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ABSTRACT
CONTROL OF A LEADSCREW DRIVEN FLEXIBLE
ROBOT ARM
by

Nabil Georges Chalhoub

" Chairman: A. Galip Ulsoy

High performance requirements in robotics have led to the consideration of
structural flexibility in robot arms. Here the dynamics of a spherical coordinate
robot arm, whose last link is very flexible, is studied for the purpose of control.
The assumed modes method is employed to represent the deflection of any point
on the flexible link, and the Lagrangian approach is used to obtain the uncon-
strained equations of motion. The robot arm, considered in this work, has two
joints driven by a leadscrew transmission meéhanisﬁls. Thé kinematic constraints

associated with the nonbackdrivable leadscrews are also considered.

An integral plus state feedback controller is derived based on a linearized
version of the rigid body model of the robot arm. The controller is then imple-
mented on the rigid and flexible model. The rationale is to sxmulate the controll-

ers currently used in industrial robots and to assess the interrelationships



between the robot arm structural flexibility and the controller design. The simu-
lation results illustrate the differences between leadscrew driven and uncon-
strained axes of the robot; they indicate the trade-off between speed and accu-
racy; and show potential instability mechanisms due to the interaction between

the controller and the robot structural flexibility.

The integral plus state feedback controller, derived for the rigid body model
of the robot arm, is extended to include the flexible motion. The objective is to
introduce additional damping into the flexible motion. This is done by using
additional sensors to measure the compliant link vibrations and feed them back
to the controller. The effect of control and observation spillover is examined, and
found not to present a serious practical problem. The simulatibn results show
that additional dampix;g in the flexible motion can be achieved by including the
flexible motion in the control action. Experimental evaluation showed excellent

agreement with the results of the digital simulations.
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CHAPTER 1

INTRODUCTION

This chapter provides an overview of the research in robot arm modeiing,
dynamics, and control. The motivation for high precision and high speed robot
operation is discussed and some of the problems are identified. The current
state-of-the art in robot arm dynami§ modeling and control is reviewed, including
studies of robot arm flexibility. Finally, the objectives of this study‘ are set forth,

and the organization of the dissertation is summarized.

1.1. Motivation

Until the 1980's, the use of robots was primarily limited to industrial and
research environments which are hazardous or unpleasant for human workers. In
_ recent years, the evolution of the mechanical arm from teleoperator and crane to
present day industrial and space robots has increased their implementation in
almost every industrial area. However, the poor endpoint positional accuracy of
current robots have restricted their applications to tasks that are error tolerant.
Many tasks, such as assembly of high precision parts require positional tolerances

on the order of 0.0254mm (0.001”). Existing manipulators can perform tasks



with a repeatable position on the order of 0.254mm (0.01”).

The operation of high-precision robots is severely limited by the dynamic
deflection which persists for a period of time after a move is completed. The set-
tling time required for this residual vibration delays subsequent operations, thus
conflicting with the demand for increased productivity. These conflicting require-
ments have rendered the robotic assembly task to be a challenging research prob-
lem.

The performance problems -in robotics are related to the transmission
mechanisms (i.e. backlash, friction and compliance), the structural deformation

(both static and dynamic), and the massive design of the robot arm.

1.2. Previous Work in the Dynamic Modeling of Robots

The automation of assembly tasks will be greatly enhanced if robots can
operate at higher speeds with greater positioning accuracy. These goals cannot
be achieved with the existing massive robot designs, which make them slow and
heavy. Many robot arms are made to be massive for increased rigidity. To
improve their structural performance, payloads and operating speeds are kept
fairly low. In other words, the rigid body assumption is justified by conceeding

low performance.

For higher operating speeds, mechanisms should be made light-weight to
reduce the driving torque requirements and enable the robot to respond faster.
However, lighter members are likely to elastically deform, thus making it a neces-

sity to take into consideration the dynamic effects of the distributed link



flexibility. This is because high speed operation leads to high inertial forces -
which in turn cause vibration and deteriorate accuracy. This difficulty may be
eased by fabricating the moving members of manipulators in fiber reinforced
composite materials which can result in high structural stiffness and strength

with low mass [1]; however the basic problem remains.

In an attempt to improve the overall performance of manipulators, some
researchers have treated the aforementioned problems separately. A direct drive
arm is used by Asada [2] to solve the backlash and friction problems. The com-
pliance problem in the drive mechanism is discussed by Kuntze and Jacubusch
[3]. Zalucky and Hardt [4] used a micromanipulator to correct for the link static
deflection.

The first step in improving the performance of robots is to obtain a reason-
ably accurate dynamic model. The general practice has been based on rigid body
analysis where all the robot links are assumed to be rigid [5-9]. This is under-
standable since even the rigid body model is complex, nonstationary and highly
nonlinear. However, when the robot is operated at high speed, the vibration
induced by the large inertial and external forces can no longer be neglected and

the rigid body assumption becomes invalid.

Until recently, the inclusion of the link’s flexibility in the dynamic model of
the robot arm is done by solving for the rigid body motion and the flexible
motion separately [10]. Generally the flexible motion is small, and its effect on
the rigid body motion is neglected. Therefore, only the effect of the rigid body

motion on the flexible motion is considered. This is done by solving the rigid



body equations for inertial forces which in turn are introduced as excitation
sources to the elastic problem. This approach is adequate for modeling fairly
rigid structures. I—Iowever, an accurate dynamic model for a very flexible struc-
ture would require all the coupling terms between the flexible and the rigid body
motions to be retained. This is done by using coupled reference position and
elastic deformation models. Some researchers have used finite element techﬁiques
to describe the elastic deformation [11-16]. Others have used global methods
such as the assumed modes method, Rayleigh-Ritz method, etc. [17-18]. These
approximate techniques can be used to yield a set of equations which represent

the combined rigid and flexible motion.

1.3. Overview of Robot Controller Design

Robots are inherently very complex structures. Their rigid body dynamic
models exhibit a nonlinear and nonstationary behavior. In today’s robots, the
desired end-effector position is converted by real-time kinematic computation
into the equivalent angles that each joint must assume [19]. The joints are then
simultaneously driven to their assigned angles by separate conventional servo
loop controllers. However, the implementation of conventional linear control
techniques have led to poor performance because of both the inherent geometric
nonlinearities of these systems, and the dependence of the system dynamics on
the characteristic of the manipulated objects. Therefore, a sophisticated con-

troller design is needed to ensure the robot desired performance.



b

In the control of rigid robots, adaptive, nonlinear fegdback, and optimal con-
trol techniques have been investigated. Adaptive control theory [20-25] has been
proposed as a promising solution to the nonlinearity and nonstationarity prob-
lems. The main task of the adaptive controller is to adjust the feedback gains of
the manipulator so that its closed loop performance characteristics closely match
the desired ones. However, the large required computation time‘b& restricted

their applications to simulation studies.

Nonlinear feedback control, or the “computed torque” method [26], has led
to better performance over conventional control techniques in computer simula-
tions. The controller is based on an idealized model of the manipulator. This is
a severe drawback because when the “idealized” control law is used with an
actual plant, the validity of the scheme is subject to doubt and the robustness of

the controller becomes of great importance.

A time-optimal control strategy is studied in [27] to enable faster movement
of the robot arm. Kahn and Roth [28] showed that this technique results in a
two-point boundary value problem. As a consequence, the computation must be
repeated for each new set of initial and final conditions used in the numerical
solution. In addition, the numerical algorithm yields an optimal solution that is
a function of time and does mot account for any unexpected disturbances which
may act on the system. These drawbacks have rendered the implementation of
the time-optimal control technique difficult, if not i_mpossible, for real time appli-
cation in feedback control of robots. However, this technique has turned out to

be a powerful tool for off-line trajectory planning.



In an attempt to relax these difficulties, a suboptimal control strategy is
often used in digital simulations. In this technique, linearized version of the
dynamic model of the manipulator is obtained for which an analytical optimal
control solution can be found. Many of these sophisticated control techniques
suffer from excessive computation time requirements which make them unattrac-

tive for real time applications using current microprocessor technology [29].

Besides the difficult issues encountered in rigid robots, a new problem is
created when robot compliance is included in the dynamic model. it emanates
from the distributed nature of the link mass and elasticity. An infinite number
of degrees of freedom are required to specify the position of every point on the
elastic link. However, due to physical limitations, only a finite number of sensors
and actuators can be mounted on the flexible body. Thus resulting in the prob-

lem of controlling a large dimensional system with a smaller dimensional con-
troller [30-31].

Meckl and Seering [32-33] proposed two types of forcing functions to achieve
fast response with negligible residual vibrations. The first type allows vibration
to occur during the move but would stop the motion in such a way as to elim-
inate any residual vibration. This consists of a bang-bang action with multiple
switching points. The second type avoids the excitation of the resonant modes of
the structure as it moves. This is done by using a forcing function with no fre-
quency components matching the system natural frequencies. This work is still
confined to research laboratories; it can be used off-line to generate the trajectory

of the robot arm that satisfies a criterion considering both the response time and



the residual vibration.

By and large, the research in the closed loop cdntrol of flexible manipulators
can be divided into two categories. The first uses a;iditional sensors to measure
the flexible motion (i.e. assumes all state variables to be available) [34-37]. This
enables the inclusion of the flexible motion in the control action, thus achieving
better positional accuracy with the existing joint m;tors. The second category
employs a micromanipulator along with additional sensors to compensate for
static and dynamic structural deflections [4], [38-39]. This concept gives the con-

trol system designer more capabilities to improve the robot arm performance at

additional hardware cost.

1.4. Dissertation Overview

The purpose of this work is to improve the end-effector positional accuracy
by measuring and feeding back its transverse vibration. The spherical coordinate

robot arm considered in this study is schematically illustrated in Fig. 1-1.

Two types of controllers are implemented. The first is a conventional linear
controller based on the rigid body model. The rationale is to simulate the con-
trollers currently used in industrial robots and to assess the interrelationships
between the robot arm flexibility and the controller design. The second control

system uses the measured flexible motion to introduce additional damping in the

flexible structure.
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In the next chapter, the dynamic modeling of the robot arm including the
transverse elastic displacements of the last link is presented in detail. The

derivation of the constraint equations imposed by the leadscrews are derived in
Chapter 3.

Chapter 4 includes the design of the rigid body controller and the results of

the investigation of the .inéerrelationships between the structural flexibility and
the controller design.

In Chapter 5, the rigid and flexible motion controller is designed. The
separate and combined effect.s of control and observation spillover are shown.

Chapter 6 presents the experimental apparatus along with the corresponding
results. A comparison and discussion of the theoretical and experimental results
is also made.

Finally, Chapter 7 summarizes the work done, presents the main conclu-

sions, and states some prospective research topics.



CHAPTER 2

DYNAMIC MODELING OF THE ROBOT ARM

Typically, the dynamic modeling oi a ‘flexible robot arm considers the flexi-
ble motion to be small and neglects its effect on the rigid body motion. This
technique gives an accurate model for fairly rigid structures. However, in the
case of very flexible ma-nipulators, all the coupling terms between the rigid and
the flexible motions need to be retained. This is done by using coupled reference

position and elastic deformation models.

In this chapter, the dynamics of a spherical coordinate robot arm, whose last
link is flexible, is studied for the purpose of control. The assumed modes method
is employed to represent the deflection of any point on the flexible link.
Lagrange’s method represents a very systematic approach to obtain the equations

of motion of such a complicated system in the simplest manner possible.

2.1. Modeling

The physical system considered in this work is a spherical coordinate robot,
which has two revolute joints and one prismatic joint (see Fig. 1-1). It consists of

an arm connected to a gear driven rotating base. The arm is made of two beams

10
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such that the second beam can move axially into the first. The entire arm is free
to rotate around the horizontal axis passing though the pivot point 0 and parallel
to the unit vector K (see Fig. 2-1). The r and ¢ coordinates have leadscrew
transmission mechanisms, whereas power is transmitted to the ¢ coordinate

through a gear train. All axes are driven by dc servo motors.

The second beam consists of a thin, lightweight and very flexible aluminum
rod. The rationale is to exaggerate the flexibility problem which leads to a better
understanding of the interaction between the structural flexibility and the con-
troller design. This will also narrow the gap between the natural frequencies of
the elastic modes and the servo loop frequencies, thus reducing the numerical
computation problem associated with stiff systems and the problem of sampling

rapidly enough to characterize the high frequencies of the flexible arm.

The first and second beams of the robot arm have length L{ and L, respec-
tively as shown in Fig. 2-1. A reference inertial frame (1 J K) fixed at point 0, is

~ e~ o~

shown along with a non-inertial, body fixed, rotating reference frame (i, j k).

The equations are derived in terms of the latter to keep the mass moment of

inertia constant throughout the rigid body motion of the robot.

The robot arm can rotate with angular velocity ¢ around the vertical axis
passing through J and ¢ around the horizontal axis along k. The second beam
has one additional degree of freedom r which allows it to move axially into the
first beam. The payload at the end-of-arm is modeled by a concentrated mass

~m, at the end of the second beam.
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Figure 2-1. Arm geometry and coordinates.
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The general modeling problem for articulated flexible manipulators has been
studied by others [11-16]. The constraint equations for a slot joint which allows -
for a combined translational and rotational motions is discussed in [40]. In this
study, the prismatic joint constraint is handled by considering the portion of the
second beam protruding from the first beam to have a flexible cantilever beam
like behavior, whereas the first beam and the part of the second beam located
inside the first beam are considered to undergo rigid body motion only. Referring
to Fig. 1-1, this modeling assumption is justified by the structural properties of
the first beam which is stiff in flexure. The protruding portion of the second
beam is relatively flexible. It is more rigid in compression than in flexure.
Therefore, the longitudinal vibrations of the flexible po;'tion of the second beam
aré neglected and only transverse vibrations are considered in addition to the
rigid body motion. Since the elastic deformation is small, the variations of the

mass moment of inertia due to the flexible motion are assumed to be negligible.

2.2. Equations of Motion

Lagrange's equation [41-42] is implemented to obtain the dynamic model of
this complicated system. This method considers the system as a whole rather
than its individual components, thus eliminating the need to calculate interacting
forces. It formulates the problem in terms of two scalar functions, namely, work

and kinetic energy.

The position vector of the mass center for the rigid portion of the robot arm

becomes important in the derivation of its kinetic energy expression. For the
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first beam, one has,

. L; |
Rl= -?l—dli (2'1)

~

where the star superscript indicates a value related to the center of mass. L is
the total length of the first beam. o is the length of the portion of the first beam
lying to the left of the pivot point 0 (see Fig. 2-1). The position vector of the

mass center of the part of the second beam located inside the first beam is

R.z =z"i (2‘2)

L . . .
where 2" =L, + -%- - -—23 , L, is the length of the portion of the first beam lying

to the right of the pivot point 0, L, is the total length of the second beam, and r
is the length of the part of the second beam protruding from the first beam. The

position vector of any point on the protruding part of the second beam is,

Ry= ¥ i+ Vit W )
where y' =L,+y and ' =r=y. The assumed modes method [41] is used to
obtain the expressions for the transverse vibrations V and W. They are written

as a linear combination of admissible functions, &, (y), of spatial coordinates, mul-

tiplied by time dependent generalized coordinates g, (¢).
V=Y & (y)eu(t) (2-4)
t =]

W= &)

)=

An approximation to the dynamics of infinite dimensional systems is often

based on the fact that low frequencies alone are adequate to describe the flexible
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behavior of the system. Therefore, n is selected to be 2, and the admissible func-
tions are chosen to be the first two eigenfunctions of a clamped-free beam.
Referring to Fig. 1-1, these boundary conditions are chosen because the second
beam slides inside the first beam and is supported by a teflon sleeve which only
permits axial motion. The clamped-free beam eigenfunctions ¢, and &, have the

following general form which is described in [43], [44].
1 \ ly o 4 . 1
®, = cos hlc—r{] —cos[ir-—] -a, [smhl-e-r—y ] —sml-e—r—!I] (2-5)

where the values of ¢, and o, for each mode are given in [43]. Note that an addi-
tional approximation has been introduced in that the solution is not separable in
space and time when r(¢) is not constant. However, this forms a useful approxi-
mation as long as r(t) satisfies the Euler-Bernoulli beam assumptions. That is r
must always be much greater than the beam cross sectional dimensions, the
deflection terms V and W don’t exceed one tenth of r, and rotary’inertia and
shear deformation effects are ignored. Substituting (2-4) and (2-5) into (2-1) to
(2-3) gives the complete form for the position vectors. These results are then

used to obtain the velocity terms from:

(2-6)

[
o| 1

R, = +0QXR

where 0 is the rotation vector of the (i, j k) basis and R is the position vector of

~ o~ A~

any particle along link .
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The velocity terms are then used to develop the kinetic energy expressions
for each component of the robot-arm including the payload, m,. The latter is

considered to be a point mass, and does not include rotation around its own mass

center. The total kinetic energy will be

=T +T, = f(n R )dm, + 3 m,(fe, R,) (2-7)

sm=] usl m,
where m is the number of links in the robot arm, T,, is the kinetic energy of link
i and T, is the kinetic energy of the payload.

The total potential energy consists of the strain energy of the second beam
[45] and the potential energy associated with the rigid body motion. The strain

energy includes terms due to flexural rigidity.
sz( )[" V“'"? ] dy+ L fEl(y)[azw(y 4 ] dy (2-8)
and terms due to the axial force:
oy T(y,r)[i’%'—‘l ]2@ +1 zru,n["’—“;‘;—'ﬂ ]zdy (2-9)

where T(y,t) is the axial force in the second beam which arises due to gravity and
inertial forces. The latter consist of centripetal acceleration and flexible motion

effects. However, the variation of the axial force due to the flexible motion is

neglected and one obtains,
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2

-2 . r? L+ !2—
T(y,t) = pA (¢ cos’d + 02)(L,r ulry ) 1 - —————

L LA
i+ 2

(2-10)

+my(Ly+7) [¢',2cos"’0 + 02] + [m, + pAAr - y)] gsind

A compressive T(y,t) would tend to decrease the transverse stiffness of the beam

while a tensile T(yt) would have the opposite effect. The total potential energy

will be:

L} L,
V¢= m, —5- -0 +m,1d“+mm(Ll+r—L2)+m2 L1+f—'—5— '

-

+ my(L,+ r) }gsind + pAqgcost [ V(y)dy + m, V | L 4+ 9C0S6
0

(2-11)

+—fE( )[azv(,,,t) v+l fEI( )[a Wig.t) ] "

+%{T(y't)[av(;z,z) dH_ IT( ,){aw(yt) ] 4

where m;, and d;, are respectively the mass and the dlstance from the (i, j k) ori-

gin to the mass center of the leadscrew that drives the second beam and the my,
is its housing’s mass.
The coefficients in the kinetic and potential energy expressions, given in

equations (2-7) and (2-11), involve the integration of complicated functions with

respect to the spatial coordinate y. Some of the terms encountered in the kinetic
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energy expression have the following form,

J&. (v)dy [vé.(v)dy

0 0

[#.6)- @, )y o, (1)8, (4)dy
{ 8, (v)dy ,[ v8, (4)dy

where i =12 and j =12 The integration terms appearing in the potential

energy expression can be written in the following general form,

1=12
for J _ 1,2

[d% (v)] ld% (v)ld

where ¢, (y) is the eigenfunction previously defined in equation (2-5). These com-
plex functions are integrated numerically using Gaussian quadrature of high order
(40 points) [46].

The virtual work principle is implemented to obtain an expression for the
generalized forces. If the forces exerted on the robot arm are divided into conser-
vative forces, which are directly related to the potential energy, V,, and noncon-
servative forces which are not, then the virtual work expression could be written
as, [41]

SW = W, + 6W,, (2-12)

where the subscripts ¢ and nc denote terms due to the conservative and noncon-

servative forces respectively. sW, is related to the potential energy V, as follows:
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2 9V,
W, = -5V, =- }3-5-‘- 52, : (2-13)

s o} &

where z, is the i** generalized coordinate that can be either one of the rigid body
degrees of freedom r, 6 and ¢ or one of the flexible motion coordinates ¢;,, 912, 421
and ¢ The free body diagram of the robot arm, which shows the nonconserva-

tive forces, is depicted in Fig. 2-2. The expression for W, can be easily

obtained.

"
W =Y Quebz, =R Ry | o+ Fei 6By | 1 4res,

1==]

+ Tol b+ Fu i 6RYY | - (2-14)

= F, br - aF 4 00 + T30

where Q,,. is the i® nonconservative generalized force. 6y is the virtual rotation

vector of 0. R is the reaction force at the pivot point. F,,F, and T, are the

~ ~

Figure 2-2. Free body diagram of the robot arm.
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joint driving force and torques. Now that the kinetic energy, potential energy
and the virtual work expressions are derived, the equations of motion can be

readily obtained by implementing the following form of Lagrange’s equation

d aTg OT, an
‘;i"' az-' l - az‘ + az' - Quc (2’15)

The resulting equations of motion are seven highly nonlinear, coupled,

second order ordinary differential equations. The reader is referred to Appendix

A for the listing of the unconstrained equations.

2.3. Summary

A brief description of the physical system is given along with the definition
‘of the coordinate axes and the generalized coordinates. The assumed modes
method is implemented to model the flexible motion of the last link. Expressions
for the virtual work, kinetic and potential energies are derived. Lagrange’s equa-

tion is employed to obtain the unconstrained equations of motion.

Some of these equations can be greatly simplified once the role played by the
leadscrews and the effect of the rigid body motion on the flexible motion and

vice-versa, are understood. These leadscrew constraints are considered in the

next chapter.



CHAPTER 3

LEADSCREW DYNAMIC MODELING AND CONSTRAINTS

The robot arm considered in this work has two joints driven by leadscrew
transmission mechanisms which are used to transmit power by converting angular
motion to linear motion. In this chapter, the kinematic constraints associated
with a leadscrew are introduced to investigate the behavior of a leadscrew driven
flexible robot arm in the presence of coulomb friction and the self locking condi-

tion (i.e., the nonbackdrivability of the leadscrew).

3.1. Overview of the Static Model of a Leadscrew

A detailed derivation of the static model of a leadscrew can be found in [47].
A brief summary of the modeling procedure is included to provide the required
background for the next section.

A free body diagram of an unrolled single thread of a leadscrew is shown in
Fig. 3-1. F, is the resultant of all the forces exerted on the leadscrew in the
axial direction. N is the normal force and P is the force required to raise or lower
the axial load, F,,, on the thread surface. The friction force, 7, , is considered to

be of the simplest form of dry coulomb friction,

21
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Figure 3-1. Free body diagram of an unrolled thread.

fr=-s| N an(2) (3-1)
where 4 is the coefficient of friction and z represents the velocity along the rough
surface of the leadscrew thread. The system is in equilibrium under the action of
these forces. Therefore, the minimum force, P, required to raise or lower the

axial load, F,, can be obtained from the summation of forces in the vertical and

horizontal directions. The expression for P to raise the load has the following

form,

|
Fa: [m’ + ”s]
(3-2a)

bl
l_lnd,,, l

where . is the static coefficient of friction. To lower the load, P becomes
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Folo, -[—— .
P= [,, = ] (3-2b)

ol
led. ]

where [ is the lead of the leadscrew and d, is its mean diameter. The expression
given in (3-2) represent the force required to overcome static friction and the
geometric effect. This force, P, can be directly related to the torque, T, applied

on the leadscrew by,

Pd,

- (33)

T =

l
ndp

In the case where p, < [ ] in (3-2b), the force required to lower the

axial load becomes negative. This causes the screw to spin without external
effort. However, most leadscrews are nonbackdrivable in the absence of the

applied force, P. This results in satisfaction of the following inequality,

py > tan ), = (3-4)

l
nd,,
where y, is the thread helix angle. The inequality in (3-4) is often referred to as

the self-locking condition.

3.2. Generalization of the Static Model

The static model of the leadscrew derived in [47] is useful for determining
the torque required to overcome static friction and geometric effects for the load
configuration given in Fig. 3-1. This model needs to be modified if different con-

figurations are considered.
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Figure 3-2. Transition of the leadscrew housing motion from
lower to upper thread depending on the sign of
the normal force, N.

In this work, the leadscrew is assumed to satisfy the self-locking condition.
The friction force has the same form as in (3-1) and the axial force, F,, can be
either tensile or compressive. As a consequence, the normal force, N, can now be
positive or negative. This sign change in N can be physically interpreted as hav-
ing the leadscrew housing sliding on the upper thread’s surface if it was originally
on the lower surface or vice versa. This is illustrated in Fig. 3-2. The equations

of motion for both the upper and lower thread surfaces can be combined in the

following general form,
—usingb1-p|N|agn(z.)+Pcos¢1=m,; (3‘5)

where m, = 0 is a fictitious mass, and z is the coordinate along the thread sur-
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face. It can be directly related to the rigid body degree of freedom driven by the
corresponding leadscrew through simple geometric relations. The expression for

the normal force, N, is obtained from the summation of forces in the vertical
direction,

N = F,; cos ¥, + Psin ¢ (3-6)

In this work, the axial load, F,,, consists of inertial and gravitational terms. It

can be written as

Fp = Fi (z, 3., .z.» ﬂ) (3—7)

~ o~ o~

where zT = r, 6, 6, g1, 912, 921, 929 is the generalized coordinate vector and g is the
gravitational acceleration. Substituting (3-6) and (3-7) into (3-5), the general

form of the equation of motion becomes

z, =f, [z,i,g,aba(z,i,;,g)] (3-8)

where abs (3,3,;2',;;) function represents the absolute value of the normal force N in
(3-5). The term z, can be either r or 8 since only two of the rigid body degrees
of freedom r and ¢ are driven by leadscrew transmission mechanisms. The f,'s
are very complex, highly nonlinear functions which do not have closed form solu-
tions. Instead, they are solved numerically on a digital computer. However,

most numerical algorithms require that the equations be written in either of the

following forms,
z=f(z121) (3-9)

or reduced to the first order form
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z=1(z1) (3-10)

where now fT ’= [r, 0, 6, ¢11, 912 921, 922, ;, 6,4 qu, 412 421 9z However, (3-8) can-
not be written in either of these two forms due to the presence of the acceleration
vector 3 on the right hand side. This difficulty would not exist had it not been
for the absolute value term of the normal force, N, in equation (3-5). To over-
come this problem, separate equations are written to describe the motion on the
upper and lower thread surfaces of the leadscrew. By writing the force balance
equations from the appropriate free body diagram in Fig. 3-2, the lower thread

equation of motion can be obtained,
my z = -Fy, |sin ¢, + pcos ¢'1agn($)] + P[coswl -p sinwlsgn(é)] (3-11)

Similar procedures are followed to derive the equation of motion on the upper

thread of the leadscrew,
m, z=F, [sinwl - p cos w,sgn(é)] + P[coswx + u sin q/J,syn(é)] (3-12)

This results in having two equations of motion for each degree of freedom driven

by a leadscrew mechanism.

3.3. Coulomb Friction Effect

The effect of friction can be clearly identified at the beginning of the motion
or when the response of the degree of freedom driven by a leadscrew is oscilla-
tory. If the leadscrew is to rotate as soon as the input torque is applied, then the
latter must be large enough to overcome the combined effects of static friction

and geometry. Otherwise, the leadscrew would remain at a standstill, thus
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causing a delay in the system response.

In the case of an oscillatory response, the time at which the maximum
overshoot occurs corresponds to the position where the system comes to a com-
plete halt (i.e. velocity is zero). This results in a sudden jump in the required
driving torque caused by the sharp increase in the magnitude of the friction force
due to the transition from a dynamic to a static coefficient of friction. This may
reshape the entire response if the leadscrew is driven by a controller. The latter,
being unaware of this sudden increase in the required driving torque, would sup-
ply an input torque that is not large enough to overcome the resistive torque of
the static friction. As a result, the system would remain at rest waiting for the
control effort to build up. Under these conditions, the system is said to fall in

the ‘“stopping region.” This is illustrated in Fig. 3-3. For some special cases,

analytical expressions for the upper and lower bound of that region are developed

in [48].

3.4. Self-Locking Condition Effect

In this work, a self-locking condition is assumed; that is, once the leadscrew
is subjected to an axial load, it will not rotate unless the applied input torque is
large enough to overcome a certain resistive torque, Tp. In the case of compres-

sive axial force, the latter would have the following form,

Fu dm (I‘s + tan ¢l)

2 (1-p, tanyy) (3-133)

TR=

for raising the load, and



Fu de (“l - tanwl)

T [T+ tmv) (3-13b)

Tp =

for lowéring the load. The self-locking condition plays an important role in a
multi degree of freedom system where the axial force exerted on the leadscrew is
partially due to coupling terms between the degree of freedom driven by the lead-
screw and the rest of the system degrees of freedom. In the absence of an input
torque, the leadscrew which is nonbackdrivable, will not rotate regardless of th‘e
magnitude of the axial force. This renders the degree of freedom driven by the
leadscrew transmission mechanism completely decoupled from the rest of the sys-
tem degfees of freedom. However, this nice property is lost with the application
of an input torque. Since the latter is directly related to the axial force which in
turn dépends on the coupling terms.

To recapitulate, the self-locking assumption of the leadscrew transmission

mechanism leads to the following,

1. The degree of freedom driven by the leadscrew is completely decoupled from

the rest of the system degrees of freedom in the absence of the input torque.

2.  Once the input torque is applied, the coupling terms between the system

degrees of freedom are retained through the axial force.

3.5. Constrained Equations of Motion

The gear train that drives the ¢ motion or the base joint is assumed to be
ideal (i.e. no backlash or friction). Therefore, the physical system does not

impose any constraint on ¢. In this work, only the leadscrew constraints are con-
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Figure 3-3. Effect of coulomb friction on an oscillatory response

sidered. As a result, the equations of motion for r and 8, derived in Chapter 2
and listed in Appendix A, need to be modified. Newton's method is employed to
compute the axial forces exerted on the leadscrews that drive r and 6. The latter,
which consist of inertial and gravitational terms, have the general form given in
equation (3-7). The constrained r and ¢ equations of motion are obtained by sub-

~ stituting F,, by its value in equations (3-11) and (3-12). The interested reader is
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referred to Appendix B for the listing of the constrained equations.

In an attempt to check the consistency of these equations, a dynamic model
based on the rigid body assumption of the robot arm is derivedv in appendix C. It
shows that the rigid body model can be obtained as a special case from the gen-
eral equations of motion presented in appendices A and B. This provides a par-

tial confirmation of the validity of the modeling procedure.

3.6. Summary

A brief description of the static model of a leadscrew has been presented
along with some modifications to allow for the handling of the dynamic case.
Effects of coulomb friction and the self-locking condition on the behavior of a
leadscrew driven rigid body degree of freedom are discussed. Finally, the con-
strained equations of motion for r and ¢ are derived.

Now that the derivation of the dynamic model of the flexible robot arm is
complete, the interrelationships between the structural flexibility and the con-

troller design will be investigated in the next chapter.



CHAPTER 4

RIGID BODY CONTROLLER

This chapter presents the derivation of an integral plus state feedback con-
troller based on a linearized version of the rigid body model of the robot arm.
The controller is then implemented on the rigid and flexible model derived in
Chapters 2 and 3. The rationale is to simulate the controllers currently used in

industrial robots and to assess the interrelationships between the robot arm struc-

tural flexibility and the controller design.

4.1. Design Of The Integral Plus State Feedback Controller

In most existing industrial robots, the nonlinear terms in the equations of
motion are not considered in the design of the control system. This design prac-
~ tice is valid as long as the robot arm is restricted to slow motion. However, when
manipulators are operated at high speed, the effect of geometric nonlinearities
and the dependence of system dynamics on the characteristic of the manipulated

objects become significant, thus leading to a degradation of the overall robot arm

performance.

31
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A conventional linear controller is implemented in this work to simulate the
controllers currently used in industrial robots. It is designed based on a linear-
ized version of the rigid body equations of motion derived in Appendix C.
Throughout this work, the payload is kept constant and the rigid body degrees of
freedom are restricted to the vicinity of the equilibrium state. This is done to
reduce the effects of the variations in the manipulated objects and the nonlinear
terms on the linear controller. Thus leading to bette; assessment of the interrela-

tionships between the robot arm structural flexibility and the controller design.

The first step in designing the controller is to express the rigid body equa-

tions of motion in terms of state variables which are defined as follows:

h=r y2=19¢ Vya=2¢
hy=r ys =14 Ve= ¢ (4.1)

The general form of the nonlinear state equations, based on the rigid body equa-

tions of motion given in Appendix C, can be written as,
v="/(yu) (4-2)

where y is the state vector and u is the control vector. The function f is con-

~

tinuously differentiable in the y,’s. It is expanded in a Taylor series about the
equilibrium state y7 =|r, 0, ,4.,0,0,0] to give,

n a'
fn(y;“)=f(yev"e)+2 —af_] (y]"yje)"'
~o ~o =1 J Yse
i[i] (#¢ - ug ) + | higher order terms | (+3)
BUt M

ke

Define 6u = u; - u, and 6y =y, - y,.. Substitute (4-3) into (4-2) and retain the



first order terms only, to obtain,
5y = Aby+ Béu (4-4)

Equation (4-4) represents a first order linear approximation of (4-2). The matrices

A and B can be obtained from,

4/ of af 9/
oy, - - dye du, - - duy
A=| ~ - adB=| _ _ (4-5)
fe ~ T O/ 8fe ~ T Ofs
oy, e |y, 0u, Ouy Jve

Note that each rigid body degree of freedom driven by a leadscrew has two
equations representing its motion on the lower and upper thread. This results in

two sets of linear equations. The A and B matrices are listed in Appendix D .

Next the design of a linear controller for the rigid body axes r, 4, and ¢ is
considered. In modeling such a controller, the dynamics associated with joint sen-
sors and actuators are neglected. It is assumed that r, ¢ and ¢ and their time
derivatives are available, and that the control torques T, T, and T, can be
applied to drive each axis. A simple linear controller is used. It is a multiple input
- multiple output integral plus state feedback controller whose control vector, u,

can be written as,
u=-KSy+ K' [(R- Cy)dt (4-6)

where k5 is the 3 x 6 state feedback gain matrix, K’ is the 3 x 3 integral gain

matrix and RT =|R,, Rz R4, 0,0,0] is the desired reference input. The term Cy
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represents the system output where the ¢ matrix has the following form

100000
C=1010000
001000

By defining three additional state variables as,
y7=f(ﬂx—Rl)d' !/s=f(llz‘32)d‘ Vo=f(lls"Rs)d' (4°7)

the control vector, u: becomes
u=-K2Z (4-8)

where Z7 = [y, ¥2¥sV0¥sYeynysyd- The 3 X 9 gain matrix K now has the follow-

ing form:

K=|KkS : K (4-9)

The gains are chosen based on the linear model described in (4-4) and (4-5).

The selected gain matrix is of the following form,

kS k
0 0 k% 0 0 ks, 0 0 ki

This controller decouples the linearized system, thus allowing us to carry out a
design procedure for each axis independently to achieve a damping ratio of { =1
and desired servo-loop frequencies of w,, w,, and w, for the r, 6, and ¢ axes respec-

tively [49]. The formulations needed to evaluate the gain matrices of the lower

and upper thread motions are given in Appendix D. This simple controller is then
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Figure 4-1. Block diagram of the integral plus state
feedback controller

applied to the robot arm as modeled by both the rigid body and the combined
rigid body and flexible equations of motion. This is illustrated in the block
diagram in Fig. 4-1. The computer code written for the digital simulation is listed

in Appendix F. The simulation results are presented in the next section.

" 4.2. Results and Discussion

The dynamic equations of the flexible robot arm along with the equations
obtained from the controller lead to a set of seventeen complex, coupled, highly
nonlinear stiff equations. The difficulty in handling stiff problems is that most
conventional numerical algorithms for solving ordinary differential equations
require a time increment equal in measure to the minimum time constant of the

system while the problem range which is the difference between initial and final
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value of time is equal in measure to the maximum system time contant. As a
result, the problem cannot be run to completion in a reasonable number of steps.
Gear's method [50], used here, is well suited to handle stiff systems since it
automatically changes the step size depending upon the region where the solution
is relatively active.

The purpose of the simulation studies is to investigate the inter-relationships
between the robot structural flexibility and the controller design. These include
the effect of constraints due to transmission mechanisms, forced excitation due to
inertial forces, and potential instability mechanisms. such as resonance. The stan-
dard set of physical system parameters used in the computer program are listed
in Table 1.

The results obtained for the rigid and flexible motion are shown in Fig. 4-2
to 4-13. The first three plots show the critically damped behavior of the rigid
body degrees of freedom r, 6, and ¢. This illustrates the good performance of the
linear controller in the vicinity of the equilibrium point. The plot in Fig. 4-5
represents the motion of the flexible coordinate ¢,,(¢). In the transient response,

one notes the following:

(1) The excitation of the structural vibration is due to the effect of the
rigid body motion. This excitation decreases with time due to the
damping introduced by the rigid body controller, and to the diminish-
ing effect of the inertial forces associated with the rigid body motion

as it approaches the steady state.
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TABLE 1

Standard Set of Physlcal System VALUE
Parameters
Mass of the first beam (m,) 0.698 Kg
Mass of the second beam (m,) 0.0429 Kg
Mass of the Payload (m, ) 0.05Kg
Cross sectional area of the second

beam (A ,) 0.00003167 m?
Length of the first beam (L) 0.358 m
Length of the second beam (L ,) 0.5m
Gravitational acceleration (g) 9.81 m [sec?
Aluminum density (p) 2707 Kg [m®
Flexural rigidity (EI) 5.67 Pa
Reference position for r 04m
Reference position for 6 0 rad
Reference position for ¢ 0 rad
Desired reference position for r 0.5m
Desired reference position for ¢ 0.5 rad
Desired reference position for ¢ 0.5 rad
Servo natural frequency for r (w,, ) 4 rad [sec
Servo natural frequency for 6 (w,,) 4 rad/sec
Servo natural frequency for ¢ (w,,) 8 rad/sec




(2) The natural frequency of the flexible mode decreases with time due to
the increase of the span of the flexible beam and to the vanishing
effect of the rigid body inertial forces applied to the robot arm as
modeled by both the rigid body and the combined rigid body and

flexible equations of motion.

(3) The steady state response is a small amplitude sustained oscillation
around a negative value. The latter represents the static deflection
due to gravity while the sustained oscillation shows the decoupled
response of the elastic motion from the rigid body motion at steady

state due to the effect of the self locking condition of the leadscrew.

The motion of ¢,,(¢) is illustrated in Fig. 4-6. It has one additional feature.
The magnitude of the vibratory motion is on the order of 10°m while the one for
¢u(t) is on the order of 10?m. This is due to the large amount of energy requiréd

to excite the higher modes. Coupling with the first mode is also evident.

Figures 4-7 and 4-8, which illustrate the flexible motion represented by ga(t)
and ¢(t), indicate a very impor;tant aspect of this particular robot design. The
transient responses show the large excitation induced by the rigid body motion,
and then die out with time. These interesting results can be interpreted as fol-
lows:

(1) Gravity doesn’t affect the flexible motion in the gx(t) and ¢2(t) direc-
tions. Therefore, their motions are expected to either die out to zero

with time or oscillate around zero (i.e. no static deflection).
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Figure 4-5.  Flexible motion coordinate q4(t) in response to the rigid
body controller in the base run.
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Figure 4-6.  Flexible motion coordinate q,(t) in response to the rigid
body controller in the base run.
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(2) Since there is no constraint on the rigid body motion in the ¢ direc-
tion, the flexible motion in the gz(¢) and ¢2At) directions act as a dis-
turbance source on the rigid body motion in the ¢ direction. These

disturbances are compensated for by the rigid body controller.

Figures 4-9 to 4-11 represent the control torques T,, T,, and T, The oscilla-
tions in the control signals for the base and second joints show the effect of the
flexible motion on the rigid body motion. The control torques T, and T for the r
and 6 axes respectively are set to zero once the steady state is reached. This is
due to the nonbackdrivable characteristic of the leadscrew transmission mechan-
ism which satisfies the self locking conditions. The total deflection of the end
eifector in the vertical and the horizontal directions (i.e. V and W in equation (2-

4)) are shown in Figs. 4-12 and 4-13 and found to be dominated by the first mode

and nearly identical in shape to Figs. 4-5 and 4-7.

Additional runs are made with modifications to the standard set of parame-

ters to study the behavior of the system in the following areas:

(1) Instability mechanisms: The flexural rigidity, EI, is reduced to 0.44Ps. This
can be achieved by consfructing the flexible beam of polymers. As a result,
the natural frequencies of the flexible beam are lowered to values that are
close to the servo loop frequencies. The main results are shown in Fig. 4-14

to 4-18. The important features of this run are:

(a) In Figs. 414 to 4-16, the ¢ response has small overshoot. The control

torques for the base and second joints are very oscillatory. This illus-
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Figure 4-7.

Flexible motion coordinate q,4(t) in response to the rigid
body controller in the base run.
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Figure 4-8.  Flexible motion coordinate g,,(t) in response to the rigid
body controller in the base run.
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Figure 4-9.  Control signal for the prismatic joint obtained from the
rigid body controller in the base run.
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Figure 4-10.  Control signal for the second joint obtained from the
rigid body controller in the base run.
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Figure 4-11.  Control signal for the base joint obtained from the rigid
body controller in the base run.
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Figure 4-12.  Total vertical deflection, v, obtained from the rigid body
controller in the base run.
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Figure 4-13. Total horizontal deflection, w, obtained from the rigid
body controller in the base run.
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trates the effect of the flexible motion on the rigid body motion.

(b) The flexible motion frequency is reduced and the magnitude of the

oscillation in both the vertical and the horizontal directions increased.

(see Fig. 417 and 4-18).

(¢) Due to the small value of EI and tb the proximity of the servo-loop
frequency w, to the fundamental béam natural frequency, the ampli-
tude of these oscillations grow with time. This is clearly shown in Fig.
4-18. Such proximity is not likely to occur in practice, but would lead

to very poor performance when it does.

Note that the integration is interrupted at 1.24 seconds since this case could
not be run to completion with a reasonable computation time due to the diver-

gence of the solution.

(2) Speed accuracy trade off: The servo loop natural frequencies for r, ¢, and ¢,
are raised from w, =4,w,=4 and w,=8 rad/sec in the base rum, to
w, =8 w, =8 and w,=16 rad/sec. Comparing the numerical results
obtained with those of the base run, an increase on the order of 2 is observed
in the amplitudes of the flgxible motion coordinates. This is illustrated in
Fig. 419 and 4-20 where the response of the first elastic mode in the hor-
izontal and vertical directions are given. Unlike the base run, the responses
of ¢ and ¢ (see F ig; 4-21 and 4-22) show the effects of the flexible motion on
the rigid body motion. This is also reflected in Fig. 4-23 and 4-24 where the

control torques for the base and second joints become more oscillatory then
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Figure 4-14. ¢ response obtained from the rigid body controller in
the instability run.
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Figure 4-15. Control signal for the second joint obtained from the rigid
body controller in the instability run.
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Figure 4-16.  Control signal for the base joint obtained from the rigid
body controller in the instability run.
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Figure 4-17. Total vertical deflection, v, obtained from the rigid body
controller in the instability run.
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Figure 4-18.  Total horizontal deflection, w, obtained from the rigid body
controller in the instability run.
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Figure 4-19. Flexible motion coordinate q4(t) in response to the rigid
body controller in the speed-accuracy trade-off.
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Figure 4-20. Fiexible motion coordinate q,4(t) in response to the rigid
body controller in the speed-accuracy trade-off.
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Figure 4-21. 0 response obtained from the rigid body controller in the
speed-accuracy trade-off.
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Figure 4-22. ¢ response obtained from the rigid body controller in the
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Figure 4-23.

Control signal for the second joint obtained from the rigid
body controller in the speed-accuracy trade-off.
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Figure 4-24.  Control signal for the base joint obtained from the rigid
body controller in the speed-accuracy trade-off.
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their counterparts in the base run.

Effect of leadscrew on the controller design: The payload mass is increased

from 50g in the base run to 78.5g and the gains of the rigid body controller

are retuned to compensate for this new payload mass. The latter increases

the flexible motion inertial terms, causing large fluctuations in the magni-
iude of the normal force, N, and even in some cases changing its sign. Recall
from the leadscrew constraint derivation that changes in the sign of N result
in switching of the motion from the lower to the upper thread or vice versa.
This will, depending on the type of motion, either increase or decrease shar-
ply the required torque to rotate the leadscrew which may be under tension
or compression. Thus causing a deterioration in the controller performance
in the vicinity of the transition period. This is clearly shown in Fig. 4-25
where the notch in the @ response is caused during the transition of the

motion from one surface to another.

4.3. Summary and Conclusions

An integral plus state variable feedback controller, based on the linearized

version of the rigid body model of the robot arm, is derived. This simple con-

troller design is considered to be representative of the robot controllers currently

in use. The dynamic model and the controller design are used as the basis for the

simulation studies. The latter demonstrates the potential mechanisms by which

the robot structural dynamics and controller design can interact.



The effects of constraints, due to the leadscrew transmission mechanisms,
give the robot arm a cantilever beam-like behavior in the r and ¢ directions which
leads to some sustained vibratory motion of ¢,,(t) and g¢,,(t) at steady state. The
absence of the constraint in the ¢ direction allows the strain energy to be dissi-
pated by the rigid body controller. The simulation results demonstrate the follow-
ing additional features: (i) There is a potential for instability if the servo-loop fre-
quencies approach the natural frequency of the robot arm, and (ii) High speed
operation deteriorates the accuracy of the system, and results in a trade-off
between speed and accuracy.

These results are very useful for designing and evaluating potential
approaches to the flexible robot arm control problem. The latter will be discussed

and treated in the next chapter.



CHAPTER 5

DESIGN AND IMPLEMENTATION OF THE RIGID

AND FLEXIBLE MOTION CONTROLLER

The interrelationships between the structural flexibility and the controller
design, obtained in Chapter 4, provide guidance in developing the multiple-input
multiple-output controller for the rigid and flexible motion of the robot arm.
Towards achieving this goal, a simple case, involving the controller design of a
three lumped mass system, is treated. The latter simulates the control problem of
a compliant beam whose flexible motion is approximated by two elastic modes.
The rationale is to start with the control of a relatively simple system as a prel-

iminary step towards the general control problem of the flexible robot arm.

'6.1. Description of the Three Lumped Mass System

In an attempt to gain insight into the control problem of the flexible robot
arm, a simple system consisting of three lumped masses connected by massless
springs is considered (see Fig. 5-1). This system can be viewed as a lumped model
of an articulated compliant beam. The rationale is to scale down the complexity

of the dynamic model of the robot arm, to get better insight into the coniroller
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Figure 5-1. A schematic of the three lumped mass model.



performance, while working with a simple linear model, and to reduce the cost
~ of computer runs.

The first mass reflects the rotational rigid body degree of freedom of the
joint whereas the second and third masses represent the first and second elastic
modes of transverse vibration. No structural damping is considered in the discrete
model and the springs represent the structural stiffness of the beam. The three
luﬁped masses are supported in the vertical direction to include the effect of

gravity. The control force is applied to the first mass only.

Denoting the displacements of the first, second and third masses by z,, z.

and z, respectively. The equations of motion can be written as

myz, = ki(z3- 7)) + myg + Fy (5-1a)
Moz 3= -ky(22- 1) + k{25~ 29) + myy (5-1b)
m;;; = —kz(fs - 32) + mgg (5‘1(.')

where k, and &, are the structural stiffness terms and g is the gravitational

acceleration.

5.2. Controller Design for the Lumped Model

Two types of controllers are used for the three lumped mass model. The first
is based solely on the motion of the first mass. This gives a good indication of the
effect of the rigid body controller on the flexible system which is represented by
the second and third masses. The second controller is designed based on the
motions of the first and second masses, thus, including the flexible motion into

the control action. The third mass, representing the second elastic mode, is
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intentionally not considered in the controller design to study the effect of control
spillover.

In both controller designs, an integral plixs state feedback controller is imple-
mented. The gains of the rigid body controller are computed based on the equa-

tion of motion for the first mass,
mlé.l = Fl + m,9 . (5‘2)

This equation is identical to (5-1a) with the flexibility term &,(z, - z,) set to zero.

The control force, F,, has the following form,
Z
F1=—[k; k;] A H [(z- Rt (5-3)
Z1

By substituting (5-3) into (5-2), the gains are computed to achieve a damping
ratio of ¢ = 0.53 and a desired natural frequency for the first mass. The controller

is then applied to the three lumped mass model.

The rigid and flexible motion controller is designed based on the linear equa-

tions of motion of the first and second masses,

mx;1=F1+ myg + ky(z2- 7)) (5-4a)

'"2;2 = mog - ky(z2- 7)) (5'4b)

These equations are similar to (5-1a) and (5-1b) with the coupling term k,(z4 - z,)

set to zero. Define the state variables to be,
Vi=12, Ya=123 Yy=2, Yy=2, y5= f(fl-Rx)d‘

the equations of motion become,
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1;1 : V1 [ 0 ] 0
NI RN
Vs | = —:—‘l 7’% 0 0 0f{ ys¢+ le Fi+i g (5-5)
Ve %'"%000 V4 0 9
i L1 0 00 o) , R,

in matrix notation, this can be written as,
y=Ay+BF, + W (5-6)
where the vector, W, shows the effect of gravity, Note that with this notation,

the integral action becomes embedded in the state equations. Thus, the integral

plus state variable feedback controller can simply be written aé,
Fi=-Ky | (5-7)
where the gain matrix K™= [k k3 k§ k§ ki]. Substitute (5-7) into (5-6) to get,
~,}=A~y+ BFy+ W=(A-BK)y+ W (5-8)
The eigenvalues of (4 - BK) matrix can be arbitrarily assigned by the state
feedback F,= -Ky, as long as the system given by (5-6) is controllable. First, the

state equations are converted to the controllable canonical form. This is done by

transforming the state vector y to a new state vector z using a constant transfor-

mation matrix T so that
y=T2Z (5-9)

The differentiation of this equation yields,
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y=TZ - (5-10)
Substituting these values into (5-6) to get

Z= TATZ+ T-BF, + T"'W

=A'Z+BF,+ T'W (5'11).
where A°= T-'AT and B° = T'B. Let ¢, be the i* column of T, i.e.
= [tant] )
Use the formulation given in [51], [52], [53], [54] to compute the ¢,’s
ts =B
Aty =t - a,t,
(5-12b)

Atg = tl - d,._‘t,,

A‘l = -6, "

where the g,’s are the coefficients of the characteristic polynomial of A. This

choice of T leads, to the following general form of the matrices A* and B*,

0 1 0 0 0] [0 ]
0 0 1 0 O 0
A'=T'4T=|0 0 0 1 O0|and B°=T'B=]| 0 (5-13)
0 0 0 0 1 0
-85 —64 —63 —62 -0, | 1]
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In thg new state equations, the control signal F, becomes
F= -K’f= -K‘T"! = -Ky (5-14)
where K'r = [k], k7, kg, k¢, k¢). Use (5-14) in (5-11),
.~2= (A'- B'K)Z+ TW (5-15)

the closed loop matrix can be written as,

[0 1 0 0 0
0 0 1 0 0
A'-B'K'= 0 0 0 1 0 (5-16)
0 0 0 0 1
.("“6’kl.) (-84-k2) (-o5- kg) (-az- k) ('“x—ks')_

The gains are computed by matching the entries of (4°- B°K*) with those of the

desired matrix A’;. The latter has the following form,

[ ] O'
O O
O = O
-0 O
o O O

(5-17)
o 0 o0 O 1

|~845 —844 —04s ~042 O]

where a,’'s are the i* coefficient of the desired characteristic polynomial. The
desired eigenvalues are assigned according to settling time and percent overshoot
considerations.
The gain matrix, K*, of the new state vector is directly related to the gain
matrix, K, of the original state vector through equation (5-14). This leads to,
K=KT" (5-18)
The merits of the two controllers, derived in this section, are compared by

applying them on the system of three lumped masses.
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5.3. Results and Discussion of the System with Three Lumped Masses

The gains for the rigid body controller are computed to achieve a damping
ratio £ = 0.53 and a nétural frequency, w, = 15 rad fsec . This controller is applied
to the three lumped masses and the results are illustrated in Fig. 5-2 to 5-4. The
response of the first mass, z,, is very oscillatory due to the effect of coupling with
the' second and third masses. Note that the three lumped mass model
(see Fig. 5-1) represents a conservative system. That is, once the system is
excited, it should oscillate indefinitely. However, the decay in the z, and z,
responses, in Fig. 5-3 and 5-4, is caused by the damping induced by the rigid
body controller.

For best evaluation of the rigid and flexible motion controller, a reduced
model, consisting of the first and second mass, is initially used. The exclusion of
the third mass eliminates the effect of control spillover. Figures 5-5 and 3-6
represent the responses of the first and second mass respectively. The overshoot
is due to the assignment of the desired damping ratio ¢ = 0.53. The oscillation
seen in Fig. 5-2 and 5-3 is completely eliminated due to the additionai damping

introduced by the rigid and flexible motion controller.

Finally, to show the effect of control spillover, the rigid and flexible motion
controller is applied on the three lumped masses. This is illustrated in Fig. 5-7 to
5-9. The responses of z, and z,, which represent the displacements of the first
and second mass, become more oscillatory then in Fig. 5-5 and 5-6. This
deterioration in the response is expected due to the effect of control spillover.

However, the performance of this controller, even in the presence of control
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Figure 5-2. First mass response obtained from the rigid body controller.
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Figure 5-3. Second mass response obtained from the rigid body controller.
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" Figure 5-4. Third mass response obtained from the rigid body controller.
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First mass response obtained from the rigld and flexible

Figure 5-5.
motion controller in the reduced order model case.
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Figure 5-6. Second mass response obtained from the rigid and flexible
motion controller in the reduced order model case.
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Figure 5-7.  First mass response obtained from the rigid and flexible
motion controller in the control spillover case.
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Figure 5-8.  Second mass response obtained from the rigid and flexible
motion controller in the control spillover case.
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Figure 5-9.  Third mass response obtained from the rigid and flexible
motion controller in the control spillover case.



spillover, is still superior to the rigid body controller (see Fig. 5-2 to 5-4). The
oscillatory motion is approﬁcimately reduced to half.
At steady state, the deviation of the second and third mass displacements

from the desired value is caused by the static deflection of the springs.

5.4. Linearization of the Rigid and Flexible Equations of Motion

The first step in designing the rigid and flexible motion controller for the
robot, is to obtain a linearized version of the equations describing the combined

rigid and flexible motions. The latter have the following general form,

M(z)s + F(z3) = F' (T) (5-19)
where 27 = [r,0,6,¢11,912,921,92] and Z"= [T, T5Ty. The inértia matrix M(f) is not
diagonal. Therefore, the linearization procedure, outlined in section 4-1, cannot
be applied directly. An intermediate step, involving the algebraic computation of
the inverse inertia matrix, is required to transform (5-19) to the form given in
equation (4-2). To avoid this difficulty, another procedure, which is also based oﬁv
Taylor series expansion, is implemented.

Suppose Z‘,,(t),f,,(t),f,,(t) and 5,(:) satisfies the second order differential equa-
tion given in (5-19) for ¢ > 0. Define

2(t) = 2,(t) + 82(1) )
-0 T (5-20)

) = T,(¢) + &T(1)
Substitute (5-20) into (5-19), to get

M(z, + az)[;',, + 55{] + Flz, + 62,2, +62)=F' (T, +67) (5-21)
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Expand by'Taylor series the nonlinear ‘tel"ms around z, and 7,. This yields,

d ) ° . . aF( Z5 ,2',, )
M(z,) + = 6:[1,+6z]+F(z,,z,)+—~5f—6:+
(5-22)
OF( 2,,2,) .- oF' (T,
—(—3-’-'.-:'—)- ébz=F' (T,) + ——-!-L) 5T + higher order terms
oz ~ ~ oT ~
Rearranging the terms,
. 8M(z, .
M(z. )z. + F(z, ,z,) F' (T )} + M(z,, )61: + 6(:‘) z,0z+ ——a-(—;z'—-)- bz0z
| (5-23)

OF(z, 24 oF(z,,%,) .. OF' (T,
)y, k) OF (L)

6T + higher order terms

Assuming that the solution, z,, is at equilibrium (i.e. 2z, =z, =0) and retaining

only first order terms, equation (5-23) becomes

. OF(z,,0 8F(z,0) . OF (T,
M(z, )6z + (2.0 bz + —-—(:—-l bz = o (L) 6T (5-24)
which can be rearranged to
°° L} ,o ny ' "
& = M) (5, ) 52 MG, )aF 2 °) Mz ) ( ] T (5-25)

where M"Yz, ) is the inverse of the inertia matrix M(z) evaluated at z,. In matrix

form, equation (5-25) can be written as,

6_% O7x7 I7x7 63 07x3 . 5T

= + -
9 0F (2, 0) BF(z,. Ol e 2 - (5-26)
)| M) =g M) = |l M)

The linearized form of the equations of motion for the rigid and flexible motion

can be readily obtained by evaluating equation (5-26).
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5.5. Derivation of the Rigid and Flexible Motion Controller

This section, is a very important one, in that it contains a detailed discus-

sion of how the flexible motion is treated in the design of the rigid and flexible
motion controller.

Any compliant link would undergo static and dynamic deflections. There are
two approaches with which the static deflection problem can be handled. In the
first approach, the static deflection is computed theoretically and then taken into
consideration in specifying the desired end effector final position to the controller.
In the second approach, additional sensors and actuators are used. The static
deflection is measured and corrected for by the additional actuator referred to as
a “straightness servo” in [4]. In this work, no attempt is made to compensate for

the static deflection, as this can be treated as a separate problem.

The control objective is to introduce additional damping into the flexible
motion. This is done by using additional sensors to measure the compliant link
.dynamic vibrations and feed them back to the controller. Theoretically, any flexi-
ble system has an infinite number of elastic modes. Due to physical limitatibns, a
limited number of sensors and actuators can be applied, thusvrestricting the con-
troller design to the few critical modes. Note that the outputs of the sensors
would contain information about the unmodeled as well as the modeled modes.
This is referred to as observation spillover. Similarly, the control action would
affect both the modeled and unmodeled modes leading to the control spillover
phenomenon. Based on the work done by Balas in [30], it is expected that the

higher unmodeled modes can cause detrimental effect on the system response. It



can even ]ead to instability. To examine the effect of observation and control
spillover, only the first elastic mode in the vertical and horizontal directions are
considc;red in the controller design. The second mode is considered to be a
representative of the highér unmodeled modes.

The rigid and flexible motion controller is designed based on the linearized
equations of motion given in (5-26). An integral plus state feedback controller is
implemented. The integral action is applied on the joint angles to insure that
they reach their desired values with zero steady state error. Define the state vec-

tor, y and the control vector, u, to be,

oz

~

Then equation (5-26) can be written in the following general form,

y=Ay+ Bu (5-28)

This represents a linear, time invariant, multi-input multi-output system.
Three additional state variables are introduced to facilitate the implementation

of the integral plus state feedback controller,
yn=[(r- Ryt V12=f(9-32)d" vis= [(¢- Ry)dt
This embeds the integral action into the state equations. Thus allowing the con-

trol action to be expressed as,

u=-KFy (5-29)

~ ~

where K7 is the feedback gain matrix of the rigid aﬁd flexible motion controller. -
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Substitute (5-29) into (5-28), to get

~9=(A -BK’)! (5-30)

The eigenvalues of the closed loop matrix, (A - BK*), can be arbitrarily
assigned by the controller, defined in (5-29), as long as the system given by (5-28)
is controllable [55]. Note that for a given set of eigenvalues, the solution for the

gain matrix is not unique.

The eigenvalues determine the étability and the speed of the response where
the closed loop eigenvectors reshape the transient response. The non-uniqueness
of the state feedback gain matrix, K, in pole assignment provides the designer

the freedom to partially select the closed loop eigenvectors [56], [57].

Standard procedures employ a transformation matrix to convert the linear-
ized system to controllable canonical form for arbitrary eigenvalues assignment.
Note that the set of eigenvectors are assigned by the particular choice of the
transformation matrix. One such systematic method [53] is used to compute the
gain matrix K.

First, a state feedback is introduced to make the system controllable by a
single component of the u vector. This converts the multi-input system to single
input one. Second, the method established for single-input systems, which was
used earlier in the three lumped mass case, is employed to assign the desired
closed loop eigenvalues. Note that the gain matrix is not unique for a given set
of eigenvalues. The methodology, described here, does not make any attempt to

use the freedom given by the nonuniqueness of the state feedback gain to
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partially assign the closed loop eigenvectors. The latter, which determines the
shape of the transient response, ends up being arbitrarily assigned; thus, leading,

in most cases, to poor transient response.

This method is employed on the system given by (5-28). Although, the
steady state response f;ollowed exactly the reference input, the transient response
was very oscillatory. Most of the control effort was carriéd out by a single com-
ponent of the control vector, u, thus rendering this particular control design to

be completely unacceptable from a practical point of view.

Being aware of these difficulties, the control problem is now approached
from a physical point of view. No transformation matrix is used. Therefore, all
the state variables have physical interpretations. The main task of the controller
is to move the robot arm from one position to another with the least amount of
vibration possible. From the results of the rigid body controller (see Fig. 4-2 to
4-13), the rigid body degrees of freedom r, ¢ and ¢ exhibit a critically damped
behavior with zero steady state error. However, the transverse deflection in both
the vertical and the horizontal directions are oscillatory. In light of this, the rigid
and flexible motion controller is obtained by expanding the rigid body controller
with the emphasis on introducing additional dﬁmping into the flexible system. To

do this, the terms in equation (5-26) which represents the open Ioop case, have to
be physically interpreted. M7z, )-‘%‘D— consists of all the stiffness terms

0F(z, ,0)

whereas MYz, ) contains all the damping terms. By evaluating equation

(5-28) and including the integral action one obtains,
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where the 4, and B, terms represent the open loop terms. This yields

M(z,)

OF(z,

oz

0)

= 0. That is no structural damping is considered. This is con-

sistent with the robot arm dynamic modeling assumption. Applying the rigid



90

body controller,

u=-K'y -

~

where K' represents the feedback gain matrix of the rigid body controller.

ki, K} 0 00 kj, O 0 00 K!{;, 0 O
K' = |k ki, 0 00 0 k 0 00 0 k}, O (5-32)
0 0 kx 00 0 0 k00 0 0 ki

the closed loop matrix (A - BK") becomes,

0 0 00 0 | 1.0 000] 0 0 ©
0 0 00 ¢ | o1 000]|] 0 0 ©
0 0 00 0 | 0 o0 100]|] 0 0 o0
0 0 00 0 | 0o o0 010]|] 0 o0 o
0 0 00 0 | 0 0 0o01] 0 0 o
Ag-a Ag-a; 0 Ag 0 | -a; -a; 0 00 | -0y -a; O
(A-BK'y= |An-0a; App-a; 0 A0 | -a; ¢, 0 00 | -a, -2, 0
0 0 4, 0 Ag | 0 0 - 00| 0 0 -q
Agi-ay Ag-a; 0 Ag0 | -0y -2, 0 00 | -o; -a; O
0 0 ¢, 0 Aps| 0 0 -4, 00| 0 0 -q
1 0 00 0 |0 0o 0o00|O0 0 O
0 1 00 0 | 0o o o0o00 1] 0 0 O
0 0 10 0 | 0 0 000 ] 0 0 O
(5-33)

where o, terms represent the entries altered or created by the rigid body con-

9F(z, ,0)

troller. The portion of the closed loop matrix that corresponds to M-(z,) >
~ z
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has nonzero terms. The latter represent' the- damping introduced by the rigid
body controller in both the rigid and flexible motions. This is consistent with the
decaying oscillation obtained in the transverse deflection for both the vertical and
horizontal directions (see Fig. 4-5 to 4-8).

Since the main emphasis of the rigid and flexible motion controller is to
introduce additional damping into the flexible system, then the gain matrix of

the rigid body controller is modified to give

ki, ki, 0 00 kjsg 0 0 ki 0 ki, 0 0
KF=|kL ks 0 00 0 k O k% 0 0 ki, O (5-34)
0 0 k300 0 0 kg 0 klp 0 0 ki

0 0 o0 0 | 1 0 0o o0 0} o0 o0 o0
0 0 o0 0o | o 1 0 0 0] o0 o o
0 0 o0 0o | o o 1 0 0] o0 0 O
0 0 o0 o | 9 & o0 i 0| 0 0 O
0 0 o0 o | o o o o0 1| o0 o0 O
Ag -0 Ag-a; 0 A0 | -y -y 0 -a 0 | -ay -y O
Ap-a Ap-a; 0 Ay 0 | -y -y 0 -az 0 | -ay -ay 0
(A-BkF)=|o0 0 2, 0 Ag | 0 0 -¢ 0 -a | 0 0 -q
Ag-0oy Ag-ay 0 Ag 0 | -a, -ay 0 -a O | -ay -o; 0
0 0 ;0 Aps| 0 0 -¢ 0 —az | 0 0 -o
1 0 o0 o | o o o o0 o] o0 0 O
0 1 oo o | 0o o o 0o o] o0 0 O
0 0 10 0 | o0 o o o0 o] o0 0 O

(3-35)



where A,,’s terms are obtained from the linearized version of the rigid and flexi-
ble motion equations. a, terms represent the entries altered or created by the
rigid body controller and a, terms represent the entries created to induce more
damping into the flexible system. Note that the selection of the gains k%, k5, and
k£, should be done very carefully, since they simultaneously introduce new terms
in the rigid and flexible motion equations. Thus, the larger these gains are, the
more damping of the transverse deflections can be achieved and the greater is the
effect of the flexible motion on the rigid body motion. This causes the latter to
become oscillatory. Therefore a compromise should be made in introducing as

much damping as possible while keeping the effect of the flexible motion on the

rigid body motion to a minimum.

5.8. Results and Discussion of the Rigid and Flexible Motion

Controller

The rigid and flexible motion controller is first applied on a reduced order
model where only one elastic mode is considered to represent tile flexible motion
in each the ho;‘izontal and the vertical directions. The rationale is to eliminate
the effect of observation and control spillover. The results are illustrated in Fig.
5-10 to 5-17. The first three plots show the expected critically damped response
of the rigid body degrees of freedom r,6 and ¢. They are identical to their coun-
terparts in the base run of the rigid body controller (see Fig.4-2 to 4-4). The first
mode in the vertical and the horizontal directions are presented in Fig. 5-13 and

5-14. The oscillations are due to the inertial forces emanating from the fast and
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and flexible motion controller in the reduced order model
case.
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Figure 5-17.  Control signal for the base joint obtained from the rigid
and flexible motion controller in the reduced order model
case.
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sudden rigid body motions. However, these vibrations have rapidly died out, thus

reflecting the additional amount of damping introduced by including the flexible

motion into the control action. Finally, Fig. 5-15 to 5-17 show the applied control

torques T,,T, and T,. The oscillations in the control signals show the effect of the

flexible motion on the rigid body motion.

(1)

(2)

Additional runs are made to study the following effects:

Control spillover: The rigid and flexible motion controller is now applied on
the full rigid and flexible motion model. (i.e. two elastic modes are used to
represent the transverse vibration in both the vertical and horizontal direc-
tions). This is done to assess the effect of control spillover on the second
uncontrolled elastic mode. The main results are shown in Fig. 5-18 to 5-23.
The first four plots represent the first and second elastic modes in the verti-
cal and horizontal directions respectively. Even though the responses
corresponding to the first mode become more oscillatory then the previous
case, the overall performance of the flexible motion coordinates show a
reduction of approximately 50% in magnitude when compared with their
counterparts in the base run of the rigid body controller. The large oscilla-
tion in the control torques T, and T,, shown in Fig. 5-22 and 5-23, reflects

the greater effect of the flexible motion on the rigid body motion.

Control and observation spillover: This run simulates an actual situation
where both control and observation spillover can be present. In the experi-
mental set up, accelerometers mounted at the end effector, are implemented

to measure the tip acceleration. The latter is then integrated twice to yield
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Figure 5-18.  Flexible motion coordinate q44(t) in response to the rigid
and flexible motion controller in the control spillover case.
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Figure 5-19.  Flexible motion coordinate q4(t) in response to the rigid
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Figure 5-20.  Flexible motion coordinate g,4(t) in response to the rigid
and flexible motion controller in the control spillover case.
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the transverse deflections V and W and their time derivatives V and W.
Assuming that the flexible motion is entirely due to the first mode, then Vv

and W can be written as
V= ¢&,q,(t) W = &,q,(t) (5“36)

The flexible motion coordinates ¢;,(¢) and ¢4(¢t) become,

|4 W
qult) = 'y and  gz(!) = 31' (5-37)

where &, is the eigenfunction of a clamped free beam, previously defined in
equation (2-5), evaluated at the end effector. In digital simulation, the obser-

vation spillover is introduced as follows,

®ur)anl(t) + Sor)andt) V()

Q qll(‘) = (pl(f) - ‘bl(r) (5-38)
di(r)gan b,r r
1alt) = e (t()p:;r)z( Ja2(t) - m (5-39)

Thus the g¢,,(t) and ¢4(¢t) measurements, that ére*fed back to the controller,
are no longer representatives of the first mode ohly, Instead, they contain
informations about both the first and second elastic tﬁ_odes. Figures 5-24 to
5-27 present the main results of this run. In Fig. 5-24 and 5-26, the responses
of the first mode in the vertical and horizontal directions are almost identi-
cal to those in the control spillover case. Howe?er, the uncontrolled second
mode exhibits more oscillatory behavior in the horizontal direction while it
becomes unstable in the vertical direction. This instability is obtained due to

the combined effect of control and observation spillover on the second mode.
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Figure 5-24.  Flexible motion coordinate q4(t) in response to the rigid

and flexible motion controller in the control and
observation spillover.
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Figure 5-25. Flexible motion coordinate q42(t) in response to the rigid

and flexible motion controller in the control and
observation spillover.
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Figure 5-26.  Flexible motion coordinate qo4(t) in response to the rigid

and flexible motion controller in the control and
observation spillover.
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Balas discusses the stability issue under these conditions in [30].

Control and Observation spillover in the presence of structu-ral damping. Any
physical system possesses a certain amount of structural darx;ping. The latter
is introduced into the dynamic model of the flexible robot arm by using
Rayleigh’s dissipation function, F, which can be written in the following gen-

eral form,
F=23 Yeutd (5-40)
rmx] g}

where ¢,, is the damping coefficient. Considering only diagonal terms (i.e.
C,. = 0 for r 3 s) equation (5-40) becomes,
F=

1, - . . .
2 (c1913 + c20i2 + csga + cy025) (5-41)

The values of C,,’s are determined experimentally and found to be 0.103 kg
rad/sec which corresponds to a damping ratio, ¢ = 0.0145. Viscous damping
forces can be derived from Rayleigh’s dissipation function, F, using the fol-

lowing formulation,

oF
Q| =- "E (5‘42)

where z, is the i* generalized coordinate. Dividing the nonconservative
forces @, in equation (2-15) into those dissipative type and those of

impressed upon the system by external forces, Lagrange’s equation become

d an ] an th aF

? 62‘, 821 + a:: * 62, = Q’Md (5-43)
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where Q,,.p denotes generalized forces due only to external forces exerted on
the system. The rigid and flexible motion controller is then applied to the
modified robot arm model described in equaiion (5-43). The results are
shown in Fig. 5-28 to 5-31. These plots are identical to their counterparts in
the undamped model with control and observation spillover case except for
the response of the second mode in the vertical deflection, ¢,.(t). which

becomes stable.

5.7. Summary

This chapter provides the design of the rigid and flexible motion controller
for the robot arm. First the control of a three lumped mass system. which
represents a discrete model for a single compliant link, is developed. The
rationale is to start with the control of relatively simple system and progress gra-

dually towards the general nonlinear problem.

Two types of controllers are employed in the lumped.model study. The first,
simulating the rigid body controller, is based entirely on the motion of the first
mass. In the design of the second controller, the dynamics of both the first and
second masses are considered. The third mass is deliberately left out to study the

effect of control spillover. The main results obtained, can be stated as follows,

(1) The rigid body controller provides some damping of the flexible

motion.
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Figuré 5-28.  Flexible motion coordinate q,¢(t) in response to the rigid

and flexible motion controller in the control and
observation spillover with structural damping included.
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Figure 5-29.  Flexible motion coordinate q4,(t) in response to the rigid

and flexible motion controller in the control and
observation spillover with structural damping included.
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Figure 5-30.  Flexible motion coordinate q,4(t) In response to the rigid

and flexible motion controller in the control and
observation spillover with structural damping included.
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(2) In the absence of observation and control spillover, the rigid and flexi-

ble motion controller completely eliminates the vibratory motion.

(3) In the presence of control spillover, the rigid and flexible motion con-
troller reduces the oscillation observed in the rigid body controller

case by almost half.

The rigid and flexible motion controller is designed based on a linearized ver-
sion of the general equations of motion. Only the first mode of the transverse
deflection in both the vertical and horizontal directions are considered in the con-
trol action. Higher modes are left out to study the effect of control and observa-
tion spillover. The controller objective is to add more damping to the flexible
motion while maintaining a good rigid body motion performance. The following

conclusions can be drawn:

(1) In the ideal case where there is no observation or control spillover, the
flexible motion recovers rapidly from the sudden excitation induced

by the rigid body motion inertial forces.

(2) In the presence of control spillover, the overall pe»rformance of the
flexible motion show a reduction of approximately 50% in magnitude
when compared with their counterparts in the base run of the rigid
body controller.

(3) In the presence of observation and control spillover, identical results

are obtained for the flexible motion as in the control spillover case

except for the response of the uncontrolled second mode in the verti-
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cal direction which becomes unstable.

(4) In the presence of structural damping with observation and control

spillover; the response of the uncontrolled second elastic mode in the

vertical direction becomes stable.

A comment is in order here. One should note that even in the presence of
observation and control spillover, the rigid and flexible motion controller provides
an additional damping capable of reducing by approximately 50% the magnitude

of the flexible motion oscillation detected in the rigid body controller.

There is a need for experimental validation of the dynamic model of the
robot arm, as well as evaluation of the rigid body controller versus rigid and flex-

ible motion controller. This will be the subject of the next chapter.



CHAPTER 6

EXPERIMENTAL RESULTS AND COMPARISON

TO SIMULATION RESULTS

- The flexible robot arm control problem has been investigated using analyti-
cal methods and digital simulation. There is a need for experimental evaluation
of both the dynamic mo,delb of the robot arm and the controller design. This
chapter experimentally compares the rigid and flexible motion controller with the
rigid body controller to evaluate the merit of measuring and feeding back the

flexible motion.

6.1. Experimental Set Up

The three degree of freedom spherical coordinate laboratory robot, described
in section 2.1, is used for the experimental work. It is interfaced to an IBM/PC
microcomputer. A Tecmar Lab Tender interface board which has built-in 8 bit
analog to digital and digitai to analdg converters is used. The schematic of the
experimental set up is given in Fig. 8-1. Three DC servo motors, driven by
power amplifiers, are used as actuators. The control torques are transmitted to

the links by leadscrews for the r and 4 axes and a gear train for the ¢ axis. One

121
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Figure 6-1. A schematic of the experimental set up.
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tachometer generator and one optical encoder [58], [59] is mounted on each joint
to measure the position and velocity of its corresponding rigid body degree of
freedom. The optical encoder signals are read by the computer through digital
counters. Each joint has a different size of counter associated with it according
to their range of operation. A 20 bit counter is used to record the number of
counts generated by the optical encoder monitoring the ¢ rotation whereas 12 bit
and 20 bit counters are used to record the ¢ and r motions respectively. The con-
tents of any counter can be strobed into a tri-state buffer. The latter can be
accessed by the computer through differential drivers. Differential receivers are
also used to reduce the noise on the control lines originating with the microcom-

puter.

The part of the second beam protruding from the first beam, which is con-
sidered to be flexible in the digital simulation, is made of a thin aluminum rod.
The payload is kept constant. It consists of a mounting stud and two Kistler
piezotron accelerometers (model 8606A100). The latter are used to measure the
end effector transverse vibration in both the vertical and the horizontal direc-
tions. The stability conditions for such systems where the sensors are not colo-
cated with the actuators are discussed in [60]. The acceleration signals are passed
through a Kistler piezotron coupler (model 5120). The latter has a built in
Kistler low pass filter (model 5318A22) with a break frequency set to 60 HZ.
This attenuates the higher mode signals, thus reducing the effect of observation
spillover. The dc component of the coupler’s output which represents the end

effector acceleration due to the rigid body motion needs to be filtered out. This
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is done by passing the acceleration signals through two cascaded high pass
Krohn-Hite filters (model 3322) with a break frequency set to 3 HZ. Finally, the
total deflection of the end effector and its time rate are obtained by integrating
twice the accelerometer signals using analog double integrators [61], [62]. These
integrators are used to devote most of the sampling period to the computation of
the control action. The schematic vdrawing of the circuit board is given in Appen-
dix E. The flexible motion signals are digitized by the 8 bit analog to digital con-
verter whose resolutions are 0.2176 mm/count for the total deflection, v, and

16.314 mm/sec/count for V.

The prismatic joint poses a very challenging problem. As the second beam
slides inside or outside the first beam, the length of the flexible part varies.
Thus, causing the beam natural frequencies to change significantly. This prob-
lem is not considered in this study. Therefore, the length of the part of the
second beam protruding from the first beam, r, is kept constant. Due to
hardware difficulties, the base joint governing the ¢ rotation was not operational,
thus restricting the experimental work to the secgnd joint only. That is only the
rigid body coordinate ¢ and the flexible motion in the vertical direction, V, can be
controlled. The horizontal deflection, W, would also be affected by the controller
due to its coupling with V. The ¢ rotation is measured by an optical encoder
with 625 counts per revolution (Optisyn model 77-4-003-625AA). The latter is
enhanced by connecting the encoder shaft to a gear train with gear ratio of 8:1 to

yield a resolution of 31.25 counts per degree of 4.
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In designing the second beam, the following constraints are taken into con-
sideration:
(1) The éapability of the small dc servo motor mounted on the second
joint.
(2) The computation time required for the control algorithm.
(3) The speed of the microcomputer used.

To satisfy the first constréint, the second beam should be lightweight. The con-
trol algorithm or the speed of the microcomputer impose a very stringent con-
straint on the design of the second beam. In the experimental work, the flexible
motion is considered to be dominated by the first elastic mode. In order to avoid
aliasing [63], the sampling theorem must be satisfied. That is the sampling
period must be at most half the harmonic motion period. Thus, the fundamental
frequency, which is fixed once a certain design for the second beam is adopted,
would set the maximum sampling period. However, for high fundamental fre-
quency, the period, which is inversely proportional to the natural frequency,
becomes very small. Depending on the speed of thé microcomputer or the control
algorithm used, the upper bound of the sampling period imposed by the design of
the second beam, may or may not be large enough to perform the control loop.
Therefore, in this work, the second beam is desigﬁed to have a low fundamental
frequency. This would give ample time to try different control algorithms. For
the experimental set up employed here, the length of the second beam is chosen

to be 0.5m and its diameter is 0.635cm so that its fundamental frequency would
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be approximately 6 HZ. The control algorithm used is an integral plus state
feedback controller whose control loop requires a small amount of computation.
The sampling period used is 0.024 sec. and is well below the upper bound

-imposed by the sampling theorem.

6.2. Experimental Evaluation of Model Parameters

In contrast to the digital simulation, the dynamics of the actuators and sen-
sors are considered in the experimental work. The robot arm is treated as a pure
inertia loading on the motor shaft. The armature controlled DC motor used in
the experimental set up is very common in servo control systems. The derivation
of its dynamic model is well documented in the literature [49]. The correspond-

ing transfer function can be written as follows,

9 K
N T e+l (6-1)

where u is the input voltage to the motor, 7 is the time constant, and K is the
overall gain of the motor, the power amplifier and the tachometer generator.
The parameters K and r are determined experimentaliy from open loop runs. For
a constant step input u(t) = A volt and initial condition 8 (t = 0) = 0, the response

of the system described by equation (6-1) can be given by
0(t) = KA(1 - e~/") (6-2)
At steady state, 6., is equal to KA. The gain, K, can now be easily determined

since d,, corresponds to the steady state value of the open loop response of the

system to a step input. The time constant, 7, corresponds to the time at which
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the open loop response reaches KA(1-¢). Several open loop runs are made,
where different step inputs are given to the system and the sensors values arc
stored in the computer. The average values for K and r are found to be 2.284

degree/sec/volt and 0.15 sec respectively.

6.3. Design and Performance of the Rigid Body Controller

The model described by equation (6-1) is first expressed in terms of state

variables which are defined as follows:

n=_=¢
y2=10 (6-3)
ys=[(0- Rz)‘“»

where R, is the desired position of 8. The state variable y, is introduced to

imbed the error signal into the state equations. The latter would have the follow-

ing form,
0 [0 1 o]f [0 ] 0
jo | = o-% off 4, !+ 1f- u+] 0 (6-4)
L'Ia (1 0 0] Vs | 0 | -R.
In matrix form, equation (6-4) can be expressed as
~;}=A~y+)!3u+§ (6-5)

Using the procedure outlined in [64], the state equations are converted to differ-

ence equations which can be written as,
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yltes) = Py(t) + Quity)

6-6
— T (6-8)
where T is the sampling period. P and @ are obtained from
2 278 [N B
P=c¢ —1+A{1T+AT + AT L +—-—-—A,T + }
3 (i +1)
(6-7)
AT? AcT? A'T'+! }
A€ z -
Q= fc déB = {IT+ + — =5 + o+ TS +..B

Two different values of i =100 and i = 300, are considered in the series. No sig-
nificant differences in the results are observed, thus, for i = 100 the series has

converged.

Next the design of the rigid body controller is considered. An integral plus

state feedback controller is used. The control signal u(t, ) becomes,

valte)
u(tk)—-[k Eaks |l valti)} =Ky () (6-8)

ys(te)

where KT is the transpose of the controller gain matrix. The closed loop differ-

ence equations are obtained by substituting (6-8) into (6-6)
Vltegn) = (P~ QK" (1) + R (6-9)

The gains are selected to yield a damping ratio ¢ = 1 and desired servo loop fre-
quency w,. The controller software used in the experimental studies is listed in

Appendix G.

The rigid body controller is applied on the robot arm to rotate it from its

initial position 6(0) = 0, which corresponds to the horizontal position, to a certain
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desired position, R,. Several runs are made. It is found that for R, greater that
20 degrees the effect of nonlinearity becomes significant and the r@poﬁse is oscil-
latory. Typical results of the rigid body controller are shown in Fig. 6-2 to 6-4
for R, =-20 degrees. The first plot shows the ¢ response. It has a small
overshoot which persists for a while due to the effect of friction. Figures 6-3 and
6-4 represent the control voltage applied to the motor and the total vertical
deflection of the end effector. The maximum deflection observed is approxi-
mately + 3.5mm. The control signal shows some saturation. This is desirable
since it serves the purpose of driving the robot arm at its highest speed. The
pulse like pattern observed in Fig. 6-3 and 6-4 illustrate the poor resolution

obtained from the 8 bit analog to digital and digital to analog converters.

An additional run is performed to study the effect of friction. This is done
by driving the robot arm beyond its linear range and the response becomes oscil-
latory with a large amount of overshoot. This is illustrated in Fig. 6-5. At the
peak of the oscillation, 6 is zero. This results in a sudden increase in the required
driving torque due to the change from dynamic to static coefficient of friction.
The control signal, illustrated in Fig. 6-6, is unable to respond quickly to the
sharp variation in the resistive torque would cause the robot arm to come to a
complete halt waiting for the control effort to build up. This is consistent with

what is observed in the simulation result in Fig. 3-3.
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0 rotation
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Figure 6-2. 6 response obtained from the rigid body controller in the
experimental work.
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Figure 6-3.  Control signal for the second joint obtained from the rigid
body controller in the experimental work.



132

V(t) displacement
[mm]

4.00

0.00

2
7 e + + + $ {
0.00 8.00 16.00 24.00
Time. 1 [second]

Figure 6-4.  Total vertical deflection in response to the rigid body
controller in the experimental work.
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Figure 6-5. 6 response showing the effect of friction in the experimental
work.
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Figure 6-6.  Control signal for the second joint showing the effect of
friction in the experimental work.
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6.4. Design and Results of the Rigid and Flexible Motion Controller

In the experimental work, the observation and control spillover are always
present. The control action affects all elastic modes whereas the accelerometer
signals contain information from all modes. A low pass filter with a break fre-
quency set to 60 HZ attenuates the effect of higher modes<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>