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A Linear-Time Algorithm for Constructing a 
Circular Visibility Diagram 

Shuo-Yan Chou t and T. C. Woo 2 

Abstract. To computer circular visibility inside a simple polygon, circular arcs that emanate from a 
given interior point are classified with respect to the edges of the polygon they first intersect. 
Representing these sets of circular arcs by their centers results in a planar partition called the circular 
visibility diagram. An O(n) algorithm is given for constructing the circular visibility diagram for a 
simple polygon with n vertices. 

Key Words. Computational geometry, Circular visibility, Planar partition, Trapezoidal decomposi- 
tion, Point visibility, Simple polygon, Amortized. 

1. Introduction. One of the fundamental visibility problems is the computation 
of a point-visibility polygon: the portion of a polygon that is visible to an interior 
point. Joe and Simpson [13] develop a linear-time algorithm for constructing a 
point-visibility polygon inside a simple polygon. Another fundamental visibility 
problem is the computation of an edge-visibility polygon. Introduced by Avis and 
Toussaint [3], edge visibility is divided into three categories: complete, strong, 
and weak. Whether a polygon is completely or strongly visible to a given edge 
can be answered by the kernel algorithm developed by Lee and Preparata [16], 
and whether a polygon is weakly visible from an edge can be solved in linear time 
[3]. Guibas et al. [12] show that an edge-visibility polygon inside a triangulated 
simple polygon can be constructed in Jinear time. Suri and O'Rourke [20] show 
that an edge-visibility polygon inside a nonsimple polygon can be constructed in 
~(n 4) time. These linear visibility algorithms support many applications. The 
art-gallery problem [17] seeks the minimum number of points inside a polygon 
such that the point-visibility polygons of these points cover the entire polygon. 
The minimum link path between two points inside a simple polygon is solved 
optimally by constructing a sequence of visibility polygons [ 19]. The shortest-path 
problem can also be solved in linear time by utilizing visibility [12]. 

Whereas linear visibility is established by straight lines, circular visibility is 
established by arcs. Since straight lines can be considered as degenerate arcs, the 
realm of visibility is extended by considering circularity. The notion of circular 
visibility is illustrated in Figure 1, where a point q is circularly visible to a point 
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Fig. 1. Circularly visible points. 

p if a circular arc can be drawn from p to q without intersecting any obstacle. Such 
a directed circular arc--clockwise or counterclockwise--is called a visibility arc, 
which can be uniquely defined by its center, endpoints, and direction. To simplify 
the discussion, we adopt  the counterclockwise direction for visibility arcs. Under 
this convention, each visibility arc emanating from a fixed point can be uniquely 
represented by the center of the arc. The set of visibility arcs from the fixed point 
to a particular edge of the polygon can then be represented by a region consisting 
of their corresponding centers. This representation is utilized to solve the following 
problem: 

PROBLEM CVD(p, Q) (Circular Visibility Diagram of a Simple Polygon Q). 
Given: a simple polygon Q with edges e o, e 1 . . . . .  e n, and a point p contained in Q. 
Find: for each ei, the circular arcs which emanate from p and intersect el before 
intersecting any other edge of Q. 

Let F~ denote the set of centers corresponding to the visibility arcs from p to 
ei, as shown in Figure 2. The notation F ]  is used, throughout this paper, to 

Fig. 2. Some counterclockwise visibility arcs of edge e i. 
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represent the set of centers of the visibility arcs from the emanating point p to A 
in the presence of B. Since visibility arcs are represented by their centers, a solution 
to Problem CVD(p, Q) indicates a partition of the plane. The partition is re- 
presented as {F~, Ff0, FQe,, �9 �9 �9 , Ff,}, where F~ q represents the set of centers for 
visibility arcs which emanate from p and do not intersect the boundary of Q. 
Such a partition is called the circular visibility diagram (CVD) of Q with respect 
to p. 

An O(nlog n) algorithm has been reported by Agarwal and Sharir [1] for 
computing the portion of a simple polygon which is circularly visible to a fixed 
interior point. As a corollary of the main result of this paper, the time for 
computing such a region can be reduced to O(n) [8]. Agarwal and Sharir [2] also 
developed a data structure analogous to that of CVDs to solve a circle shooting 
problem. In that algorithm a given simple polygon is first preprocessed in 
O(n log 3 n) time into a data structure of size O(n log 3 n). For a query circle, the 
first intersection of the circle and the simple polygon can then be computed in 
O(log 4 n) time. 

A sketch of the proposed algorithm for constructing a CVD is given in the 
next section. The development of the algorithm is detailed in the rest of the 
sections. The CVD of a single edge is first examined. Based on the CVD of 
an edge, algorithms are developed for constructing the CVDs of a star-shaped 
polygon and pockets. Finally, the circular visibility diagram of the simple 
polygon is constructed, and linearity in time for the construction is shown. 

2. Sketch of the Overall Algorithm. The data structure of the CVD is similar to 
the dual space data structure used by Chazelle and Guibas [6] for solving a variety 
of linear visibility problems. In that paper a transform is employed, in Which a 
line ax + by + 1 = 0 is represented by a point (a, b) [7], [15]. Points in the 
dual space are grouped into regions according to the edge whose corre- 
sponding visibility rays hit, resulting in a planar partition in the dual 
space. 

In linear visibility a partial order in which visibility rays hit the edges of a 
polygon is crucial for the construction. In circular visibility, however, visibility 
arcs emanating from a point can hit two edges in either order, as shown in Figure 
3. To overcome the apparent lack of a partial order, a polygon is decomposed 
into a star-shaped polygon and a set of pockets, each of which exhibits a partial 
order. The CVD of a simple polygon can be obtained by constructing the CVDs 

~ \ \ N x , ~ \ \ \ \ \ \ \ \ \ \ \ \ \ \ , , ~  ei 

~ k - , .  \\\k-~kkkk~%%, \\\\\\\\\\\\~ ej 

Fig. 3. The possible bitting order between two edges. 
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for the star-shaped polygon and then for every pocket. The outline of the CVD 
construction procedure is: 

Algorithm (CVD_Simple_Polygon) 
Input:a simple polygon Q; 
Decompose Q: Q = Q* + Pi + "'" + P,,; 
Construct CVD(p, Q*); 
f o r i =  l t o m d o  

Construct CVD(p, Pi); 
Output CVD(p, Q); 

The polygon Q*- is a star-shaped polygon in Q, and P1 . . . . .  P,, are pockets. A 
polygon is said to be star-shaped if a point interior to the polygon exists such that 
the entire boundary of the polygon is linearly visible to the point. By definition, 
a point-visibility polygon is star-shaped. An open polygonal chain is said to be a 
pocket if the union of the chain and its lid, the line segment connecting its two 
endpoints, forms a simple polygon. Such a chain is said to be a pocket with respect 
to a point if the point is collinear with the lid but not on the lid. The collinearity 
of p with the lid exhibits an essential property, which will be explained shortly 
and is employed in the construction of the CVD for a pocket. 

LEMMA 2.1. Let p be a point collinear with a line segment ~-f, where u e-fiE Then 
every arc emanating from p will intersect ~-f at most once. 

PROOF. Suppose an arc emanating from p passes through fi-f at q. Since there can 
be at most two intersections between an arc and a line segment, and since the arc 
has already passed through ~-f at q and p, it cannot have another intersection with 
p--f. As p (E uv, uv contains exactly one intersection with the arc, namely q. [] 

It is observed that any simple polygon can be decomposed into a star-shaped 
polygon and a number of pockets, with respect to a point inside the polygon, 
as shown Figure 4. Let Q* be the star-shaped polygon obtained by computing the 
linear point-visibility polygon with respect to p. The polygon Q* can be con- 
structed optimally in O(n) time by the algorithm developed by Lee [14], where n 
is the number of vertices of Q. Taking the boolean difference between Q and Q* 
results in a set of pockets P1, P2, : . . ,  P,, (if the difference exists). Since Q* c Q, 
the boolean difference between them can be computed in O(n) time. 

That this algorithm correctly constructs the CVD of a simple polygon is easy 
to see. The fixed point p is, by definition, in Q*. By Lemma 2.1, visibility arcs 
crossing the lid of a pocket cannot come back into Q* through the lid and hit 
other edges of Q*. Thus, the collection of visibility arcs that hit the edges of Q 
that are also the edges of Q* are the same as those computed with respect tO Q*. 
On the other hand, visibility arcs that hit the lid of a pocket, which is also an 
edge of Q*, constitute all the visibility arcs going into this pocket. The CVD for 
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Fig. 4. The decomposition of a simple polygon Q. 

edges of Q which are in a pocket can thus be computed by further decomposing 
the region containing all the centers about which visibility arcs hit the lid of the 
pocket. 

3. Circular Visibility Diagram of an Edge. Let p be the fixed point from which 
visibility arcs emanate, and let ~ be a directed edge from u to v. As a visibility 
arc emanates from p, the arc may miss u~, hit the left side of ~ ,  or hit the right 
side of E.  The differentiation of visibility arcs can be made by classifying the 
loci of the centers according to their distances to p and to u-~, as the partition 
shown in Figure 5(a). First, the bisector fl~ of p and u, and the bisector fly of p 
and v, are constructed respectively. Then a parabola fl~, with focus p and directrix 
coincident with ~-~, is constructed. By construction, the parabola fl~ is tangent 
to ft, and fl~ at u' and v'. Moreover, both uu' and vv' are perpendicular to ~-~ [4]. 
Let fl~ denote the portion of fl~ between u' and v'. Let fl+ denote the half-line of 
ft, which has C ~ continuity with fl~'~ at u', and let fl+ denote the half-line of fl~ 

~ u  ~? I ~ ~  J 

, :::i::-. 

: ~  . . . . .  _~ , . ~  :i!!iiiiii:: .... R, .p ~ 

: ~ . . . - ' "  ' . : --  ~ /  ::~z~i:~::i~!:, ~ 
,' . . .  .. ,,  il;ii',;i:iiiii!2' !iiiiii  , 

(~) (b) 
Fig. 5. A partition of counterclockwise visibility arcs with respect to edge uv-". 
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'..:':.':-'-'.'v'.: iz""':'" ~ 'v  

(a) (b) (~) 
Fig. 6. The centers of visibility arcs which: (a) miss u-~, (b) hit the left side of u-~, and (c) hit the right 
side of u v .  

which has C 1 continuity with fl~ at v'. (The other halves of flu and fly are denoted 
as f12 and fi~-.) While flu, fly, and fi~ contain all the equidistant points between p 
and u, p and v, and p and u*~, respectively, the continuous curve fl~ consisting of fl+, 
fl~, and fl+ contains all the equidistant points between p and h-~. This curve is 
also known [18] as the Voronoi diagram of p and h-~. 

The curves flu, fly, and f l"  partition the plane into five regions, R 1, R 2 . . . .  , and 
R 5, as shown in Figure 5(b). The following theorem shows that counterclockwise 
arcs drawn from p about points in each region will all miss fib, all hit the left 
side of uv--', or all hit the right side of fib. These five regions can [herei'ore be combined 
into three sets, as shown in Figure 6. It is noted [hat hitting the right side of u-~ 
is the same as hitting the left side of v~. 

THEOREM 3.1. Let Far, F~, and F~ represent, respectively, the regions containing 
all the points about which visibility arcs emanating from p miss fib, hit the left side 
of fib, and hit the right side of fi~. Then: 

(i) F ~  = R 1 • R 2. 
(ii) F ~ = R  4 U R  5. 

(iii) F ~  = R 3. 

PROOF. As R 1 lies on the side of fl~ that contains p, d(x, p) < d(x, u-b), for all 
x ~ R 1, which means that visibility arcs from p centered at a point in R 1 will not 
intersect ~ .  Similarly, since R 2 is the intersection of the half-planes defined by 
the bisectors flu and fly and not containing p, for all x ~ Rz, d(x, u) < d(x, p) and 
d(x, v) < d(x, p). This implies that visibility arcs centered at a point in R2 will not 
intersect fib either. Thus, (i) is true. 

To show (ii) and (iii), first consider the points in R 4. As R~ lies on the side of 
fl~ that does not contain p, for all x ~ R 4, d(x, fib) < d(x, p). Since R 4 also lies in 
the two half-planes defined by the bisectors flu and fly and containing p, for all 
x ~ R4, d(x, p) < d(x, u) and d(x, p) < d(x, v). In other words, any circle centered at 
a point in R4 will not contain the endpoints of fib; yet, the distance between the 
center and fi~ is shorter than the radius of the circle, which means that such a 
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circle will intersect h--b at two points. Since R 4 lies to the left of 6b, all such arcs 
will intersect fi-b from the left. 

A similar reasoning shows that every arc drawn from point p about a point in 
R 3 or R 5 will intersect V~ at one point. Suppose an arbitrary arc drawn from p 
intersects fib at q. The center of the arc p~, if in Rs, always lies to the right of 
@. This indicates that a counterclockwise p~ drawn from p and Centered at a 
point in R5 always hits fib from the left. On the other hand, if arc P'q is drawn 
from p and centered at a point in R3, it always hits fi-b from the right. This 
completes the proof for (ii) and (iii). []  

Assuming that the edges of the simple polygon are given in the counterclockwise 
order, all the first crossings of the visibility arcs will be from the left of the edges. 
Thus, only visibility arcs that hit the left side of an edge are of interest. Figure 7 
gives the four possible cases of the CVD of an edge fib. Figure 7(a) depicts a 
Type-L CVD, where p is to the left of u~, and a Type-R CVD, where p is to the 
right of ~ .  In both cases counterclockwise arcs drawn from p about a point in 
F~  hit the left side of ~ .  Figure 7(b) shows the limiting cases, Type-T and 
Type-A CVDs, in which p is collinear with fib, and ~ is directed either toward 
or away from p. We note that if ~ is directed away from p, no visibility arc 
emanating from p will hit the left side of u-~. 

Type L Type R 

v' . - . : : : :  u ...I.:-::"~V : : :  

(~) 

Type T 
op 

. . . . . . . . . . . . . .  ~ v  

Type A 
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U 

~ 

(b) 

Fig. 7. Counterclockwise CVDs for p and ~. 
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4. Circular Visibility Diagram of a Star-Shaped Polygon. Given a star-shaped 
polygon Q* with respect to p, it is observed that cutting Q* by a horizontal line 
passing through p yields two star-shaped chains--the upper chain Cv and the 
lower chain CL--each of which spans 180 ~ about p. In this section the CVDs for 
Cv and CL are constructed individually, and then merged to obtain the CVD of Q*. 

4.1. Obtuse Star-Shaped Chain. The algorithm for computing star-shaped chains 
C v and CL is discussed. As noted earlier, edges of a polygonal chain may obstruct 
visibility arcs. The resolution of the obstruction and subsequently the construction 
of the CVD can be costly. However, if a partial order in which an arc hits the edges 
of such a chain can be established, the CVD can then be constructed efficiently. 

A star-shaped chain is obtuse if the span of the polar angle 0 of a point traversing 
the star-shaped chain is less than 180 ~ where 0 is the angle measured counter- 
clockwise from the polar axis. Both C v and C L are obtuse. Given an obtuse 
star-shaped chain with monotonically increasing 0 with respect to p (with all the 
edges directed counterclockwise), the visibility arcs to the individual edges of the 
chain are to be computed. To determine efficiently the first edge that a visibility 
arc hits, a partial order in which circular arcs emanating from p hit the edges of 
the chain is established in the following lemma. 

LEMMA 4.1. Let C = {Co, el, e2 , . . . ,  era} be an obtuse star-shaped chain which is 
monotonically increasing in O. A counterclockwise arc drawn from p hits ei before ej 
only if  i <  j. Similarly, if  0 is monotonically decreasing, then an arc can hit e i 
before hitting ej only if  j < i. 

PROOF. For a chain that is monotonically increasing, a counterclockwise arc P-q 
drawn from p which hits e~ at a point q will always lie to the left of @. However, 
for all j > i, ej always lies to the right of @ because the chain C is star-shaped 
about p and spans less than 180 ~ Since p~ does not intersect any succeeding edges 
of e~ in C, it hits another edge before hitting e~ only if the edge precedes e i. [] 

Since constructing the CVD for an obtuse star-shaped chain with decreasing 0 
is analogous to that with increasing 0, only the latter case is presented. Based on 
Lemma 14. t, a recursive relationship between the CVD of an obtuse star-shaped 
chain and the CVDs of its constituent edges is established. 

THEOREM 4.2. 
be computed by 

and 

The regions in a CVD o f  the monotonically increasing chain C can 

Fc = ~ F eo i f  i = O, 

e~ ( F e n F  c ' '  if i > 0 ,  

fF'~ ~ if i = O, FC, = 
r~oc~r c*-' if i > 0 ,  

where Ci = {Co, el . . . . .  ei} denotes a subchain o f  C. 
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PROOF. Based on Lemma 4.1, visibility arcs about points in Fe, may hit ej, 
only if j < i. Therefore, for points to be in F~ c', their corresponding circular arcs 
cannot hit e j, for all j < i. As F c' represents the intersection of F~, for all j < i, 

C i -  1 the region FC'e, is equal to the intersection of Fe, and F ,  . [] 

Intersecting Fe, and c,_, F~ , for all i >  0, takes O(n 2) time, which seems to 
indicate that an algorithm for constructing a CVD for an obtuse star-shaped chain 
would exceed linear time. However, by utilizing certain properties of the consecu- 
tive FC's, we can show that constructing a circular visibility diagram of an 
obtuse star-shaped chain is analogous to cutting a pie and removing it piece by 
piece in a sequential order. Also, by establishing that the time for computing 
the "cutting points" is amortized, such a pie-cutting procedure can be achieved 
in linear time. A similar linear-time cutting procedure is described by Edelsbrunner 
and Guibas [11] for computing a "bay"  formed by lines sorted in slope 
order. 

Before investigating the properties of the consecutive FC's, the portion of F~ 
that has no effect on the construction of the CVD is identified, and omitted from 
the subsequent analysis. Recall that F~ contains all the points about which arcs 
emanating from p miss e i, and equals the union of regions R1 and R 2 as shown 
in Figure 6(a). Let region R 2 computed with respect to ei be denoted as R~ '. (See 
Figure 8.) Lemma A. 1 in the Appendix establishes that the intersection of R~' and 
F .... is always empty. Also, since the star-shaped chain is obtuse, the region 
Fe,+l will not intersect R~, for j < i. Therefore, for the purpose of computing 
FeC+~, each F~ need only include point s in R1, which is the region of the Voronoi 
diagram of p and ei containing p. 

In addition to the reduction of F~ ~, properties on the unbounded regions in 
the CVD need to be established. In a given CVD it is possible to distinguish 
bounded regions from the unbounded ones. As established in Lemma A.2 in the 
Appendix, the existence of unbounded regions in a CVD is closely related tO the 
linear visibility of the edges: a region containing the centers of visibility arcs that 
hit a particular edge is unbounded if and only if some portion of the edge is 

Fig. 8. The superimposition of F~+~ and R$ ~. 
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Fig. 9. (a) Overlapping the CVDs of two edges. (b) The circular visibility diagram of two consecutive 
edges. 

linearly visible to p. Furthermore, it is shown in Lemma A.3 that these unbounded 
regions of a CVD are ordered about p. 

With the order on the unbounded regions of the CVD, a property between the 
consecutive F ~  can now be �9 enabling the development of an efficient 
CVD construction algorithm. Without loss of generality, all the CVDs of in- 

dividual edges of the obtuse star-shaped chain C are assumed to be of Type L. 
(Refer to Figure 7.) As such, Fe, of edge eg in C is bounded by three curves: 
fl~_,, fl'e, (the portion of fl~ between v' i_ 1 and v'0, and fl~+, as shown in Figure 9(a). 
To simplify following discussions the concatenation of fl'~, and fl~+ is denoted 
by a single curve fe,, as indicated in Figure 9(a). The portion of f~, 
remaining in the CVD of chain C is denoted as f c, as shown in 
Figure 9(b). 

Since C is a star-shaped about p, i.e., every point on e~ is linearly visible to p, 
the region F c (for all i) is unbounded and the order of F c about p is the same ei ei 

as that of el. Such an order of F c indicates an order for constructing the CVD 
e i  

of C. It is shown in the following that individual F ~  can be constructed 
c is shown to be bounded by f~,., and efficiently following this order. First, F~,+, 

the boundaries of F c'. 

LEMMA 4.3. Let C be an obtuse star-shaped chain, and let el and ei+l be two 
consecutive edges in C. 7hen FCe,+, is bounded by fe,+, and the boundaries of  F c'. 

PROOF. As shown in Theorem 4.2, F c is equal to the intersection of F .... and e i +  I 

F c'. As F .... is a Type-L region, by definition, it is bounded by fe,+, and fly,. 
See Figure 9(a). Also, F c' is bounded by fly, since F~ is bounded by fly, and F c' is 
a subset of F~'. Moreover, since both F .... and F c' lie in the half-plane defined by 
fl~, and containing p, the region FC+, is therefore bounded by fe,., and the boundary 
of FC': [] 



A Linear-Time Algorithm for Constructing a Circular Visibility Diagram 213 

To achieve efficiency, it is also essential that f~,+, intersects the boundaries of 
F ci at only one point, which is equivalent to saying that f e  c is continuous. 
This is shown in the following lemma. 

LEMMA 4.4. f c is continuous, for all i. 

PROOF. Given two consecutive edges, we show that fe,+, will intersect f~ only 
once. This is because the tangents of the points on fe, are nondecreasing as fe, 
goes to infinity, and are bounded by the two perpendicular bisectors between p 
and the two endpoints of e i. Thus, the tangents of the points on fei+~ are greater 
than those on f~. Also, since C is obtuse, fl~,+, cannot go around p and hit fe," 
Therefore, the curve fe,+, will only intersect fe, once. By using the same argument, 
we can show that f,,+, can intersect the boundaries of F c' only once, which means 
that the portion of fe,+, becoming f e  c is continuous. [] 

Lemma 4.3 indicates that F c~,+, can be constructed by intersecting f~i+, with 
the boundaries of F c', and Lemma 4.4 indicates that they intersect at only one 

c point. Subsequently, in each iteration of the algorithm, the curve f .... partitions 
F c' into two regions: F c and Fc,+, as depicted in Figure 9(b). The detailed e i + l  A t  o , 

steps for constructing the CVD of an obtuse star-shaped chain C are now 
discussed. 

Algorithm (CVD_Obtuse_Star_Shaped_Chain) 
S: a stack maintaining the boundary of FCi; 
Compute F~ c and FC~ 
Output fl~o; Output feCo; 
Push(feCo, S); 
f o r i = l t o m d o  /* Computing F c * /  

ei / 

while (f~, n Top(S) = ~ )  do 
Output Top(S); 
Pop(S); 

Compute feC; 
Divide Top(S) into f § and f - ;  
Update Top(S) with f +; 
Push( f  c,, S); 
Output f -  ; 

Output S; 

In the algorithm, Fe c and F c~ are constructed first. This can be done in 
constant time. Then, in each iteration, the curve fe, is intersected with the 
boundaries of _~F c'-1, resulting in F~C~ and Fcei. After f c is computed, it replaces 
those boundaries a of F ci-1 which lie in FCe~ and becomes a boundary of F c', 

3 The particular f~ that bounds F c~-~ and intersects fe~ may still contribute to the boundaries of 
F ci.  
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F c 
e6 

F c 

Fig. 10. The CVD of an obtuse star-shaped chain. 

A stack is used to record f ~  that comprise the boundaries of F c'. Every time 
an fei is introduced to partition F~C~-', those f c  that do not intersect fe, are 
popped from the stack until one does is found. The curve fe  c is then computed 
and pushed to the top of the stack. Those f ~  that were popped, along with feC, 
comprise the boundaries of F c. At the end of the algorithm, the f~ 's  remaining 
in the stack are identified as the boundaries of F c. 

The time complexity of this algorithm is of the same order as the number of 
f ~  popped out of the stack, which is of the same order as the number of edges 
in the chain. Therefore, the CVD of an obtuse star-shaped chain C can be 
computed in O(n) time, where n is the total number of edges in C. The CVD of 
an obtuse star-shaped chain is illustrated in Figure 10. 

4.2. Merging. By using the algorithm described above, the CVDs of Cv and CL 
can be constructed efficiently. However, to obtain the CVD of the point-visibility 
polygon Q*, the overlapping of the two CVDs needs to be resolved to merge the 
two CVDs properly. Clearly, if a visibility arc does not hit the left sides of Cv 
and CL, it will not intersect Q*. If a visibility arc only hits the left side of one of 
the two chains, the visibility arc only hits the corresponding edge in Q*. If 
a visibility arc hits both chains on the left side, its center will appear in 
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both of the CVDs of the two chains. To resolve such overlapping, the order in 
which the arc intersects the two chains needs to be determined. 

Let L be the perpendicular line passing through p. Let Fco and FcL denote 
the regions containing the centers about which visibility arcs emanate from p and 
hit C v and CL, respectively. Let Fce~ and Fc~ be the regions containing the 
centers about which arcs emanate from p and intersect Cv and CL, respectively, 
in the presence of Q*. The following lemma resolves the overlapping between the 
CVDs of the two chains. 

LEMMA 4.5. Let q be a point in Fc~ c~ Fcc Then, if q lies to the left of L, q e Fac*. 
I f  q lies to the right of L, q ~ Fca~. 

PROOF. Arcs centered at a point to the right of L always go downward first from 
p. Therefore, if such arcs intersect both Cv and CL, they must hit CL first. Likewise, 
arcs centered at a point to the left of L must hit Cu first if they intersect both Cv 
and CL. [] 

Lemma 4.5 indicates that, in the presence of Q*, arcs emanating from p and 
centered at points to the right of L can hit C v without being blocked by C L only 
if these points also lie in F c~. Similarly, arcs emanating from p and centered at 
points to the left of L can hit CL without being blocked by C v only if these points 
also lie in FC~. ' 

Q* 
Without loss of generality, let Fej, for all ej e C L, be constructed first. The 

feasible area where F cL can lie is the union of F c~ and the half-plane to the 
right of L. F c~ can be obtained by computing the CVD of C v, as shown in Figure 
1 l(a). The result of the union of F c~ and the half-plane to the right of L is shown 
in Figure l l(b). F~* can therefore be constructed along the boundary of F c~ 
with the procedure used for constructing obtuse star-shaped chains. After complet- 
ing constructing the F~*'s, F cL is obtained. F~*, for all el e Cv, can then be 
constructed similarly along the boundary of F c~. Figure 12 shows the final result 

cu 

(a) (b) 

Fig. l l .  Construction of the CVD for the upper chain of a star-shaped polygon. 
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Fig. 12. The CVD of the star-shaped polygon. 

of the CVD of the star-shaped polygon Q*. An outline of this algorithm is as 
follows. 

Algorithm (CVD_Star_Shaped_Polygon) 
CVD_Obtuse_Star_Shaped_Chain(Cv); 
S 4-- Cu. f ~  , 
CVD_Obtuse_Star_Shaped_Chain(CL); 
S ~- FcL; 

CVD_Obtuse_Star_Shaped_Chain(Cv); 

It is noted that the construction of the CVD for Q* is equivalent to constructing 
the CVDs for three obtuse star-shaped chains (one and a half rounds of the 

Q* 
star-shaped polygon). Since the construction of F~*, for all ei ~ Cv, and Fej, 
for all e~ ~ CL, takes O(n) time each, where n is the number of vertices of Q*, the 
time required for constructing the CVD for a star-shaped polygon is O(n). 

5. Circular Visibility Diagram of a Pocket. In this section the construction of 
CVDs of pockets with respect to p is discussed. Each such pocket has its two 
endpoints collinear with p, but p does not lie on the lid. As adopted earlier, the 
edges of a pocket are oriented counterclockwise; only visibility arcs hitting the 
left side (or the inside) of the pocket are of interest. In the example depicted in 
Figure 13(a), only counterclockwise arcs emanating from p can hit the inside of 
the pocket without first hitting the outside of the pocket. Such pockets are called 
CCWpockets .  Pockets on the opposite side of a lid, on the other hand, can only 
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(a) (b) 
Fig. 13. (a) A counterclockwise pocket. (b) The trapezoidization of a pocket. 

have clockwise visibility arcs hitting the inside of them and are thus called CW 
pockets. As illustrated in Figure 13(b), the darker shaded area is a CW pocket 
within a CCW pocket. 

To construct the CVD for a pocket efficiently, a partial order in which arcs 
emanating from p hit the edges of the pocket is required. However, the edges of 
a pocket do not inherently possess such an order. In the following the edges of a 
pocket are decomposed into edges exhibiting partial ordering: a CVD is first 
computed with respect to the decomposed edges; and regions in such a CVD are 
then merged to obtain the CVD of the pocket with respect to the original 
(undercomposed) edges. 

The decomposition of the edges of a pocket is done by utilizing vertex-edge 
visible pairs joined by dashed line segments, as shown in the pocket of 
Figure 13(b). A vertex-edge visible pair is a vertex and an edge which can 
be connected by a line segment lying entirely inside the pocket. By employing 
line segments whose extensions pass through p to connect all the vertex-edge 
pairs of the pocket, the interior of the pocket is decomposed into trapezoids, 4 
as shown in Figure 13(b). Such a decomposition is also known as a trapezoidiza- 
tion [5], [18], [21]. Tarjan and van Wyk [21] show that a trapezoidization 
of a simple polygon can be done in O(nloglogn) time, where n is the 
total number of vertices in the simple polygon. As a recent development, the 
time complexity of the trapezoidization algorithm is reduced to O(n) by 
Chazelle [5]. 

Since no counterclockwise visibility arc can reach the inside of a CW pocket, 
the trapezoids in CW pockets such as the one depicted in Figure 13(b) are 
discarded from further consideration. Aslo, since counterclockwise visibility arcs 
cannot reach portions of the pocket that extends to the other side of the line 
coincident with the lid, such portions are discarded as well. Consequently, the 
polar angles of the remaining in-edges span less than 180 ~ . After removing these 

4 Lines originating from the same point can be viewed as in parallel. 
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two types of regions, it can be safely assumed that the trapezoid containing the 
lid of a pocket has the smallest 0 with respect to p. 

Each trapezoid in the pocket consists of four sides. The in-edge and the 
out-edge are connecting line segments of the vertex-edge visible pairs, where 
the in-edge is the side with the smaller 0. Both the in-edge and the out-edge 
are considered to be transparent. The top-edge and the bottom-edge are portions 
of the edges of the pocket, where the top-edge is closer to p than the bottom- 
edge is. Both the top-edge and the bottom-edge are considered to be 
opaque. 

The circular arcs are now classified with respect to the side of a trapezoid they 
hit. Let ex, e o, e r,  and e B denote the in-edge, out-edge, top-edge, and bottom-edge, 
respectively, of a trapezoid T~. Let Fer{ denote the region containing all the centers 
about  which arcs emanating from p hit ex from the outside (or the right side). 5 
Since er  and eB are opaque and since only counterclockwise visibility arcs are 
employed, any arc which hits er,  en, or eo from the inside must first pass through 
% After crossing et, an arc will then first hit eT, eB, or eo. Those arcs that hit e r 
or e B are blocked. Those arcs that hit eo, on the other hand, may pass through 
eo (as eo is transparent), come back through it, and hit either er  or eB. However, 
since p is collinear with eo, be Lemma 2.1, those arcs that pass through e o cannot 
come back into T~ through e o. Therefore, F r' can be partitioned into three eF 
mutually exclusive regions, F r'eT, Fen,r' and Feo,T, corresponding to arcs that pass 
through e, and hit e T, eB, and e o, respectively. Such a partition is illustrated in 
Figure 14. 

A partial order in which arcs about  points in F r' intersect er,  eo, and e B is eF 
utilized to compute F T' r~ FT~ er' F e n '  and eo- 

~ P 

.. II 

-:-; / 

" , x L _ _ . _ _ 2  
eB 

Fig. 14. Fr~ is divided into Fr~ Fr~, and Fr~. 

5 As adopted earlier, e I is a directed edge such that the inside of the trapezoid is to the left of it. The 
notation e i indicates el directed in the opposite direction. In other words, visibility arcs about 
points in F~-will hit e i from the left, consistent with the notation of F] .  
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THEOREM 5.1. Let  Fer , FeB, and Feo be the regions containing all the points 
about which circular arcs hit e T, eB, and eo, respectively. Then 

I F ! i ~  FTeli-('~Fen' 

| 

(FTeo : FTi("l ( l e o -  FeB ). 

PROOF. Since e r is facing away from the emanating point p, visibility arcs 
which hit e r immediately after crossing e~ will not intersect e o or e B afterward. 
Also, by Lemma 2.1, a visibility arc which hits eo immediately after crossing ei 
will not intersect eB or er  afterward. However, since e B is facing toward p, a 
visibility arc which hits eB immediately after crossing e~ may intersect e o or e r 
afterward. These three relations indicate that only ea may obstruct arcs in hitting 
e o or e T. 

Since e o and er  do not obstruct visibility arcs passing through e x in hitting eB, 
F r' ---- FT• Fen. On the other hand, since e B may obstruct visibility arcs in hitting 

e B 

er  or eo, FeT~ = (F~'_c~ F J  - f r' and F r' = (FT'-n Feo ) -- t r' By substituting F T' eB eo eB" eB 
with (F~'_ c~ Fen), 

Fr'  ( FTL~ Fer) -- ( FT• Fen) 

= r r5 c~ ( r e ~ -  Fen ). 

Similarly, F r' = F~Lc~ (Feo -- Fen), which completes the proof. e o  
[] 

With the visibility arcs classified according to the side of a trapezoid they hit, 
the transition of the visibility arcs from one trapezoid to the next is now examined. 
The 0's of the in-edges exhibit a partial order in which the visibility arcs pass 
through these trapezoids. The same order also gives rise to the order in which 
arcs hit the top-edges and the bottom-edges of the trapezoids in a pocket. Such a 
partial order can be uniquely represented by the dual graph of the trapezoidized 
pocket, in which each node is associated with a trapezoid and each link with any 
two trapezoids sharing a side. This dual graph is clearly a partial-order tree with 
the root node representing the trapezoid containing the lid of the pocket, 6 as 
shown in Figure 13(b). 

The construction of the CVD of a pocket starts from TR, the trapezoid at the 
root of the partial-order tree. Fer_ ~ is subsequently partitioned into three regions: 
Fe TR, FeT~, and Fero ~, by utilizing Theorem 5.1. The region Fero ~ then becomes 
F r' of T1, the immediate descendant trapezoid (child) of T R. The CVD of a pocket eF 
is constructed by orderly partitioning F T' (or FeoT'-') into Fer Fen,T, and F r' eF eo 

6 There are trapezoids with three opaque sides and only one transparent side. However, since such 
trapezoids only appear at the leaves of the partial order tree, they will not affect the algorithm, and 
therefore are not discussed. 
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Fig. 15. (a) (Feo - FeB) is divided into A/+ and Ai-. (b) (R]B c~ R~r). 

throughout the partial-order tree. It is noted that arcs which hit e T and e B of T~ 
hit the same two edges in the pocket P where T i resides, which means Feet = FT~ and 
F P = F ri Such a partition seems to require O(n log n) time to compute [10] for eB eB �9 

a pocket with n vertices. However, by showing that F T' is convex and utilizing the eO 

counterclockwise order of the in-edges about p, the partition can be completed in 
linear time. 

Before verifying the two properties indicated above, the detailed construction 
of Fro is first examined. Let the trapezoid of interest, T~, be depicted as in Figure 
15(a). By Theorem 5.1, FT~eo equals the intersection of FT'- ' and (Feo -- FeB ). Since Feo 
is a Type-T region bounded by flvj and flv,+~ and FeB is a Type-L region 
bounded by feb and [3~,, subtracting FeB from Feo always results in two separate 
regions, denoted as Ai + and A/-, as shown in Figure 15(a). It is noted that A F c  Ri B, 
i.e., all the arcs centered at points in A7 will hit e B from the outside. Since 
an arc cannot hit both el and en from the outside, the intersection of A~- and F r' e/- 
is therefore always empty. On the other hand, A~ + may contribute to F T' since eo 

eB e e (R~ n R2O c A~ +, where (R]B c~ R2O , as illustrated in Figure 15(b), contains all the 
centers about which arcs emanating from p and not hitting either eT or eB from 
the inside occur. Therefore, the intersection of F T' and (Feo - FeB ) can be sub- eF 

stituted with the intersection of F r' and A~ +. When e o is adjacent to more than eF 

one trapezoid as shown in Figure 13(b), i.e., the current trapezoid has more than 
one child node, the region F T' needs to be decomposed accordingly. This decompo- 

eo 

sition can be done easily by using bisectors of p and the points that separate eo 
into ei's of the descendants of the current trapezoid. Such bisectors are parallel 
to and lie between fl~j and fly,+,. The dotted line fl,k shown in Figure 15(a) cuts 
A~ + into two regions that correspond to visibility arcs going into two adjacent 
trapezoids whose in-edges are separated by v k. The partition is then resumed for 
each resulting FeTL That Fr'eo is convex is shown by examining the intersection of 
F T' and A +. 

el- 
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THEOREM 5.2. F T' is convex, for  all T~ ~ P. eo 

PROOF. The initial Fer " is a stripe bounded by two parallel lines and is therefore 
convex. The subsequent FeTo , which is equal to the intersection o f A  + and FT'er, is 
convex since both A + and FT'- " are convex. Therefore, by induction, all the FTo's 
are convex. [] 

The computation for the intersection of F~'-and A +, for all T/~ P, is dominated 
by the computation of the intersection points between the boundary of F ~ a n d  the 
boundary of A~ +. It is shown that, by dividing the boundary of F~_ ~ into two pieces 
and maintaining them with two stacks, all the intersections can be computed in 
linear time. 

Since F T' results from intersecting F~'_ and A +, the boundary  of F T' consists of 
g o  e o 

portions of the fl~ s and the fe, s contributing to the boundary of FT'er~ where vj is 
a vertex of the top-edge of a trapezoid and e i is the bottom-edge of a trapezoid. 
Since the in-edges of the pockets are ordered about p, the perpendicular bisectors 
of line segments between p and the vertices of the top-edges and the bottom-edges 
are also ordered, respectively, according to their normals (pointing toward p). 
Consequently, the flv]s and the fee's of the A+'s are in slope order, respectively, 
following the partial ordering of the pockets5 The construction of the CVD for 
a pocket by intersecting F ~'' with A + is thus analogous to constructing an upper eF 

bay and  a lower bay; as described in Section 4, simultaneously. 
The upper bay, maintained by a stack Sv,  consists of only the fl~]s whereas 

the lower bay, maintained by stack SL, consists of only the fe,'S: Let /~ and v 
denote the intersections between the upper bay and the lower bay, as shown in 
Figure 16(a). As the construction of the CVD proceeds, the intersection of FT• and 
A + (with boundary fly, and fee) is computed, as shown in Figure 16(b). The 
intersection points between fly, and the boundary of F T` are sought by checking eF 

through Sv and SL, respectively, starting from the end of the stacks containing #. 
The fivj's in Sv that do not intersect fly, are popped sequentially until one that 
does is found. Similarly, S L is updated by popping out fe,'s which do not intersect 
fl~, until one that does is found. The portion of fl~ lying inside F r~ contributes eF 

F T`+~ and is pushed into Se. The region encompassed by a boundary curve to - e r  , 
this portion of fl~, and the boundary curves of F T` between /~ and the two eF 

intersections with fl~, yields F T' The boundary curves of F T` between /~ and eT" e~- 

the two intersections with fly, are the fl~]s and fe,'s being popped out of S v and 
SL when computing the intersections with flu,. Likewise, the intersection points 
between fee and the boundary of FT- ' can be identified by checking through Sv 
and S L from v, the other end of the stacks. The portion of fee lying inside F T` eF 

contributes a boundary cuve to r T'+' and is pushed into S L. The region en- ~ e l -  ' 

compassed by this portion of fee and the boundary curves of F~_ ~ between v and 
the two intersections with fee yields Fern. The boundary curves of Fr'er between 
v and the two intersections with fee are the/~]s  and fe,'s being popped out of Sv 

7 By construction, the slope on f~ changes monotonically and is bounded by the slopes of flu and fly. 
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Fig. 16. The partition of F.r~. 

and SL when computing the intersections with feB- The curves remaining in Sv 
Fr'+' Sv and SL remain the and SL yield F r' If neither fl~, nor feb intersects -er , e o �9 

same. The partition continues until all the trapezoids are examined or when 
F r' n A~- is empty; the latter indicates that all the visibility arcs are blocked. A eF 

procedure form of the algorithm is given. 

Algorithm (CVD_Pocket). 
Trapezoidize P; 
Construct the dual of the trapezoidization; 

TR TR TR TR. Compute F__, F_ , F_ , Feo, 
~ I  ~ T  ~B 

if (F~; n A~ +) # ~  do 
for every Child(TQ do 

CVD_Trapezoid(TR); 
Output Su and SL; 

Procedure (CVD_Trapezoid(Ti)). 
/* Computing FeTe , /  
while (/~v, c~ Top(Sv) = ~ )  do 

Output Top(Sv); Pop(Top(Sv)); 
while (/~v, n Top(SL) = ~ )  do 

Output Top(SL); Pop(Top(Sz)); 
/~v* ~ (]~v, between Top(Sv) and Top(St)); 
Update Top(Sv) and Top(SL); 
Output/~*; Push(/~*, Sv); 
/* Computing F P */ eB 

while (feb n Bottom(Sv) = ~ )  do 
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Output Bottom(Sv); Pop(Bottom(Sv)); 
while (f~B ~ B~176 = ~ )  do 

Output Bottom(SD; Pop(Bottom(SL)); 
f*B ~" (f~B between Bottom(Sv) and Bottom(SL)); 
Update Bottom(Sv) and Bottom(SL); 
Output f * ;  Push(f*, SL); 

if (F~'_ c~ A~ +) ~ ~ do 
for every Child(T/) do 

CVD_Trapezoid(T/) 

The time required for finishing all the partitioning can be shown to be linear 
in the number of vertices in the pocket. Let n U and nL be the number of flvj's and 
fe'S in St: and SL, respectively, and let C(nv, nL) denote the total time required 
for partitioning the F T' with Sv and S L of size n v and nL, respectively. eF  

Suppose i v, iL, Jr, and JL curves are checked, respectively, for identifying the inter- 
sections between fly, and Sv, fl~, and SL, fe~ and Sv, and feb and SL. 
Then 

C(nv, nL) = O(iv) + O(iL) + O(jv) + O(jL) + C(nv -- iv -- Jr, nL -- iL -- Jz)" 

By replacing C(nv, nL) with C(n v + nL), 

C(nv + nz) = O(iv + iL + Jv + JL) + C(nv + nz -- iv -- Jv -- iL -- Jz)" 

Let (n v + nL) equal n and let (iv + Jv + iz + Jz) equal k. By substituting n and 
k into the formula, a recurrence formula 

C(n) = O(k) + C(n - k) 

is obtained. The solution to this recurrence formula is clearly O(n). In other 
words, the plane partition, which yields the CVD of a pocket, can be con- 
structed in O(n) time, where n is the number of vertices in the trapezoidized 
pocket. 

It is clear that the number of vertices in the original pocket and the number of 
vertices in the trapezoidized pocket are of the same order. Therefore, given a pocket 
with n vertices, the CVD of the pocket with decomposed edges can be constructed 
in O(n) time. The CVD of the pocket with the original edges can then be obtained 
by merging the regions corresponding to the decomposed edges of original edges, 
which can be computed easily in O(n) time. Therefore, the total time complexity 
of the algorithm is still O(n). 

The CVD of the pocket P in Figure 13 is depicted in Figure 17. Figure 17(a) 
shows the CVD of P with the decomposed edges, and Figure 17(b) shows the CVD 
of P with the original edges. 
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(a) (b) 

Fig. 17. (a) CVD of a pocket with decomposed edges. (b) CVD of a pocket with the original edges. 

6. Analysis and Discussion. Given the linear-time algorithms for computing the 
CVDs for a star-shaped polygon and for a pocket, it is shown in the following 
that the CVD of a simple polygon Q can also be constructed in linear time. While 
the CVD of Q* can be constructed in O(n) time by directly applying the algorithm 
described in Section 4, computing the CVDs of the pockets in Q requires extra 
effort: Since some visibility arcs hitting the lids of the pockets in Q may be 
obstructed by other edges of Q*, the CVD region of each of these lids will not be 
a simple Type-T region, as assumed in Section 5. By construction, the CVD region 
of a lid in Q is the intersection of a stripe, a region bounded by two parallel lines, 
and a region F ci, as described in Section 4. Since both the stripe and F c' are 
convex, the CVD region of a lid in Q is always convex. With the CVD region of 
a lid being convex, the algorithm for computing the CVD of an independent pocket 
is therefore applicable to constructing the CVD for a pocket in Q. The time 
required for constructing the CVD for a pocket with mi edges is O(mi + ni), where 
nl is the number of boundary curves of the region F Q (e i being the lid of P~). Since el 

the sum of ni is bounded by the total number of edges in Q*, the total time required 
for constructing the CVDs for all the pockets is bounded by the total number of 
edges in Q. 

The time complexity for constructing the CVD of a simple polygon is the sum 
of the time complexity for the individual processes, which are all bounded by O(n). 
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Fig. 18. The CVD of a simple polygon Q. 

This algorithm thus computes the CVD of a simple polygon in linear time. The 
CVD of the polygon in Figure 4 is shown in Figure 18. 

The partition curves of a CVD can be attributed to either the edges where the 
corresponding visibility arcs end, or the first "contact"  between these visibility 
arcs and the boundary of Q. If visibility arcs passing through a vertex and 
remaining inside Q are considered to be blocked at the vertex, then the partition 
curve corresponding to such visibility arcs is attributed to the edge containing this 
vertex. On the other hand, if such visibility arcs are not considered to be blocked 
by the vertices, the partition curve is attributed to the edge Where these visibility 
arcs end. Similarly, when visibility arcs tangent to an edge are considered to be 
blocked by the edge, the partition curve corresponding to such visibility arcs is 
attributed to the edge. If such visibility arcs are not considered to be blocked by 
the edges, the partition curve is attributed to the edge where these visibility arcs 
end. 

The structure of CVDs enables many applications involving the notion of 
circular visibility to be solved efficiently. For  example, the shortest circular arc 
from point p to a circularly visible point q can be identified directly from the CVD 
computed with respect to either point. CVDs can also be used for computing 
visibility hulls inside a simply polygon. Chou et al. [8] show that the circular 
visibility hull of a point inside a simple polygon can be obtained in linear time by 
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utilizing the CVD of the polygon computed with respect to the point. They also 
show that by computing a set of CVDs, the circular visibility hull of an edge inside 
a simple polygon can be obtained in O(nk) time, where n is the total number of 
edges in the polygon and k is the number of CVDs computed. The value of k is 
bounded by the number of arcs and edges in the visibility hull th~/t are not the 
edges of the polygon. In the worst case, k is of O(n). 

Circular visibility can be used to characterize the workspace of a stationary 
robot with rotary joints. A special case occurs in coordinate measurement where 
the locations of the rotary probe of a coordinate measuring machine need to be 
determined. By limiting the motion of the probe to one translation and one 
rotation (and in this order), probe paths for measuring a point on a polygonal 
object can be formulated as a combination of the linear visibility and circular 
visibility problem. The trajectory of the rotation of a probe tip, characterized by 
circular visibility, can be computed with the help of CVDs. 

The idea of representing circular arcs emanating from a fixed point by their 
centers is also applicable to characterizing a set of parabolic curves emanating 
from a fixed point and having parallel axes. Whereas a circle can be viewed as 
having two coincident foci, a parabola can be viewed as having one of the two 
foci at infinity. By fixing the direction of the axes of parabolas, their foci at infinity 
are fixed. Therefore, such parabolas passing through a fixed point can be uniquely 
represented by their other foci. Chou e t  al. show that the parabolic visibility 
diagram of a simple polygon can also be computed in linear time [9]. It should 
be noted that the elements of such diagrams may not be straight lines and parabolic 
curves. For parabolic visibility diagrams, the partition curves consist of parabolic 
curves and hyperbolic curves. 

Acknowledgment. The authors would like to thank Jan Wolter who initiated the 
work. 

Appendix 

LEMMA A.1. Let  C be an obtuse star-shaped chain, and let e i and ei+ 1 be two 
consecutive edges in C. Then F~,+, n R~2 ~ = cp. 

PROOF. Let fly, represent the perpendicular bisectors of ~-~, as shown in Figure 
8. Since C is star-shaped, the fixed point p is to the left of el and el+ 1, implying 
that Fe, and F~,+, are both Type-L regions. The curve fly,, which is the perpendicular 
bisector of p and the vertex vi joining edges e~ and ei+ 1, divides the plane into two 
half-planes, one of which contains p. By definition, the region Fe,+, is on the side 
of the half-plane containing p, while R2 of ei is on the other half-plane. Therefore, 
Fe,§ n R~' = ~0. [] 

LEMMA A.2. For some edge ei o f  a polygon Q, the region F Q is unbounded i f  and ~, 
only if  some point on e i is linearly visible f rom p. 
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PROOF. A point q on e~ is linearly visible from p if and only if the line segment 
p---~ does not intersect any other edges of Q. A line segment is in fact a degenerate 
circular arc whose center lies on the perpendicular bisector of this line seg- 
ment at infinity. A region corresponding to a linearly visible edge contains 
points to infinity and therefore is unbounded. The validity of the converse is easy 
to see. [] 

LEMMA A.3. The counterclockwise order of the unbounded regions around p in the 
CVD is the same as that of the edges linearly visible from p. 

PROOF. The order of the linearly visible edges around p follows the order of the 
ray from p to the edges. Also, the order of the unbounded regions around p follows 
the order of the centers at infinity which in turn follows the order of the rays from 
p to the edge because the radii of the centers at infinity are perpendicular to the 
right of the rays from p. [] 
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