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ABSTRACT

The problem of the absorption of power by a set of harmonic oscilla-

tors surrounded by a dilute gas is investigated on the basis of the linear
Boltzmann equation as a function of the frequencies of the oscillator and of
the outside electric field, and as a function of the type of interaction be-
tween the oscillator and the gas molecule. For the case where this interaction
is an inverse fifth-power repulsion (Maxwell molecules), an exact solution of
the problem is presented (Section V). Various limiting cases and approximate
results are discussed.

OBJECTIVE

The main purpose was to elucidate the validity of the so-called

strong collision approximation, which is often used in the kinetic theory of

iii
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I. STATEMENT OF THE PROBLEM

In this report we will be concerned with the following problem. Sup-
pose a particle of mass m is bound harmonically to a fixed point with proper
frequency wgy; it is surrounded by a gas of particles of mass M against which it
collides according to some given force law; the gas is supposed to be in equi-
librium at temperature T and the equilibrium is not affected by the motion of
the particle m.1 Finally, an outside alternating force mE, cos wt acts, say
in the x-direction, on the particle m (not on the molecules of the surrounding
gas). One wants to know the average power absorbed by the particle as a func-
tion of wgy, w, the ratio of the masses m/M, and the type of force law between

the particle and the molecules of the surrounding gas.

Clearly the problem is a generalization of the well-known problem of
Rayleigh,2 in which it will go over if w, = 0, no outside force is present,
and the motion is one dimensional. The relation to the theory of the shape of
absorption lines and to the theory of metals will be more or less evident and
will not be further elaborated. The problem was in fact suggested in a discus-
sion with Dr. J. M. Luttinger, because of a paradox which he encountered in the
theory of metals.

In the classical form in which we stated the problem, the mathemati-
cal formulation is given by the so-called linear Boltzmann equation. Iet
£(X,¥, t) d¥ av be the probability at time t that the particle m is in the
space and velocity range dx d%, then f will TUIfill the equation

of of of
= 4+ Vy = + 8y =— = J(T 1
S5t o/ axa (04 ava ( ) » ( )
where g is the acceleration produced by the forces acting on the particle m,
so that

1. One may think that the gas is sufficiently dilute so that the velocity dis-
tribution of the molecules around the particle m remains the Maxwell dis-
tribution.

)

Rayleigh, Scientific Papers, Vol. 3, p. 473. See also: Ming Chen Wang,
A Study of Various Solutions of the Boltzmann Equation, Dissertation, Univ.
of Mich., Ann Arbor, 1942,
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ay = - g X + Eg cos ot
(2)
ay = -mogy; g = --(,0022
J(f) is the collision term:
+ .
3(0) = [ab [aaar ge) tewr - ex) (5)

where

F(G) - (?—M—>3/2 e-MVz/QkT
nkT

is the distribution funetion of the+surrounding gas and the primes refer to the

velocity variables; the collision (v, V) » (v', V') turns the relative velocity

g = |v - V| over the angle 6 and I(g,8) is the differential collision cross

section.

The outside force E5 cos wt must be considered as the perturbation
which prevents the distribution function f from going to the equilibrium dis-
tribution:

3 A2 2 .2
£y = m wo\® (mvZ + m 0,2 r?)/2KT _ (h)
2xkT

In the steady state we now want to calculate the time average of

P = 7y Ep cos wt (5)
where

T (t) = ffd?? &V vy (X,7,t)
Clearly f = £ + f; , where the perturbation f; of the distribution function
will in the steady state be proportional to E, and vary in time like the out-

side force, although, of course, it will not be in phase because of the fric-
tion with the surrounding gas.

An exact solution of the problem we have found only for the case of
the so-called Maxwell molecules, where one assumes that the interaction between
particle m and a gas molecule is a repulsion ~~ l/r5. Before turning to this
special case we first will discuss some approximate solutions, assuming some
approximate expressions for the collision operator which are current in the
liturature.
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ITI. THE BROWNIAN MOTION LIMIT

If the particle m is very heavy compared to the gas molecule (m/M
>> 1), and if, in addition, we assume that the velocity Vv is never very dif-
ferent from the equipartition value, so that V/V is always of order (M/m)%/2,
then one finds, by an expansion in powers of M/m, that the collision term J(f)
can be approximated by the well~known Rayleigh or Brownian motion form

() ¥ q [—a% (Vo) + 1‘5 352?7&] , (6)

where the friction coefficient n5 is given by

5/2 g
16x ™ [/ M f fw -MV2/2XT
= —_ [ — i - avys I(V,e
M 5 — <?k@> o de sin @ (l-cos ©) o VS e (v,9)

Since for general I(g,8) the proof of (6) is not easily available, we give the
details in Appendix I.

With the collision term (6) it is simple to solve the problem. Mul-
tiplying the Boltzmann equation

of of f - J . kT of
E e A R )

with xi or vi, respectively, and integrating over the coordinate and velocity
space, assuming that for large xj and vy f vanishes sufficiently fast, one ob-
tains for the average values X; and V4 the equations

dxi - 7
at Ot
?{i_ = - 0,° X + By cos ot B3y - NV (®)

which have an obvious thsical interpretation. In the steady state

3. The assumption that v/V is always of order (M/m)l/ 2 implies that on the av-
erage the particle m will feel a frictional force proportional to its ve-
locity; the proportionality constant is n. For very large v, this will not
be true anymore; the friction will then become "Newtonian," proportional to
Ve,

3
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Eon o” Eo w(w® - we?)
T = cos wt  + sin wt
i (wz._woz)z + nzwz (ag‘_moa)z . ﬂ%$2 ’

so that the average power absorbed is given by

%50 Eo M w?
B.M 2 2\2 2.2
2 (0% - =)= + n°w

For a discussion of this result, see Section IV.

III. THE STRONG COUPLING APPROXIMATION

Especially in the theory of metals, it is customary to approximate
the collision term by assuming

fr. -f
Y o — (10)

J(f)
where fy is the equilibrium distribution (4) and T is the relaxation time,
which is a measure of the time required for the collisions to establish equi-
librium. One of the main questions we will have to discuss is the question
under which circumstances (10) may be used as an approximation of the collision
term.

With Eq. (10), one obtains for the equation of motion of the average
values X;, V4 instead of (8), the equations

ax - X5
—L = Vi =-._3‘_
dt T
dvy 2z Vi
= = Wu~ X3 + Eg cos wt 84, - & . (11)
at T

Note especially the first of these two equations. It says that the average
position of the probability distribution does not change with time according
to the average velocity Vj. The origin of this paradoxical result is the fact

that with (10)
> 1 >
v J(f) = T [V (f5 - )

which is not necessarily zero, while from the exact expression (3) follows

I
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~

jai J£) = o . (12)

Eq. (12) is an expression of the fact that in a collision the number of parti-
cles does not change. One must say therefore that the strong collision ap-
proximation (10) violates this conservation law. A consequence of this is, as
Luttinger has pointed out, that it makes a difference whether one calculates
the average power absorbed with the help of the average velocity or with the
help of dfi/dt. Using the average velocity, one obtains from Eq. (11) the re-
sult first derived by Van Vleck and Weisskopf':

M BT 1 1
Pv-w = _9._,.- - . -+ - o ] b ( 15 )
L 1+ (w=0g)° T2 1+ (0+wg)= T

while, using di/dt, one obtains,

NV\ E. 2T 1 1
Pr, = . — 2 =2 - 2 2] s (14)
Loy [T+ (=) T 1+ (w+wg) T

first given by Luttinger.5

IV. DISCUSSION OF THE APPROXIMATE RESULTS

If one puts in the KBrownian motion result (9) 7 = l/T, then the
three rezults, (9), (13), and (14), can be directly compared with each other.
Ir Figs. 1 to 5 we have plotted/?¢as a function of wrt for various values of
WeT. One easily verifies the Tollowing facts:

2. For all three forms, the area under the curve is the same and equal
to #F, /b

. For small wOT PVW will be a monotonic dechaQ1pg functlon of wT,
Only for woT > ?/05,£Nw will have a maximum. Since both PL and PB M 8re zero
for wr = 0, 1if weT % 0, they always will show a maximum.

e . M
c. For woTt = 0, Pyy and Pp,M are identical.

d. For wyr >y*l PVW and PL become nearly the same, especially near the
regonance peak. The PB M gives an essentially sharper resonance peak.

4. J. H. Van Vleck and V. F. Weisskopf, Rev. Mod. Phys., 17, 227 (1945).

5. J. M. Luttinger, Private Communication.

5
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V. THE EXACT SOLUTION FOR MAXWELL MOLECULES

Although not quite necessary for the solution of our problem, it
seems worth-while first to point out that for Maxwell molecules and for arbi-
trary ratio of the masses, the eigenfunctions and eigenvalues of the collision
operator can be determined. For Maxwell molecules gI(g,0) is independent of g.
Putting

atee) = a2 s (25)

then F(©) is the dimensionless function discussed in a previous report,6 In-
troducing in the exact collision term (3)
mve

f - e 2Ky , (16)

then from the energy conservation in the collision (v,V) = (v', V') it follows
that

2
, mv
2K (M +m) = ==
IE) = BN e °kT 1(n) , (17)

where I(h) is the dimensionless collision operator

mg=“7"fmecfmpm(v-m (18)

> > .
and ¢ =V (M/EkT)l/éﬁ Tt 1§ also convenient to consider h as a function of
the dimensionless velocity ¢ = v (m/2kT)*/ % and then hf means h(&'), where

& - T QME[&(Jm/M@Vé)} (15)

m+ M
7

ig the dimensionless velocity of the particle after collision.

Since the operator I does not depend on the velocity 3, and since
the connection between 2 and ¢' is linear, it is clear that the eigenfunctions
of I must be polynomials in ¢. Since the operator I 1s spherically symmetric
in the velocity space 3, the dependence of the eigenfunctions on the direction

6. C. S. Wang Chang and G. E. Uhlenbeck, "On the Propagation of Sound in Mono-
atomic Gacges," Eng. Res. Inst. Proj. M999, Univ. of Mich., Ann Arbor, Oc-
tober, 1952, Appendix I.

0y

7. The symbol g is the unit vector in the direction of closest approach;
makes an angle (x + ©)/2 with g = C - ¢.

R
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of ¢ must be like a spherical harmonic. In fact, cne can prove that the eigen-d
functions are of the form

c) = Negm et Y m (6,0) S(r) (c®) (20)

Yrpm L+1/2

where

5501 e (c2)

is the Sonine polynomial of degree r and order £ + 1/2 and erm is a normal-
ization factor. The VYypppy form a complete orthogonal set of functions with the
weight factor exp (-c2). The corresponding eigenvalues are given by

T M o I‘+£/2
Apg = gnf d6 sin @ F(e) {1 - Tn? sin? -2—] Pp(cos ¥) - 1¢ . (21)
0]

Py is the legendre polynomial, and

-1/2
J M2 8 1 -2 02 8 (2la)
(m+M)2 2 m+M 2]

For a proof of these statements see Appendix II. ©Note that the eigenfunctions
(20) are independent of the mass ratio m/M, which enters only in the eigenval-
ues (21). The first eigenvalue A5y = 0, corresponding to wooo(g) = constant;
this expresses the conservation of the number of particles in a collision. All
other eigenvalues are negative, and this expresses the tendency of f to go to
the Maxwell distribution.

cos Vv

The reason why our problem of the power loss can be solved exactly
for Maxwell molecules lies in the fact that the velocity ¢ is ag eigenfunction
of the collision operator I, corresponding to r = 0, and £ = 1. By develop-
ing h in the eigenfunctions Vppys ONE sees that because of the orthogonality
property of the VYyppnp

2 2
e 2 .
Jdéciec:[(h)=7\_01fdgciecn

—
no
no

~—

As & consequence, one obtains from the Boltzmann equation for the average val-
ues xi and Vs the equations

d_Xj_ = :{f—i
dt
(Z;i = '0302 X{ + Eq cos ot 8i; - T]_V_i ’

8. DNote that Si(0)(x) = 1.
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where n is given by

2K (M + m)
= - Nj | ————————ti o N
1 v ol
2K (M + m) M T
= o\ |———— . — de sin 6 (1 - cos @) F(e)
Mm m+M Jo

We see therefore that for all ratios of the masses one obtains the same func-
tional dependence as in the Brownian motion limit. In the 1limit m/M >> 1, the
value of 1 goes over into the value found in the Brownian motion limit (see
Appendix I). In addition, one can show as a check that the eigenfunctions of
the Brownian motion form (6) of the collision operator are again the Vyppp gi-
ven by (20), while the eigenvalues are equildistant and equal to

JAer = -1 (2r + £)

For the proof, see Appendix IIT.

It is therefore clear that the strong collision approximation dis-
cussed in Section III cannot have a general validity independent of the inter-
molecular forces. Especially, it cannot be true that in the limit m/M <1,
which is opposite to the Brownian motion limit,9 the collision term can be ap-
proximated by the strong coupling form (10) for all types of intermolecular
force laws. Of course, it may be that the inverse fifth power law gives too
"soft" collisions. It is therefore of interest to investigate other force laws
and especially the case of elastic spheres.

VI. THE SOLUTION FOR ELASTIC SPHERES IN THE LORENTZ LIMIT IF wg = O

If m/M << 1 and oy = O, then our problem can be solved by an adapta-
tion of the perturbation method used in the Lorentz theory of electronic con-
duction in metals. The distribution function f now depends only on the veloc-
ity v and the time and fulfills the equation

of imt Of
- Es € — = J(f . 2L
ot © Ovy (£) (2%)
Considering the second term as the perturbation which prevents f from reaching
the equilibrium distribution

9. It may be called the Lorentz limit, since it corresponds to the situation
considered in the Lorentz theory of electronic conduction in metals.

8
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m \3/2
fo = (éﬁké> exp (-mv2/2kT) ,

one obtains, by putting

f = fo (L +h) , (25)

for h the inhomogeneous equation

Sho_ mvx g Aot fd\? F(V)fdﬂ gI(g,8) (h' - 1) . (26)
ot kT

Because of the linearity, h will be ~ exp (iwt) in the steady state, and in
the limit m/M << 1, h will have the form

2) iwt

h = h (vS) vy e 5 (27)

0
since in the lowest order of m/M the velocity v does not change in magnitude

in a collision, and g may be replaced by v. Hence, substituting (27) in the
right-hand side of (26), one gets

fdx"? F(V) fdsz VI(v,8) ho(vd) (vig - Vy)

B
= - 27N ho(v®) vy Jf‘ d6 sin 6(l-cos @) vI(v,0)
o

Therefore, for elastic spheres [I (v,8) = 1/k o=, where ¢ is the average of
the diameters of the spheres with masses m and M] one obtains

mEo 1
kT i + 5w 02 Nv

=
o)
Cin
<
By
o —
Ji
P
o
92
S

Introducing the relaxation time

_ 1 [E 5
T TET Naw (29)

one gets for the average velocity in the x=-direction

8 E~T . o .2
Ty = > elwt\jﬁ de ot e € 1 , (30)
B'J?; 0 c + ioT

and hence for the average power absorbed

9
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2
M h g = o0
P = ) JP de ¢5 e-C? S (31)
5\]“’;“ o c2 + wPT2
2 EOZT 2

2
= (1 - w2r2+ w414 7T Ei(-0212)] ,

3

where Ei(y) is the exponential integral

[oe} ewX
Ei(-y) =f ax &— .
y X

%ras function of w is shown in Fig. 1. One easily verifies that the area un-
der the curve is again 1tE02/h, Just as for all the other curves. One sees
that the elastic=-sphere result lies between the Van Vlieck-Weisskopf and the
Luttinger results. In fact, for large wr

g3 P
W~ e L w2r2
while from (31) one obtains
™ 16 _3.01
3N w212 P72

One can solve the problem also in another way, which is of interest
since it may be generalizable to the case where w, is not zero. Expand the
perturbation h in the eigenfunctions (20) of the collision operator for Maxwell
molecules. Then we can write

| it

f = fO 1 + Z Qryg \l!rz(g) e ] B (52)
T, :

where ¢ = v (m/ERT)l/2 and Qypy are the development coefficients.10 Substitut-

ing in the Boltzmann equation (24), multiplying by Vpi v exp (-c®), and inte-

grating over 3, one obtains a set of linear equations in arzzll

10. Because of the axial symmetry of the problem we can take m = O.

11. The Np., are normalization constants, determined by
-2 2
fdgexp(c)wrﬁ—l )

which gives

N _ ﬂ/ r! (£ + 1/2)
rh T N\x (£ +1/2 + )t

10
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. m 2 Eo l
100y - OkT Nor Oro Bp1 = EE, [hpgs Vprgrd Qpige (33)

) 7
r',l

where the bracket symbols are defined by:

2 N N
Npgs Vpogel = ‘jng e™® p,(c) JFdV'F(V) .

[ a0 e1(6,0) rpuye 81 = 41y (0]

For arbitrary ratio of m/M the calculation of the bracket symbols is complica-
ted, but in the Lorentz limit m/MI<< 1 the result is again simple. As shown
in Appendix L one obtains in this limit for elastic spheres:

_ 1 Npp Npogo (s+4+1)! (r'-3/2-5)t (r-32-s)!
[‘l/rxzu\lf”] = or —E.—gv[i—-—glﬂﬂz at (1"“-0)“ (I'-“S)Y; ° (51‘1’)

5

Since the equations (3%) are not coupled through the index £, and since the
inhomogeneous part contains only £ = 1, we can restrict ourselves throughout
to I = 1. The equations (33) can then be written in the form

o0
. 1
10 Gy = = E: Drpe Opr =, 2 o Sr0 (35)
T ' ' 2kT n
=0 ol
with r = 0, 1, 2 ... and where b, is the bracket symbol T[V¥,,, Vpi ). The

average velocity in the x-direction depends on Oy; in fact,

T = oy % ,2kT Jiot
2 m

From (35) follows

@, = [m™ 2 Ep - Doogiw'r) ,
4W2kT Noy D(iwT)
where D is the determinant | iwr Oppt = Dppi | and Dy is the minor of the
(0,0) element. Thus
o~ fs
- Doo(1007) iayr
Ty = Egr ———ce 36
X ° D(diwr) ’ (36)

which must be compared with Eq. (30). The identity of (30) and (36) for o = 0

11
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has been shown by Chapman.l2 We also verified the identity for large w. A
complete formal proof of the identity is lacking.

VII. CONCLUDING REMARKS

If w, is not zero, then the perturbation h will depend on the coor-
dinates as well as on v and t. It seems feasible to generalize the second
method of the previous section by developlng h 1nto products V¥ Zm(+) Wrﬂm(%)
using the same type of functions in both % and v, and again considering the
Lorentz limit. However, the details have not yet been worked out.

Presumably for elastic spheres and in the Lorentz limit, the result
for wg # O will always lie between the Van Vleck-Weisskopf and the Luttinger
result. There is one feature which the exact result will have in common with
the Luttinger result, namely, that for w, ;é 0 and w = O, "' will be zero. This
is clear, because in this case the constant outside force will only polarize
the oscillator and in the steady state f will be the Maxwell-Boltzmann distri-

bution
2
m Eq
_ — 2 2 — o b2
f~exp<2kT> ‘v + Wg [éc+w02> + ¥ +z:l s

so that Trx is zero.

12. 8. Chapman, J. London Math. Soc., 8, 266 (1933).

12
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APPENDIX I

PROOF OF THE BROWNIAN MOTION FORM
OF THE COLLISION OPERATCR

As in Section V we put in the exact collision term (3)

_ w2
£ = e KTy | (1-A)
then again it follows that
/ mv>
3/2 - T
M 2kT
wvhere
e
. [ ave 2T - .
I(h) = av e de d6 sin © gI(g,9) (h' - h) . (3-4)

Since for m/M >> 1, V' differs very little from v, one may make a Taylor ex-
pansion:

ou 1 3h
Wi oo = T —— = | T ——— -
a a®'p
From the momentum conservation follows
> > M > -> ,
vi-v o= -—2 (g -8 , (5-4)
mmﬂe§§=i7 - $, g* =V - 3', are the relative velocities before and after col-
lision.1? Introducigg (4-A) and (5-A) one can integrate over the azimuthal
>
angle €, since only g' - g depends on €. Next, introduce in the velocity space

? polar coordinates with the direction+of 3 as polar axis. One then can again
integrate over the azimuthal angle of V. In these two integrations over azi-
muthal angles, the following general formulas are used, which are easily veri-
fieds

13. Of course, {§![ = ]g], and 6 is the angle between g' and g.
1h
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2n '
[ aod (Ai_Bi) = 211‘_(5003@-? Bi

Jo
ren A 2
o do (Al - Bl) (AJ - BJ) = 2n {BIBJ[<§ cos @ -1
1 A2 | 5 L2 .2 .
-3 & sin® @) + 5 A= sin® @ 513

>
In here B i§ a fixed vector and @, & are the polar angles of the vector K with
respect to B.

Now it is convenient to use dimensionless variables:

'\/ng M RES sz v (6-A)

Note that we use different units for v and ?. Assuming, as we will from now

on, that ¢ and C are of the same order of magnitude means that we have intro-
duced our second assumption, namely, that v never differs very much from the

equipartition value. With these units

where () is the angle between C and o. Up to order M/m 1/2 , one has therefore

2kT 2kT ) IM c ¢ o C oI
gl(g,9) = - CIla[7 C° -Al. o cos +1 ¢

Developing also the rest of the integrand in powers of M/m, one obtains

Mook [T °

I(h) = W® 3 \ T o 46 sin 6 (1 - cos @), dCC e -
B 2T M oc C dT
Jrwnesr (Bl fees (5 3

c o [ am o1 _ o
,{}Jgicos @ S g SE; - [%a Soq +3 (3 cos @ - 1) (3 cos2 ¢ - 1)

2 >
e coc o ;= e%ﬁz p -3 -cos e (3cos - 1)c? __é_é_]
o

oo

Bcaéca
Wi
OG5}
15
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Carrying out the ¢ integration, keeping under the integral sign only the terms
of order one,l and making the partial integration

oo -2 N ® -2
J dCC4eC§£=_f ac e™ 1 . (ue® - 203)
0 ac o

one obtains

2 2 A‘J’f 0 2
. -C
I(h) = S M [(2xx ‘] de sin 6 (1 - cos @)\jp ac e .
5 m M o] o]

.05 T 21<:T _n . on
vaaCa Oé aca

Introdu01ng this expre351on in (2-A), and going back to the original velocity
variables v and V and to the original distribution function f, one gets

J KT of
J(f) = q Sy (faf + o 5;?) >

with
MV2
i1 0 -

16Nx M /M 5/2f f 5  okT
= = [— de gi 1 - dvv= e I(v,e
M 5 N <ék%> o © sin © ( cos ©) o (V,8)
For a repulsive force Kr_s, we write for the differential cross sectioni?

_
I(g,8) = & °TTF(e,Ks)

and then

. 8;/?%%4_>le)r<5>f de sin © (1 - cos ©) F(6,K,s)

Especially for Maxwell molecules (s = 5),

14, It needs some further argument to show that it would be inconsistent to
irclude higher-order terms in M/m, since then also the further terms in
the Taylor development (4-A) would have to be included.

15. C. 8. Wang Chang and G. E. Uhlenbeck, "Transport Phenomena in Very Dilute
Gases,"” CM 579, UMH-3-F, Univ. of Mich.

- FQK)NﬂF(QK)'thd' ionless col
% (M) (6,K,5) = oK ,K,5) 1s the dimensionless col-

lision cross section used in Sectiag V.
1

16. F({e) =




Ul
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NI
M,’%‘T‘I j d6 sin 6 (1 - cos 8) F(8)
m M 0

and for elastic spheres (s =

L7

w; ¢ = diameter),

_ 84x mie® [T
- 3 m M

7.

For elastic spheres the Brownian motion form of the collision operator
was first derived by M. S. Green, J. Chem. Phys., 19, 1036 (1951).

17
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APPENDIX IT

EIGENVALUES AND EIGENFUNCTIONS OF THE MAXWELL COLLISION OPERATCR

The dimensionless collision operator18

() - ﬂal/z fd'c> e“czfdsz P (8)[n(Z') - (@)

can be written in the standard forml8

3/2 cZ2 >
1 M / e e > 2y '
1) - a0 [ @Iy nEn
where 7t
Ay = eﬁf de sin 6 F(8)
o
3
e} _ _r_n_+___M _ w 2 12 .YE:M +_+u 2
K(c,ct) = Mﬂ( v ) exp 2 ul LA e (c=c')

s mHM )2 e
/W 6 cos 2 cac2 F(e) exp |- (:421) (T - 3')2 cot® =
JO 2 2

. m+M . > >
. JO(El —— cc"' sin (¢,c') cot =
m

We now will verify that

Vegm = c* 85#34(02) Yom (¢X)
2

is an eigenfunction of I. Let @', X' be the polar angles of ¢ with respect
to the same set of axes as used for ¢. For the integration over &' we take
the direction of ¢ as polar axis and let ¢1,'Xl then be the polar angles.

18. D. Enskog, "Kinetische Theorie der Vorgange in massig verdiunnten Gasen,"
Dissertation, Uppsala, 1917, p. 154. Note that Ay is divergent and
really should be kept together with the second term.
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The integration over Xi can be performed, using

21
[ vy ) = enpy (eos ) vy B0 (7-2)

0]

and one obtains

(m-M)Z 02
M+mN\38 - hmM .
I(Vpgy) = -Aowr£m+\/;(\/————nﬂ> e
- (Mm)® c2 cot? =
’ Yzm(¢;K)b/\“ de cos % cse? g F(8) e ImM 2

121 (c'®) e e
o 2
AT
L/ df, sin @, PZ(cos $1) I, (—i oM et sin @1 cot %) .
m
o
m2-M2 (M) 2 6
. exp Y2cct -y + =y cot > cos ¢1
Putting
5 ,
z = =1 (m+10) esc? 2,01 i si?P © ce' = ac!
omM 2 (m+1)2 o
_ M g2 O
m+M 2

S -
cos ¥ 1 - _E_I_M_Sing _Q ’
(m+M)Z 2

then the last integral can be carried out, using

T A
/\ d¢1 sin @1 Py (cos @1) et? 08 Pr cos ¥ Jo(z sin @1 sin V) =

J
) [ %} i£ P, (cos V) J£+-% (z) .

ol
Writing z = & c', the integral over c' can be carried out next with the help
of the formula

19
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o 1+2 (r -q2c'?
L/\ det ¢t 2 S( )].(0'2) e”dC Jy l(ae') =
L+ = +5
2
o
1
L += 2
r
o ° (q2_1> 'r@s(r)l o
B 1+2 " 4 £+5 1 hg2(g2-1)| 7
(2g®)" 2
where q2 is an abbreviation for
2
.2 (m+M) cscZ 8
LM 2
Putting everything together, one obtains
I(‘Vrllm) = = Ag Vpgy * 20 Vpgp - 7
o : V-] -
.d/\ de sin 6 F(8) P, (cos ¥) 1 - TEEEZY§81n 5 ,

O

YhiC§ is krﬂ Vi gy where the eigenvalue Apg is given by the equations (21),
2la).
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APPENDIX III

EIGENVALUES AND EIGENFUNCTIONS OF THE BROWNIAN
MOTION FORM OF THE COLLISION OPERATCR

The question is to find the eigenfunctions and eigenvalues of the
differential equation

\a Vaf‘l"k—T'g—f— IA-
OWJ m Ovy n

f °

Introducing the dimensionless velocity c = (m/EkT)l/z, we find

an g

AT + cy %g— + 6f = n
(x i

The angular dependence is clearly like a spherical harmonic, and putting
Yﬂm(9}¢) ’

one gets for the radial function R,

2 -
di+[a(“l)-gc Cigs Fzﬂu—g-—/\:}a -0,
de c de Ul

2

or using x = ¢ as independent variable,

XE:EHQ.QA.;.Q_)QE-.&’%?_‘/_\:)R:O.
2 dx ‘2 g

dx=

Comparing this equation with the equation for the Sonine polynomial S(r)(x),

t
2 (r) (r)
d Sy dsg (r)
—a}—;—g—— + (t + 1 - X) T + r + = 0 P
r 2 .
one sees that R = Si_ﬁ;(cz) and that r = - <é + ;43{), so that the eigenvalue
2 Ul

JA%P = - n(2r + 1)

It is also easy to verify that the exact formula (21) in Section V leads in
the Brownian motion limit to the same result.
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APPENDIX IV

THE BRACKET EXPRESSTON [Vyigtygt , ¥ppg)] IN THE LORENTZ LIMIT

In the limit m/M << 1 we will calculate the bracket expression for
a repulsive intermolecular force equal to Kr=%, since this contains the Max-
well model and the elastic-sphere model as limiting cases. Writing as in
Appendix T,

0
1
\J1

gI(g,@) = gs-l F(97KJS) ’

the bracket expression becomes

[\vr!ﬂcml)wrlm

ey
2kT 2nkT

- 5-5
"/ av e EKT /ﬁ/‘ de d6 sin © g° s-1 p F(0,K,s)

Since mve is of the same order of magnitude as MV2, in the limit m/M << 1 and
to the lowest order in m/M, one can replace E' by -v' and Z by V. Using
Eq. (7~A) of Appendix II, the integral over € can be carried out, and also the
integral over V is immediate. With dimensionless velocity variables, one

5-9
o(s-1) /'™
Ny a6 sin @ F(8,K,s)
m
O

then obtains

[Wr'ﬁqm’ﬁwrlm] =

s-5

[Pg (cos ©) - l}JFd_C) e-Cz CS-l \lfr'l'm'(g) \Urﬂm(g)

Since the angular dependence of the Vypy, is a spherical harmonic, the integral
over the directions of T is immediate. Putting in the explicit expression for
the Sonine polynomials, the integral over c can be carried out in each term
and the result is a double sum, of which one sum can be evaluated with the

help of the formula
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m-n—{)
(. k /

One obtains

s-5
b2 2kT \2(s-1)
[ﬂ!rizimn\‘frlm] = §%+_l Npg Nr'}l’ﬁll' 6mm' —_—> ’
7
1
. \/hde sin © F(9,X,s)[Py(cos 8) - 1] 55 -
’ {['1 - e(s-l)“}

case of Maxwell molecules (s 5) needs special consideration since then
factorials of negative integers appear. In this case one finds either di-
rectly or by a limit consideration,

Uz 2N

mer er£! arr' 8111 o)

[Wr'l'm"wrlm] !

(%+Z+

___;7_42— /“ de sin © F(8,K,5)[Py(cos ©) - 1]
o

Finally, for elastic spheres (s =), one gets

8ﬂ0 N

Wt g sV gy g1 ek Npegs 5“' 6mm

2kT

m

— o+ +1)

QDI

pi(r' - p)i(r - p)

o [

which reduces to the expression (Bh) used in Section VI.

[ 1+0" 1 } [ s=5_ |, [‘ 3 s-5 ]i
a E: Pt 5 2(5 D) M - ) M R 1) i
pi(r' - p)i(r - p)!
b
Since 1 s=5
- 2 © > >
> Z (1) > 0 for > s > 5, only the
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