a semi-infinite elastic bedy. In the second half is presented a short
review of selected literature which is closely related to the subject but

has not been reviewed in the first part.

Basic Concepts on One-Degree-of-Freedom Vibrations

For the reason that the terms and equations corresponding to the
basic theories for one-degree-of-freedom vibration are applied or com-
pared in the study of the dynamic characteristics of foundation-soil sys-

tems, a brief review of theory is made for the cases of one-degree-of-



freedom free and forced vibrations with or without damping.

FREE VIBRATIONS WITHOUT DAMPING

The behavior of a single mass resting on a weightless linear spring

and subjected to a single impulse, as shown in Fig. 1, may be described

as:

mx + KX =0

__J_ii
W m where

K
DNV NN/ VNV

I

displacement

XA KB
It

acceleration

Fig. 1. A mass supported by
weightless spring.

The natural frequency of such a system is given by:

§ N [V S B V.
n 2T m oTm W

where
fn = natural frequency of the system
W = weight of the block
g = gravitational acceleration.

FORCED VIBRATION WITH VISCOUS DAMPING

Constant Amplitude of Force Oscillation

mass of the block

spring constant

(1)

In free vibration the oscillation is damped because of energy dis-



sipated by friction. Oscillatory motion can be maintained, however, at
constant amplitude by the application of an external periodic force &g
defined by @ = Q1 sin wt, where Q; is constant force, w is angular fre-
quency and t is time.

Assuming viscous damping, the equation of motion of the spring-mass
system shown in Fig. 2 becomes:

_l R, sin wt
m"vm [ A

K tﬂ - where

MX + cX + KX =Q sincot (3)

bde
Il

velocity
coefficient of

viscous damping

Fig. 2. Forced vibration with
viscous damping.
The displacement of the mass under the steady state oscillation is

expressed by

X =><sm(wt-¢mx) ()

in which X is the amplitude of steady oscillation and ¢Q—X the phase shift

between the exciting force and the resulting motion of the mass. From

Eq. (L)

X oo cos (wt=Pyy)

~
|

X -—_——'XUOZ sin (Wt"%_x) == ——xw2



For the condition of LF = O, the following vector diagrams may be drawn:

KX (K-mw?*) X
B 5

cwX CwX

m w2 X

Fig. 3. Vector diagrams for forced
vibration with viscous damping.

From Fig. % expressions for X and ¢Q—X may be obtained as

J(K=muw®)? + (cw)?

X

1 Ccw
K-mw?2

¢Q~I= tan

Equations (5) and (6) may be reduced to

X = Q/ K
2,2 2
V/(]" n1?>) +‘( iéu.>
_ 1 _cw/K
gg—x" tan / — n;éoz

Using the following quantities:

€
s
[

I

Vv = c/cc damping factor

Ce = &mbpn = 2N Km = critical damping coefficient

>
|

static displacement under force Qi.

s = Qu/K

~JK/m = natural circular frequency of undamped oscillation

(6)
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Equations (5') and (6') may further be reduced to

. -1 2V
(/.Q~X — .tt,'lli /__4 w )2 (8)

The term N;, called the magnification factor, represents the factor by
which the static displacement under force Q) must be multiplied to deter-

mine the amplitude X. The amplitude at ¢Q-X = 90° may be expressed by

)% = b = e (9)

at which the frequency is close to the resonant frequency for small v.

In Fig. Lk are drawn the curves showing the relations between the
amplitude and the frequency ratio. Fig. 5 shows how the phase angle
shifts with the frequency ratio under different damping factors. It is
clear from Egs. (7) and (8), and these figures that N; and ¢Q-X are func-
tions only of the frequency ratio w/wn and the damping factor v. At
w/wn = 1, that is, at resonance under undamped condition, N; becomes
infinite and ¢Q-X indeterminate. It should also be noted that under con-
stant force type oscillation the maximum amplitude magnification occurs
at the value of w/wn less than 1.0. For small values of damping the
amplitude peaks occur at the frequency ratio very close to 1.0, but as
the damping factor becomes larger the frequency ratio for the maximum

amplitude occurs farther away from the frequency ratio of 1.0.
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Rotating Mass Type Oscillator

The exciting force can also be generated by rotating unbalanced
welights. They are rotated in opposite directions so that the forces are
applied only in vertical direction. The magnitude of the force is de-

pendent upon both the eccentricity and frequency of excitation as
R, = 2mg f w? sin wt (10)

in which m, is the mass of the eccentric weights and £ is the arm of ro-
tation. Using the value of Q; as defined by Eq. (10), the expression
for the displacement X and the phase shift ¢Q—X may be obtained as

X (5

2l (T + (22

= Nl'(o’og )2 (11)
and
1 2y w) |
¢_ = Tan Wn S (12)
&-X /_(ﬁn)

By the use of these equations curves showing the relations among the

amplitude, phase shift and the frequency ratio may be drawn. Under ro-
tating mass type oscillation the maximum amplitude magnification occurs
at the value of w/wn greater than 1.0. With increasing damping factor
the frequency ratio for the maximum amplitude shifts farther away from

w/w, = 1.0.
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Theory of Vibrations Based On A

Semi-Infinite Elastic Body

ELASTIC WAVES IN IDEAL ELASTIC BODY

When a disturbance is caused in an infinite, elastic, isctropic,
homogeneous body such a disturbance may be propagated in the form of body
waves. The body wave is composed of two distinctly different waves: one
is the wave of volume change, designated as the compression wave, longi-
tudinal wave or P-wave; the other is the wave of distortion at constant
volume, designated as a shear wave, transverse wave or S-wave. In the
propagation of compression waves the direction of motion of particles is
along the direction of propagation, and in the shear waves the direction
is perpendicular to the direction of propagation. The amplitude of the
propagated wave decreases with the distance from the source approximately
inversely proportional to the distance (that is, l/r). In a semi-infinite,
elastic, isotropic, homogeneous body, a third type of wave appears because
of the free surface. After Rayleigh, who investigated the behavior of
this surface wave in a semi-infinite elastic medium, this type of wave is
called a Rayleigh wave or R-wave. Lamb (12) carried out a comprehensive
study of the behavior of Rayleigh waves and presented a solution for a
semi-infinite elastic body subjected to an impulsive load applied at the
surface. The amplitude of the propagated Rayleigh wave diminishes ac-
cording to the law of annular divergence (that is, l/\ﬁ;).

The velocity of the shear wave is given by
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[ & G-
Ys; = —/; =—§xg“ (13)

in which G is the shear modulus of elasticity, p is the mass density, and
7 1s the unit weight of the elastic material. The velocities of the com-
pression and Rayleigh waves are dependent upon Poisson's ratio and are

related to the shear wave velocities. The compression wave velocity for

the condition of confined compression is expressed by

v(;:J?\;ae (1)

in which N is a Lame's constant. For the condition of unconfined com-

pression the velocity may be expressed by
VU, = [—— (15)

in which E is the modulus of elasticity. The velocity of Rayleigh wave

is related to the shear wave velocity in the form of
Ve = M Ve (16)

where & is a function of Poisson's ratio and varies between 0.875 and

0.955 for the corresponding Poisson's ratio of zero to 0.5.
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THEORY OF THE RESPONSE OF RIGID FOOTINGS UNDER VERTICAL OSCILLATION IN A
SEMI-INFINITE ELASTIC BODY

An accurate solution of the problem of vertical vibrations of a foot-
ing resting on soil can be made on the consideration of a mathematical
model as shown in Fig. 6, in which a solid rests on the surface of a semi-
infinite, isotropic, homogeneous, elastic body (an elastic half-space). To
date no exact solution of the problem has been found, but several re-
searchers have presented the approximate solutions.

Q

l -
m, T

D SZ7 N Q*I /S
R G) f J /U—

Fig. 6. A mathematical model of footing-soil system.

Lamb (12) was the first one to study the propagation of waves in
elastic solids and derived the solution for the dynamic displacement
caused by a vertical harmonic force applied at a point on the surface of
a semi-infinite elastic body. Reissner (16) considered the vertical mo-
tion of a rigid mass of circular base resting on a semi-infinite elastic
medium when subjected to a periodic vertical force, and obtained, by in-
tegration of the effects of the periodic vertical point load over the
circular area, an approximate solution under the assumption of uniform
pressure distribution between the circular base and the elastic body.
Reissner's work was extended later by Sung (20) to cover the systems

under uniform, parabolic and rigid base types of pressure distributions
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over the circular area. More recently, Lysmer and Richart (13) extended
Sung's work to include the cases of oscillations in high frequency
ranges, and pulses of arbitrary shape. In the analysis given below the
work by Lysmer and Richart ig generally followed.

In analyzing the footing-soil system, such as shown in Fig. 6, it
is necessary to make several simplifying assumptions as to the geometry
and the physical properties of the footing and the supporting soil as the
exact solution is not possible. It is assumed that the soil can be repre-
sented as a semi-infinite body and it is homogeneous, isotropic and per-
fectly elastic; that the footing is axial-symmetric and absolutely rigid,
thus producing uniform displacement under the footing; there are no shear
stresses acting on the plane of contact between the footing and the soil.
The periodic force is assumed to act vertically through the center of
gravity of the footing.

For vertical forced vibrations induced by a periodic force Q(t),

the equation of motion of the footing may be expressed as

m,X = R-Q (17)
or
. Lwt L(wt+@d_ )
m, X = R & - Qe @-R (17")
where

m, = mass of footing

>
I

displacement of footing

O
!

= periodic force having amplitude of Q;
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w = angular frequency of exciting force

R = soil reaction having amplitude of R;

¢Q-R = phase shift between the exciting force and reaction
1=
e = 2.71828...

It should be noted in Eq. (17) that the displacement and soil reaction
are regarded as positive when they are acting upward.

In order to solve the above equation, it is necessary to determine
the dependence of the soil reaction upon the displacement, the character-
istics of the footing and the soil. It was assumed that there was a
linear relation between the soil reaction and the displacement of the
foundation. Thus, the relation between these two quantities are deter-
mined in terms of the modulus of elasticity or shear modulus.

As a result of mathematical computations (16), (20), which are

omitted here, Reissner-Sung showed that the vertical displacement may be

expressed as

X = (£ +if) (18)

<

or
R, ‘ Lt
= +if,) e 18"
X= g0 (5 +if) (18")
in which G is the shear modulus of the soll; ry is the radius of the foot-
ing; fl andufg are time-independent, dimensionless functions, designated

as the displacement functions. It can be seen from the definition of the
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function that JF is dependent only upon the boundary conditions and the
properties of the soil. Therefore, the displacement function f‘can at
most be a function of the variables which define the footing-soil model—
ro;, @, G, o (the mass density of soil), and p (Poisson's ratio of soil).
Combining the first four variables to introduce a dimensionless

quantity denoting the frequency factor of the system,
Q = wr —g— (19)

it can now be said that the displacement function is only dependent upon
the frequency ratio, assuming the Poisson's ratio is constant for a soil.
Since the shear wave velocity in the soil is Vg =VG/p [Eq. (13)],

and
U, = A (20)

in which f is the frequency of oscillation and A the wavelength, a, can

be rewritten to another form as

w I lo
= —— = 2
a, Ve A ~ (21)
or
- (21')
- 2T

This indicates that the size of the footing may be represented in terms
of the wavelength of the shear waves in the soil through the frequency

factor.
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Another dimensionless quantity, designated as the mass ratio of the
system b, i1s derived from the mass and radius of the footing mp, ro, and

the mass density of the soil p as:

_ M
b = PIE (22)

The quantity b can be interpreted as the ratio of the static mass of the
oscillator to that of a cylinder of elastic soil having a radius rg and
a height ro/n.

The reaction R is related to Qi in the form

Awt

R=Q7¢ (23)

in which 1 is a dimensionless and time-independent function. From Egs.

(17), (18), and (23)

1

n = (2b)
¢ 1+ bal (f+if,)
substituting this back into Eqs. (18) and (23) one gets
(wt
Q, e
R = : (25)

L+ bal(f+if,)

and

x = & (4 +ifs) e ™ (26)
Glo 1+ baZ (f+i5)

It follows that for a weightless footing, that is, mg = b = 0, Eq.

(26) is reduced to
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Q

x = (f+ if) et (27)

The displacement function can be determined, therefore, from the solu-
tion of the special case of a weightless footing subjected to a periodic
loading Q1.

Substituting the value of X determined by Eq. (18') into Eq. (17")
and separating them into the real and imaginary part, the following re-

lationships are obtained:

_ -1 b a; j;
%‘R = Tan |+ baif (28)

R, = =F (29)

J(1+ b5 ) + (ba2 f, )"

The expression thus found for R; is then substituted back into the right

hand side of Eq. (18') and neglecting the imaginary part, the following

expression for the displacement (amplitude) X is obtained:

_ Q& F5+ £
X G \/(J+ba§ﬁ)z+(basz)2 (50)

The phase shift between the soil reaction and the displacement may be

expressed as




ee

and the phase shift between the input force and the displacement equals

= 2
? .t B (32)
Thus, from Egqs. (28) and (31)

F2
;i (5+5,)

The time average of the power transmitted from the footing into the soil

@ . = tan™ (33)

f+b

can be calculated by integrating the product of Q and X as

L = cH Lo %2 (3L)
2R*/PG (1tbaf) + (baf.)

The above derivations indicate that if the function'f.can be deter-
mined, the displacement, soil reaction, the phase relations, and the
power input may be computed by these equations. It should be pointed
out here that the function‘f'is dependent only on two variables, and thus

the function can be determined experimentally.

DETERMINATION OF THE DISPLACEMENT FUNCTION

The theoretical evaluation of the displacement function was first
made by Reissner (16) assuming uniform contact pressure distribution.
His work was extended by Sung (20) who analyzed for uniform, parabolic
and rigid base type pressure distribution. The results of his computa-
tion are reproduced in Tables I and II, and in Fig. 7 for graphical

representation. These charts clearly demonstrate the effect of the type
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of pressure distribution on the function f‘and consequently, on the
dynamic behavior of a footing-soil system. These charts also indicate
how the function varies with Poisson's ratio of soil. It should be
pointed out that Sung, in his analysis, assumed the type of pressure
distribution to be the same for all frequencies. He also limited the
analysis to the region O < ag < 1.5, and accordingly, used only the first
three terms of power series shown in Tables I and II, for he considered
that within this region the displacement function could be represented
sufficiently by taking the first three terms. ©Should more of the higher
order terms be taken, the result would be smaller than his results.
Recently Lysmer and Richart (13) extended Sung's work from a dif-
ferent approach to include the higher order terms in the computation and
tc treat the systems in higher frequency range (ag > 1.5). They also
considered the case of arbitrary pulses. Their analysis was based on
the assumption of uniform displacement under the footing. In Fig. 8 is
shown the results of their computation in a graphical form. The curves
shown in this figure represent the variation of.fl and‘fg with frequency
factor ap. It is noted in this chart that the f} andufg values obtained
by Lysmer and Richart check well with the solution obtained by Sung for
rigid base type pressure distribution for small values of frequency
factor ag. It has been shown from the theoretical analysis that the
imaginary component of the function\fé has an asymptote expressed by
S/n-ap where S = [(l—2p)/2(l-p)]l/2. Thus for p = 1/3 the asymptote is

expressed as being l/2ﬁ-ao. It can also be noted that for large values
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of ap the real part of the function,f has no importance.

Based on the computed_f values a theoretical curve is drawn, Fig.
9, to show the phase relation between the soil reaction and the displace-
ment for rigid base type pressure and for Poisson's ratio of 1/5. The
phase shift between Rp and X 1s independent of the mass ratio and depends
only on the frequency. The phase angle approaches 90 degrees with in-

creasing frequency factor.

RESONANT FREQUENCY AND MAXIMUM AMPLITUDE CF THE SYSTEM

A theoretical solution for the natural frequency and the maximum
amplitude can be obtained from the relations existing among the elastic
characteristics of the subscil, the frequency factor and the mass ratio

of the system. From Eq. (30) is obtained a relation

2 2 5
XG r(; _ ‘.)Cl + :Fz
Q, (1+balf,) + (baXf.)

l
—
N
0
~—

The left side of this equation is a dimensionless quantity and indicates
the amplitude of oscillation since G, r,, Qi are constant for a particular
system. This dimensionless gquantity has been called the "dimensionless
amplitude factor" by Richart (17). Curves showing the relations between
the amplitude factor and the frequency factor for different values of the
mass ratio b are drawn (after Richart) in Fig. 10. The curves are similar
in appearance to those obtained for damped forced vibration as shown in

Fig. 4. The resonant frequency for a particular system (mass ratio) can
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be determined from the value of ay corresponding to the peak amplitude
for a specified system. In the same way, the maximum amplitude for a
system can be obtained from the peak value of the amplitude factor. In
this manner Richart, using the computations made by Sung, has prepared
Fig. 11 for the case of rigid base type pressure distribution at the
base of a circular footing.

Charts presented in Fig. 11 have a very important and practical use.
The resonant frequency and the maximum amplitude for any oscillator-soil
system may be determined by the use of these charts. In order to use
these charts, however, data for the unit weight, Poisson's ratio and
shear modulus of soil, the weight and size of the oscillator base, and
the magnitude of exciting force should be known. Of all these quantities,
the shear modulus and Poisson's ratio are believed to be difficult to
measure, requiring a separate dynamic test, if not intelligently ap-
proximated.

It may be observed from these charts that the effects of the mass
ratio on both the resonant frequency and the maximum amplitude are very
profound. It should be pointed out here, however, that the shear mod-
ulus of the subsoil is not constant, but varies with the confining pres-

sure and thus with the mass ratio.

DAMPING IN AN IDEALIZED ELASTIC SOIL
In deriving the initial equation of motion for an oscillator-soil

system [Eq. (17)] the term for the damping in soil was not taken into
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consideration. The results of the theoretical analysis, as shown in
Fig. 10, indicates that the amplitude of vibration never reaches infin-
ity with changing frequency as is the case in an ideally elastic system
with one degree of freedom. This means that even an idealized elastic
soil has a damping effect on the amplitude of foundation vibrations.
This is due to the dispersion of energy by the propagation of elastic
waves, since the assumption of an ideal elastic body precludes energy
losses by internal damping within the medium. This dispersion type of
damping or geometrical damping in a semi-infinite elastic body has been
clearly illustrated by Hsieh (10), who has transformed the fundamental
equations in the Reissner-Sung theory into a form comparable tc that de-
veloped for the conventional one-degree-of-freedom system with viscous
damping. The following derivations are from Hsieh's study condensed by
Hall and Richart (7).

The vertical displacement x of a weightless rigid circular disk
resting on a semi-infinite elastic body, and subjected to a vertical

periodic force P = Pleiwt has been given previously in Eq. (27) as
P, v
X = —=—(f+if) e (2
Taking the derivative of Eq. (27') with respect to time gives

P, w , (wt
X = ?‘;—\/Ljﬁi—fz)e (36)
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Combining these two equations, is obtained

(W

. 1 2 2 t 2 2
}1w>(‘£2xz—g_%_(ﬁ+}2)eA :’E%:—(flﬁ'fz> (37)

or

Gr" ( +6n(—i1——2) X (37")

Fig) 745

Equation (37') indicates that the force transmitted to the elastic body
is a function not only of the displacement of the plate, but also is a
function of its velocity. By using the notations ay and

A
1 j:+f

F, = o (38")

L (£+%)

Eq. (37') becomes

P=-J]GP I"F.X ~GLFX (39)

The values of F; and Fs may be calculated for any values of Poisson's
ratio using the computed values of fl and‘fg.

Equation (39) may further be simplified by substituting

=J/6P LR (x0)
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and

to give

P :—Rvi’Kvx (L2)

If a cylindrical mass of radius ry and weight Wy is placed on the weight-

less rigid disk and subjected to a vertical exciting force Q the equation
of motion becomes

m,X = PtQ

substituting Eq. (L42) to Eq. (L3)

m,X + RyX + Ky X =Q (k)

Equation (U4L) is identical to the equation for the one-degree-of-freedom
{orced vibration with viscous damping as was shown in Eq. (3), except

that both Ry and Ky are dependent upon the frequency factor ag.

Hall and Richart have shown that the magnitude of dispersion damp-

ing can be evaluated in terms comparable to conventional damping criteria

if critical damping is specified, from c. = 2~ Km,as

(45)

Then the damping ratio can be determined from
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Ry _ J6P R* R (46)

Rvc 20Grs myF,

By substituting the mass ratio of system b = mg/pr3, Eq. (46) can fur-

ther be simplified to

= (L7)

Thus the dispersion type of damping in the system is a function directly
of the mass ratio, and thus can be estimated for a particular system with
the value of ap at the maximum amplitude, which may be determined from

the curves given in Fig. 11.

Brief Review of Previous Work on the Study

of Oscillator-Soil Systems

The first five works to be reviewed are based on the theory of vi-
brations other than that of a semi-infinite elastic body. They are more

or less arranged in a chronological order.

HERTWIG, FRUH, AND LORENZ (DEGEBO) (193%)

DEGEBO (German Research Society for Soil Mechanics) (9) is generally
credited to be the first organization to conduct extensive experiments
in the field to determine the dynamic characteristics of vibrator-soil
systems. Using a centrifugal force type (two mass) oscillator, various
tests were conducted in the hope of finding practically usable relations

between the properties of soil and the dynamic characteristics of the
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vibrator-soil system. Variation of the natural frequencies with the dif-
ferent types of soil were investigated and thought at first that such
frequencies were independent of the test system employed.

Finding that the experimental results obtained did not agree with
the theoretically predicted values [Eq. (2)], Hertwig, et al., introduced
a correction factor which involved the "in-phase" soil, that is, the
welght of the subsoil oscillating with the vibrator. Thus, as shown in
Fig. 12, the oscillating mass was considered to be composed of the mass
of the oscillator plus the mass of the "in-phase" soil. The standard

natural frequency equation [Eq. (2)] was transformed to read as

1 K'A 9
sn ZTE/ We + Wy (18)

Wy ! where

A PR i)’ —
K' = K/K = coefficient of

Kll We _ subgrade reaction
A = contact area between

. vibrator and soil
~ Wy = weight of "in-phase"

soil
Wy = weight of vibrator

Fig. 12. '"In-phase" soil under
the oscillator.

The determination of the exact mass of the "in-phase” soil was
rather difficult, however, since they found that the mass varied with
the loasing condition and with the exciting frequency. This method of
analysis is, therefore, at best very crude and is limited in its appli-

cation.
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Nevertheless, this method of analysis has been employed by a number

of researchers since, and several methods of approach have been proposed.

CROCKETT AND HAMMOND (1948)

Crockett and Hammond (3) conceived the concept of "a bulb of pres-
sure" in the soil below the footing oscillating with the vibrator. Al-
though there was no experimental evidence that the'bulb of pressure repre-
sented the equivalent weight of the "in-phase' soil, they found that the
idea appeared to give reasonably accurate results in practice. Notwith-
standing the fact that whether the "bulb of pressure' actually is the mass
of the soil oscillating with the vibrator, it must be realized that the
mass of an "in-phase" soil is a function not only of the weight of the
oscillator but also of the exciting frequency and the magnitude of the
input force, and consequently, the determination of the exact mass of the
bulb of pressure for different variables should be rather difficult.

Crockett and Hammond also maintained that soil has a peculiar "self”
frequency depending on its physical properties. A certain soil can have
a range of resonant frequency, but it has no such frequency by itself
alone. Whenever the resonant frequency of a particular soil is mentioned
it is the resonant frequency of the oscillator-soil system, and thus the

characteristics of the whole system should be mentioned.

PAUW (1953)
A more rational method of analysis based on the "in-phase” mass

concept was made by Pauw (14). Having noted that the zone which vibrates



under the influence of the periodic impulses is not sharply defined and
depends on the physical properties of the subgrade, Pauw proposed an
analysis of the problem based on an analogy whereby both the equivalent
spring factors and the apparent mass of soil vibrating with the founda-
tion may be determined in a rational manner. His "soil-spring”’ analogy
is based on the assumption that the modulus of elasticity is proportiénal
to the effective depth for cohesionless soils, and constant for cohesive
soils, and that the stress distribution beneath the plate has a form of
truncated pyramid having uniform stress distribution over any section
parallel to the contact surface.

Based on the above assumptions and using the concept of static stress-
displacement he derived the equations to express the equivalent soil
spring constants for horizontal and vertical contact surfaces. Equations
for the "apparent" soil mass factors were developed by equating the ki-
netic energy of an equivalent concentrated mass to the total kinetic en-

ergy in the effective zone as follows:

3
MS = ——g—z——~cm (49)

where

Mg = apparent soil mass

soil density

O
Il

(o]
I

least dimension of the footing

gravitationsl acceleration

[0}
I
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o = angle of sloping planes of effective zone (truncated pyramid)

factor defined by a equation

Cm

Pauw presented the results of his work in the form of charts for
the determination of the apparent soil mass and the equivalent spring
constants. With these values so obtained, the natural frequency of a
vibrator-soil system may be determined by the standard equation (Eq.
(48)].

Pauw noted that his methods for computing the apparent mass is

limited to cohesionless soils, and cannot be applied to cohesive soils.

EASTWOOD (1953)

Eastwood (4) conducted an experimental investigation to determine
the factors affecting the natural frequency of vibrator-soil systems and
to study the effects of vibrations on the bearing properties of founda-
tions on sand. A box of sand measuring 4 ft on three sides was used as
he found the size of the box was large enough to avoid any interference
with the modes of vibrations of the footings used. Varying the size,
shape, and weight cf footings, the natural frequencies of various foot-
ing-soil systems were determined by picking up signals, which were pro-
duced by a single impulse with a hammer.

He found that at low loads the frequencies were almost independent
of the footing size for a given load intensity, but for high loads they

were almost inversely proportional to the size of the footing as shown
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in Fig. 13. In this respect he stated that the conclusion of DEGEBO that
the resonant frequency increases with the size of the footing was shown
to be fallacious.

From the experiments he also observed that it was impossible to
estimate the effective mass of soil which acted with the vibration ("in-
phase' mass) as the mass appeared to vary with the test conditions. For
in-undated foundations he noted that the natural frequencies were again
almost independent of the footing shape at low load, but the frequencies
were only a little over half those on the dry sand. At high load in-
tensities the frequency was again roughly inversely proportional to the
footing width. His observation, that the natural frequency was constant
regardless of the thickness of the supporting sand, is hard to understand
as the author admitted of being unable to explain why that should be so.
According to a later study by Warburton (22), the thickness of layer
beneath the footing is a definite factor affecting the response of the

footing in oscillation up to the depth having the six plate diameters.

TSCHEBOTARIOFF (1953)

A statistical approach based on the past performance records of
machine-foundations was made by Tschebotarioff (21). He noted that the
results of the past investigations on the study of the soil character-
istics which influence the natural frequency of machine-foundation
showed a wide variance with each investigator and apparent contradic-

tions against each other. He observed that the difficulties in deter-
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mining the natural frequency of one particular soil resulted from the
variation of dynamic soil modulus values which were dependent upon the
characteristics of the vibrating soil cor the oscillator itself.

From the available records from the past by DEGEBO, VIOS (Russia),
the U. 5. Coast and Geodetic Survey on earthquakes in California, and
Princeton University, he attempted to analyze the problem by what he
termed a "reduced" natural frequency, by modifying the conventional form-

ula [Eq. (L48)] to read:

:/ A 1 / K9
fn | =W 77\ (102 (50)

or

.)Cnt’:ﬁ 'J[n (51)

where

WV/K = average unit pressure on the ground

b

"reduced natural frequency"

fl’lI‘

The "reduced" natural frequency is the natural frequency at an
average unit pressure on the ground equal to unity. Plotting of the re-
duced natural frequency for the aforementioned data and some more data
that became available later showed a definite pattern for a given type
of soil. This implied that the value of the dynamic modulus of soil re-
action K' in the formulas [Egs. (L48) or (50)] changed with the size of

the loading area, and the ratio of Wg/Wy either remained constant or
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varied only slightly. Figure 14 has been reproduced to show the rela-
tions between the loaded area and the reduced natural frequency.

In the following are reviewed the theoretical and experimental in-
vestigations based on the theory of vibrations for a semi-infinite elas-

tic body.

QUINLAN (1953)

Quinlan (15), independent of Sung, analyzed the problem based on the
work by Reissner. He obtained the theoretical solutions for the cases
of circular and the long rectangular vibrator under various assumptions
as to contact pressure distribution. His final results yielded similar

solutions to those by Sung.

ARNOLD, BYCROFT, AND WARBURTON (1955)

Arnold, Bycroft, and Warburton (1) considered theoretically the
forced vibration of a rigid body resting on a homogeneous elastic medium
of infinite surface area and constant depth which may be finite or in-
finite. Four different modes of vibration for a body with a circular
base were investigated: (a) vertical translation, (b) horizontal trans-
lation, (c) torsion, and (d) rocking.

For the experiment they used foam rubber to investigate the amplitude-
frequency responses under vertical and rotational excitations produced by
an electromagnetic oscillator. They obtained close agreement between
the theoretical and experimental results for the vertical translational

modes, but for the rotational modes the experimental values were smaller
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than the theoretical values, especially at frequencies close to resonance.
They felt that this was due to the experimental damping effect, which

should be more predominant with the rotational modes.

WARBURTON (1957)

Warburton (22) extended the work (1) to include the case of a sur-
face layer of a soil underlain by a perfectly rigid base for vertical
modes of excitations, and compared them with the experimental results
given previously by Arnold, Bycroft and himself. He produced the charts
showing the relationship between the mass ratio and frequency factor for
different depth of stratum factors. He found that there was good agree-
ment between the theoretical and experimental values of the resonant fre-
quency. Any discrepancies between them were attributed to the assumed
stress distribution between the mass and the stratum, and the neglected
damping in the analysis. The presence of underlying rigid layer led to
higher resonant frequencies, especially so at thin layers and high mass
ratio values. He also observed that for the soil tested (sandy soil) the
natural frequency was independent of the thickness of the stratum if it
exceeded six times the diameter of the footings. It was also found that
the amplitude of vibration on a layered system was much greater than that

on a semi-infinite medium.

RICHART (1953)
Richart's contributions to the development of the theory and the use

of it have previously been reviewed. In this section his proposal for
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the use of an "effective radius" in relation to the pressure distribu-
tion is reviewed.

Sung's investigations clearly indicated that the dynamic character-
istics of a vibrator-soil system depend upon the pressure distribution at
the base of the footing. From a consideration of the radius of the loaded
area Richart (18) proposed to use an "effective" radius of footing for
each pressure distribution corresponding to an equivalent uniformly dis-
tributed load. The method of determining the equivalent uniformly dis-
tributed pressures is illustrated in Fig. 15. These charts show that
three types of pressure distribution, uniform, parabolic and rigid base,
can be represented by a statically equivalent ring loading (Qleiwt/nro)
which acts along the circumference of a ring through the centroid of each
pressure distribution curve. From this, the radii for equivalent uni-
formly distributed pressure can be determined. This radius, which yields
the same results as those by using the actual radius of loading area
with the actual pressure distribution, is termed the "effective" radius.
This concept of an "effective" radius shows that as long as the effec-
tive radius remains constant, the dynamic characteristics of the systems
would be independent of base plate radius or the type of pressure dis-

tribution.

JONES (1958)
Jones (11) employed two different methods to measure the dynamic

properties in situ: one by the phase velocity of the surface vibrations
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and the other by the resonant frequency of oscillator-soil systems.

For the first part of his experiment he used an electromagnetic vi-
brator driven by a variable frequency oscillator and power amplifier.
The vibrations were produced within the frequency range of 35 to 4OO cps.
A seismic pickup was moved away from the vibrator at several points
where the vibrations were in phase with those at the vibrator. From the
distance measured between the points (wavelength) and the exciting fre-
quency the phase velocity was obtained. Measurements were made at
distances up to 40 to 80 ft from the vibrator.

Conducting the tests on a silty clay soil underlain by a stratum of
gravel he found that the phase velocity decreased with increasing fre-
quency, but approached an approximately constant magnitude at frequencies
greater than 150 cps. Correlating this constant magnitude of the phase
velocity to the C.B.R. value, he observed there was an empirical rela-
tion between the two. The dynamic shear moduli computed from the test
results were found to be in agreement with those determined by other
techniques.

For the second part of the experiment the same electromagnetic vi-
brator was used. The vibrator was placed on a leveled ground of sandy
clay soil and was loaded with different weights before being driven at
resonance. The current in the magnet (driver coil) was varied from 0.5
to 2 amperes. The plates of different sizes (4 to 12 in. diameter) were
used. From the values of resonant frequencies the dynamic shear moduli

were computed by the theory of vibrations based on an elastic half-space.
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In comparing the results for the shear moduli with those obtained
by the phase velocity he noted that the results would agree much better
if one type of pressure distribution was assumed over the other. Since
there was no way of knowing the exact type of stress distribution he con-
cluded that for these particular sites the best choice would be that of
midway between uniform and rigid base type pressure distributions.

It was observed also that the resonant frequency decreased with the
increasing force of vibration as others had previously noted. He found
that the change was greater with the softer soil, and also depended upon
the mass of the footing, in that the drop in the natural frequency was
greater with the lighter footing at the same input force as shown in the

table below:

TABLE III

CHANGE IN NATURAL FREQUENCY DUE TO
CHANGE IN CURRENT (FORCE)

Weight, 1lb Drop in fo
.5 72.5-69.2
118 52.5-50.4
161 43.7-42.8

To see the effects of the mass and diameter of the plate the total
weight of the plate was varied from 50 to 340 1b at site C (wet surface
and soft), and from 70 to 266 1b at site D (dry and soft), and the size
of the plate was varied from 4 to 12 in. in diameter. The results ob-

tained for the plate of 12 in. diameter are summarized in Table IV.
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TABLE IV

SUMMARY OF TEST RESULTS

fo at 0.53Mp fo at 1.53Mp G/uniform G/rigid base

i (cps) (cps) (psi) (psi)
Ly 110 10k 2,390 2,270
8 83.5 79 2,450 2,180
12 2.5 71 2,680 2,260
16 N 62.5 2,690 2,280
20 56.5 58 2,640 2,220
2 50 L9 2,430 2,000

The results for the natural frequencies have been plottedv(by the
writer) as shown in Fig. 16. It can clearly be seen from Fig. 16 or from
Table IV that the resonant frequency decreased with increasing mass ratio.
The values of the shear modulus (G) obtained, assuming uniform or rigid
type pressure distribution, were mutually consistent and gave average
values of 2,550 and 2,240 psi respectively. He observed, however, that
the shear moduli increased with increasing mass ratio for smaller plates,
and attributed this fact to local compaction of soil during the experi-
ment. It must be realized, however, that in a later investigation Hardin
and Richart (8) recorded that the shear wave velocity, from which the
shear modulus 1s computed, increased with the l/h to 1/2 power of con-
fining pressure which, of course, is directly proportional to the weight
of footing.

It has been previously stated that the determination of the shear
modulus and Poisson's ratio of soils and the knowledge of elastic wave

dissipations are essential in the evaluation of the dynamic characteris-
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tics of foundation-soil systems. These elastic constants of a soil may
be obtained from the measurement of shear wave velocities. There have
been numerous investigations, both theoretical and experimental, con-
ducted on these subjects in the past. In the following are reviewed

only two reports of the work that have been carried out recently.

HARDIN AND RICHART (1963%)

Using the resonant column method an extensive series of laboratory
tests were conducted to evaluate the compressive and shear wave veloc-
ities in specimens of Ottawa sand, crushed quartz sand, and crushed
quartz silt. In one type of equipment used the specimen was free at
both ends so that at its lowest mode the wavelength was equal to twice
the length of the specimen. In the other type of equipment used the
specimen was fixed at one end and free at the other. This fixed-free
type equipment was developed by Hall (6).

The tests were conducted to observe the effects of the confining
pressure, the moisture content, vecid ratio, and the grain characteris-
tics of the materials. The test results showed that for confining pres-
sure between 2,000 and 8,000 psf, the shear wave velocities varied with
approximately the l/h power of confining pressure for dry, saturated,
and drained sands. For lower pressures, they varied with powers between
the 1/2 and l/h powers depending on the grain shape and the moisture con-
tent. On the shear wave velocity in fine grained materials, the effect

of time, and the degree of consolidation appearecd to be significant,
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aside from the effect of confining pressure. (A more extensive study on
the wave propagation in fine-grained materials is being conducted at
present in the Soil Dynamics Laboratory at The University of Michigan.)
They also found that for dry sand the shear wave velocity decreased
linearly with increasing void ratio under a specified confining pressure,

and was independent of grain size, gradation, and relative density.

HALL (1962)

The main emphasis placed by Hall (6) in the study of wave propaga-
tions was in the evaluation of the effect of vibration amplitude on the
wave velocities and damping in granular soils. Utilizing the resonant
column method with the "fixed-free" apparatus described previously, the
tests were conducted on Ottawa sand, glass beads, and a silt-sized crushed
quartz. Vibration amplitudes employed were much larger than those used
by Hardin.

The test results showed that both the compressive and shear wave
velocities decreased with increasing amplitude of vibration. This de-
crease, it was observed, might be as much as 10 to 15% as the double
amplitude was increased from 1x1072 to 2.5}(10'5 radians in torsion or
from 2x10-6 to 1x1072 in. in the longitudinal tests. This amount of
change was comparable to that produced by changes in void ratio from the
maximum to minimum value.

Using the same apparatus described above, he evaluated (7) the ef-

fects of confining pressure, amplitude of vibration, degree of satura-
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tion, and the grain characteristics of materials on the internal damp-
ing in granular soils. Measurements for damping were made by recording
the decay curve of vibration. His findings showed that for dry Ottawa
sand the logarithmic decrement varied with approximately the l/h power

of amplitude, but for saturated sand the variation was much less than

for the dry condition. As to the effect of confining pressure on sand,
it was observed that the damping appeared to decrease with an increase in

confining pressure.

WATERWAYS EXPERIMENT STATION, CORPS OF ENGINEERS (1963)

Any theory, in order to be valid, must be supported by experimental
or field test data. During the period of 1960 through 1962 an extensive
series of tests were conducted by the Waterways Experiment Station (WES),
and the test results, without analyses, have since been reported (23).

The writer has had an opportunity of analyzing the obtained data
based on the concept of a foundation-soil system as being a mass resting
on a semi-infinite elastic body.

The tests were conducted on a selected site at the WES area (silty
clay), and on another site at Eglin Air Force Base, Florida (sand). Four
reinforced concrete circular bases were built at both sites (designated
as bases 1, 2, 3, and 4) having diameters of 62.0, 87.6, 107.6, and 12L4.0
in. respectively. Bases 2, 3, and 4 are multiples of base 1 in regard

to contact area. In addition, base 5 (same area and weight as base 3)

was used at the Eglin site for surcharge effect, and base 16 (16 ft in
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diameter) was constructed at the WES site. The vibrator (two-rotating-

mass type) was approximately 53 in. long, 48 in. wide, and 24 in. deep,

and weighed 5,600 1b. The eccentric masses weighed 339 1b each, and the
eccentricity was varied from 0.105 to 0.418 in. This means that the in-
put force could be varied from 365 to 52,070 1lb in the vertical mode of

vibration, depending on the frequency of operation employed.

The tests consisted of applying sinusoidal forces and moments to the
bases in the vertical, torsional, and rocking modes of oscillation. The
variables considered were the static weight, the size of bases, and the
frequency (constant area tests, equal weight tests, equal static pressure
tests, etc.). The elastic moduli of the soils at the sites were deter-
mined by surface seismic methods.

The test results for the displacement and phase shift were obtained
for each setting of base-soil system. For the vertical mode of vibra-
tion alone, data were obtained for 63 tests at the WES site, and for
39 tests at the Eglin site.

All the test results have been tabulated and summarized. An anal-
ysis of the test results for the case of vertical oscillation is pre-
sented in Figs. 17 and 18. In the analyses the resonant frequency was
determined by the "tangent” method, that is to say, by drawing a line
tangent to the displacement-frequency curve through the origin and read-
ing the frequency at the contact point. The amplitude ratio shown as
ordinate in the graph is the ratio of the measured maximum amplitude to

that computed using the curves prepared by Richart, Fig. 11, assuming a
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rigid base type pressure distribution. The elastic constants of the
materials used in the computation were those determined from their seis-
mic tests. Figures 17 and 18 show that agreement between the theoret-
ically computed values and those obtained by the field tests is rather
good, considering the difficulties in measuring some of the quantities,
such as phase shift, in the field and in the evaluation of the elastic
constants of the soil.

In Table V below are summarized some of the typical test results.
The test results shown are for the vertical mode tests at the WES site,
conducted for an equal eccentricity (£ = 0.105 in.). In the equal weight
tests each base had the same static weight of 30,970 1b, and in the equal
static pressure tests each base, regardless of the size, was loaded to
provide a static pressure of 4.25 psi. Thus, tests were performed in
which (a) a constant weight was maintained, and contact area and pres-
sure varied; and (b) a constant contact pressure was maintained, and the
weight and contact area varied.

From the analyses of the tests in vertical modes at the WES site,
such as shown in Table V, the following conclusions have been tentatively
drawn by the writer:

1. For an equal size of footings both the resonant frequency
and the maximum amplitude decreases with the greater mass ratio, that is
more static weight. This checks with the "semi-infinite elastic body"

theory.
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TABLE V

SUMMARY OF TEST RESULTS
(Waterways Experiment Station)

Test M Resonant Maximum
Base Nes Rai? Frequency Amplitude
O« atlo (cps) (xlO'LL in.)
Equivalent Weight Tests
1 28 15.3 15.0 107
2 7 5.4 17.4 L5
3 6 2.3 17.8 37
L 13 1.9 17.0 27
Equal Static Pressure Tests
1 1 6.3 19.6 155
2 11 4.5 18.4 51
3 2 3.6 18.0 37
I 5 3.2 15.8 22
Equal Radius Tests

1 20 15.3 14.5 110
1 28 15.3 15.0 107
1 8 12.7 15.4 126
1 12 12.7 15.1 140
1 1 6.3 19.6 155

Vertical mode of vibrationjeccentricity £ = 0.107 in.



61

2. If the mass ratio is the same the resonant frequency decreases
with increasing eccentricity, that is, greater input force. (Note that
the input force is also dependent upon the frequency.)

3. For an equal static pressure the resonant frequency and the max-
imum amplitude decreases as the mass ratio decreases, that is, with
larger footings. This may be explained by the "elastic half-space"
theory that ao/ro in the frequency equation and Aéii/rg in the amplitude
equation become smaller with the greater mass ratio, that is larger r.

L. TFor an equal weight the resonant frequency appears to increase

with decreasing mass ratio. The maximum amplitude decreases definitely

with smaller values of the mass ratio for the same reason given in 3.



CHAPTER III

THEORY FOR THE EXPERIMENTAL DETERMINATION
OF PRESSURE DISTRIBUTION

General

DESCRIPIION OF TEST SYSTEMS

There are seven test systems employed in the present research as de-

scribed in the following table:

TABLE VI

DESCRIPTION OF TEST SYSTEMS

Test System Weight of Mass
No. Footing (1b) Ratio
1 80.0 5.83
2 120.0 8.7k
3 171.1 12.47
i 217.6 15.85
5 257.1 18.73
6 302.% 22.02
7 342.3 24.94

Frequency Range = 50-1,000 cps
Range of Input Force (constant amplitude) = 9.0-
22.5 1b vector
Radius of Footing = 0.5 ft (constant)
STATIC CONTACT PRESSURE DISTRIBUTION UNDER A RIGID FOOTING
The normal stress (the soil reaction) developed at the surface of

contact between a footing and the supporting soil is termed contact pres-

sure. It is known that the static contact pressure at the base of a

62
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perfectly rigid footing resting on a semi-infinite elastic body increases
from the center toward the rim of the base where it reaches an infinite
value as shown in Fig. 19(a) in order to produce a uniform settlement.
Since the pressure along the edges cannot exceed a certain finite value
(bearing capacity) at which the material passes from elastic to plastic
state, the pressure in a real soil is shifted, as the load is increased,
toward the center until the distribution becomes uniform at the instant
when the material fails by general shear failure. If a footing rests on
a dry cohesionless sand, the pressure under any load increases from zero
at the edges toward the center where it reaches a maximum value as shown

in Fig. 19(b).

R1G1D RIGID
YA NAANA B2 2N A

(a) Real, Elastic Material (b) Cohesionless Sand

Fig. 19. Contact pressure distribution under a rigid footing.

It has been stated previously that the pressure distribution varies
between that of a rigid base and that of a parabolic type with the vary-
ing applied force. This leads to say that the repeated application of a

static force (stress or strain history)—which is essentially a dynamic
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load-—causes a change in the pressure distribution. A change in the
pressure distribution also occurs when the footing rests on a real soil
whose properties differ from those of the "idealized" soil, which was

the basis of the analytical solutions.

The Footing-Soil System in the Present Investigation

FORCE-REACTION-PHASE RELATIONS IN RING SYSTEM

The simplest possible system for the determination of pressure dis-
tribution is a circular footing of radius rp resting on the surface of a
subsoil. Since the actual pressure distribution under a rigid footing
is not uniform, but varies both in phase and magnitude with the distance
r from the center, the footing should be replaced by some sort of ring
system as shown in Fig. 20. In the ring system the pressure distribu-
tion under each narrow ring is not uniform, but by taking an average pres-

sure it may be assumed that the average pressure is acting at the center

of the ring.
| Q
[
t
m.t_
m :
O\ Fr lFJ X,
|
Mmy— | | | 1 L L
INSINNZSSZ A IS NN
S P Ry !RJ

Fig. 20. Footing composed of concentric rings
used in present research.
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The footing employed in the present research is similar in struc-
ture to the one used by Faber (5) who investigated the static pressure
distribution under a footing, and consists of two plates: the upper
plate is of one solid piece and any static weight used can rigidly be
bolted to the plate (mass = mt); the lower plate is formed by six con-
centric rings (mass = mb) of an equal area except the center one, and
each ring i1s connected to the upper plate by means of load cells on which
force measurements are made.

The equation of motion for the footing is, from Eq. (17)
m, X + Q = R; (17)

in which Rp is the total reaction pressure under the footing. For the

ring system the equation of motion may be expressed as
m,x + Fr = Rq (52)

in which mp is the mass of the lower plate, and Fp is the total force
acting on the lower plate. Fp may be obtained by vectorially adding the
individual force acting on each ring as
n
Fo=2 F (53),
J=1
in which j = 1,2,...,n, and n is the total number of the ring. The force

on each ring can be expressed as
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- ,i(wt+¢5_x)

FJ = J,e (5LL)

= F cos (wt + ¢5———x) + LTy osin (wt + ¢5-—x) (547)

in which ?Lis the amplitude of vibration (force), and ¢FJ—X is the phase
shift between the force on the ring and the displacement.

The reaction at the base of each ring may then be expressed by

Ry = miX; + Fj (55)
or
Rj = mjxX + F (55")
since for a rigid body, kj = X.
The equation of motion for the total reaction under the footing is
then
n n "
Rr=2Z Ry =2 (mjx+ Fj) (56)
J=i J:l

Thus, the original equation for the total reaction under the footing

[Eq. (17)] is replaced either by Eq. (52) or Eq. (56) in the correspond-

ing ring system.

In Egs. (17) and (52) are given

i

me X + Q = Re

m, X + F+ = R¢
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Multiplying Eq. (52) by mp/m, to obtain

Mo g - Mo g
T T

m, X +

Subtracting Eq. (17) from the above equation to yield

(8= -1) Ry = (22)F - Q (57)
Equation (57) shows how the three forces are related in terms of a mass
ratio between the lower plate and the entire footing. This equation also
allows one to compute the total reaction under the footing without meas-
uring the inertia force of the footing.

The inter-relations among forces, reactions and phase angles, as
expressed in Egs. (17), (52)-(56), are graphically illustrated in Figs.
21 and 22. The vector diagram shown as Fig. 21(a) illustrates the re-
lations defined by Eq. (54'). For convenience, the displacement axis is
taken as the reference line. Each ring force is plotted for its magni-
tude with its phase shift from the displacement axis. The total force
Fp, which is obtained by Eq. (53) or by graphically as shown in Fig.
El(b), is plotted in reference to the displacement axis. The exciting
force Q is also shown. The reaction under each ring, Eq. (55), is il-
lustrated in Fig. 21(0), and the total reaction under the footing, Eq.
(52), is shown in Fig. 21(d). In the same manner, the vector diagrams

for Egs. (56) and (17) are drawn in Fig. 22(a), (b), and (c) respectively.



68

IMAGINARY

(A) FORCE ON EACH RING, TOTAL FORCE, AND

PHASE RELATIONS
Fi

)

(B) FORCE POLYGON

(C) REACTION UNDER EACH RING (D) TOTAL REACTION

Fig. 21. Vector diagrams for ring force, total force,

and phase shifts.
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(A) REACTION, TOTAL REACTION, AND PHASE RELATIONS

m X

(C) TOTAL REACTION FROM INPUT AND INERTIA FORCE

Fig. 22. Vector dlagrams for reactlon under ring, total
reaction, and phase shifts.
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COMPUTER ANALYSIS OF DISPLACEMENTS, FORCES, REACTIONS, AND PHASE SHIFTS

The above method for the calculation of displacement, forces, re-
actions and their phase relations has been programmed for an IBM 7090
computer analysis. The flow diagram for this program is shown in Fig. 23.
It may be noted in the diagram that the input data for acceleration (MVA),
ring forces (MVF), are fed in millivolts and phase angles (MSAQ, MSA6,
MSN6) are fed in units of milliseconds.
DETERMINATION OF THE DISPLACEMENT FUNCTION FROM EXPERIMENTAL DATA THROUGH
A COMPUTER PROGRAM

It has been stated previously that the displacement, reaction, and
their phase relations may be computed if the displacement function f‘can
be determined, and that the function.f\is dependent only upon the two
variables. Therefore, the function can be determined by solving simul-
taneously any two of the equations given in Chapter II [Egs. (28)-(3L4)].

It has been decided for the present research tc use the following
two equations for the solution of the functions,fﬁ and‘fg.

- & £+ £ 0
X Gro \/(Hba:a%)z +(ba: £)? 50

— -1 "fz

g .= tan (53)
=X 2 2 2
« fr b (5t 5)

The solution of these two equations for‘fl and.fé, as shown in the Ap-

pendix, has been reduced, through algebraic manipulation, to the solu-

tion of a quadratic equation in the form of
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FLOW DIAGRAM ( Fr.Rr,P)

[ PRINT
READ F_lwb,a
W, b, @, CF(D)... (4)
SM, £. MVA U=0., ]
MSA Q& , MSA6 T
MVE C1) -.. (6)
MSN6 (.- (8)

(4= w25
( x=au%/5 ) x=ma/sses ) a-n s T )
(r-ose § )~(#0- T nshe o= i8-8, )
(B= 180~ & = T Hsae ) 1F = oms )

Ls!

¢
@. - ‘ >6 F
=L+

(¢»~x/u - q%-x'*Q-t,i ¢,,_";_ = T-NSN6;
T ( d’»ma’ 0.0174- (36ox QW)
_F—-{¢“nl- = 0'0'14' ¢““x/.¥

( FS5;=F;sin dim,i)-_( FC; =F, cos c&mi
Q:M;= FC, + TF )'_’CDL = FS?"FMIL

%"l . (0

Fig. 23. Flow diagram for computer analysls of force, re-
actions, and phase shifts.
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FLOW DIAGRAM ((ontinued)

u 424,;; 180 + (573 ‘bnxx,i. )
¥
[ ( 4’2—\(,1;- 513 d?zxx,i

{Rs = 21 FTS +8.1 FS,¢ )
1
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e <o RS >0
12 (B, =513 B 7180)—

-@FT—X = %13 chTT)

RT = RTT/“3.l _)
1
GTT = /RSD+RTC‘

T
T _"@Mﬁlso +s1.3@—1

RS>0 PRINT

(G = 5 g0 )] Fr - P
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Fig. 2%. (Concluded).
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T+ Yf,+a=0 (58)

KJCL + 5 _fz =0 (59)

where Y, T, Q, K, and S are the known quantities as defined below:

V= 2oal (ST {14[al (A5 4 1] ot .,

T= bzaf(ng’ >Z{l + [bzaf (—X%IQ)ZA— 5} tan ¢&_Y} -1

B O
1

4
bzﬁ(’(g?) tan® B, +(X65 )2

2bad (XSP )2 tan gb&—x

K= . -tan¢
2 X G \? R-X
ba’( a ) -1

S - bCLZ %—) tan ng-x

bral (X2k)- 1
&,

It may be noted from Egs. (58) and (59) that both f1 and fz have
more than one root, but the theory demands.f; to be negative and,fg
positive for any frequency factor values.

The solution for the displacement function has been programmed for

the IBM 7090 computer analysis, and the flow diagram for the program is
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shown in Fig. 24. It may be noted that the program can be used for both
types of steady state vibration, that is, constant force and rotating
mass type.

The displacement function so determined from the experimental data
may then be used for comparisons with the theoretical values, such as

shown in Fig. 8.

Theoretical Values for Resonant Frequency and

Maximum Amplitude of the Test Systems

As stated previously, the resonant frequency and the maximum ampli-
tude of oscillation of an oscillator-scil system depend on the mass ratio,
the elastic constants of the subsoil, and the type of pressure distribu-
tion. In the absence of knowledge as to the type of pressure distribution
for the test systems employed in the present research, the following the-
oretical determination of the dynamic characteristics of the test sys-
tems are based on the assumption of a rigid base type pressure distribu-
tion and Poisson's ratio of 0.25. It should also be pointed out that
although the term "theoretical' is employed, the shear wave velocities

used are based on experimental data.

THEORETICAL RESONANT FREQUENCY OF TEST SYSTEMS
The theoretical resonant frequencies for the seven test systems have

been computed by using the theoretical curves in Fig. 11(a) and Eq. (19)
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FLOW DIAGRAM (£ ¢ %)

(READ

WT,W.,/l.. G.T U=l
T
I,Zn ;Jx‘¢lu bﬂWT/’az
PRINT
D=ba?l Gu=2TWf0e [Q Wr, 1,6

T.b__ |

)

n=nd/g0

Y:E‘l’ZCKS

Fig. 24. TFlow diagram for computer analysis of displacement
functions.
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FLOW DIAGRAM ( Continued)
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Fig. 2. (Concluded).
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ao ' 6 '
JCO = 2-]-[ ro /0 (19)

In the use of this equation, however, the shear wave velocity \/G/o is

not a constant value, but varies with confining pressure as indicated by
Hardin and Richart (8). 1In Fig. 25 is drawn a curve showing the rela-
tionship between the shear wave velocity and confining pressure for a
soil having a void ratio of 0.51. This curve has been obtained by ex-
trapolating a curve, given by Hardin and Richart for a similar soil (Fig.
10, Ref. 8), to include the low confining pressure region. The confin-
ing pressure for each system was computed by dividing the static weight
of the footing by contact area.

The results of computations are shown in Table VII and are plotted
in Fig. 26. It may be observed that the natural frequency is inversely
proportional to the mass ratio of the system. It should be noted, how-
ever, that the variation of frequency is rather small (12 cps) although

the mass ratio is changed from about 6 to 25.

THEORETICAL MAXIMUM AMPLITUDE OF OSCILLATION
The theoretical maximum amplitude of oscillation for each test sys-
tem has been computed by using the theoretical curves given in Fig.

11(b), and a relation given by

/7 (2) .
A max Ar%a: ' Ql (60)
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RATIO,

MASS

ol | 1 L | | |

o 78 80 82 84 86 88 90

RESONANT FREQUENCY, £ (cps)

Fig. 26. Theoretical resonant frequencies for various mass ratios.
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where
(2)
A/ @ _ Amax
max Gr,
2
AI;;X) is an amplitude factor (it has a unit of in./lb) modifying the

(2)

max O apply for a particular footing-

dimensionless amplitude factor A
soil system. Thus, Aééi) may be termed "unit amplitude factor."

The results of computations are summarized in Table VIII and are
plotted in Fig. 27. It may be stated that the maximum amplitude is also
inversely proportional to the mass ratio of the test systems employed,
although the dimensionless amplitude factor is directly proportional to
the mass ratio. This is due to the change in shear modulus, which shows
a greater rate of increase with increasing mass ratio. It may be of
interest also to note that the rate of increase in the maximum amplitude
becomes greater as the mass ratio gets smaller. As was the case with

the natural frequency, the maximum amplitude varies very little with

the change in mass ratio of the system.
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TABLE VIIT

THEORETICAL SHEAR MODULUS AND MAXIMUM
AMPLITUDE FACTOR VS. MASS RATIO

Test Mass (2) Wave Shear
Systen Ratio Apax Velocity |Modulus Aéa§2)
’ﬁ_ G
No. b [4
(ft/sec) | (psi) (in/1bx10)

1 5.83 0,298 370 3,245 1.530
2 8.74 0:345 410 3,984 1,443
3 12.47 0.399 455 4,906 1.356
4 15.85 0.438 490 5,690 283
5 18.73 | 0.474 518 6,360 1,242
6 22,02 0.510 544 6,965 1,220
7 24,94 0.541 563 7,513 1.200
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0 1.2 125 1.3 1.35 1.4 1.45

(2 g
A 10% (insibe)

UNIT AMPLITUDE FACTOR

.5 1.5

Fig. 27. Theoretical maximum amplitudes for various mass ratios.



CHAPTER IV

DESIGN, CONSTRUCTION, AND CALIBRATION OF TESTING
EQUIPMENT, AND TEST PROCEDURE

Design and Construction of Testing Equipment

Structural Equipment

SAND BIN

A sand bin was built with 8 in. three-cell concrete blocks and has
the inside dimensions of L4.75 ft by L4.75 ft and 4.0 ft in height. The
holes in the blocks were filled with mortar. The wall was reinforced ver-
tically with 5/8 in. diameﬁer, 4 ft long rods, which were placed 8 in.
apart. The rods were thréaded 2 in. at one end and extended above the
wall top to be used for anchoring the loading frame and other apparatus.
The horizontal reinforcement of the wall was done with the standard "Dur-
0-Wal" reinforcement trusses of type 6-S (manufactured by the Dur-0-Wal
Co., Cedar Rapids, Iowa). These reinforcement trusses were used in every
course and were spliced 6 in. at the joints. The use of these trusses
with "Type M" special mortar (ASTM Standard C-270-59T) gives a transverse
strength of about 1.8 times that of unreinforced blocks (allowable work-
ing stress of 6 psi). This strength was found to be adequate to resist
the lateral earth pressure and the lateral component of the force from

the loading frame.

8l
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The inside of the wall was first coated with Peerless cement paint
to fill the pores on the concrete blocks, and was then coated with
regular roofing tar to make it completely waterproof. In order to pro-
vide a means for absorbing wave energy, 1/2 in. thick Celotex board was
installed on the inside of the wall and the bottom floor of the bin.
These Celotex boards were covered with a sheet of Vis-queen to make them
waterproof. After the installation of these interior materials the net
inside volume of the sand bin was measured to be 83.9 cubic feet.

The sand used was Ottawa Silica Sand. As shown in Fig. 28, 85% of
the sand is retained between the nos. 30 and 50 sieves. Its natural
moisture content was 0.04%. The maximum void ratio of the sand is 0.80,
and the minimum void ratio is 0.51.

The sand was compacted in the bin by a Jackson Vibratory Plate Com-
pactor (manufactured by the Electric Tamper and Equipment Co., Ludington,
Michigan). The sand was compacted in 6 layers; the bottom layer was 10
in. thick after compaction and the top layer was 5 in. The four middle
layers were about 8 in. each in thickness. This layer thickness of 8 in.
was adapted from the trial compaction runs accompanied by density tests.
The tests were run by burying a mold (pie pan) of known volume under the
sand at different depths. After a specified compaction the mold was dug
out and its surface was made even with the top of the mold. Then the sand
in the mold was weighed to compute the density. It also indicated that
6 passes of the compactor on each layer gave the maximum density. Figures

29 and 30 show the compactor used for compaction cf the sand in the bin,
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and the means of measuring the density of sand in the bin.

The total weight of the sand in the bin was 9,135.0 1lb, occupying
a volume of 8%.2 cubic feet. From these, density of the compacted sand
in the bin was calculated to be 109.8 lb/cu ft, and a void ratio of 0.51,
which was the same as the laboratory test results as previously men-
tioned. This implies that the method of compaction employed was very

effective in obtaining the maximum density.

LOADING FRAME

In designing a loading frame there were two major items to consider:
first, to avoid a frame having natural frequency ranges within the range
of the test frequencies; second, to make the entire structure as rigid
as possible to minimize the amplitude of vibration. Theoretical solu-
tions, as shown in Chapter III, predicted that the test frequencies would
be in the range from 78 to 91 cps. After trials of numerous sections to
meet the aforementioned requirements, it was found that the frequency
requirement could not be met. The section shown in Fig. 31 calculated
to be most satisfactory. The structure has a laterally enlarged A shape:
two vertical members are connected to a horizontal member at the top,
which are supported by the sand bin wall through diagonal members and
braces. Another identical section is erected 7 in. apart and these two
sections are transversely braced together. The base plates, 7 by 24 in.
in size, are bolted rigidly to the wall. The oscillator is bolted to the

8 in. WF beam, which is adjustable in height as necessary by means of
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Fig. 31. ILoading frame details.
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slots in the vertical frames. Figure 32 shows the loading frame and the
sand bin setup for the test.

The total weight of the loading frame is about 340 1b and the oscil-
lator weighs about 75 1lb. The natural frequency of the loading frame

structure was theoretically computed to be about 250 cps.

FOOTING AND LOAD CELLS

The footing employed in the tests is illustrated in Figs. 33 and 3.L.
It consists of two steel plates of 12 in. diameter. The lower plate is
formed by six concentric rings so dimensioned that the area of each ring,
except the center one, is equal to 21 sq in. Each ring is separated by ap-
proximately 1.5 to 3 thousandths of an inch. The upper plate is of one
solid pilece and receives the test load at its center. The total weight of

the footing is 66 1b and it has a total area of 113.1 sq in.

Each of the six rings at the lower plate is connected to the upper
plate by means of four load cells on which strain measurements are to be
performed. Each load cell is made of a 2 in. long aluminum tube 1/2 in.
inside diameter and 0.015 in. thickness. On each load cell is mounted
an SR-4 (type C-5-1) strain gage with a resistance of %350 ohm and a
gage factor of 3.34. On the upper plate are installed two sets of four
strain gages mounted on aluminum tubes to be used as dummy gages. Al
four gages, both in the upper and lower plate, are connected in series,

thus giving a total resistance of 1,400% ohm each.
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Fig. 33. Detaills of special footing.
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STATIC WEIGHTS

For the purpose of varying the weight of the footing, dead weights
were made of reinforced concrete blocks. The blocks are of an octagonal
shape, vary in thickness from 2 to 4 in., and weigh about L6 1b each.
The blocks were reinforced with 5/8 to 7/8 in. diameter steel bars. Ex-
treme care was taken to make the surféce of the block as smooth and level
as possible to make them rigid when bolted together to the footing. 1In
addition to these concrete blocks a 13 in. diameter, 1 in. thick steel

plate was also used as dead weight.

With the use of these weights the footing can be varied from about
80 to 34k 1b, giving the mass ratio of the system in the range of 5.8 to

24.9.

APPARATUS FOR MEASURING SETTLEMENT

In order to measure the settlement of the footing under static and
dynamic loads, an apparatus was built of Lyon slotted angles as shown in
Fig. 32. The frame is firmly bolted to the sand bin wall. At the end
of the horizontal member is attached a dial gage, through which settle-
ment can be measured to one thousandth of an inch. This apparatus is
erected on both sides of the footing to measure any differential settle-

ment.
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Electric and Electronic Equipment

STRAIN GAGE SYSTEM

Design

The basic strain gage measuring circuit is a Potentiometric Circuit,
which consists of a direct current supply connected across two series
resistors, one of which is an electric resistance strain gage. This cir-
cuit is adequate mainly for strain measurements under static loads. For
the measurement of strains under dynamic loads, the Wheatstone Bridge is
more satisfactory and was used in this investigation.

The Wheatstone Bridge consists of four resistances, any number of
which may be strain gages, arranged as shown in Fig. 325.

A supply voltage, V is applied at diagonally opposite corners of the
bridge, and the output of the circuit is taken across the other diagonally
opposite corners. The output voltage, V' is the difference between Vpg

and Vy. by definition, so that

r R.R; - R, R,
ViV (Rat Ry ) (R R,) (o)

where R; through Ry are the gage resistance measured at each arm. When

the bridge is balanced, that is, steady output voltage (V') is zero,

R, R, = R,R, (62)

Thus, by the use of appropriate resistances the steady component of the

output voltage can be eliminated so as to measure only AV', which is a
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function of the strains in the gages which make up the bridge. Accord-
ingly, it is most important to design the circuit to produce a maximum
output sensitivity.

Since the active and dummy gages of 1,400 ohm each are installed in
the footing, these form the two arms in a proposed bridge. Thus, a basic
circuit for solution may be represented as in Fig. 36.

To solve this basic circuit for an optimum output sensitivity re-
quires the appropriate selection of V, Rs, and R4, and probably the type
of a D.C. amplifier, if needed.

The maximum strain gage sensitivity (Ss,max): which is independent
of the circuit type or of any actual values of the circuit components,

is a function only of three properties inherent in the gage as:

55) max = Imax ) Rg K (65)
where
Ihax = maximum current capacity = 0.03 amp
Rg = gage resistance = 1,400 ohm
K = gage factor = 3,34
therefore

Ss,max = 0.03 x 1,400 x 3.34 = 140 volt/in./in.-strain

140 pv/pin./in.-strain.

1]

The strain gage sensitivity, Sy is expressed as:

Ss = Sr' K (6&)
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V'+ AV'

Fig. 35.

Baslc Wheatstone Bridge circult.

I\%

D.C.
AMPLIFIER

R'- ACTIVE GAGE = 1400+f ohms

Rs DUMMY GAGE = 1400t -

2

OSCILLOSCOPE

MAX. SENSITIVITY OF OSCILLOSCOPE = 0.2 mv/em

Fig. 36.

A basic circult for solution.
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where

a

= resistive sensitivity = V ———
(1+a)®

n
I~
1

Y
Il

Ra/Ra

and

V. = IR (1+a) (65)

IRy (66)

which shows that it is current-carrying capacity of strain gage that
limits the supply voltage, V.

After trails of several circuits it was found that V = 200 volts
was most adequate for the purpose (actually batteries of 180 volts are
being used for the tests). For a supply voltage of 180 volts computa-

tions show that:

Gage ratio a = 3.3

therefore, Rz = Ry = 4,620 ohm
Resistive sensitivity Sy = 32 uv/p-ohm/ohm
Strain gage sensitivity S = 107 uv/p-in./in.
Circuit efficiency ep = SS/Ss,max = 77%

Of the six sets of strain gages to be instrumented, the center ring
and the other five outer rings were made into two separate systems. This
was to compare the pressure under each of the outer rings with that under
the center one. Figure 37 shows the final circuit designed for the outer

rings.
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Construction of the Bridge and Instrumentation

Two bridges were built for the system: one for the center ring and
the other for the five outer rings. The detailed wiring diagrams for
these two bridges are shown in Figs. 38 and 39, and Fig. 4O shows the
actual bridge as built. For Rs and Ry, resistors of 5,100 ohm are used.
These are wirewound power resistors, having a tolerance of 1% and 10 watt
capacity. Since the resistors carried a high resistance, such a small
tolerance and a high power capacity were desired, as the maximum power
in the resistors was computed to be 4.6 watts. These resistors also
have high dielectric strength and heat capabilities.

Since the resistors and the strain gages used did not have the exact
resistance specified, Rs was made variable with potentiometers, which
are designated as Rs in the diagram, to meet such tolerances in the
gages and resistors. Balancing of the circuits, based on the actual
resistance measured precisely with a Wheatstone Bridge, showed that an
additional resistor of 240 ohm was needed for Ry for the outer ring cir-
cuit. It also indicated that a potentiometer of 100 ohm would be suf-
ficient to meet the tolerance in balancing. The potentiometers used are
of wirewound, 2 watt capacity, having a tolerance of 5%.

It is noted in the diagram that two capacitors are used in the cir-
cult: one across the oscilloscope and the other across the battery.

The capacitor across the oscilloscope (C2) is to couple the bridge with
the oscilloscope. It is of 75 wvde and 0.1 pufd. To suppress all but

desired components of voltage to the bridge, a capacitor (Cy) is con-
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CENTER RING (NO.6)

R3= R4= Resistor, 5100 ohm,
Wirewound, | %, IOW.

Rg = Potentiometer, I00Q ohm
5 vorioblle. warewound, 2w

C = (é‘%pa%iftgr, 350 wvdc,

C, = Capacitor, 75 wvdec,
0.1 ufd.

A.G.=s Active Gage

C.G. = Compensating Gage

C
) o @ = Oscilloscope
4
8 —7 @ = Battery, 180 v.

Fig. 38. Bridge wiring diagram for center ring.
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OQUTER RINGS

Bridge wiring diagram for outer rings.

Fig. 39.



10k4

outer rings).

(

Wheatstone Bridge as built

. Lo.

Fig
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nected across the battery. It is of 350 vdc and 20 pfd to be used with
the 180 volt battery.

Since there are five outer rings, each of which forms an independent
system, switching of the system from one ring to the other is necessary.
This is accomplished through a six-channel central switch as shown in the
diagram. The switch has two sections, four poles and six pole positions
of shorting type. Each bridge is housed in a minibox, with plugs and
sockets used for inlets and outlets.

The major difficulties encountered during the instrumentation were
high noise level in the system and interference of signal from the out-
side sources. Originally, the bridges were constructed with the carbon
resistors and potentiometers of 2 watt power capacity, and a capacitor
across the oscilloscope. The use of these components without filters
seemed to give very high noise so that the balancing of the bridge was
impossible at high sensitivity ranges. Besides the noise from these com-
ponents, the connection of a high voltage battery directly to the bridge
was detected to be causing additional noise. To correct such noise prob-
lems it was decided to change the resistance components to those of wire-
wound type, and to raise the power rating to 10 watts so that the noise
caused by heat could be minimized. It was also decided to couple the
bridge with the battery by connecting it with a capacitor of a high ca-
pacitance to suppress the noise from the battery. In addition to these,
the bridge circuit was shielded and so were the cables used for various

connections.
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These remedies taken are believed to have overcome the noise prob-
lem; the present noise level in the system is about the same as that of
a Tektronix 502 oscilloscope being used.

It may also be noted that a D.C. amplifier is not utilized in the
final system as originally planned. It was found that the use of a com-
mercially available amplifier (such as BAM 1, Ellis) was not helpful in
increasing the output sensitivity as the noise from the amplifiers com-
pensated for whatever amplification they gave. Consequently, the use of

an amplifier was abandoned.

OVERALL EXPERIMENTAL SETUP

Figure 41 is a schematic diagram showing the instrumentation sequence
in the overall test setup under steady state vibration. In Fig. 42 is
shown the setup in the laboratory. Tests for impact loads may be carried
out under the same setup with the exception of the power supply and the
exciter. In this section a brief description of the apparatus, which are

commercially available, is given.

Power Amplifier and Calibrator-Exciter (MB Electronics Model T13%253L)
In this experiment the exciter is primarily used as a force gen-
erator. The exciter is connected to the A.C. and D C. power sources in
the Power-Amplifier. The field coil in the exciter is supplied D.C. to
produce a fixed magnetic field. The driver coil is suspended in this
field and supplied a variable frequency alternating current. Motion of

the driver coil is controlled (amplitude and force) by varying the driver
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Fig. 42. Overall test setup in the laboratory.
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coil current at the desired frequency.

The approximate force rating of the exciter with 0.70 ampere in
the field coil is 9 1b vector force for each 1.0 ampere (rms) of A.C.
applied to the driver coil. The maximum continuous current is 3.0

ampere in the frequency range of 6 to 500 cps.

Accelerometer and Cathode Follower

The cathode follower(Columbia Research Laboratory Model L0O0O) is
an instrument to provide a means for coupling a signal source, which has
a high impedance, to a measuring instrument which has a relatively low
impedance.

The accelerometer (Columbia Research Laboratory Model 302-4) has an
acceleration range of 0.001 to 1,000 g at a frequency range of 0.4 to

2,000 cps. It has a natural frequency of 10 kilocycles.

Oscilloscope (Tektronix Model 502)

The oscilloscope provides linear dual-beam displays with a wide
range of sweep rates combined with high input sensitivity. The hori-
zontal sweep rates range from 1 p-sec/cm to 5 sec/cm. The maximum sen-

sitivity for vertical deflection is 200 pv/cm.

Calibration of Testing Equipment

PRESSURE-SENSITIVE RINGS

Since the output of the bridge is an electrical signal whose mag-
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nitude depends on the strain to which the gage is subjected, the strain
must be converted to load in order to calculate the pressure on each
ring.

Each ring was calibrated statically through the use of a Tinius-
Olson Electomatic Testing Machine. The ring was subjected to a load
of 120 1b in five increments and the electrical output signal correspond-
ing to each load was read. The same procedure was followed in the un-
loading process. From these calibrations it was possible to convert
the bridge output signal in millivolts directly to pressure on the ring
in psi.

The calibration of load cells on each ring is shown in Fig. 43. 1In
this chart the calibration factor in psi/mv is plotted for each ring
against the supply voltage from the battery. It may be noted that the
calibration factor varies linearly with the supply voltage. The cali-
bration of load cells for different voltages was necessary because the
voltage in the bridge circuit supplied by the battery did not stay con-
stant, but decreased with time. It may also be noted that the calibra-
tion factor for ring 6 (center ring) is much higher than that for the

outer rings. This is due to the smaller area of the center ring.

ACCELEROMETER
The accelerometer was calibrated by the Columbia Research Laboratory
and its sensitivity is:

S = 383.6 pk-mv/pk—g at 0.97 gain of Cathode Follower
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S = 350.3 pk—mv/pk—g at 0.97 gain of Cathode Follower with a 25
It extension cord.
RESPONSE OF LOADING FRAME IN OSCILIATION

It is desirable that the dynamic response of the loading frame
should not, if possible, interfere in any way with that of the oscil-
lator-soil system in vibration. For this reason a check was made on the
amplitude response of the loading frame. The amplitude was measured in
three directions (vertical, two in horizontal) at a number of different
locations in the frame.

In Fig. 4L is shown an experimental curve of frequency vs. ampli-
tude for constant force excitation of the frame. The amplitude refers
to a point at the top of the 8 in. WF beam. The first peak occurs at
about 75 cps and is due to resonance in the transverse direction. The
major peak occurs at about 135 cps and represents the fundamental mode
for vertical oscillation. Two small peaks appear at frequencies of about
105 and 175 cps and are found to coincide with resonant frequencies of

the frame members.

CHECK ON DISPLACEMENT AND PHASE DIFFERENCE BETWEEN UPPER AND LOWER PLATE
Since the footing employed in this investigation consisted of sev-
eral separate plates connected together by load cells, it was thought
essential to check whether displacement at the upper plate was the same
as the lower plate during vibration at different frequencies. Two ac-

celerometers were attached to the footing: One to the upper and the
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other to the lower plate, and the displacement was measured at different
frequencies. The results of this test showed that the displacement was
different between the two plates due to the strains in the load cells.
The deflection of the footing was generally 10 times that of the load

cells. It was also observed that they were oscillating in phase.

Test Procedure

COMPACTION OF THE SURFACE ILAYER OF SOIL

It is important that the density of the sand is‘uniform and should
not be varied from one test to the next due to the effects of a prior
run. It is also essential that the surface, especially where the foot-
ing is to be placed, is as level and smooth as possible.

Before each test run the surface layer of the sand is thoroughly
compacted by means of a vibratory compactor and a square, level board.
A wooden board of about 3 ft long, 2 ft wide and l/h in. thick, is placed
on the surface and several uniform passes of the vibratory compactor are
given. To avoid any uneven compaction under the corners of the board
the outer portion of the bin is first compacted and then working toward
the center portion. It is often desirable that the center portion of
the bin where the footing is to be placed be checked by a carpenter's

level to insure it is absolutely level.

PREPARATION AND PLACING OF FOOTING

After the footing is assembled it i1s necessary to make sure that
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the lower and upper plates are bolted rigidly together, and the bottom

of the footing is level, which can be checked by placing a steel straight
edge against it. After the assembly a check is also made for clearance
between the rings by a feeler gage to prevent any interference of rings
during the tests. Then the bottom of the footing is covered with very
thin aluminum foil to prevent sand grains from getting into the gaps be-
tween the rings.

To place the footing on the surface of the soil needs a great deal
of care and caution, since the center of gravity of the footing has to be
lined up with that of the exciter attached to the loading frame, and the
footing must be placed squarely down on the soil without disturbing the
uniform surface. A rail, made of two aluminum angles braced transversely
together, is first placed across the bin to rest on the wall top so that
it rests clear of the soil surface. Then the footing is placed on the
rail at about the center portion of the bin and beneath the exciter.
Alignment of the footing to the oscillator can be made by moving the
rail, and when the two are exactly aligned they are connected by a thin,
short rod. The oscillator and the footing is then raised by turning four
threaded rods to a certain height so that the rail can be slid out of the
bin wall. Now the footing is lowered gradually to the soil again by
turning the four threaded rods. As the footing approaches nearer the
surface care should be taken to see that the footing is lowered evenly
so that it can be placed squarely down on the soil. This may be

achieved by turning alternately each of the four threaded rods a few
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turns at a time. If more than one man is available these rods can be
turned simultaneously for a better control.

When the mass of the footing is to be changed the oscillator is dis-
connected from the footing and is raised to a desired height depending
upon the amount of weight to be placed. The dead weights can rigidly be
bolted to the footing with six threaded rods. In the case of static
tests settlement of the soil due to these dead weights is measured by

means of a dial gage as previously described.

RECORDING OF DATA

A1l the equipment is connected as shown in Figs. 41 and 42. The
field coil in the exciter is fed O.70»ampere and must be kept constant
throughout the tests. Then the driver coil is supplied a variable fre-
quency A.C. at a desired amplitude, depending upon the desired magnitude
of the input force. With 0.70 ampere in the field coil the force rating
of the exciter is 9 1b vector force for each 1.0 ampere of A.C. applied
to the driver coil. The current in the driver coil is kept constant at
any test frequency so that the amplitude of force remains constant re-
gardless of the test frequency. Under the constant amplitude of force
oscillation the force generated by the motion of the driver coil is exerted
on the footing through the short connecting rod.

It is desirable that the equipment be warmed for at least 20 min be-
fore recording the measurements for various quantities as there is con-

siderable drift as the equipment warms up.
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Strain changes in the load cells caused by the oscillating load ap-
pear, through the bridge circuit, as a series of waves on the oscillo-
scope. The amplitude of force is read in millivolts, and then converted
to pressure in lb/sq in. through the calibration factors. Since the
oscilloscope has a dual channel, the output signals for any two quanti-
ties can be simultaneously displaced on the oscilloscope, and the phase
shift between two such quantities may be measured in the unit of milli-
seconds.

In order to compute the displacement and the pressure distribution
under the footing, there are 15 quantities to measure at a particular
frequency under a constant force input as listed below:

1. Amplitude of acceleration (i)

2. Amplitude of force acting on the center ring (Fg)

3. Amplitude of force acting on each of the five outer rings
(F1 to s)

L. Phase shift between the input force and acceleration (¢Q-k)

5. DPhase shift between the acceleration and the force acting on
the center rin ¥
& ($y y,)

6. Phase shift between the force acting on the center ring and
that on each of the five outer rings (¢F -F )
6 1vs

7. Phase shift between the input force and the force on center
ring (¢Q_F6)-—this is to check the readings of dQ—i and

¢X—Fs
by the relation, ¢Q-X+¢Q-Fe = ¢X-F6'

With the use of only one oscilloscope the above quantities cannot,
of course, be read simultaneously. In the course of conducting the tests

it is essential that the voltage supplied by the batteries be checked
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frequently, at least once before and after the test with each ring sys-
tem. It has been observed that the voltage decreases with time, and
thus the proper calibration factor corresponding to the measured voltage
must be used.

The measurement of amplitudes and phase shifts, especially the
latter, can best be made from the photographs of curves taken by a Pola-
roid camera. A set of typical curves are shown in Figs. 45 and L6.
Amplitudes can be read in centimeters and then converted to millivolts
through the vertical scale factor. Phase shifts read in centimeter are
converted to milliseconds through the horizontal scale factor. In taking
the data for phase shifts an average value of several readings taken at
both upper and lower peaks is usually used. The same process is followed
when reading phase shifts directly on the oscilloscope.

In this manner all the 15 quantities are measured at various fre-
quencies. For the measurements of pressures under the footing the fre-
quency was varied up to 250 cps with an interval of 10 cps. Beyond 250
cps the amplitude of forces in the load cells become too small to read
for some of the rings. For the measurements of acceleration the fre-
quency was varied up to 1,000 cps.

In Table IX is shown a typical data sheet for the measurements of

various amplitudes and phase shifts listed previously.

ANALYSIS OF DATA

From the acceleration measured the displacement of the footing is
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(a) Input Force vs. Acceleration
Vertical Scalet Q: 100 mv/cm; X: 50 mv/em
Horizontal Scalet 5 msec/cm

(b) Input Force vs. Force at Center Ring
Vertical Scale: Q¢ 100 mv/cmj Fg: 1 mv/cm
Horizontal Scale: 5 msec/cm

Fig. 45. Photographs of typlcal curves show-
ing amplitudes and phase shifts.
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(a) Acceleration vs. Force at Center Ring
Vertical Scale: X: 50 mv/cm; Fg: 1 mv/cm
Horizontal Scale: 5 msec/cm

(b) Force at Center and One of the Outer Rings
Vertical Scale: 0.5 mv/cm
Horizontal Scale: 5 msec/cm

Fig. 46. Photographs of typical curves showing amplitudes
and phase shifts.



121

TABLE IX

TYPICAL DATA FOR ACCELERATION, FORCES AND PHASE SHIFTS

Weight of Footing Wo = 171.1 1bs. Mass itatio b = 12.5

(a) Frequency - Acceleration - Phase

Amplitude of Input Force Q = 9.0 lbs.
Sensi- Sensi-
Frequency | tivity Amplitude tivity Phase Cﬂpal ltemark
(cps) (mv/cm) (cm) [ (mv) (msec/cm) (cm) | (msec)
50 10 1.8 18 5 1.875 9.375
60 3.0 30 1.50 7.5
70 20 5.2 104 1.20 6.0
73.5 9.7 194 2 2.0 4.0
80 5.0 100 2,0 4.0

(b) Frequency - l'orce - Phase

Ring No. 1
Amplitude of Input Force Q, = 18.0 1bs.
Battery Voltage E?ig;e z ig% z CalibfagiggﬁFactor
Sensi- sensi-—
Frequency | tivity Amplitude tivity Phase (¢%49 lemark
(cps) (mv/cm) (ecm) [ (mv) | (msec/cm)| (cm) | (msec)
50 0.2 1.2 0.24 5 0.5 2.5
60 1.4 0.28 0.56 2.8
70 3.4 0.68 0.65 3.25
73 4.0 0.80 0.69 3.45
80 1.8 0.36 0.66 3.3
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computed for each frequency; the relation between frequency and dis-
placement is then drawn to show the resonant frequency and the maximum
amplitude. The phase shift between the input force and displacement is
also computed for each testing frequency, and the phase shift is usually
drawn against the frequency ratio, that is, the ratio of exciting fre-
quency to the resonant frequency.

The pressure at the base of each ring is a vectorial sum of the
force measured in the load cell and the inertia force of the ring. From
the results so obtained the pressure distribution at the base of the
footing may be drawn at different frequencies or at different input
forces. Computations of the total reaction under the footing and its
phase shift with respect to displacement requires the summation of all
forces acting in the system as described in Chapter IIL. The computation
was manually done at first, but this proved to be very time consuming and
laborious (about 2 to 3 hours were needed to compute for Jjust one system
at a particular frequency). It was decided, therefore, to use an IBM
computer. The flow diagram for this program has been shown in Fig. 23.

A sample print-out of the computer results is shown in Table X.

The method of computation of the displacement function through a

computer program has been described in Chapter III. Table XI shows a

sample print-out of the computer results for the displacement functions

)Cl and)cg.
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CHAPTER V

PRESENTATION AND DISCUSSION OF TEST RESULTS

The purpose of the experiment program was to obtain information on
the effects of various parameters on the pressure distribution under the
footing, and to provide data on the dynamic characteristics of the founda-
tion-soil systems to evaluate the displacement functions. The parameters
considered in the evaluation of pressure distribution were the mass
ratio, the magnitude of input force, and the frequency of oscillation.

For the determination of displacement functions‘fl and_fg, the displace-
ment and the phase shift between the input force and displacement were

used.

Dynamic Characteristics of Footing-Soil Systems

RESPONSE OF A FOOTING-SOIL SYSTEM TO CONSTANT FORCE OSCILLATION

The variation of amplitude with excitation frequency was investigated
for different mass ratios and the magnitude of input force. The excita-
tion frequency was varied up to 1,000 cps, and the magnitudes of con-
stant input force chosen for the tests were 9.0, 13.5, 18.0 and 22.5 1b.
These input forces corresponded to the current of 1.0, 1.5, 2.0 and 2.5
amperes respectively in the driver coil. All the tests were run under
constant soil conditions.

Figure 47 is a typical curve showing the variation of amplitude with
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axcitation frequency for the system having a mass ratio of 12.5 and for

a constant force amplitude of 9.0 1lb, Curves similar in character to

Fig. 47 were obtained with the other systems having different mass ratios
or the magnitude of input force. It may be noted in Fig. 47 that the
amplitude was plotted against the frequency of up to 250 cps although

the frequency was varied up to 800 cps in the actual test. The amplitudes
beyond the frequency of 250 cps were much smaller in magnitude than those
shown in Fig. 47,

It may be observed in this figure that the first and major peak oc-
curs at a frequency of about 74 cps, representing the fundamental mode
for vertical oscillation. Two small peaks occur at frequencies of about
108 and 142 cps; the former of which was found to be coinciding with the
resonant frequency of a frame member as shown in Fig. 44. The peak at
the frequency of 142 cps might also be due to the same cause, although
no peak was shown to exist at that frequency in Fig. L44. This indicates
that the dynamic response of the loading frame and somewhat interfered
with that of the footing-soil systems. If it were possible to build a
loading frame having the natural frequency ranges outside of the range of
the test frequency, these two peaks could have been avoided. Beyond the
frequency range of these two peaks the amplitude decreased as the fre-
quency was further increased.

The maximum peak to peak amplitude was measured to be 9.,4xlO"l‘L in.

for this particular system. The resonant frequency was T73.5 cps. It may

be pointed out here that the resonant frequency so determined was very
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close to the frequency for maximum amplitude. This was true with all
other test systems employed in the research. This is typical of an os-
cillator-foundation system having a small damping factor as illustrated
in Fig. k.

A typical relation between the phase shift of input force with re-
spect to displacement and the excitation frequency is shown in Fig. L8.
The curve shown in this figure is for the same system as for Fig. 47 (b =
12.5 and Q1 = 9.0 1b), and represents one of many similar curves obtained
for various test systems. It can be seen that the phase shift was small
at low frequencies but increased radically at the region of resonant fre-
quency, approaching 180 degrees as the frequency was further increased.
The behavior of this test system in regard to phase shifts resembles those
of single-degree-of-freedom forced vibration with viscous damping shown
in Fig. 5. Comparing these two figures one may note that the damping
factor in the test system was rather small, as stated previously in con-
nection with the amplitude-frequency curve. The frequency at the point
of the steepest slope of this curve is observed to be 72.5 cps, and the
frequency corresponding to the phase shift of 90 degrees is 76 cps. These
frequencies may be compared to the resonant frequency (73.5 cps). The
results of the phase shift measurements, such as shown in Fig. U8, are
believed to be good, considering the difficulties encountered in measur-
ing the phase angles. The difficulties involved in measuring phase shifts

will be discussed later in detail.
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Fig. 48. Typical curve showing phase shift between input force
and displacement as a function of frequency.



130

EFFECT OF MASS RATIO AND INPUT FORCE ON THE RESONANT FREQUENCY AND MAXTIMUM
AMPLITUDE

In investigating the dynamic characteristics of footing-soil systens,
one 1s primarily concerned with the resonant frequency and the maximum
amplitude occurring in the system, which are generally considered to be
dependent upon the following parameters: the static weight of the oscil-
lator; the radius of the footing; the mass density, shear modulus, and
Poisson's ratio of the foundation; the magnitude of oscillating force,
and the pressure distribution. Of these, the first three can be combined
into a mass ratio of the system as defined previously, and the mass dens-
ity and Poisson's ratio of the supporting soil are constant for the pres-
ent research.

From the results of the seven test systems Fig. 49 has been drawn
to show the effects of mass ratio and the magnitude of input force on the
resonant frequency of the oscillator-foundation system. It can be seen
that the resonant frequency increased from 64 to 80 cps as the mass ratio
was decreased from 24.9 to 5.8 for a constant force input of 9 1b, and
for the force of 18 1b the increase was from 62 to 79 cps. This shows
that the resonant frequency is affected by the variation not only of mass
ratio but also of applied force for any given oscillator-foundation sys-
tem. The same results were observed by Jones (11) as shown in Fig. 16,
and in the Waterways Experiment Station tests as analyzed by the writer
in Chapter II (note a rotating-mass type oscillator was used in the WES

tests). This increase of resonant frequency with smaller mass ratio was
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predicted by the theory of vibrations based on a semi-infinite elastic
body as shown in Fig. 26. However, the variation of resonant frequency
with the magnitude of input force was not indicated in the original theory
developed by Reissner (16). In the past this effect was attributed to

a change in the stiffness of soil by some or to a nonlinear elastic be-
havior of actual soils by others. This effect may be explained, however,
by the fact that a change in the magnitude of input force causes a change
in the pressure distribution under the footing, and the resonant fre-
quency is in turn dependent upon the pressure distribution. This point
was elaborated by Richart (18) in connection with his concept of an "ef-
fective radius' to be used as a tool for the transformation of pressure
distribution. He pointed out that the decrease of resonant frequency
caused by an increase in applied force was consistent with concept of an
effective radius, as the pressure tended t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>