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Average Case Analysis of Gosper’s Algorithm for a
Class of Urn Model Inputs

Olgica Milenkovic1 and Kevin J. Compton2

Abstract. In this paper we perform an asymptotic average case analysis of some of the most important steps
of Gosper’s algorithm for indefinite summation of hypergeometric terms. The space of input functions of the
algorithm is described in terms of urn models, and the analysis is performed by using specialized probabilistic
transform techniques. We analyze two different types of urn model classes: one in which the input functions
are assumed to be rational, and another for which a certain function of two inputs is assumed to be rational.
The first set of results shows that the asymptotic complexity of the algorithm is the same within each of the two
classes. The second set of results indicates that the complexity of the algorithm scales differently for the two
classes of models: one can observe the logarithmic versus square root type of difference that is also present in
other combinatorial models.
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1. Introduction. Gosper’s algorithm is an automatic procedure for evaluating sums of
hypergeometric terms in the form of the difference of a hypergeometric term and a con-
stant, provided such an expression exists. Since it often happens that during the analysis
of a problem in combinatorial theory one encounters a large sum involving factorials and
binomial coefficients, one would like to know whether or not that sum can be expressed in
a simpler way. Answering this question without the help of a computer usually requires a
thorough knowledge of existing combinatorial identities and sometimes very ingenious
reasoning. Gosper’s algorithm is a procedure that discovers the answer systematically.
As for any other algorithm, it is important to have an assessment of the time requirements
to perform certain steps of the procedure. To do so, it is necessary to set up a complete
problem specification, including the probability measure over the acceptable inputs of
the algorithm. Once the specifications are set the goal is to find expressions for the first
moments of random time parameters of interest.

Despite the fact that Gosper’s algorithm is one of the most important achievements in
computer algebra, to date there are no results concerning the average running time of the
algorithm [8], [26]. In this paper we investigate certain probabilistic and combinatorial
problems arising in the analysis of Gosper’s algorithm [10]. Although Gosper’s algorithm
itself is simple to describe and understand, the average time analysis is a very complicated
task. The main problem is the complicated space of input functions of the algorithm. This
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space consists of combinatorial functions and it is hard to define a simple but sufficiently
general probability distribution for it that would allow for analyzing all the steps of
the algorithm simultaneously. This is why we perform a partial average time analysis,
focusing on one step in the procedure that has the largest influence on the running time
of the algorithm and that may occur as a part of other algorithms as well. In order to
perform the analysis, we use some newly developed probabilistic transforms described
in a companion paper [20].

The paper is organized as follows. Section 2 presents a short description of Gosper’s
algorithm. Section 3 introduces the probabilistic models used for the input functions of
the algorithm. Section 4 contains the derivations of the expected value of one of the most
important variables in the algorithm. In Sections 5 and 6 the average case analysis of two
distinct probabilistic input models is performed using the Poisson and negative-binomial
transforms. Section 7 contains the concluding remarks and a short overview of future
work.

Throughout the paper, N and Z stand for the set of natural numbers including zero
and the set of integers, respectively, while C stands for the set of complex numbers;
a(x) ∼ b(x) is a standard symbolic statement of the fact that limx→∞ a(x)/b(x) = 1.

2. A Short Description of Gosper’s Algorithm. Assume that we are interested in
evaluating sums of the form Sn =

∑n−1
k=0 tk , where tk is a hypergeometric term. We say

that tk is a hypergeometric term if r(k) = tk+1/tk is a rational function of k. Throughout
the paper we refer to r(k) as the hypergeometric ratio. The indirect definition of tk in
terms of the hypergeometric ratio essentially implies that tk is a constant multiple of a
term of the form

F ([a1, . . . , am]; [b1, . . . , bs], z)k =
a

k
1 · · · a

k
m zk

b
k
1 · · · b

k
s k!

,(1)

where z ∈ C, and ak = a(a − 1) · · · (a − k + 1) denotes the falling factorial. Gosper
[10], [22] designed an algorithm that can find a solution for Sn in terms of the difference
of a hypergeometric term and a constant, or prove that no such formula exists.

The idea behind Gosper’s procedure is based on the observation that the problem
of finding closed forms for summations is analogous to the problem of finding closed
forms for indefinite integrals. Therefore, evaluating Sn can be reduced to finding an
“anti-derivative” zk of the summation term tk , i.e. a hypergeometric term zk such that
zk+1 − zk = tk . If such a term exists, then from the telescoping property it follows that

Sn =
n−1∑
k=0

tk =
n−1∑
k=0

(zk+1 − zk) =
n−1∑
k=0

zk+1 −
n−1∑
k=0

zk = zn − z0,(2)

where z0 is a constant. A sequence {tk} for which there exists another hypergeometric
sequence {zk} satisfying (2) is called Gosper-summable. Without loss of generality, we
assume from now on that tk �= 0, since otherwise the summation problem is trivial.

For a hypergeometric term zk , the ratio

y(k) = zk

tk
= zk

zk+1 − zk
= 1

zk+1/zk − 1
(3)
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is a rational function of k. Then zk+1 − zk = tk implies that

y(k + 1)tk+1 − y(k)tk = tk .(4)

Dividing both the left-hand and right-hand side of (4) by tk , we obtain

y(k + 1)
tk+1

tk
− y(k) = 1,

i.e.

y(k + 1)r(k)− y(k) = 1,(5)

where r(k) = tk+1/tk is the hypergeometric ratio. If there exists a rational function
y(k) satisfying (5), it can be obtained by using the following approach. Assume that
r(k) = f (k)/g(k), where f (k) and g(k) are relatively prime polynomials. If the greatest
polynomial common divisor of f (k) and g(k+h), denoted dh(k) = gcd( f (k), g(k+h)),
is a constant for all h ∈ N , set a(k) = f (k), b(k) = g(k). Otherwise, form the set H
of all values h ≥ 1, h ∈ N , for which dh(k) �= const. We say that h violates the gcd
constraint if and only if h ∈ H . Next, take the smallest h ∈ H and factor r(k) as

r(k) = f (k)/dh(k)

g(k)/dh(k − h)

dh(k)

dh(k − h)
= f(h)(k)

g(h)(k)

dh(k)

dh(k − h)
, )(6)

where

f(h)(k) = f (k)

dh(k)
and g(h)(k) = g(k)

dh(k)
.

The last term in (6) can be rewritten as

dh(k)

dh(k − h)
= dh(k) dh(k − 1) · · · dh(k − h + 1)

dh(k − 1) dh(k − 2) · · · dh(k − h)
= c(k + 1)

c(k)
,

(7)
c(k) = dh(k − 1) · · · dh(k − h).

Repeating the described procedure for all the remaining elements of H produces a
sequence of functions f(i), g(i), i ∈ H , and an expression for the hypergeometric ratio
of the form

r(k) = a(k)

b(k)

c(k + 1)

c(k)
.(8)

The polynomials a(k), b(k), c(k) are such that gcd(a(k), b(k + h)) is a constant for all
h ∈ N . We refer to the above procedure as the cancelling procedure. The cancelling
procedure can be performed for all rational functions r(k) [22].

Since y(k) is a rational function, one can write y(k) = (b(k − 1)x(k))/c(k), where
x(k) is another rational function of k. Plugging this expression for y(k) and the expression
for r(k) given by (8) into (5) gives

b(k) x(k + 1)

c(k + 1)
r(k)− b(k − 1) x(k)

c(k)
= 1 or

(9)
a(k)x(k + 1)− b(k − 1)x(k) = c(k).
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Provided a(k), b(k), c(k) are constructed using the approach above, it can be shown that
if there exists a rational function x(k) satisfying (9), then this function is necessarily a
polynomial. This is the key idea of Gosper’s algorithm; its straightforward proof can be
found in [22].

Once the polynomials a(k), b(k) and c(k) are determined, the next step in the algo-
rithm is solving (9) for a polynomial function x(k). Let the upper bound on the degree
of x(k) be≤ d , i.e. let x(k) =∑d

u=0 au ku , ad �= 0. Substituting this expression for x(k)
into (9) and solving the system of equations in the unknown coefficients am gives the
desired solution for x(k) and hence for z(k) as well. If there is no solution for the system
of equations, then tk is not Gosper-summable. There are two different possibilities for
the value of the degree d of x(k):

• If deg(a(k)) �= deg(b(k)) or lc(a(k)) �= lc(b(k)), then

d = deg(c(k))−max{deg(a(k)), deg(b(k))},(10)

where lc(a(k)) denotes the leading coefficient of the polynomial a(k).
• if deg(a(k)) = deg(b(k)) and lc(a(k)) = lc(b(k)) = s, then either

d = deg(c(k))− deg(a(k))+ 1(11)

or

d = (slc(b(k − 1))− slc(a(k)))/s,

where slc(a(k)) denotes the second leading coefficient of the polynomial a(k).

The last case occurs extremely rarely in practical problems [8], [22] and is not analyzed
in this paper.

From the description of the algorithm, one can see that there are basically two param-
eters that influence the running time of the procedure. The first is the number of values of
h that violate the gcd constraint. For each value of h ∈ H one has to compute the gcd of
two polynomials, perform several cancellations and rewrite the expressions for several
polynomials. The second parameter is the set of degrees of the polynomials a(k), b(k)
and c(k). The degrees of these polynomials determine the size of the system of linear
equations to be solved in order to find a solution or prove that a solution does not exist
(as we pointed out, the second formula for the degree of x(k) that involves the second
leading coefficients is of no practical use). Hence, in the forthcoming sections, we focus
on evaluating the expected values of these parameters only.

EXAMPLE [22]. Assume we want to know if the sum

Sn+1 =
n∑

k=0

(4k + 1)
k!

(2k + 1)!

can be expressed in closed form. Since the summand tk = ((4k + 1) k!)/(2k + 1)! is a
hypergeometric term, we can apply Gosper’s algorithm in the following way. First,

r(k) = tk+1

tk
= 4k + 5

2(4k + 1)(2k + 3)
=

(
k + 5

4

)
4

(
k + 1

4

) (
k + 3

2

) ,
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so that the roots of the linear terms in the numerator and denominator of r(k) are− 5
4 , and

− 1
4 and− 3

2 , respectively. The difference of the roots− 5
4 and− 3

2 is not an integer, so for
no value of h ∈ N will these terms cancel. Therefore, 2k+3 is a factor of the polynomial
b(k). Similarly, one can see that a(k) = 1, and that gcd(k + 5

4 , k + h + 1
4 ) = k + 5

4 for
h = 1. Hence c(k) = 4k + 1. Now, (9) takes the form

x(k + 1)− 2(2k + 1)x(k) = 4k + 1.(12)

We notice that a polynomial of degree zero, namely x(k) = −1, is a solution of (12).
This gives zk = (−2(2k+1)(4k+1) k! )/((4k+1)(2k+1)! ) = (−2 k! )/(2k)! . Since
the summation Sn+1 ranges from zero to n rather than n − 1, the closed form solution
for the sum under consideration is

Sn+1 = zn+1 − z0 = 2− n!

(2n + 1)!
.

3. Probabilistic Input Models. In this section we describe two probabilistic models
for the summand tk and the hypergeometric ratio r(k) that capture most of the essence
and generality of the space of hypergeometric terms and ratios, respectively.

3.1. Probabilistic Model for tk—the T Model. In many combinatorial problems, tk is
a rational function that is already given in factored form as

tk = p(k)

q(k)
=

n∏
i=1

(k − mi )

(k − li )
,(13)

where the mi ’s and lj ’s are either integers or rational numbers. The roots {mi }ni=1 and
{lj }nj=1 can be partitioned into a set of sets M1, . . . ,Mu and L1, . . . , Lu , respectively,
such that for any mi ,mj , i �= j, and lk, ln, k �= n, the following properties hold:

• mi − mj ∈ Z if and only if mi ,mj ∈ Ms , for some s;
• mi − lk ∈ Z if and only if mi ∈ Mt , li ∈ Lt for some t ;
• lk − ln ∈ Z if and only if lk, ln ∈ Lg for some g.

Under the assumptions above, each pair of sets {M1, L1}, {M2, L2}, . . . contains elements
that differ by integer values, and elements within different pairs differ by non-integer
values. Hence, tk can be factored into rational functions with the roots of their numerators
and denominators in Mj , L j , j = 1, . . . , u, respectively, and each such rational function
can be analyzed separately. Hence, we assume from now on that mi and li take integer
values only. For the average case analysis it is of no importance what the signs of these
integers are, as long as the range of values they take is bounded in the same way. We can
therefore further restrict the values of mi and lj to positive integers only.

The choice for the distribution of the integer roots gives rise to two different proba-
bilistic models. For the first model, which we refer to as the uniform T model, we assume
that Mi , Li are two sequences of random integers drawn independently and uniformly
with replacement from {1, . . . , N }. For example, under this assumption, the sequences



216 O. Milenkovic and K. J. Compton

of roots (1, 1, 4, 4, 5, 6) and (4, 1, 1, 6, 5, 4) are considered different, although they give
rise to the same polynomial (x−1)2(x−4)2(x−5)(x−6). It is clear that the T model is
actually an urn model of the Maxwell–Boltzman type [6]. Under the Maxwell–Boltzman
model, polynomials with roots of large multiplicity will be less likely than polynomials
with roots of small multiplicity.

For the second model, which we refer to as the multiset T model, we assume that the
sets Mi , Li are two multisets chosen randomly from a set of equally likely multisets of
size n over an alphabet of size N . The multiset model is an urn model of the Bose–Einstein
type [6].

We note that for both the uniform and multiset model the polynomials in the numerator
and denominator of the hypergeometric ratio are not necessarily co-prime. Hence, before
proceeding with the analysis of the cancelling procedure, we have to examine the average
number of cancellations needed to bring f (k) and g(k) into co-prime form. This number
of cancellations determines the average value of the effective degree of both f (k) and
g(k) used for further evaluations.

3.2. Probabilistic Model for r(k)—the R Model. Since all steps in the algorithm ulti-
mately depend on the form of the hypergeometric ratio r(k), one can consider introducing
a probabilistic model for this rational function directly. The distribution of the roots of
f (k) and g(k) as defined in (6) can be assumed to obey a uniform or multinomial dis-
tribution, similar to the case of the T model. In this model, which we refer to as the R
model, there are no dependencies between the roots of f (k) and g(k), as opposed to the
case of the T model.

3.3. Advantages and Drawbacks of the Models. The models proposed for tk and the
hypergeometric ratio r(k) include some simplified assumptions that may not assure full
generality of the model. First, the degree of tk is usually a function of k and not fixed to
a specified value of n, as we assumed. Second, the effective degree of tk varies with the
choices for the roots of p(k) and q(k). For example, the probability of choosing the same
two sets of roots for p(k) and q(k) is not equal to zero, so that our models also include
tk = 1 in the analysis, although summands of this kind are of no practical interest. On
the other hand, it is worth pointing out that there is no loss in generality in choosing the
above models for tk , as far as it concerns including factorial functions.

REMARK. The simplest assumption that can be made about tk is that it is a polynomial,
but in this case it is well known that the solution can be expressed using Bernoulli
numbers [11]. Another case for which the solution is known is for t (z) = p(z)/q(z),
where p(z) and q(z) are polynomials such that deg q(z) ≥ deg p(z)+ 2, and q(n) �= 0
for any n ∈ Z . The solution is of the form [16]

∑
n

r(n) = −
∑

Res(r(z) t1(z)), t1(z) = π

sin(π z)
,(14)

where Res( f ) denotes the residuum [15] of f and the summation on the right-hand side
ranges over all zeros of q(z). We point out that the approach taken in this paper allows us
to accommodate for different degrees of p(k) and q(k), but since this makes the notation
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and the essential ideas harder to follow, we choose to restrict our attention only to the
case where p(k) and q(k) have the same degree.

For clarity of exposition, in this paper we analyze in detail only the multiset T and R
models. Detailed derivations for the other model can be found in the extended version of
the paper, available at [27]. Some key results for the uniform model are briefly discussed
in Section 7.

4. The Expected Value of the Degree of a(k) and c(k). We observed in Section 2 that
the degree of the polynomial x(k), and therefore the running time of a linear equation
solver, depends on the degree of the polynomials a(k), b(k) and c(k). In this section we
derive general formulas for the expected value of the degree of these polynomials that
hold for both the T and R models as well as for both choices for the distribution of the
roots.

4.1. The T Model. We introduce a uniform probability measure on the set of all se-
quences of length n and over the alphabet 1, . . . , N , or a uniform probability measure
on the set of all multisets of size n and over the alphabet 1, . . . , N . In both cases the
numbers determining the multiplicities of the roots in p(k) and q(k), respectively, be-
come random variables. Let X1, . . . , X N and Y1, . . . , YN , respectively, denote the above
described random variables. Then

tk = p(k)

q(k)
= (k − 1)X1(k − 2)X2 · · · (k − N )X N

(k − 1)Y1 (k − 2)Y2 · · · (k − N )YN
,(15)

where
N∑

i=1

Xi = n,
N∑

i=1

Yi = n.(16)

For tk given by (15) the hypergeometric ratio r(k) can be written as

r(k)= tk+1

tk
= f (k)

g(k)
= k X1(k−1)X2+Y1 · · · (k−(N−1))X N+YN−1(k − N )YN

kY1(k−1)Y2+X1 · · · (k−(N−1))YN+X N−1(k − N )X N
.(17)

We use the following definitions/notation related to the T model throughout the paper:

X (0)
1 = X1, Y (0)

1 = Y1,

X (0)
i = Xi + Yi−1, Y (0)

i = Yi + Xi−1, i = 2, . . . , N ,

X (0)
N+1 = YN , Y (0)

N+1 = X N .

(18)

4.2. The R Model. Similarly as for the T model, let X1, . . . , X N and Y1, . . . , YN be
random variables counting the multiplicities of the roots in {1, . . . , N } of f (k) and g(k),
respectively. In other words, let

r(k) = f (k)

g(k)
= (k − 1)X1(k − 2)X2 · · · (k − N )X N

(k − 1)Y1(k − 2)Y2 · · · (k − N )YN
,(19)
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where
N∑

i=1

Xi = n,
N∑

i=1

Yi = n.(20)

We use the following definitions related to the R model throughout the paper:

X (0)
i = Xi , Y (0)

i = Yi , i = 1, . . . , N .(21)

The change of variables in (18) and (21) allows us to simplify the notation for the
multiplicities of the roots in the numerator (and denominator) of the hypergeometric
ratio r(k), and to preserve a unique notation, independent on the choice of the model.
Notice that the numerator and denominator of r(k) in the R model do not have roots equal
to zero, i.e. there are only N options for the roots, while for the random T model there
are effectively N+1 options for the roots. This difference in the number of symbols does
not influence the asymptotic behavior of the algorithm, and is neglected. Additionally,
the degree of the numerator and denominator of the hypergeometric ratio for the T model
is 2n, and the variables Xi , Yi correspond to the root i − 1.

The variables Xi , i = 1, . . . , N (as well as Yi , i = 1, . . . , N ), in both the T and
R models are dependent, due to the restriction imposed on them by (20). This fact
makes a direct analysis of Gosper’s algorithm extremely hard, if not impossible. In
order to overcome this difficulty, we use probabilistic transform techniques developed
in a companion paper [20]. The transform techniques described in [20] allow one to
replace the dependent random variables Xi and Yi by independent random variables
with appropriate distributions. An exact asymptotic expressions for a function of Xi

and Yi can then be recovered by using the inverse transform, or by using specially
designed Tauberian theorems, also presented in [20]. For the uniform and multiset model,
the transforms that achieve the desired goal are the Poisson [9] and negative-binomial
transform. A short overview of the properties of these transforms, as well the Tauberian
inversion theorem used in this paper are presented in Appendix 1. The reader is advised
to go through the exposition in Appendix 1 before proceeding to the next section.

4.3. The Cancelling Procedure and deg(c(k)). Suppose that one has to perform the
cancelling procedure on f (k) and g(k). The procedure changes the multiplicities of the
roots of f (k) and g(k) as follows: first, in the pre-processing step we cancel common
terms in f (k) and g(k), in order to make these polynomials co-prime. This leads to a
decrease of the multiplicities X (0)

i and Y (0)
i to X (1)

i and Y (1)
i , respectively, based on the

rule

X (1)
i = X (0)

i −min(Y (0)
i , X (0)

i ) = max(0, X (0)
i − Y (0)

i ),

Y (1)
i = Y (0)

i −min(Y (0)
i , X (0)

i ) = max(0, Y (0)
i − X (0)

i ).

The values of the new multiplicities X (1)
i , Y (1)

i , i = 1, . . . , N + 1, represent the input
of the cancelling procedure. For h = 1, the uncancelled roots of the polynomial g(k),
now corresponding to a polynomial g(1)(k), are shifted to the left by one. The common
terms are cancelled from the polynomials f(1)(k) and g(1)(k) and adjoint to c(k). This
procedure is repeated for all other values of h ≤ N . The shifting procedure can be
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visualized as shown below:

X (0)
1 X (0)

2 X (0)
3 · · · X (0)

N X (0)
N+1 f (k)

−−−−−−−−−−−−−−−−−−−−−
Y (0)

1 Y (0)
2 Y (0)

3 · · · Y (0)
N Y (0)

N+1 g(k) ↓
Y (1)

1 Y (1)
2 Y (1)

3 · · · Y (1)
N Y (1)

N+1 g(1)(k) ↓
Y (2)

1 Y (2)
2 Y (2)

3 · · · Y (2)
N Y (2)

N+1 g(2)(k) ↓
←− ↓ ↓ ↓

If X ( j)
i and Y ( j)

i represent the multiplicities of the i th root after the j th step, then X ( j)
i

and Y ( j)
i obey the following recurrence:

X ( j+1)
i = X ( j)

i −min(Y ( j)
i+ j , X ( j)

i ) = max(0, X ( j)
i − Y ( j)

i+ j ),
(22)

Y ( j+1)
i = Y ( j)

i −min(Y ( j)
i , X ( j)

i− j ) = max(0, Y ( j)
i − X ( j)

i− j ) .

If during the j th step of the procedure m terms in f(h)(k) and g(h)(k) are cancelled, then
the degree of the polynomial c(k) increases by jm. This implies that

deg(c(k)) =
N∑

i=1

N+1−i∑
j=1

j (X ( j)
i − X ( j+1)

i )(23)

=
N∑

j=1

N+1− j∑
i=1

X ( j)
i −

N∑
j=1

(N + 1− j)X (N+1− j)
j ,

where
∑N+1− j

i=1 (X ( j)
i − X ( j+1)

i ) is the total number of cancellations for h = j and
where X ( j)

i − X ( j+1)
i = 0 for all j ≥ N + 1 − i . For a fixed j , and both the T and R

models, the random variables X ( j)
i , 2 ≤ i ≤ N , are identically distributed and therefore

E[X ( j)
i ] = E[X ( j)

2 ], 2 ≤ i ≤ N .
Hence,

E[deg(c(k))] =
N∑

j=1

N+1− j∑
i=1

E[X ( j)
i ]−

N∑
i=1

(N + 1− i)E[X (N+1−i)
i ](24)

=
N−1∑
j=1

E[X ( j)
1 ]+ N

N−1∑
j=1

E[X ( j)
2 ]− 2

N−1∑
j=1

j E[X ( j)
2 ].

The last equation is a consequence of the fact that all roots equal to zero (one) in the T
model (in the R model) are cancelled up to the N − 1st step of the procedure, so that
E[X (N )

1 ] = 0. Since
∑N+1

i=0 X (0)
i = 2n, the degree of a(k) can be found in a similar way

as

E[deg(a(k))] = 2n −
N+1∑
i=1

N∑
j=1

E[X ( j−1)
i − X ( j)

i ](25)

=
N+1∑
i=2

E[X (N+1−i)
i ].
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We show next that X ( j)
l , j, l = 1, 2, . . . , can be expressed in terms of the values of X (0)

i

and Y (0)
i , i = 1, . . . , N , only.

THEOREM 1. Let X (0)
1 , . . . , X (0)

N and Y (0)
1 , . . . , Y (0)

N be two arbitrary sets of positive

integers. Define X ( j+1)
i and Y ( j+1)

i as in (22). Then for j ≥ 1 it holds that

X ( j)
i = max

(
0, min

0≤k< j

k∑
l=0

(X (0)
i+l − Y (0)

i+l)

)
,

(26)

Y ( j)
i = max

(
0, min

0≤k< j

k∑
l=0

(Y (0)
i−l − X (0)

i−l)

)
.

PROOF. The proof follows by induction. Clearly, the statement is true for j = 1, based
on (22). Assume the statement is true for all values of j ≤ J . If X (J )

i = 0 for some fixed
i then X (J+l)

i = 0 for l ≥ 1, so that (26) holds automatically. Therefore, without loss of
generality we may assume that X (J )

i > 0. From (22) one has

X (J+1)
i = max(0, X (J )

i − Y (J )
i+J ),

(27)
Y (J+1)

i = max(0, Y (J )
i − X (J )

i−J ).

Define Tk and T̂k as

Tk =
k∑

l=0

(X (0)
i+l − Y (0)

i+l),

(28)

T̂k =
k∑

l=0

(Y (0)
i+J−l − X (0)

i+J−l).

Then T̂J−k−1 = Tk−TJ , so that min 0≤k<J T̂k = −max 0≤k<J (TJ −Tk). Therefore, from
the induction hypothesis it follows that

X (J )
i − Y (J )

i+J = max

(
0, min

0≤k<J
Tk

)
−max

(
0,− max

0≤k<J
(TJ − Tk)

)
(29)

= max

(
0, min

0≤k<J
Tk

)
+min

(
0, max

0≤k<J
(TJ − Tk)

)

= max

(
0, min

0≤k<J
Tk

)
+min

(
0, TJ − min

0≤k<J
Tk

)

= max

(
0, min

0≤k<J
Tk

)
+min

(
−TJ ,− min

0≤k<J
Tk

)
+ TJ

= max

(
0, min

0≤k<J
Tk

)
−max

(
TJ , min

0≤k<J
Tk

)
+ TJ

= max

(
TJ , TJ + min

0≤k<J
Tk

)
−max

(
TJ , min

0≤k<J
Tk

)
= min

0≤k<J+1
Tk .
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The last equation is a consequence of the fact that X (J )
i > 0. From the induction hy-

pothesis it follows that (26) holds for X (J )
i , so that min 0≤k<J Tk > 0. This, on the other

hand, shows that TJ + min0≤k<J Tk > TJ , and hence max(TJ , TJ + min0≤k<J Tk) =
TJ + min0≤k<J Tk . Now, if TJ < min0≤k<J Tk , then the penultimate equation in (29)
equals TJ + min0≤k<J Tk − min0≤k<J Tk = TJ = min0≤k<J+1 Tk . If TJ ≥ min0≤k<J Tk

then (29) equals TJ +min0≤k<J Tk − TJ = min0≤k<J Tk = min0≤k<J+1 Tk . This proves
the desired formula for X (J )

i , while the proof for Y (J )
i follows along the same lines.

COROLLARY 2. The random variables X ( j)
i satisfy the following equations for the T

model:

X ( j)
1 = max

(
0, min

1≤k≤ j
(Xk − Yk)

)
,

X ( j)
i = max

(
0, min

i≤k≤min(N+1, j+i−1)
((Xk − Yk)− (Xi−1 − Yi−1))

)
for 2 ≤ i ≤ N ;

and the following equation for the R model:

X ( j)
1 =max

(
0, min

1≤k≤ j

(
k∑

i=1

(Xi − Yi )

))
.

PROOF. From the definition of X (0)
i and Y (0)

i it follows that
∑k

l=0 (X
(0)
1+l − Y (0)

1+l) =
Xk+1 − Yk+1 and

∑k
l=0 (X

(0)
i+l − Y (0)

i+l) = Xk+i − Yk+i − (Xi − Yi ) for i ≥ 2, which

gives the desired result for the T model. Notice that since the expressions for X ( j)
1 and

X ( j)
i , i ≥ 2, are different, the expected values of these variables are also different, as

we already pointed it out in this section. The result for the R model follows from the
same type of argument.

Based on the result of Theorem 1, in order to find the degree of c(k)we need to compute
the distribution of the minimum of a set of random variables, as given by Corollary 2.
The problem connected with this evaluation is that the variables involved are dependent.
For this reason, we use the transform techniques of [20] to achieve a straightforward
transition from the case of dependent variables to the case of independent variables.

5. The T Model. We apply next the transform techniques of [20] (see Appendix 1)
to the problem of computing the expected values of the variables X ( j)

i and Y ( j)
i , and

therefore the expected value of deg(c(k)) as well. Throughout this section we use the
following notation:

Zl = Xl − Yl ,

Mj = min(Z1, . . . , Zj ),(30)

Wj,l = min(Zl , . . . , Zl+ j−1)− Zl−1.
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Under the assumption that Xl and Yl are independent random variables in the appropriate
transform domain, the variables Zl are independent and identically distributed.

For both the uniform and multiset T model, one has

P{Z1 = k} =
∞∑

s=0

P{X1 = s + k}P{Y1 = s},

P{Mj ≥ u} = (P{Z1 ≥ u}) j ,

E[X ( j)
1 ] =

∞∑
u=1

P{Mj ≥ u},
(31)

P{Mj = u} = P{Mj ≥ u} − P{Mj ≥ u + 1},

P{Wj,l = u} =
∞∑

s=−∞
P{Mj = s + u} P{Zl−1 = s},

E[X ( j)
2 ] =

∞∑
u=1

u P{Wj,2 = u}.

The second equation is a consequence of the fact that in the transform domain the random
variables Zi , i = 1, . . . , j, are independent and identically distributed.

5.1. The Multiset T Model. For the multiset T model, the appropriate probabilistic
transform is the negative-binomial transform. In this case we start from the assumption
that Xi and Yi are independent, geometrically distributed random variables with param-
eter ρ. The expected values of Mj and Wj,l in this case can be determined as follows.
First, notice that for s ≥ 0,

P{Z1 = s} =
∞∑

l=0

(1− ρ)2ρs+2l = 1− ρ
1+ ρ ρ

s,(32)

while for s < 0 it follows in a similar way that

P{Z1 = s} = 1− ρ
1+ ρ ρ

|s|.(33)

Therefore, for s ≥ 0 one has

P{Z1 ≥ s} = 1− ρ
1+ ρ

∞∑
l=s

ρl = ρs

1+ ρ ,

while for s < 0 one has

P{Z1 ≥ s} = 1− ρ
1+ ρ

∞∑
l=s

ρ|l| = 1+ ρ − ρ|s|+1

1+ ρ .(34)

This implies that for s ≥ 0,

P{Mj ≥ s} = ρs j

(1+ ρ) j
,(35)
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while for s < 0,

P{Mj ≥ s} =
(

1+ ρ − ρ|s|+1

1+ ρ
) j

.(36)

From (35) and (36), one can deduce that

P{Mj = s} = ρs j (1− ρ j )

(1+ ρ) j
for s ≥ 0,

(37)

P{Mj = s} = (1+ ρ − ρ|s|+1) j − (1+ ρ − ρ|s|) j

(1+ ρ) j
for s < 0.

Hence,

E[X ( j)
1 ] = E[Mj ;Mj > 0] =

∞∑
s=1

ρs j

(1+ ρ) j
= ρ j

(1+ ρ) j (1− ρ j )
.(38)

For j = 1, the above formula becomes

E[X (1)
1 ] = ρ

1− ρ2
.(39)

In order to find E[X ( j)
2 ] we proceed as follows. Let k ≥ 1. Then

P{Wj,l = k} =
−k−1∑

u=−∞
P{Mj = k + u}P{Z1 = u} +

−1∑
u=−k

P{Mj = k + u}P{Z1 = u}

+
∞∑

u=0

P{Mj = k + u}P{Z1 = u}.

Let the three summations in the above equation be denoted by 
1, 
2, 
3, respectively.
After some tedious, but straightforward algebra it can be shown that 
1 takes the form

1 = C1, j (ρ) ρ

k , where

C1, j (ρ) = (1− ρ)2
1+ ρ

∞∑
u=0

ρu

(
1− ρu+1

1+ ρ
) j

− 1− ρ
(1+ ρ) j+1

.


2 can be found from (32) and (37) in a similar way to be 
2 = C2, j (ρ) (ρ
k − ρk j ),

where

C2, j (ρ) = (1− ρ)(1− ρ j )

(1+ ρ) j+1 (1− ρ j−1)
.

Finally, 
3 = C3, j (ρ) ρ
k j , with

C3, j (ρ) = (1− ρ)(1− ρ j )

(1+ ρ) j+1 (1− ρ j+1)
.

When combined, the equations above give

E[X ( j)
2 ] = (C3, j (ρ)− C2, j (ρ))

ρ j

(1− ρ j )2
+ (C1, j (ρ)+ C2, j (ρ))

ρ

(1− ρ)2 .(40)
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After some algebraic manipulation the following expressions can be obtained:

(C3, j (ρ)− C2, j (ρ))
ρ j

(1− ρ j )2
= − (1− ρ)2ρ2 j−1

(1+ ρ) j (1− ρ j−1)(1− ρ j )(1− ρ j+1)

and

(C1, j (ρ)+ C2, j (ρ))
ρ

(1− ρ)2 =
∞∑

u=1

ρu

1+ ρ
(

1− ρu

1+ ρ
) j

+ ρ j

(1+ ρ) j+1(1− ρ j−1)
.

Therefore, E[X ( j)
2 ] takes the form

E[X ( j)
2 ] =

∞∑
u=1

ρu

1+ ρ
(

1− ρu

1+ ρ
) j

+ ρ j (1− ρ j+2)

(1+ ρ) j+1(1− ρ j )(1− ρ j+1)
.(41)

For j = 1 the above equation reduces to

E[X (1)
2 ] = 2 ρ (1− ρ3)

(1− ρ)2(1+ ρ)3 .(42)

Notice that E[X (0)
1 ]− E[X (1)

1 ] (E[X (0)
2 ]− E[X (1)

2 ]) represents the expected number of
cancellations of the root equal to one (a root greater than one) in the pre-processing step
of the cancelling procedure. These expected values are of interest because they show
how many cancellations of the roots of f (k) and g(k), on average, are performed to bring
these polynomials into co-prime form. Once this number of cancellations is known, one
can deduce the effective degree of the polynomials in the numerator and denominator of
r(k).

Equations (39) and (42) can be used to prove the following result.

LEMMA 3. For large n and N , the effective degree of the polynomials f (k) and g(k)
is of the form

2n(n + N )

(2n + N )3
(3n2 + 3nN + N 2).

PROOF. The effective degree of f (k) is asymptotically equal to NE[X (1)
2 ], and the result

of the theorem is a consequence of the fact that Theorem 4 of [20] holds, and asymptotic
inversion corresponds to substituting n/(n+ N ) for ρ, as described in Appendix 1 (note
that the degree of f (k) and g(k) in the T model is initially equal to 2n).

Next, we establish an asymptotic formula for E[X ( j)
2 ], based on (41). Let the first

term in (41) be denoted by Sj . The formula for Sj is almost identical (except for the
1/(1+ ρ) term) to the formula for the expected value of a grade in the grading problem
by Greene and Knuth [12].

The grading problem is concerned with a hypothetical situation of grading an exam
with an infinite number of problems. With probability one grading is made a finite task
by imposing the requirement that grading an exam stops at the first encounter of a wrong
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solution. The grade A+ is given to the student with the highest score, provided her/his
score is unique. If there are several students sharing the highest score, no one receives
an A+. If we assume that there are n students in the class and each student gets the right
answer with probability p, then it is straightforward to show that the expected value
Emax of the maximum score in the class is

Emax =
∞∑

k=1

(1− (1− pk)n).

The expected value of the maximum score, provided that this score is unique, is propor-
tional to a term of the form

∞∑
k=1

npk(1− pk)n−1.(43)

The asymptotic behavior of Emax and the related quantity (43) can be determined by using
two special techniques—the exponential and Gamma method—developed by Greene and
Knuth [12] and De Bruijn [5]. An asymptotic formula for Sj can be deduced using the
exponential method. For the sake of completeness, we sketch the idea underlying this
method, referring the reader to p. 288 of [16] for more details and for the exact evaluations
of the error term.

Let x/j = ρu/(1+ ρ). Then, since x/j < 1 for ρ < 1, it follows that(
1− ρu

(1+ ρ)
) j

=
(

1− x

j

) j

� e−x ,

so that

Sj � 1

j

∞∑
u=1

xe−x ,(44)

where x is a function of u. The last sum can be approximated by using the standard
�-method [16]. The method is based on using the following representation of the expo-
nential function in terms of the Gamma function:

e−x =
∫

1/2
�(z) x−z dz,(45)

where
∫

1/2 denotes a contour integral over a disc around the origin of radius 1
2 . Using

(45), (44) becomes

Ŝj = 1

j

∫
1/2
�(z)

∞∑
u=1

x1−z dz = 1

j

∫
1/2

�(z)

(1+ ρ)1−z

( jρ)1−z

1− ρ1−z
dz.(46)

Once Ŝj is expressed in the form of the integral (46), it is possible to use standard
techniques in complex analysis to evaluate its asymptotic behavior, such as moving the
contour of integration and estimating the integral from the values of the residues at the
singularities. If zk = 1 + 2π ik/ log ρ are the roots of the denominator of the integrand
in (44), it follows that

Ŝj= 1

j

(
1

log(ρ−1)
+ 4π

log2 ρ

∞∑
k=2

√
k log ρ csc(2π2k/ log ρ)cos

(
θ− 2πk log( j/(1+ρ))

log ρ

))
,
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with

θ = −αγ +
∑
l≥1

(α
l
− tan−1 α

l

)
, α = 2πk

log ρ
,

and γ and csc denoting Euler’s constant and the cosecant function, respectively. For fixed
ρ the sum converges very fast to a value that is negligible compared with 1/ log(ρ−1).
Since the error of approximating Sj by Ŝj is o (1/j), and since this is also the order of
the error of approximating Ŝj by 1/(log(ρ−1) j), it follows that Sj = 1/(log(ρ−1) j)+
o(1/j).

On the other hand, the second term in (41) can be bounded as

1− ρ3

1+ ρ
(

ρ

1+ ρ
) j

≤ ρ j (1− ρ j+2)

(1+ ρ) j+1(1− ρ j )(1− ρ j+1)
≤ 1

(1− ρ2)2

(
ρ

1+ ρ
) j

,

which implies that

Sj + 1− ρ3

1+ ρ
(

ρ

1+ ρ
) j

≤ E[X ( j)
2 ] ≤ Sj + 1

(1− ρ2)2

(
ρ

1+ ρ
) j

.(47)

We recall the formula for E[deg(c(k))] given in the previous section:

E[deg(c(k))] =
N−1∑
j=1

E[X ( j)
1 ]+ N

N−1∑
j=1

E[X ( j)
2 ]− 2

N−1∑
j=1

j E[X ( j)
2 ].

Denote the three summations in the above equation by E1, E2 and E3, respectively. Then,
based on (38), one has

E1 =
N−1∑
j=1

1

1− ρ j

(
ρ

1+ ρ
) j

≤ 1

1− ρ
N−1∑
j=1

(
ρ

1+ ρ
) j

≤ ρ

1− ρ ,(48)

and similarly

E1 ≥ ρ

1− ρN−1

(
1−

(
ρ

1+ ρ
)N−1

)
.

Since for 0 < ρ < 1 one has ρ/(1 + ρ) < 1, for large values of N the last term in the
previous equation is close to one. It therefore follows that for sufficiently large N , E1 is
only a function of ρ. From the expression for E[X ( j)

2 ], and the well-known formula

N∑
j=1

1

j
= log N + γ + O

(
1

N

)
,

it follows that E2 = E2,1 + E2,2, where

E2,1 = N
N−1∑
j=1

Sj ∼ N
N−1∑
j=1

1

log(ρ−1) j
∼ 1

log(ρ−1)
N log N(49)
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and

E2,2 ≥ N

(
1− ρ3

1+ ρ
N−1∑
j=1

(
ρ

1+ ρ
) j

)
= N

(
1− ρ3

1+ ρ ρ

(
1−

(
ρ

1+ ρ
)N−1

))
.

Since N ≥ 2, the bound above can be further simplified as

E2,2 ≥ N
ρ(1− ρ3)

(1+ ρ)2 ,(50)

and in a similar manner,

E2,2 ≤ N
1

(1− ρ2)2

N−1∑
j=1

(
ρ

1+ ρ
) j

.

Hence,

E2,2 ≤ N
ρ

(1− ρ2)2
.(51)

Equations (50) and (51) imply that E2 ∼ N log N/(log(ρ−1)).
In order to find an asymptotic formula for E3, we observe that

N−1∑
j=1

j x j = x

(1− x)2
(1− N x N−1 + (N − 1)x N ).(52)

For x = ρ/(1+ρ) < 1 or x = 1/(1+ρ) < 1, the expression in (52) tends to x/(1−x)2.
Hence, the contribution to E3 from the second term of the expression for E[X ( j)

2 ] in (41)
can be shown to be bounded by a function dependent only onρ, and for large N negligible
compared with E2,1. Similarly, from the asymptotic estimate of the first term in (41),
one can see that there exists a function of ρ, C(ρ), such that

N−1∑
j=1

j Sj ∼ C(ρ)N .(53)

This is a consequence of the fact that Sj ∼ K/j , for some constant K . The results
presented in (41)–(53) suffice to prove the following theorem.

THEOREM 4. For the negative-binomial model, the expected value of the degree of c(k)
is asymptotically equal to

N log N

log(ρ−1)
.

Theorem 4 shows that the asymptotic expression for E[deg(c(k))] is of the form of
a product of a function of N and a function of ρ, analytic in any half-ring around the
origin (the only singularity being at the origin itself). It is tedious, but straightforward,
to verify that the second term in the asymptotic formula for E[deg(c(k))] satisfies the
conditions of Theorem 13 in Appendix 1. This implies the following result.
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THEOREM 5. The expected value of the degree of c(k) for the multiset T model is
asymptotically equal to

E[deg(c(k))] ∼ N log N

log((n + N )/n)
.

Finally, the same type of arguments as presented in the previous section shows that
E[deg(a(k))] is of the order of log N , and hence negligible compared with E[deg(c(k))].

6. The R Model. Consider the random hypergeometric ratio model—the R model de-
scribed in Section 3. Let Sk be the kth cumulative sum of the random variables Z1, Z2, . . .

defined as in the previous section, and let S0 = 0. Theorem 1 shows that in this case

X ( j)
1 = max(S0,min(S1, . . . , Sj ))

for all i = 1, . . . , N − 1 and X ( j)
i = X ( j)

1 = 0 for j ≥ N , i ≥ 2. As for the case of the
first model, and for both the Poisson and negative-binomial distribution, the variables
Zi are independent and identically distributed. Hence, Sk =

∑k
i=1 Zi is effectively a

random variable describing the position of a generalized random walk. There exists an
extensive literature concerning properties of generalized random walks [25], [6], [7]. Of
special interest to our analysis are results concerning the generating functions for the first
moments of random walk variables. Among these is Spitzer’s equation [25, p. 205], also
referred to as Pollaszek–Spitzer’s equation, establishing a formula for the generating
function of the expected value of the maximum non-negative value of the random walk
variable Sk . We use a similar approach to that given in [25] in order to compute the
generating function of the mean value of the variable max(S0,min

(
S1, . . . , Sj

)
). Due

to more complicated initial conditions, the derivation is more involved than for the case
considered by Spitzer.

THEOREM 6. Let Sk be a generalized random walk, and define the random walk variable

mj = max(S0,min(S1, . . . , Sj )).(54)

Then
∞∑

j=0

E[mj ]t
j = exp

( ∞∑
k=1

t k

k
P{Sk = 0}

) ∞∑
k=1

t k

k
E[Sk; Sk > 0],(55)

where E[Sk; Sk > 0] is the expected value of Sk conditioned on Sk > 0.

REMARK. It is interesting to point out that the generating function of the expectation
of the maximum Mj = max(S0, S1, . . . , Sj ) of the random walk is of a similar form,
obtained by replacing P{Sk = 0} in (55) by one. In this case one has

exp

( ∞∑
k=1

t k

k

)
= 1

1− t
,
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and the analogue of (55) is of the form

∞∑
j=0

E[Mj ]t
j = 1

1− t

∞∑
k=1

t k

k
E[Sk; Sk > 0].

This is Pollaszek–Spitzer’s identity.

PROOF. Following the notation from [25], define the following stopping times:

T ∗ = min(n, 1 ≤ n ≤ ∞ : Sn < 0),

T
′ = min(n, 1 ≤ n ≤ ∞ : Sn ≤ 0),

Tj = min(n, 0 ≤ n ≤ j : Sn = mj ),

as well as the event

Ak = {S1 < 0, . . . , Sk−1 < 0, Sk > 0}.(56)

We first establish a more general result than given in the theorem, involving the generating
function of E[zSj−mj ] with respect to j . E[zSj−mj ] can be evaluated by averaging it over
the time Tj of the first occurrence of the value mj in the sequence S0, S1, . . . , Sj :

E[zSj−mj ] =
j∑

k=0

E[zSj−mj ; Tj = k](57)

= E[zSj−mj ; Tj = 0]+
j∑

k=1

E[zSj−mj ; Tj = k].

Assume first that Tj > 0. The event corresponding to Tj = k, k > 0, can be described
by the following set of inequalities:

Sk > 0, S1 > Sk, . . . , Sk−1 > Sk,

Sk+1 ≥ Sk, . . . , Sj ≥ Sk .

This implies that E[zSj−mj ; Tj = k] factors as

E[zSj−mj ; Tj = k] = E[1, Sk > 0, S1 > Sk, . . . , Sk−1 > Sk](58)

× E[zSj−Sk , Sk+1 ≥ Sk, . . . , Sj ≥ Sk],

since the variables Sk−S1, . . . , Sk−Sk−1 depend only on Z1, . . . , Zk , while the variables
Sk+1− Sk, . . . , Sj − Sk depend only on Zk+1, . . . , Zj . Now Sk > S0, Sk < S1, . . . , Sk <

Sk−1 implies that Zk + · · · + Z1 > 0, Zk + · · · + Z2 < 0, . . . , Zk < 0 and Sk+1 ≥
Sk, . . . , Sj ≥ Sk implies that Zk+1 ≥ 0, . . . , Zk+1 + · · · + Zj ≥ 0. Using (56), (58)
becomes

E[zSj−mj ; Tj = k] = P{Ak}E[zSj−k ; T ∗ > j − k], k > 0.(59)
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Assume next that Tj = 0. In this case one must have mj = 0 and at least one of the
inequalities Si ≤ 0, i ≤ j, has to hold (for otherwise Tj > 0), so that

E[zSj−mj ; Tj = 0] = E[zSj ; S1 ≤ 0 or S2 ≤ 0, . . . , or Sj ≤ 0]

= E[zSj ; T ′ ≤ j].

Since

E[zSj ] = E[zSj ; T ′ ≤ j]+ E[zSj ; T ′ > j],

one has that

E[zSj ; T ′ ≤ j] = E[zSj ]− E[zSj ; T ′ > j].

Combining the above result with (59) gives

E[zSj−mj ] = E[zSj ]− E[zSj ; T ′ > j]+
j∑

k=1

P{Ak}E[zSj−k ; T ∗ > j − k].(60)

Multiplying both the left-hand and the right-hand side of (60) by t j and summing over
all j ≥ 0 gives

∞∑
j=0

E[zSj−mj ] t j =
( ∞∑

j=1

P{Aj }t j

) ( ∞∑
j=1

E[zSj ; T ∗ > j]t j

)
(61)

+
∞∑

j=0

(E[zSj ]− E[zSj ; T ′ > j])t j ,

or equivalently
∞∑

j=0

E[zSj−mj ]t j = β(t)γ (t; z)+ e(t; z)− e∗(t; z),

where

β(t) =
∞∑

j=1

P{Aj }t j , γ (t; z) =
∞∑

j=1

E[zSj ; T ∗ > j]t j ,

(62)

e(t; z) =
∞∑

j=0

E[zSj ]t j and e∗(t; z) =
∞∑

j=0

E[zSj ; T ′ > j]t j .

Let us examine all the generating functions in (62) separately. Since

P{Aj } = P{S1 < 0, . . . , Sj−1 < 0, Sj > 0}
= P{S1 < 0, . . . , Sj−1 < 0, Sj ≥ 0} − P{S1 < 0, . . . , Sj−1 < 0, Sj = 0},

it follows that β(t) = τ(t)− α(t), where

τ(t) =
∞∑

j=1

P{S1 < 0, . . . , Sj−1 < 0, Sj ≥ 0} t j ,

α(t) =
∞∑

j=1

P{S1 < 0, . . . , Sj−1 < 0, Sj = 0} t j .
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From p. 413 of [7], it is known that

τ(t) = 1− exp

(
−
∞∑

k=1

t k

k
P{Sk > 0}

)
,

α(t) = 1− exp

(
−
∞∑

k=1

t k

k
P{Sk = 0}

)
.

Hence,

β(t) = exp

(
−
∞∑

k=1

t k

k
P{Sk = 0}

)
− exp

(
−
∞∑

k=1

t k

k
P{Sk > 0}

)
.

From p. 180 of [25], it is also known that

e∗(t; z) = exp

( ∞∑
k=1

t k

k
E[zSk ; Sk > 0]

)

and

γ (t; z) = exp

( ∞∑
k=1

E[zSk ; Sk > 0]

)
exp

( ∞∑
k=1

t k

k
P{Sk = 0}

)
(63)

= e∗(t; z) exp

( ∞∑
k=1

t k

k
P{Sk = 0}

)
.

Substituting formula (63) into (6) gives

∞∑
j=0

E[zSj−mj ]t j =
(
β(t) exp

( ∞∑
k=1

t k

k
P{Sk = 0}

)
− 1

)
e∗(t; z)+ e(t; z).(64)

Differentiating (64) with respect to z and setting z = 1 shows that

∞∑
j=0

E[Sj − mj ]t
j=

(
β(t) exp

( ∞∑
k=1

t k

k
P{Sk = 0}

)
−1

) (
e∗(t; z))′ |z=1+

∞∑
j=1

E[Sj ]t
j .

Since Sj is a symmetric random variable, E[Sj ] = 0 for all j , it follows that

−
∞∑

j=0

E[mj ]t
j =

(
β(t) exp

( ∞∑
k=1

t k

k
P{Sk = 0}

)
− 1

) (
e∗(t; z))′ |z=1.

Observing that(
β(t) exp

( ∞∑
k=1

t k

k
P{Sk = 0}

)
− 1

)

= − exp

( ∞∑
k=1

t k

k
P{Sk = 0}

)
exp

(
−
∞∑

k=1

t k

k
P{Sk > 0}

)
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holds, and combining this equation with

(
e∗(t; z))′ |z=1 = exp

( ∞∑
k=1

t k

k
P{Sk > 0}

) ∞∑
k=1

t k

k
E[Sk; Sk > 0]

shows that

∞∑
j=0

E[mj ]t
j = exp

( ∞∑
k=1

t k

k
P{Sk = 0}

) ∞∑
k=1

t k

k
E[Sk; Sk > 0].

This proves the claimed result.

We use the result of Theorem 6 to derive a formula for the asymptotic behavior of the
expectations E[X ( j)

i ], i ≥ 1, j ≥ 1, for both the Poisson and negative-binomial models.

6.1. The Multiset Model. In this section we derive an asymptotic expression for the
coefficients of the generating function (55) for the negative-binomial model. We start by
evaluating the probability P{Sk = 0}.

LEMMA 7. For k ≥ 1, it holds that

P{Sk = 0} = (1− ρ2)

(1+ ρ)2k
qk−1(ρ

2),

where

qk−1(x) = (1− x)k Pk

(
1+ x

1− x

)
,

and Pk (x) is the kth Legendre polynomial [21].

PROOF. We start by observing that Sk can be written in the form

Sk = (X1 + · · · + Xk)− (Y1 + · · · + Yk) = Uk − Vk,(65)

where Uk, Vk are independent variables with a negative-binomial distribution with pa-
rameters (k, ρ), so that

P{Sk = 0} =
∞∑

m=0

P{Uk = m}P{Vk = m} =
∞∑

m=0

P{Uk = m}2

= (1− ρ)2k
∞∑

m=0

(
m + k − 1

m

)2

ρ2m .

Consider

Gj (x) =
∞∑

m=0

(
m + j

m

)2

xm,
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where j is an integer. From p. 16 of [24] one has

(
j + m

m

)2

=
m∑

l=0

(
j

l

)2 (
2 j + m − l

2 j

)
,

and it follows that
(m+ j

m

)2
is the convolution of two binomial terms. This implies that

Gj (x) = G1, j (x)G2, j (x),

where

G1, j (x) =
∞∑

m=0

(
2 j + m

2 j

)
xm = 1

(1− x)2 j+1
,

(66)

G2, j (x) =
j∑

m=0

(
j

m

)2

xm .

G2, j (x) (qj (x) in the notation of [24, p. 81]) is a polynomial closely connected to the
Legendre polynomial Pj (x) of order k [21, p. 12], defined as

Pj (x) = 1

2 j

� j/2�∑
k=0

(−1)k
(

2( j − k)

j − k

) (
j − k

k

)
x j−2k .

More specifically, one has

G2, j (x) = qj (x) = (1− x) j Pj

(
1+ x

1− x

)
.

Now, setting j = k − 1 and x = ρ2 in (66) and (6.1) gives

P{Sk = 0} = (1− ρ)2k qk−1(ρ
2)

(1− ρ2)2k−1
= (1− ρ2)

(1+ ρ)2k
qk−1(ρ

2).(67)

This proves the desired result.

The next result is concerned with a closed form for Lρ(t) =
∑∞

k=1 P{Sk = 0} t k/k.

LEMMA 8. The function Lρ(t) is of the form

Lρ(t) = log

∣∣∣∣∣1− ρ2

2ρ2

((
1− ρ
1+ ρ

)2

t2 − 2
1+ ρ2

(1+ ρ)2 t + 1

)
+ (1− ρ)

2

2ρ2
t − 1+ ρ2

2ρ2

∣∣∣∣∣ .
PROOF. From (67) it follows that

Lρ(t) =
∞∑

k=1

t k

k
P{Sk = 0} =

∞∑
k=1

t k

k

(1− ρ2)

(1+ ρ)2k
qk−1(ρ

2).(68)



234 O. Milenkovic and K. J. Compton

Let

α(γ, x) =
∞∑

k=1

γ k

k
qk−1(x),

Lρ(t) = (1− x) α(γ, x),

where γ = t/(1+ ρ)2 and x = ρ2. Then

d

d γ
α(γ, x) =

∞∑
k=1

qk−1(x)γ
k−1 =

∞∑
k=0

qk(x)γ
k,

so that after expressing qk(x) in terms of the Legendre polynomial Pk(x), one obtains
the formula

d

d γ
α(γ, x) =

∞∑
k=0

Pk

(
1+ x

1− x

)
((1− x)γ )k .

The generating function of the Legendre polynomials is of the well known form
[21, p. 11]

∞∑
n=0

Pn(x)t
n = (

1− 2xt + t2
)−1/2

,(69)

where (1− 2xt + t2)−1/2 denotes the particular branch which tends to one as t goes to
zero. Hence, it follows that

d

dγ
α(γ, x) =

(
1− 2

1+ x

1− x
(1− x)γ + (1− x)2 γ 2

)−1/2

= (
1− 2(1+ x)γ + (1− x)2γ 2

)−1/2
.

This implies that

α(γ, x) =
∫ γ

0

dy(
1− 2(1+ x)y + (1− x)2 y2

)1/2 ,

since α(0, x) = 0. Using the result on p. 13 of [1], which states that∫
dy

(ay2 + by + c)1/2
= 1√

a
log |2√a (ay2 + by + c)1/2 + 2ay + b|,

for a > 0, one can show that∫ γ

0

dy

(ay2+by+c)1/2
= 1√

a

(
log |2√a(ay2 + by + c)1/2+2ay+b|−log |2√ac+b|) .

Therefore,

α(γ, x)= 1

1− x
log

∣∣∣∣1−x

2x
((1−x)2γ 2 − 2(1+x)γ+1)1/2+ (1− x)2

2x
γ− 1+x

2x

∣∣∣∣ ,
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since |2√ac + b| = |2(1 − x) − 2(1 + x)| = 4x for the function under consideration.
After reintroducing the expression for γ and x in terms of t and ρ, one gets

Lρ(t) = log

∣∣∣∣∣1− ρ2

2ρ2

((
1− ρ
1+ ρ

)2

t2 − 2
1+ ρ2

(1+ ρ)2 t + 1

)
+ (1− ρ)

2

2ρ2
t − 1+ ρ2

2ρ2

∣∣∣∣∣ ,
which is the desired result.

From Lemma 8 one has that

exp(Lρ(t))=
∣∣∣∣∣∣
1−ρ2

2ρ2

((
1−ρ
1+ρ

)2

t2−2
1+ρ2

(1+ρ)2 t+1

)1/2

+ (1− ρ)
2

2ρ2
t− 1+ρ2

2ρ2

∣∣∣∣∣∣ .
The expression within the absolute value of the above formula can easily be shown to
be negative, so that the function exp(Lρ(t)) is of the form

exp
(
Lρ(t)

) = 1+ ρ2

2ρ2
− (1− ρ)

2

2ρ2
t− 1− ρ2

2ρ2

((
1− ρ
1+ ρ

)2

t2 − 2
1+ ρ2

(1+ ρ)2 t + 1

)1/2

.

The function ((
1− ρ
1+ ρ

)2

t2 − 2
1+ ρ2

(1+ ρ)2 t + 1

)1/2

is the generating function of the Gegenbauer (ultra-spherical) polynomials C−1/2
j (x) [23,

p. 276], defined as

Cω
j (x) =

� j/2�∑
k=0

(−1)k (ω)j−k(2x) j−2k

k! ( j − 2k)!
,

where

(a)j = a(a + 1) · · · (a + j − 1).

LEMMA 9. The asymptotic expression for the coefficient

[t j ] exp(Lρ(t))(70)

is of the form

1− ρ
2ρ2

√
ρ

π

1

j3/2
+ Oρ( j−1),(71)

where the constant in the O term depends on ρ.

PROOF. The proof is a direct consequence of Darboux’s method [15, p. 447]. For an
alternative proof, using the relationship that exists between the above described ultras-
pherical polynomials and the derivative of Legendre polynomials, see [19].
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The second generating function in the product of Theorem 6 cannot be determined in
a form simple enough for direct application. On the other hand, the asymptotic behavior
of the function E[Sk; Sk > 0]/k can be determined from the Central Limit Theorem
[3, p. 357]. This follows from the fact that Sk is a partial sum of independent random
variables Zi with finite mean and variance. Therefore, if Sk is asymptotically a Gaussian
N (0, σ ) random variable, one can prove, based on p. 338 of [3], that

E[Sk; Sk > 0]

k
∼ 1

k
√

2π σ

∫ ∞
0

x exp

(
− x2

2σ 2

)
dx = σ

k
√

2π
,

where σ 2 = ks2, and s2 = 2 ρ/(1 − ρ)2 is the variance of Zi (the difference of two
geometrically distributed random variable with parameter ρ). Hence

E[Sk; Sk > 0]

k
∼ 1

1− ρ
√
ρ

π k
.(72)

The approximation error of (72), which is important for later applications, can be found
from the asymptotic Edgeworth expansion [7, p. 531]. Since the distribution of Zi is
symmetric around the origin (i.e. P{Zk = u} = P{Zk = −u}), it follows that all the
odd order central moments of Zi are equal to zero. In this case the Edgeworth expansion
for the approximate asymptotic probability density function of Sk is of the form

η(x)+ η(x)
(

1

k

µ4 − σ 4

24 σ 4
H4(x)+ · · ·

)
,

where η(x) is the Gaussian probability density function and H4(x) is the Hermite poly-
nomial of order four [21]. The moments of Zi can be found in a straightforward manner
to be

σ 2 = 2 ρ

(1− ρ)2 , µ4 = 2r(1+ 14r + 17r2 + 4r3)

(1− r)4
.

Also, the numerical value of the integral

1√
2π

∫ ∞
0

x exp

(−x2

2

)
H4(x) dx

can be easily found to be 44. Hence, the asymptotic expansion of E[Sk; Sk > 0]/k is of
the form

1

1− ρ
√
ρ

πk

(
1+ 1

24k

1+ 13ρ + 17ρ2 + 4ρ3

ρ
+ · · ·

)
.

One can show, using the definition of the cumulants [7, p. 531], that the functions
depending on ρ, in the above expansion, are rational. For the mth term of the expansion,
the numerator of this rational function is a polynomial of degree m, the denominator is
ρm/2−1 and this rational function is multiplied by 1/km/2−1.

Having derived the above asymptotic formulas, we proceed as follows. First, we
establish an asymptotic formula for E[mj ] = E[X ( j)

1 ], using the information provided
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by the asymptotic formula for E[Sk; Sk > 0]/k, (6) and some specialized Tauberian
theorems. Then we find an asymptotic expression for the expected value of the degree
of c(k). The error estimates derived in Lemma 9 and using the Edgeworth expansion
will provide sufficient information for verifying that the transfer theorem conditions
(described in connection with Theorem 6 in [20]) hold in this case. This will allow us
to conclude that the asymptotic formula for the expected value of the degree of c(k) has
the same form in the transform and in the inverse transform domain.

THEOREM 10. For E[mj ] specified by the generating function (6), one has the following
asymptotic formula:

E[mj ] ∼ 1

ρ

E[Sj , Sj > 0]

j
∼ 1

(1− ρ)√ρ π j
.

PROOF. Consider the two generating functions on the right-hand side of (6). First, both
generating functions have non-negative coefficients, and the radius of convergence of
these series can be determined from the ratio test. In both cases the radius of convergence
is equal to one. Furthermore, the probability P{Sk = 0} converges to zero at the rate
of 1/
√

k (due to the property that Sk is asymptotically Gaussian). Therefore the series∑
k P{Sk = 0}/k converges.
The above discussion, together with the asymptotic estimates of Lemma 9 and (72),

shows that the conditions of Wood’s Tauberian theorem are satisfied (see Appendix 2).
If

ak = E[Sk; Sk > 0]

k
,

c(k) = [t k] exp(Lρ(t)),

then

E[mj ] = E[X ( j)
1 ] =

j−1∑
k=0

ak cj−k ∼ aj

∞∑
k=0

ck = 1

ρ (1− ρ)
√
ρ

π j
,(73)

where the last equality follows from the fact that exp(Lρ(1)) = 1/ρ. This proves the
claimed result.

In Appendix 2 we also compute the error term in the asymptotic formula given above.
Notice that error terms based on Tauberian theorems are usually of poor quality, and that
the convergence to the correct asymptotic is usually much faster than predicted by these
theorems.

THEOREM 11. The expected value of the degree of c(k) in the transform domain is
asymptotically of the form

2

3(1− ρ)√ρ π N 3/2.
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PROOF. From (24), it follows that

E[deg(c(k))] =
N−1∑
m=1

(N + 1− 2m)E[X (m)
1 ]

= (N + 1)
N−1∑
m=1

E[X (m)
1 ]− 2

N−1∑
m=1

mE[X (m)
1 ].

Substituting (73) together with the error estimates derived in this section and Appendix
2 into the above equation gives

E[deg(c(k))] = (N + 1)

(
1

(1− ρ)√ρ π
N−1∑
j=1

1√
j
+ O

(
N−1∑
j=1

1

j 9/16

))

− 2

(
1

(1− ρ)√ρ π
N−1∑
j=1

√
j + O

(
N−1∑
j=1

j 7/16

))
,

so that after using the estimates for the summations in the above equations as given in
Appendix 2, we obtain

E[deg(c(k))] = 2N 3/2

(1− ρ)√ρ π + O(N 1+7/16)− 2

(
2N 3/2

3(1− ρ)√ρ π + O(N 1+7/16)

)

= 2

3(1− ρ)√ρ π N 3/2 + O(N 1+7/16).

This proves the claimed result.

Theorem 11 combined with estimates of the dependence of the error term on ρ can
be used to verify that the transfer theorem, and hence Theorem 8 as well, apply in this
case. We do not present the details of these derivations in this paper, but we point out
that this result is intuitively clear from the fact that the error terms are rational functions
in ρ, with denominator ρ. In this case the dominant factor in the error term is of the form

1

N

(n+N
n+1

)
(n+N−1

n

) = n + N

(n + 1) N
,

which for large n and N is negligible compared with the main term, independent of the
relationship between the parameters n and N .

THEOREM 12. The asymptotic formula for the expected value of the degree of c(k) in
the multiset R model is of the form

2

3
√
πn

(n + N )3/2
√

N .

This theorem follows directly from Theorem 11 by setting ρ = n/(n + N ).
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7. Summary of Results. In this paper we addressed the problem of average time
analysis of Gosper’s algorithm for indefinite summation. We defined several probabilistic
models for the space of input functions that capture the most important characteristics
of input functions encountered in practice. The proposed models represent special cases
of some well known classical urn models. Based on the proposed models and some new
transform techniques, we derived asymptotic expressions for the expected number of
linear equations Le that have to be solved in order to obtain a closed form solution for
the sum. These expressions are of the following form:

• For the uniform T model, one can prove that in the transform domain the following
asymptotic upper bound holds:

Le ≤ N log N

log p(λ)
− 2 N log N

log log N
,

where p is a function of λ that does not implicitly depend on N .
• For the multiset T model we proved that

Le ∼ N log N

log ((n + N ) /n)
(74)

provided that n/(n + N ) > 0.2 holds.
• For the uniform R model, one can prove that for n/N ≥ 5 it holds that

Le ∼ 2

3

√
n

π
exp

(√
N

π n

ζ( 3
2 )

2

)
N .

• For the multiset R model, we showed that

Le ∼ 2

3
√
πn

(n + N )3/2
√

N .
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Appendix 1. The probabilistic models for the distribution of the integer roots of tk
described in Section 3 are examples of classical urn models [6]. If the values of the roots
are represented by the urns, numbered as 1, 2, . . . , N , then the balls distributed into the
urns determine the multiplicity of each root. For example, if three balls are placed in urn
number five, then the root equal to five has multiplicity three.

An urn model for which n distinct balls are distributed into N distinct urns ran-
domly and equally likely is known as the uniform or Maxwell–Boltzman model. Clearly,
this represents the uniform model for the distribution of the roots of tk described in
Section 3. For the uniform model, the joint distribution of the multiplicities of the roots
Xi , i = 1, . . . , N , is multinomial, and

P{X1 = m1, . . . , X N = m N } = 1

N n

(
n

m1, . . . ,m2

)
,
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with
∑N

i=1 mi = n. Another widely used model, known as the Bose–Einstein model,
considers the balls to be indistinguishable, and the urns to be distinguishable. This
statistic corresponds to the second model for the distribution of the roots of tk described
in Section 3. For this model, the joint distribution of the multiplicities of the roots can
be described as

P{X1 = m1, . . . , X N = m N } = 1(n+N−1) ,(75)

for any choice of a multiset of size n formed over the alphabet {1, 2, . . . , N }.
For both models, the variables Xi representing the multiplicities of each root are not

independent, and the analysis of any function involving these variables is quite difficult.
On the other hand, the dependence enters only through the requirement that the sum of
the variables is fixed. In order to overcome this type of problem for the uniform model,
one can assume that the multiplicities Xi are generated for each value of i = 1, . . . , N
independently by a Poisson process with mean λ (where the choice of λ is described
later). In order to obtain the correct result, one has to apply the inverse Poisson transform
[16]. Assume that the quantity one wants to estimate for the algorithm under the Poisson
assumption is γ (λ, N ) and under the multinomial model g(n, N ). Then

γ (N , λ) =
∑
k≥0

g(N , k)P{X1 + X2 + · · · + X N = k},(76)

where P{X1 + X2 + · · · + X N = k} is the probability that a sum of N independent
Poisson variables with parameter λ, is equal to k. The sum of independent Poisson
random variables is also a Poisson variable, with a parameter equal to the sum of the
means of the individual variables. From (76) it follows that g(n, N ) can be recovered
from γ (λ, N ) as

g(n, N ) = n!

N n
[λn](eNλ γ (λ, N )).(77)

For the second model of Section 3, the Poissonization method fails to produce the
correct answer, since the distribution of the balls is not uniform. For this model, the
correct solution can be obtained by using the negative-binomial transform, a transform
introduced in a companion paper [20].

Assume that the multiplicity of each root in the multiset model is generated inde-
pendently by a geometric distribution (i.e. a distribution with probability mass function
P{X = k} = (1−ρ)ρk , where ρ is a parameter to be described later). Now, following the
same approach as for the case of the Poisson transformation, we see that the probability
mass function P{X1+ X2+ · · · + X N = k} = (n+N−1

n

)
(1− ρ)ρk is negative-binomial,

since a sum of independent, geometrically distributed random variables is a variable
with a negative-binomial distribution [20]. Hence, we can define a negative-binomial
transform of the form

γ (ρ, N ) =
∑
n≥0

(
n + N − 1

n

)
ρn(1− ρ)N g(n, N ).(78)

The inverse negative-binomial transform is of the form

g(n, N ) = 1(n+N−1
n

) [ρn]

(
γ (ρ, N )

(1− ρ)N

)
.(79)
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Based on (77) and (79) one can show that under certain conditions g(n, N ) and γ (λ, N )
(or correspondingly γ (ρ, N )) have the same asymptotic behavior for large n, and N
a function of n. The conditions for the validity of this type of asymptotic result are
summarized in the following theorem.

THEOREM 13. Let f (λ, N ) be a functions that has a Taylor series with respect to λ,
and for all N , given by

f (λ, N ) =
∞∑

k=0

Fk(N ) λ
k,(80)

where it is assumed that Fk(N ) is strictly positive for sufficiently large N , and let
γ (λ, α(n)) be a regular and single-valued function in some open ring R = {R1 <

|λ| < R2, 0 ≤ R1 < R2 < 1}. Additionally, assume that γ (λ, α(n)) satisfies the
following asymptotic equality:

γ (λ, α(n)) = γ̂ (λ, α(n))
(

1+ O

(
y(λ)

h(n)

))
,(81)

where γ̂ (λ, α(n)) = c(n)b(λ), and y(λ) and b(λ) (which do not depend on n) are regular
and single valued in the ringR. Let y(λ)b(λ) have a single dominant singularity. Assume
furthermore that the coefficient Ym of the Laurent expansion of y(λ)b(λ) with respect
to λ and the coefficient Bm of the Laurent expansion of b(λ) have the property that
Ym /(Bm h(n))→ 0, uniformly in m ≤ n, as n→∞. Let

g(n, N ) = 1

Fn(N )
[λn]{ f (λ, N )γ (λ, N )},(82)

and let N be a function of n, α(n), such that limn→∞ Fn−1(α(n))/Fn(α(n)) exists, and
is equal to r . Furthermore, let An < r be a sequence such that

An ∼ Fn−1(α(n))

Fn(α(n))
∼ r.(83)

Then

g(n, α(n)) ∼ γ̂ (An, α(n)) ,(84)

provided the following conditions are satisfied:

(A1) b(λ) converges at λ = An to a non-zero value.
(A2) For some constant C , and for both positive and negative integer values of m such

that |m| ≤ n and large n, it holds that∣∣∣∣ Fn−m(α(n))

Fn(α(n))

∣∣∣∣ ≤ C Am
n .(85)

The proof of this result is given in [20].
For the Poisson and negative-binomial transform Fn(N ) = N n/n! and Fn(N ) =(n+N−1
n

)
, respectively. Hence, one can show that condition (A2) is satisfied provided

that we take λ = An = n/N and ρ = An = n/(n + N ), respectively. The above
theorem, together with the functions for λ and ρ described above, is used to determine
the asymptotic behavior of the expected value of the degree of c(k).
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Appendix 2. Tauberian theorems are partial converses of Abel’s theorem [13], con-
cerned with deducing the properties of sequences based on the properties of their
weighted averages. In this work we are only concerned with Tauberian theorems that
establish asymptotic results for the coefficients of the product of two generating func-
tions, provided the asymptotic behavior of the coefficients of the constituent generating
functions is known. A Tauberian theorem we applied several times to problems in this
paper is Woods’ Tauberian theorem [28], stated below.

THEOREM 14. Let a(λ), c(λ) be two power series of the form

a(λ) =
∑
m≥0

am λ
m and c(λ) =

∑
m≥0

cm λ
m .(86)

Assume that

lim
n→∞

an−1

an
= r.

If

am ∼ C λ−m

ms
and cm = O

(
λ−m

m

)
,

for some constant C > 0, and s < 1, and if c(λ) converges absolutely at λ = r to some
non-zero value, then

bm ∼ c(λ) am .

We determine next the error term in the Woods Tauberian term, for the case of the
generating functions given in Theorem 6. For this case, cm ∼ m−3/2 and am ∼ m−1/2.

THEOREM 15. The error term in the asymptotic formula of Thereom 6, derived from
Woods’ Tauberian theorem is O(m−9/16).

PROOF. From the derivation of Woods’ Tauberian theorem [4], it follows that we have
to estimate the following terms:

T1 =
∣∣∣∣∣ c(1)−

∑
l≤k

cl

∣∣∣∣∣ , T2 =
∑
l≥0

|cl |
∣∣∣∣1− ak−√k

ak

∣∣∣∣ , T3 =
∑
l≤√k

|cl |,

T4 = O

((
Qk k

Mk

)µ)
, T5 = O

((
Mk

k

)1−µ)
,

where

Qk =
∑
l≥√k

|cl | and Mk = k
√

Qk +
√

k.

In order to find estimates for T1, . . . , T5, we need to recall some simple results from
number theory, concerning the order of magnitude of certain simple summation
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functions [2, p. 55]:

∑
k≤x

1

ks
= x1−s

1− s
+ ζ(s)+ O(x−s), s > 0, s �= 1;

∑
k>x

1

ks
= O(x1−s), s > 1;

∑
k≤x

ks = x1+s

1+ s
+ O(xs), s > 0,

where ζ(x) is the Riemann Zeta-function. Based on the above formulas, the estimates
for T1, . . . , T5 become

T1 =
∑
l≥k

1

l3/2
= O(k1−3/2) = O

(
1√
k

)
,

T2 ≤ ζ

(
3

2

) ∣∣∣∣∣1−
√

k√
k −√k

∣∣∣∣∣ = C

∣∣∣∣∣∣1−
(

1+
√

k

k −√k

)1/2
∣∣∣∣∣∣

≤ C

(
1− 1+

√
k

k −√k

)
= O

(
1√
k

)
,

T3 =
∑
l≤k

|cl | −
∑
l≤√k

|cl | = O

(
1√
k

)
+ ζ

(
3

2

)
− O

(
1

k1/4

)
− ζ

(
3

2

)
= O

(
1

k1/4

)
,

Qk =
∑
l>
√

k

|cl | = O(k(1/2)(1−3/2)) = O

(
1

k1/4

)
, Mk = k

k1/8
+
√

k = O(k7/8),

and

T4 = O

(
1

k1/16

)
, T5 = O

(
1

k1/16

)
.

When combined, T1, . . . , T5 give an error term for E[mk] (both the Poisson and negative-
binomial models) of the order of ak / k1/16, which is O(1/k9/16).

LEMMA 16 [17]. Consider two arbitrary sequences an and bn , such that

1+
∞∑

n=1

an xn = exp

( ∞∑
n=1

bn xn

)

holds in a neighborhood of the origin.

• If |bn| ≤ K n−α for n ≥ 1, and some K > 0 and α > 1, then |an| ≤ eK Ln−α , for
n ≥ 1, where L = 2α+1 ζ(α), and ζ(α) is the Riemann Zeta-function.
• If bn = o

(
n−α

)
as n→∞, for some α > 1 then an = o

(
n−α

)
.
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