
Algorithmica (1992) 7:51-75 Algorithmica
�9 1992 Springer-Verlag New York Inc.

Efficient Convexity and Domination Algorithms for
Fine- and Medium-Grain Hypercube Computers 1

Ed Cohen, z Russ Miller, 2 Elias M. Sarraf, 3 and Quentin F. Stout 4

Abstract. This paper gives hypercube algorithms for some simple problems involving geometric
properties of sets of points. The properties considered emphasize aspects of convexity and domination.
Efficient algorithms are given for both fine- and medium-grain hypercube computers, including a
discussion of implementation, running times and results on an Intel iPSC hypercube, as well as
theoretical results. For both serial and parallel computers, sorting plays an important role in geometric
algorithms for determining simple properties, often being the dominant component of the running
time. Since the time required to sort data on a hypercube computer is still not fully understood, the
running times of some of our algorithms for unsorted data are not completely determined. For both
the fine- and medium-grain models, we show that faster expected-case running time algorithms are
possible for point sets generated randomly. Our algorithms are developed for sets of planar points,
with several of them extending to sets of points in spaces of higher dimension.

Key Words. Hypercube, Parallel algorithms, Convex hull, Domination, Computational geometry.

1. Introduction. Computational geometry is a rapidly growing field, with applica-
tions to robotics, VLSI design, plant layout, and many other areas. Numerous
serial algorithms have been developed for a large number of geometric problems,
forming a somewhat organized body of results [PSI. However, parallel algorithms
for problems in computational geometry have lagged behind serial algorithms,
with most of the parallel algorithms appearing in the last few years [AG], [ACG*].
In this paper we consider hypercube algorithms for a few simple problems
involving sets of points in two-dimensional Euclidean space, and provide efficient
algorithms for problems involving convexity and domination (defined below). We
also indicate some extensions to data in higher dimensions. While the algorithms
are designed explicitly for hypercube computers, they borrow ideas used in
geometric algorithms for other parallel computers, and they in turn can be utilized
on other parallel computers.

1 The research of E. Cohen, R. Miller, and E. M. Sarraf was partially supported by National Science
Foundation Grant ASC-8705104. R. Miller was also partially supported by National Science Founda-
tion Grants DCR-8608640 and IRI-8800514. Q. F. Stout's research was partially supported by National
Science Foundation Grant DCR-85-07851, and an Incentives for Excellence Grant from the Digital
Equipment Corporation.
2 Department of Computer Science, State University of New York at Buffalo, Buffalo, NY 14260, USA.
3 Amherst Systems Inc., 30 Wilson Road, Buffalo, NY 14221, USA.
4 Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor,
MI 48109, USA.

Received April 21, 1988; revised May 9, 1989. Communicated by Alok Aggarwal.

52 E. Cohen, R. Miller, E. M. Sarraf, and Q. F. Stout

Algorithms are given for both fine- and medium-grain hypercubes. In afine-grain
machine, such as the 65,536 processor Connection Machine manufactured by
Thinking Machines, Inc., each processor is quite simple, typically bit-serial with
a small amount of memory. For the problems we consider, we assume that each
processor in a fine-grain machine starts with one data point.

In a medium-grain machine there are many microprocessor-like processors, each
with a substantial amount of memory. For our geometric problems, we assume
that each processor in a medium-grain machine starts with many points, perhaps
thousands, and that there may be a thousand processors. Hypercubes from
NCUBE, Intel, and FPS are examples of medium-grain machines, though appar-
ently only NCUBE has installed a thousand-processor machine so far.

Throughout this paper, an n-cube denotes an n-dimensional binary hypercube
with 2" processors, labeled with n-bit binary strings. These labels may be inter-
preted as binary representations of numbers from 0 to 2" - 1, where two processors
are connected if and only if their labels differ by exactly one bit. Note: we use lg to
mean log 2, and In to mean 1Oge.

The best serial and parallel solutions for many geometric problems depend upon
sorting, and in fact sorting is often the slowest part of the algorithm [PS]. For
hypercubes this causes a problem since it is not clear that good sorting algorithms
are known with respect to all possible input. A sorting algorithm with the current
best worst-case time on fine-grain hypercubes is Bitonic Sort [Ba], which sorts 2 n
items stored one per processor in an n-cube in | 2) time. We define Sort(2") to
be the time to sort 2 n items in an n-cube. Since the largest known lower bound
for sorting on an n-cube is f~(n), it is not clear that Bitonic Sort is optimal. If an
expected-case sorting algorithm can be tolerated, then the algorithm of [RV] can
be used to sort 2" items stored one per processor on an n-cube, in expected |
time.

For medium-grain hypercubes, the best sorting algorithms are found in [CS2]
and [P]. These algorithms sort 2 c" items per processor in an n-cube (for a total
of 2 "(1 +c) items) in | time. For any fixed c > 0 this achieves linear speedup,
but requires that the number of items per processor grows as a power of the
number of processors. It is also not known whether the constants involved are
low enough to make these algorithms of practical interest. Practical algorithms
with good observed performance are known [W], achieving linear speedup with
far fewer items per processor, but it is not clear how low the item/processor ratio
can go and still attain linear speedup. Further, these practical algorithms can
exhibit poor worst-case behavior.

Because of the dependence on sorting, and the uncertain status of sorting times,
several of our algorithms are first developed for presorted data. Notice that
given a presorted algorithm with running time T(2"), an arbitrary input version
of the algorithm will solve the same problem in T(2") + Sort(2") time. We also
analyze algorithms for data sets consisting of random points, chosen independently
and uniformly from a variety of unit-area regions, such as a square or circle. In
this situation many of the points can be quickly eliminated from further considera-
tion without any sorting, which has the effect of r~tpidly reducing the problem to
one involving far fewer points. Although our algorithms are optimized for

Efficient Convexity and Domination Algorithms for Hypercube Computers 53

randomly distributed data, each algorithm works correctly no matter what the
distribution.

In Section 2 we define the various geometric properties for which we develop
algorithms. In Section 3 some global parallel operations are defined and their
implementation times on the hypercube are given. These form the building blocks
of our algorithms. In Section 4 we give algorithms for fine-grain machines, using
worst-case analyses. Section 5 contains efficient algorithms for sets of random
points, using expected-case analyses. In that section we also evaluate alternative
algorithms by analyzing the tradeoffs that occur. One important point in such an
analysis is that we need to deal with the expected maximum completion time,
rather than the expected completion time, when a task is broken into parallel
subparts. Finally, Section 6 contains additional comments.

2. G e o m e t r i c P r o p e r t i e s . Throughout this paper, point without further modifiers
means a point of Euclidean 2-space, given via Cartesian coordinates. To avoid
various definitional and algorithmic complications of little interest, we assume that
no set contains duplicate points. Given two points (x 1, Yl) and (x 2, Y2), we say
that (xl, Yl) dominates (x2, Y2) if x 1 > x 2 and Yl > Y2. Given a set S of points, a
point p in S is maximal if it is not dominated by any other point. This definition
extends to higher dimensions in the obvious manner. By determining the maximal
points of S we mean that there is a Boolean flag associated with each point in S,
and at the end of the algorithm a point's flag is true if the point is a maximal point
of S, otherwise the flag is false. Figure 1 illustrates maximal points. We use maximal
(S) to denote the set of maximal points of S. Notice that no two maximal points
can have the same x-coordinate, and no two can have the same y-coordinate. Also
notice that if the maximal points are ordered by decreasing x-coordinates, then
their y-coordinates are increasing.

The convex hull of a set S of points, denoted hull(S), is defined to be the minimum
convex set containing S. A point p ~ S is an extreme point of S if p r hull(S - {p}).
For finite sets, p is an extreme point if and only if it is a vertex of the smallest
convex polygon containing all points of S. Determining the extreme points of S is

|

�9 �9 (~)

�9 �9

Fig. 1. Maximal points.

(~- Maximal

|
|
. |

54 E. Cohen, R. Miller, E. M. Sarraf, and Q. F. Stout

defined analogously to determining the maximal points of S. We use extreme(S)
to denote the set of extreme points of S.

Two properties that are used repeatedly are

maximal(S ~ T) _~ maximal(S) w maximal(T)

and

extreme(S u T) ~ extreme(S) u extreme(T),

for any sets S and T.
Besides determining the extreme points of a set, we often need to determine the

edges of the convex hull. To do so, it is convenient to number the extreme points
in counterclockwise order, starting with the topmost point. (If there are two
topmost points, then choose the rightmost one of these as the starting point.) If
a point has number i, then it is an endpoint of edges to points numbered i - 1
and i + 1, where these indices are interpreted modulo the number of extreme
points.

Notice that any set can have at most two topmost extreme points, and similarly
has at most two bottommost , two leftmost, and two rightmost extreme points.
Also notice that in a counterclockwise traversal of extreme points from the
rightmost extreme point (topmost in the case of a tie) to the topmost one (rightmost
in the case of a tie), the extreme points occur in decreasing x-coordinate order,
and all are maximal. However, not all maximal points are extreme points.

One technique for reducing the amount of data to be combined in finding
extreme points of a set S is first to find all the maximal points of S (call this set
M1). Next, find all the maximal points M 2 using the revised definition that (x 1, Y0
dominates (x 2, Y2) if x 1 _> x 2 and Yl -< Y2, then, all maximal points M 3 where
domination is revised to xl < x2 and yl _< Y2, and, finally, all maximal points M 4
where domination is revised to xt < x2 and Yl 2 Y2. Since

extreme (M 1 ~ M2 ~ M3 u M,) = extreme(S),

if maximal points can be found rapidly and if few points are maximal under one
of these four definitions, then the problem of determining extreme points of the
original set has been rapidly reduced to finding extreme points of a much smaller
set.

Several properties of a point set can be quickly determined from its extreme
points. For example, the diameter of a set is the maximal (Euclidean) distance
between any pair of points, and it is easy to see that the diameter of a set is the
diameter of the extreme points of the set. A smallest enclosing rectangle of a set S
is a rectangle of minimal area containing S. Such a rectangle must have one side
along an edge of the convex hull of S, with all four sides touching the convex hull
[FS].

Many of the geometric techniques and facts used in this paper are also used for
serial algorithms. A fairly comprehensive overview of serial algorithms for compu-

Efficient Convexity and Domination Algorithms for Hypercube Computers 55

tational geometry appears in [PS], containing extensive references to most of the
simple facts mentioned here without attribution.

3. Global Operations. Global operations form the foundation of our algorithms.
These include broadcast, in which one processor sends a value to all others, and
report, in which all processors start with a value and there is a commutative
semigroup operation such as maximum or sum which is applied to the values,
resulting in a single value arriving at a designated processor. (Throughout this
paper we assume that all relevant semigroup operations can be computed in
constant time). Well-known hypercube algorithms can be used to perform these
operations in t0(n) time on an n-cube.

Another common operation is parallel prefix, in which every processor i starts
with a value v~ and ends up with V o * ' " * v ~ - l , where �9 is some associative
operation. The postfix operation is defined analogously. Both prefix and postfix
can be computed in to(n) time on an n-cube in a straightforward manner. On a
medium-grain n-cube, if each processor starts with m values, then report, prefix,
and postfix can be accomplished in to(n + m) time.

Routing on a parallel computer, namely delivering messages from source nodes
to their destinations, can be accomplished via a fixed number of sorting steps
[MS3], so arbitrary routing on a fine-grain n-cube can be accomplished in | 2)
time if each processor initiates a fixed number of messages and receives a fixed
number of messages. If there is a constant c < 1 such that only 2 c" items are being
routed in an n-cube, then the routing can be accomplished in | time, where
the implied constant depends upon c, by using the sorting algorithm in [NS].
While the best worst-case time to sort on a fine-grain n-cube is still unknown, it
was shown in [-Ba] that merging two sorted sets stored one item per processor
can be completed in to(n) worst-case time.

For all of the O(n)-time operations it is easy to see that the times are optimal
in the worst case since information starting in one processor of an n-cube might
need to travel at least n communication links to reach its bit-complemented
destination processor.

An interesting use of parallel prefix and merging can be used to solve a variety
of search problems. A simple example follows. Suppose R = {r l , . . . , rN} is an
ordered set of real numbers such that

--o0 = r o < r 1 < " " ~ r N < r N + 1 = - ~ - ~ ,

and S is a set of M or fewer real numbers. Suppose for each s e S we want to find
the elements r i, ri+ 1 e R such that r~ < s _< r~+ 1- If R and S are sorted and stored
one per processor in an lg(N + M)-cube, then, by merging them, each s e S will
fall between the appropriate elements of R. Using a prefix operation to find the
largest element of R occurring earlier in the sorted order, and a postfix operation
to find the least element of R occurring later, the problem is solved
in O(log(N + M)) time. Variations of this operation have been called a grouping
operation or a merge search [MS2], [St]. Here it is referred to as ordered search.

56 E. Cohen, R. Miller, E. M. Sarraf, and Q. F. Stout

4. Fine-Grain Algorithms. Throughout this section we assume that points are
initially stored one per processor in a fine-grain hypercube. Let Sort(N) denote
the best worst-case time to sort N items stored one per processor in an lg(N)-cube.
Because several algorithms involve sorting, and Sort(N) is only known to be
bounded between f~(log N) and O(log 2 N), we state the times of some algorithms
in terms of Sort(N). In all cases, the algorithms, statements of the results, and
analyses remain correct if time is interpreted as expected-case time and Sort(N) is
the best expected-case time to sort.

4.1. Domination. In FAG] it was shown that a simple "sweep" algorithm can
be used to find maximal points efficiently on almost any parallel computer. First
sort the points by decreasing x-coordinate (breaking ties by decreasing y-co-
ordinate). Then use a prefix computation to determine, for each point, the largest
y-coordinate of any preceding point. Note that a point p is maximal if and only
if p's y-coordinate is greater than this value. This is a direct parallelization of a
natural serial solution to the problem, having the nice property that it yields
optimal algorithms on a variety of parallel computers of interest. For the
hypercube it gives the following.

PROPOSITION 1. Given a set of no more than N points stored one point per processor
in an lg(N)-dimensional hypercube, if the points have been presorted by x-coordinate,
then the maximal points can be determined in | N) time. I f the points have not
been presorted, then the maximal points can be determined in | time.

The number of points dominated by each maximal point can be determined by
counting the number of points a maximal point does not dominate. If a maximal
point (x, y) does not dominate (x', y'), then it must be that either x < x' or y < y',
but not both since (x', y') does not dominate (x, y). The number of dominated
points with greater x-coordinate is the position of (x, y) when the set is sorted in
decreasing x-coordinate order, minus the number of preceding points with the
same x-coordinate. The number of preceding points with greater y-coordinate can
be similarly determined. The number of points with the same x-coordinate can be
determined by a prefix operation. Note that having presorted data will not help
the asymptotic running time since this algorithm uses two sorts.

THEOREM 2. Given a set of no more than N points stored one point per processor
in an lg(N)-dimensional hypercube, for every maximal point, the number of points it
dominates can be determined in O(Sort(N)) time.

Next we consider the problem of determining for every point (not just maximal
points) the number of points it dominates. We exploit a multidimensional divide-
and-conquer approach [Be] to solve this problem. The sort- or merge-dominated
algorithm is based on the following observation. Suppose point sets S and T are
such that, for every point (x, y)~ S and (x', y')E T, either x < x' or x = x' and
y < y'. Then no point in S dominates any point in T, and a point p s T dominates
each point in S with y-coordinate no greater than p's. The number of points that

Efficient Convexity and Domination Algorithms for Hypercube Computers 57

p ~ T dominates in S can be determined by sorting the two sets by y-coordinate,
breaking ties by placing smaller x-coordinates first, and then taking p's position
minus the number of points in T that precede p. (If S and T were initially sorted,
then this reduces to a simple use of merging.) A generalization of the result follows.

THEOREM 3. Fix d >_ 2. Given a set S of no more than N d-dimensional points
stored one per processor in an lg(N)-dimensional hypercube, determining the number
of points every point dominates, or determining the number of points dominating every
point, can be accomplished in O(log a N) time.

4.2. Convexity. While extreme points are similar to maximal points, the differ-
ences can also be quite significant. For example, if the points are sorted by
x-coordinate, then no simple information from points lying on one side of a point
will provide enough information to decide whether or not the point is an extreme
point. Using a divide-and-conquer approach first applied to PRAM algorithms,
Cypher and Sanz [CS1] developed a | 2 N)-time algorithm, and Miller and
Stout [MS1] developed a | algorithm, for determining the extreme
points of a set of N points on an lg(N)-dimensional hypercube. The [MS1]
algorithm has the additional property that it needs only | N) time if the~data
is presorted. The divide-and-conquer algorithm given in [MS1] finds lines of
support between linearly separable convex hulls based on the assumption that the
points are presorted so that there are N 1/4 groups of N 3/~ points, where the ith
group is stored in the ith subhypercube. This yields a running time recurrence of
the form T(N) = T(N 3/r + | N), which is | N).

PROPOSITION 4. Given a set S of no more than N points stored one per processor
in sorted order in an lg(N)-dimensional hypercube, in | N) time the extreme
points can be determined where the counterclockwise numbering and the coordinates
of the preceding and following extreme points are known for every extreme point.

Given the extreme points and order information, several other properties of the
convex hull can be easily determined by triangulating the convex hull so that the
first point in the counterclockwise ordering is a vertex of every, triangle. Using
this, we obtain

COROLLARY 5. Given a set of no more than N points stored one per processor in
sorted order in an lg(N)-dimensional hypercube, in | N) time the area, centroid,
and perimeter of the convex hull of the points can be determined.

To determine a smallest enclosing box for a set S, first determine for each hull
edge e i a smallest enclosing box Bi containing an edge collinear with e~. Then a
smallest enclosing box of the set is a minimum area box of any of these smallest
boxes. For each edge, we need to find the "opposite" point with a support line
parallel to the edge, and also the points with perpendicular support lines. These
are just search problems where each extreme point has an interval of support
angles, and the edges form searching elements looking for the points defining the

58 E. Cohen, R. Miller, E. M. Sarraf, and Q. F. Stout

interval containing their support angle. (Support angles correspond to supporting
half-planes and are in the range [0, 2~), where 0 ~ zc.) On the hypercube this can
all be accomplished in logarithmic time using the ordered search operation
discussed in Section 3. This approach has been previously used on mesh computers
[MS2], and seems to be an efficient approach on almost any parallel computer.
The diameter can be found similarly since the diameter is the largest distance
between pairs of points with angles of support differing by re.

COROLLARY 6. Given a set of no more than N points stored one per processor in
sorted order in an lg(N)-dimensional hypercube, in O(log Ny time a smallest enclosing
box and the diameter can be determined.

5. Algorithms for Random Point Data Sets. For very large data sets, sorting may
involve a considerable amount of time. However, for sets of random points, it may
be possible to avoid sorting and solve geometric problems more efficiently. This
section concentrates on fine- and medium-grain hypercube algorithms to solve the
domination and convex-hull problems for random point data input. Following
some definitions and the discussion of the relationships between random data and
efficient expected-case running times, Section 5.1 describes domination algorithms
on medium-grain machines, with experimental results being given in Section 5.2.
Sections 5.3 and 5.4 cover algorithm descriptions and experimental results for the
convex-hull problem, respectively. Section 5.5 discusses algorithms for random
points on fine-grain machines. Finally, algorithms for higher-dimensional data are
described in Section 5.6.

Random points can be defined in a wide variety of ways. For simplicity we
assume that the points have been independently chosen from a unit square or unit
circle using a uniform distribution, though many of our techniques work with
much more general distributions. The phrase set of random points denotes a data
set generated in this manner. The fact that convexity and domination algorithms
can have faster expected times on sets of random points is well known for serial
algorithms. In [PS] it is shown that for the random data sets we consider in this
section (described in detail later), the expected running time to determine maximal
points for N d-dimensional points is O(N). Furthermore, it is shown in [PS] that
for two-dimensional data of the form considered in this section, the extreme points
can be determined with an expected running time of O(N). The use of randomiza-
tion for faster parallel algorithms is also well known, but so far there has been
little work on exploiting random data sets on parallel algorithms for geometric
problems. (See, however, [Sto].)

Given a set of N random points chosen from the unit square using a uniform
distribution, it can be shown that the expected number of maximal points is
HN=/_.i=lt~'i=Ntl/i~/j= In(N) + y + O(1/N), where y is Euler's constant [K]. Further,
H N has a standard deviation of O(log 1/2 N). It is also known that for the same
distribution the expected number of extreme points is (8)[In(N) + 7] + 0(1) [RS].

Since the expected number of maximal or extreme points for the unit square
distribution is relatively small, we can hope to eliminate rapidly most of the points

Efficient Convexity and Domination Algorithms for Hypercube Computers 59

from consideration. Given a set of N random points from a unit square, a point
(x, y) can be expected to dominate (N - 1)xy points. Therefore, a point P which
maximizes xy is expected to dominate the most points. Notice that P is necessarily
maximal.

Once P is detected, every point dominated by P can be eliminated from further
consideration as a maximal point. It can be shown that this single elimination
step will remove all but (~)(N 1/2) points, on average, from consideration as maximal
points. The remaining points form two sets, namely those with the x-coordinate
larger than P and those with the y-coordinate larger than P. In each set we can
recursively apply the procedure of choosing the point which is expected to
dominate the most points in the respective set. Since each application finds one
new maximal point, the number of applications is the number of maximal points.
In this section we consider results for random points chosen from the unit square
and random points chosen from regions that do not allow for such a simplistic
reduction so quickly.

5.1. Random Point Domination on Medium-Grain Machines. There are two
natural ways to implement a domination algorithm for random data chosen from
a unit square on a medium-grain machine:

(1) The 9lobal version is a recursive routine where at each step of the recursion,
a globally expected best point is found and used to eliminate as many points
as possible. (As described above, the first step of the algorithm would choose
P, a point with maximum xy value.)

(2) The local algorithm first solves the domination problem independently on each
processor. After finding the maximal points restricted to each processor, these
points are combined to find the maximal points of the entire set. Since we
expect relatively few locally maximal points, there are several reasonable
techniques for combining local solutions to obtain the global solution. One
natural way is to use a report procedure, where at each step every processor
merges its candiate maximal points with the candidates received and eliminates
those in either group that are dominated by a point from the other group.

Various blends of these two methods are also possible. To determine which of
these approaches to use, we analyze the first stage of each. Given p processors,
one stage of the global algorithm will take cl(N/p) time for each processor to find
its best candidate, c2 lg(p) time for the processors to determine the globally best
candidate, and c3(N/p) time for each processor to eliminate dominated points, for
some constants cl, c2, and c 3. At the end of the stage there are on average c4N 1/2
points remaining for c 4 a constant.

One stage of the local algorithm will take cl(N/p) + c3(N/p) time, and will leave
a total of c4p(N/p) ~/z = c g p l (2 N 1/2 points. Therefore, by spending cz lg(p) time on
communication, the global algorithm reduces tile average number of points
remaining from c4pl/2N 1/2 to c4N x/2, which Will reduce the time of the next stage.

Once these constants have been measured for a particular implementation, for
any given values of N and p we can then predict which of these two approaches
would be best for the first stage. As the stages are repeated, the communication

60 E. Cohen, R. Miller, E. M. Sarraf, and Q. F. Stout

time required by the global algorithm increases, since at stage i there are 0(2 i)
points being detected. Therefore, after an implementation-dependent number of
global reduction stages, local reduction is used, followed by a combination step
to determine the global solution.

Note that the maximum number of points remaining in any processor needs to
be taken into consideration since the time of a stage depends on the slowest
processor to complete that stage. This maximum grows with p as well as N/p,
though the increase with an increase in p is quite slow.

Another factor that needs to be examined is how many stages of reduction
should be performed for the local algorithm, since the number of "best" reduction
candidates doubles at each stage. Experiments have shown that, at some point, it
is faster to perform the "sweep" domination technique, instead of doing additional
reduction passes. The number of reduction stages (prior to performing "sweep"
domination) will depend on the number of points reduced each time and the
overhead costs of performing the reduction.

5.2. Experimental Results for Domination on a Medium-Grain Machine. In this
section we give results of parallel domination algorithms on a 16-node Intel iPSC1
hypercube at SUNY, Buffalo. Restricting our attention for the moment to the
global approach, we obtain the following asymptotic result as a point of reference.

PROPOSITION 7. Given N random points chosen from a unit square and dis-
tributed Nip per processor in an lg(p)-dimensional hypercube, the maximal points
can be determined in O(N/p + log(p) log(N)) expected time by the global approach.

Our results show that beyond the first one or two global stages there is little
additional load-balancing benefit from the global approach since the number of
points remaining is extremely small. Due to the fact that global stages use extra
communication, we have found it better to switch to a local approach after a few
stages and then combine the results. Extensive testing was performed and results
verify our analyses of time and expected number of points remaining.

Table 1. Th,e number of points remaining in a cube after each global pass.*

Points remaining in Points remaining in
Number of passes unit square tilted unit square

0 100,000 100,000
1 615 24,599
2 523 12,278
3 328 6,177
4 220 3,144
5 218 1,673
6 216 872

Number of maximal points 122 289

* As the number of remaining points approaches the number of maximal points, the
reduction passes become less useful.

Efficient Convexity and Dominat ion Algorithms for Hypercube Computers

Table 2. Running times for Dominat ion program with unit square point distribution.*

61

Running time in
Number of processors Points per processor milliseconds Speedup

1 100,000 37,625 1.00
2 50,000 18,375 2.05
4 25,000 9,075 4.15
8 12,500 4,575 8.22

16 6,250 2,455 15.36

* The program performed one global reduction and two local reductions, befor performing a local
"sweep" algorithm. Extensive testing showed this to be the most efficient algorithm. The data
were randomly generated each time accounting for the apparent superlinear speedups.

Table 1 shows that the first few global passes rapidly reduce the number of
points to be considered. In our tests, the time for the initial | reduction
dominated the minimal | p log N) time for communication and combination
steps, giving us near linear speedup over the data tested. (See Table 2.)

Since our reduction techniques rapidly reduce the number of points to consider
for random points chosen from a unit square, we consider additional random
point distributions which have a greater expected percentage of maximal points.
Distributions in the shape of a unit circle and of a 45 ~ tilted unit square were
examined, and the results from the tilted unit square distribution are discussed
here. It can be shown that points chosen independently from a tilted unit square
using a uniform distribution will have approximately order n 1/2 expected maximal
points. Notice that no point can dominate more than 75% of the tilted unit square.
Therefore, the percentage of points remaining after each reduction stage for tilted
square distributions is expected to be higher than for unit square distribution.
This is confirmed by our experiments as can be seen in Table 1.

The method we used for choosing reduction points for the tilted square
distribution was different than for a nontilted square, and involves three stages.
The first stage chooses the point with the maximum xy product, as before. The
second stage chooses two points, one with maximum x value and one with
maximum y value. For the third and subsequent stages, we chose points closest
to the center of the northeast wall for a given group of points. (See Figure 2.)
Using this reduction technique, the average percentage of points eliminated was
75 for the first stage and 50 for each following stage. For the tilted square it was
found that the best performance was achieved by performing several global
reduction passes followed by a local "sweep" algorithm and a final combination
step.

We considered three ways of performing the final combination. The most
efficient of those is now described. First, every node locally sorts its candidate
maximal points. Then, at each step of the report process, the points are merged
(maintaining their sorted order), while dominated points are eliminated by keeping
track of the current maximal y-value. This is simply a modified version of the
"sweep" technique. Using this technique, dominated points are eliminated at each
step, and no further work is needed when the points reached the final node.

62 E. Cohen, R. Miller, E. M. Sarraf, and Q. F. Stout

2

3

2

Fig. 2. Unshaded areas indicate the points dominated by the various reduction points (number 1
indicates the first reduction point, number 2 indicates the second two reduction points, etc.).

Analysis of the expected running time of the algorithm shows that we may be
able to achieve near linear speedup, provided the number of iterations and number
of processors used is reasonable for the problem. The global reduction takes
(9((N/p) + (2 i- ~ log p)) time, where the (N/p) term dominates while the number of
iterations i is small. The local reduction takes (9(Nip) time. The local domination
takes time proportional to the serial sort time with respec to the number of points
left to consider. For the random point distribution on the tilted square, the
expected local domination time (i.e., the "sweep" algorithm) is

(9(N1/2/plog(N1/2/p)).

Finally, the time for the report is (9(N1/2). Therefore, the expected running time
for the tilted square distribution is (9(N/p + 2 i- 1 log p + NIl2). Our tests were
performed with 100,000 random points distributed evenly across the nodes, and
the number of local and global reduction iterations varying from one to five. In
all cases, the first term dominated and speedups approached linear. (See Table 3.)

TaMe 3. Running times for Domination with tilted square point distribution, with six
global passes.

Running time in
Number of processors Points per processor milliseconds Speedup

1 100,000 64,740 1.00
2 50,000 32,825 1.97
4 25,000 16,640 3.89
8 12,500 8,610 7.52

16 6,250 5,050 12.82

Efficient Convexity and Domination Algorithms for Hypercube Computers 63

Other reduction techniques were examined and are briefly described here. For
the tilted square,, notice that by omitting the "maximum x and maximum y"
reduction stage and proceeding immediately to the "closest to the center"
reduction strategy, the expected number of points reduced during the second stage
of the algorithm would be approximately 63%. This compares favorably with the
50% expected reduction achieved by using the "maximum x and maximum y"
reduction as a second stage. However, experiments on the iPSC1 have shown that
including "maximum x and maximum y" reduction as the second stage improves
the total running time of the algorithm. We attribute this to the fact that the tests
performed in the "maximum x and maximum y" reduction are somewhat different
from the tests performed in the "closest to the center" reduction. The "maximum
x and maximum y" reduction uses two simple comparisons (y > max_y
and x > max_x) in determining the points of interest, while the "closest to the
center" reduction uses a single distance comparison ((x - x_cur ren t)2+
(y - y_current) 2 < (distance_current) 2) to determine the point of interest. There-
fore, although using "maximum x and maximum y" reduction as the second
reduction stage of the algorithm reduces fewer points on average than proceeding
immediately to the "closest to the center" reduction, the "maximum x and
maximum y" reduction is used as a second stage reduction since it reduces the
total running time of our algorithm on the iPSC1.

We examined other combinations of these reduction strategies, as well. For
example, after observing the results just described, we considered using the
"maximum x and maximum y" reduction as the first stage, since it is also expected
to reduce 75% of the points. However, experiments again showed that the original
method described is faster (about 5%) than using the "maximum x and maximum
y" reduction as the first reduction stage. We should point out, however, that since
these results have been determined experimentally on an Intel iPSC1, variations
of the algorithm or changes in the low-level implementation details, such as the
ones we have described, might be more efficient on other hypercubes.

The analysis for unit square distribution is similar, except that the
expected number of maximal points is smaller, and gives a running time of
| + 2 i- 1 log p + log N). (See Table 2.)

5.3. Random Point Convex Hull on Medium-Grain Machines. The same approach
used in determining the maximal points of a random set of data can be used to
find the extreme points. Given random input chosen from a uniform distribution
on the unit square, first locate a point closest to each of the four corners of the
square, and then eliminate any points in the quadrilateral determined by these
four points. After this elimination, there are four sets of points remaining outside
the quadrilateral, one corresponding to each side. During the second step of the
algorithm, locate the point the furthest distance from the side of each of the four
sets. This creates a situation as in Figure 3, where the points inside the triangles
are eliminated and the remaining points are subdivided into two regions. The
algorithm extends recursively within regions containing potential extreme points.
As a serial algorithm this approach is called "Quickhull" in [PSI, and has
apparently been independently discovered by several authors.

64 E. Cohen, R. Miller, E. M. Sarraf, and Q. F. Stout

s(l,l) s(1)

_. --~---~/ (i .2)

1. ''r %"..i Eliminated Points

~ / | Possible Extreme Points

~) First QuickhulI iteration

~ y / ~ . ~ \ [~ Second Quickhull iteration

\Point furthest away from side

Fig. 3. Quickhull reduction. Points inside the triangles are eliminated. Points l, r, and h subdivide
the set S(1) into sets S(1, 1) and S(1, 2).

In a parallel convex-hull algorithm, a global Quickhu!l approach can be used
as a data reduction technique to eliminate most points from consideration. This
technique is used in [MM] to solve the convex-hull problem for digitized picture
input, and follows the approach taken in the global domination algorithm of the
previous section. After a number of global Quickhull iterations, each processor
will attempt further data reduction by performing a local Quickhull reduction.
The final solution can then be determined by combining the local results using a
report operation. It should be noted that experimentation indicates that a global
Quickhull technique should be used initially as a data reduction technique to
reduce the number of points per processor, since a local Quickhull reduction leaves
a much larger number of points in at least one processor. Two combine steps were
implemented. The global-combine step uses a report procedure to collect the points
remaining into a single processor. This is followed by a serial convex-hull
algorithm (Graham scan [Se]) on the (remaining) data to determine the final
solution. Conversely, the local-combine step uses the Graham scan hull algorithm
to eliminate points during each iteration of the report step.

5.4. Experimental Results for Convex Hull on Medium-Grain Machine. In this
section we give results of convex-hull algorithms that were implemented on a
16-node lntel iPSC1 hypercube at SUNY, Buffalo. Both the global-combine and
the local-combine versions of the algorithms were implemented for a variety of
iterations of Quickhull. The input to these algorithms is a set S of N random
points. The set S is distributed throughout the p nodes of the hypercube so that
each node has N/p points. In this section we explore algorithms based on two
different input sets. The first is a set of random points chosen from a uniform
distribution on the unit square. For this set of input, [PS] has shown that there
are @(log N) expected extreme points. The second, which has | U3) expected
extreme points [-PSI, is a set of r a n d o m ~ i n t s a z h o ~ f x O ~ a uniform distribution
on the unit circle. Notice that tilted square distribution has the same expected
number of extreme points as square distribution.

Efficient Convexity and Domination Algorithms for Hypercube Computers 65

Since the expected number of extreme points is relatively small for both sets of
inputs, we hope to eliminate quickly most of the points from consideration. The
first iteration of the Quickhull algorithm takes O(N/p) time for each processor to
find local corner points, | p) time to find and distribute the global corner
points, and | time to eliminate local points enclosed in the quadrilateral
formed by these four global points. For random data on the unit square, the
expected number of points remaining after the first iteration of Quickhull is
O(N1/2). For random data on the unit circle, the expected number of remaining
points after the first iteration of Quickhull is N(1 - 2/~) + o(N). Notice that at
every stage of the parallel convex-hull algorithm for random data on the unit
circle there are more points remaining for consideration than for random data on
the unit square. Therefore, it is expected that the running times of algorithms for
the circular distribution will be longer than for the square distribution.

We chose to implement the Graham scan as the serial convex-hull algorithm
since it is efficient and has a guaranteed worst-case | log N) running time.
Other serial algorithms, such as "package wrapping" [Se], have a good running
time on random points, but the worst-case running time is | which occurs
when all the points are on the hull. Since the Quickhull algorithm is used for data
reduction, the Graham scan algorithm will be more efficient than "package
wrapping" during the final combine step since most of the remaining points will
be on the convex hull.

The running time of our algorithm is influenced by the number of iterations of
the Quickhull algorithm. Let T~(N) be the running time of the algorithm for N
random points chosen from a uniform distribution on the unit square on a
hypercube with p processors. Then

(1) T~(N) =O(N/p + log p) + T's(N1/2),

where | + log p) is the cost to run the first iteration of Quickhull and T's(N 1/2)
is the time to run the algorithm on the remaining points. Since each additional
iteration of Quickhull on data from a square distribution reduces the number of
points by a fraction, the cost of the ith such iteration, for small i, is approximately
determined by

(2) T,s(Ni/2/ci-1) = T;(N1/2/ci) + O(N1/Z/(pci-1) + 2i+1 log p),

where c is the reduction factor. Therefore, the number of iterations needed to
reduce the data to its extreme points is approximately

(3) x = lg(N1/2/lgN)/lg c.

So, it is expected that after [x + 17 Quickhull iterations the data will be reduced
to the set of extreme points.

The analysis as presented would be correct if a uniform reduction of points
occurred in all intervals. Unfortunately, this is not a valid expected-case assump-
tion as imbalances in the number of points distributed to regions may arise

66 E. Cohen, R. Miller, E. M. Sarraf, and Q. F. Stout

throughout the algorithm. Therefore, some regions will require a slightly larger
number of iterations, in the expected case, to reduce its set of points to its extreme
points. However, the value x can be computed at the outset of the algorithm, and
subsequently used to determine a checkpoint for the algorithm. That is, after some
number of iterations, dependent on x, a global decision can be made as to how
many more iterations of Quickhull will be performed, based on the number of
points in intervals, before another checkpoint is made. While the algorithm must
terminate eventually, these global checkpoints can also be used to determine a
point at which to initiate a local reduction algorithm (for the outstarMing intervals),
followed by a global combination of these outstanding intervals. This would avoid
the situation of a few (bad) intervals resulting in a large number of additional
iterations of Quickhull. We observed that after running the algorithm for [-x + 1-]
iterations, all of the extreme points have been determined.

It should also be noted that it is possible for minor load balancing problems
to arise due to imbalances in the number of points that each processor is
responsible for as the algorithm progresses. However, these balancing problems
are minor since the running times of the algorithm during the later stages are
dominated by communication costs.

For random data chosen from a uniform distribution on the unit circle, each
Quickhull iteration reduces the number of points by a fraction. The cost of the
ith iteration, for small i, is

(4) Tc(N/k i-a) = T'~(N/k i) + | i) + 2 i+ ~),

where k is the reduction factor. The number of iterations used in the algorithm is
based on the expected number of Quickhull iterations and the expected number
of extreme points. The number of Quickhull iterations to reduce the data to the
set of extreme points can be determined to be

(5) y = (2 log N)/(3 log k).

As in the case of the distribution on the unit square, this analysis is based on a
flawed uniform reduction assumption. Nevertheless, both of these analyses can be
useful for implementation purposes, as was done for some the results presented
below.

Figure 4 gives sample running times for variations of the convex-hull algorithm
for 100,000 random points chosen from a uniform distribution on the unit square.
The significant reduction in the running time of the algorithm after the first
iteration is due to the fact that, for random data on a unit square, the Quickhull
data reduction technique reduces the expected number of points from N to | 1/2).
Figure 5 is a plot of the number of points remaining versus the number of iterations
of the global Quickhull reduction. As shown in Figure 5, the first Quickhull
iteration eliminated in excess of 99% of the points, leaving, approximately 750
points to consider from the original 100,000 points. It is interesting to note that
since the Graham scan algorithm on each processor runs in | log(N/p)) time,
the first Quickhull iteration itself lead to an 83% reduction in the running time

Efficient Convexity and Domination Algorithms for Hypercube Computers 67

C :

g ~

~ O-cube

/ I ~ l-cube
A
A ~ 2-cube

L/i ~ 3-cube
/ I
A ~ 4-cube
A
/1
V1
A
/%
/ iX
VIx
/%

/1',

/ Ix
/ l x
/ t ' ,
/ Ix

! I t

o I 2 :J �9 ~

Number of Quick.hull imrations

Fig. 4. Convex-hull algorithm on random data from a uniform distribution on the unit square.

"2

E
Z

" / / / / /

, 1 1 1 / i

r / / i / ~

, i / i / ~

, / / / / /

~ 1 1 1 1 1
" / / / / /

" / / / / /

/ / / / / ,
-

, | / / / / / /
/ / / / / /

. "/////,
I

Data on the unit square

v/4/A r / / / 2 A
I

r / / (/ A
I 2 3 4 S

Numl~r of Quickhull itcrations

Fig. 5. Number of points remaining after Quiekhull iterations from an input of 100,000 random
point on a unit square.

68 E. Cohen, R. Miller, E. M. Sarraf, and Q. F. Stout

Table 4. Speedup of convex-hull algorithm for each iteration of Quickhull
for ~andom data on the unit square.

Speedup per iterations of Quickhull
Number of
processors 0 1 2 3 4 5

0 1.00 1.00 1.00 1.00 1.00 1.00
r 2.14 1.99 1.99 1.99 1.99 1.99
2 4.38 3.96 3.95 3.96 3.96 3.96
3 9.18 7.86 7.89 7.92 7.92 "7.92
4 18.99 15.04 15.22 15A6 15.50 15.38

on a single node. After the fifth iteration of the Quickhull algorithm, the data was
completely reduced to the set of extreme points. Therefore, additional iterations
or a local Quickhull algorithm will only serve to increase the running time of the

algorithm.
Table 4 presents the speedups of the algorithm for different numbers of iterations

of Quickhull versus the number of processors for random data on the unit square.
As can be seen from Figure 4 and Table 4, near linear speedup was achieved with
respect to the number of nodes tested. Notice also that this speedup was attained
with respect to a given number of iterations of the Quickhull algorithm. For the
data on the unit square, it was noticed that after the first iteration of Quickhull,
the running times are dominated by the local processing times of the additional
Quickhnll iterations of the algorithm. The Quickhull iterations run in
| + log p) time, where M is the maximum number of points left in any node,
| is the cost of local processing, and | p) is the cost of communication. If
the number of points left in every node is approximately the same, then it can be
expected that doubling the number of nodes will reduce the processing cost by
half while adding a linear cost for communication. As long as the local processing
is expensive compared with the communication costs, good speedup will be
obtained. Eventually, as more nodes are added, the local processing will become
less expensive compared with the communication cost, resulting in a situation
where adding more nodes will degrade the performance of the algorithm. As can
be seen in Figure 4 and Table 4 the speedups generally decrease as the number

of processors increases.
The algorithm that we described works well for random data on the unit square,

due to the fact that the first Quickhull iteration eliminates most of the points.
Next, we consider random data on the unit circle. This is a more interesting
situation since the expected number of extreme points is far greater then the
expected number of extreme points for random data on the unit square.

Figure 6 shows sample running times for 100,000 random points chosen from
a uniform distribution on the unit circle. Notice that the running times without
any Quickhull data reductions are approximately the same as the running times
of the algorithm on a square distribution of data. This is due to the fact that the
running time of the Graham scan algorithm is largely independent of the number

Efficient Convexity and Domination Algorithms for Hypercube Computers

700

6OO

500

0-cube

l-cube

2-cube

~-~ 3-cube

[~ 4-cubc W
4oo

i
".'3

/

/

/

/

/ J Lk kL
/
/

10o /

/
/
/

0 I (I

0 1 2 3 4 5 6 7
Number of Quickhull iterations

Fig. 6. Convex-hull algorithm for random data from a uniform distribution on the unit circle.

69

of extreme points. Figure 6 also confirms our expectation that for a circular
distribution of data, the first Quickhull iteration will not reduce the running time
as significantly as in the case of data on the unit square. The reduction in the
running time of the algorithm after the first quadrilateral data reduction step for
the circular data was approximately 55% compared with over 80% reduction in
the running time of the algorithm for the square data. This is mainly due to the
fact that the Quickhull reduction technique does not eliminate points as fast for
the circular distribution when compared with the square distribution. As shown
in Figure 7, after one iteration of Quickhull on the circular data, approximately
40,000 points remained, where for the square data Figure 5 shows that only 750
points remained. Notice that both of these numbers confirm our earlier analysis
concerning the expected number of points remaining after the first Quickhull
iteration. It took seven iterations of the Quickhull algorithm to reduce the circular
data to its extreme points, as opposed to the five iterations that it took for the
square data. Therefore, more work is required to eliminate points in a uniform
distribution on the unit circle.

As shown in Figure 6, each of iterations 2 and 3 of the Quickhull algorithm
resulted in approximately 40% reduction in the running times from the previous
iteration. Figure 8 shows that for data in a circular pattern, the second and third
iteration of the Quickhull algorithm will eliminate a large number of points. As
can be seen in Figure 7, approximately 9800 and 2550 points remained after
iterations 2 and 3 of the Quickhull algorithm, respectively. By analyzing the

70 E. Cohen, R. Miller, E. M. Sarraf, and Q. F. Stout

0

v
(:m

"F:

E

.=

"8

E
Z

40

/ / / /

/ / / /
/ / / /
/ / / /
/ / / /
/ / / /
/ / / /
/ / / /
/ / / /
/ / / /
/ / / /
/ / / /
/ / / /
/ / / /
/ / / /

~5 / / / /
/ / / /
/ / / /

,o / / / /
/ / / /
/ / / /

s / / / /
/ / / /
/ / / /

o / / / /
i

I 2

Data on the unit circle

I
3 4 s

Number of QuickhuU iterations

I I
G ?

Fig. 7. Number of points remaining after Quickhull iterations from an input of 100,000 random
point on a unit circle.

geometric prop~ties of the square and triangles created by the Quickhull techni-
que inside the circle we determined a reduction factor of 3.6 and 4.5 for iterations
2 and 3, respectNely. This compares favorably to the results presented in Figure
7. Table 5 shows the speedups of the algorithm with respect to the number of
Quickhuil iterations versus the size of the cube for random data on the unit circle.
Figure 6 and Table 5 show that the parallel convex-hull algorithm resulted in
excellent speedups for small-dimensional hypercubes. But, as in the case of the

[• First Quickhu l ! i tera t ion

Second Qu ickhu l l i ter;i t ioll

Fig. 8. Quickhull reduction of data on the unit circle.

Efficient Convexity and Domination Algorithms for Hypercube Computers 71

Table 5. Speedup of convex-hull algorithm for each iteration of Quickhull for random data on the
unit circle.

Speedup per iterations of Quickhull
Number of
processors 0 1 2 3 4 5 6 7

0 1.00 1,00 1.00 1.00 1.00 1.00 1.00 1.00
1 2.05 2,06 1.99 1.98 2.00 1.99 1.99 1.99
2 4.17 4,06 3.97 3.88 3.92 3.92 3.94 3.93
3 8.38 8.17 7.73 7.58 7.58 7.62 7.70 7.70
4 6.80 16.24 14.98 14.24 14.14 14.54 14.70 14:66

unit square distribution, the speedups fell below linear for increased iterations of
Quickhull and larger-dimensional hypercubes because the local processing became
less expensive relative to the cost of communication between the nodes.

Figures 9 and 10 compare the running times of the local-combine version of the
convex-hull algorithm with the 9lobal-combine version of the convex-hull algo-
rithm, for square and circular distribution, respectively. Figure 9 presents the
results for runs of three, four, and five iterations of Quickhull for square distribu-
tion and Figure 10 presents the results for runs of five, six, and seven iterations
of Quickhull for circular distribution. As can be seen from Figures 9 and 10, the
91obal-combine version ran slightly faster than the local-combine version for

c a)

c~

3 Quickhull iterations 4 Quickhull iterations

i ,-"/N

I 2 3 4

g//~

1 2 3 4

Cube size

Local version ~ Global version

5 Quickhull iterations
6 0

I 3 4

Fig. 9. Local combine version versus global combine version of convex-hull algorithm for random
data points on the unit square,

72 E. Cohen, R. Miller, E. M_ Sarraf, and Q. F. Stout

v

" " ~ S o

e x O
e -"

5 Quickhull iterations 6 Quickhull iterations 7 Quickhull
I o o I ~ 1 o o

:8

iterations

i I

5 ~

I I

I 2 3 �9

Cube size

Local version

r

7,

o
i i i i

Global version

Fig. 10. Local-combine version versus global-combine version of convex-hull algorithm for random
data points on the unit circle.

iterations 3, 4, and 5 for the square distribution and iterations 6 a n d 7 for the
circular distribution. However, for fewer iterations of Quickhull, the local-combine
version is faster than the global-combine version. This is due to the fact that for a
relatively large number of points that need to be combined, the local Graham scan
algorithm during the report operation is more efficient than allowing the points
to mount up in node 0 and then running the Graham scan algorithm on all those
points. Therefore, we conclude that when the number of points needing to be
combined is relatively small, the global-combine version of the parallel convex-hull
algorithm is desirable.

5.5. Fine-Gra& Mach&es. Algorithms for sets of random points can also be
developed that are more efficient than worst-case algorithms on fine-grain ma-
chines. For instance, given a set of N random points chosen from a unit square
distributed one per processor on a hypercube with N processors, using the first
step of the global Quickhull approach reduces the number of points to |
These | ~/2) points can then be sorted in | N) time INS], and then the
algorithm for presorted data sets can be utilized. This combination of approaches
gives the following.

THEOREM 8. Given a set of no more than N random points chosen from a unit
square stored one per processor in an lg(N)-dimensional hypercube, in O(log N)
expected time

(1) the maximal points can be determined;

Efficient Convexity and Domination Algorithms for Hypercube Computers 73

(2) the extreme points can be determined, each having its counterclockwise numbering
and the coordinates of the following and preceding extreme point;

(3) the area, centroid, and perimeter of the convex hull can be determined; and
(4) a smallest enclosing box and the diameter can be determined.

5.6. Higher-Dimensional Data. The basic idea of identifying points which elimi-
nate many other points can be extended to points chosen from the unit cube in
d-dimensional space, for any fixed d. The expected number of maximal and extreme
points is | d- 1 N) [BKST], and for finding maximal points we can show that
the expected number remaining after the best candidate has eliminated points is
O(N(d- 1)/d). The same basic global approach for determining maximal points works
essentially as before.

Determining extreme points is somewhat more complicated, but can be ap-
proached by first finding 2 d sets of"maximal" points obtained by using all possible
choices of < and _> for each dimension, as in Section 2. The extreme points must
be a subset of these generalized maximal points, and for fixed d there are only
O(log d-1 N) points remaining, on average. For these points, a slower, more
complicated algorithm can be utilized, and as long as it runs in polynomial time
in the number of points, it will yield a time polylogarithmic in N. One simplistic
possibility is to take each point and see if it is contained in the hull of d + 1 other
remaining points, for all possible choices of the d + 1 points. This requires | a+ 2)
calculations if there are x points remaining, which can be performed in | d+ 2/p)
time by p processors. This is O(N/p), so in O-notation the extra difficulty in
determining extreme points does not appear.

THEOREM 9. For any fixed d, given N points chosen independently from a uniform
distribution on the unit d-dimensional cube, distributed Nip per processor in an
lg(p)-dimensional hypercube, in O(N/p + log p log d- 1 N) expected time

(1) the maximal points can be determined;
(2) the extreme points can be determined, each with its counterclockwise numbering

and the coordinates of the following and preceding extreme point; and
(3) the area, centroid, and perimeter of the convex hull can be determined.

THEOREM 10. For an 3, fixed d, given a set of no more than N points chosen
independently from a uniform distribution on the unit d-dimensional cube, stored one
per processor in an lg(N)-dimensional hypercube, then in | N) expected time

(1) the maximal points can be determined;
(2) the extreme points can be determined, each with its counterclockwise numbering

and the coordinates of the following and preceding extreme point;
(3) the area, centroid, and perimeter of the convex hull can be determined; and
(4) a smallest enclosing box and the diameter can be determined.

6. Comments. We have given parallel algorithms for a hypercube to determine
geometric properties of sets of points. Because of the dependence upon sorting,

74 E. Cohen, R. Miller, E. M. Sarraf, and Q. F/Stout

we have also analyzed the time needed if the points were appropriately presorted,
or if they were randomly chosen from a uniform distribution. In both situations
the times are faster than if sorting is performed using the sorting algorithm
currently having the best worst-case sorting time. For medium-grain machines any
sorting algorithm must take f2(N log(N)/p) time, and hence when N/p= ~(lg p)
the medium-grain algorithms given here for random points will be faster than any
general-purpose algorithm for unsorted data. It should be noted that although
some of the algorithms we have presented have been optimized for specific
distributions of points, each of these works correctly regardless of the distribution.

While we have treated the medium- and fine-grain machines separately, it is
possible to combine the approaches and improve upon the results for random
points on medium-grain machines when N = O(p2). In this case, after the first
global stage of determining maximal points the expected number of points
remaining is less than the number of processors. Redistributing these points results
in a configuration suitable for a fine-grain algorithm for nonrandom data. Using
this approach shows that each of the problems noted in Proposition 7 and
Theorem 8 can be solved in | + log p) time, which is optimal for all values
of p and N. It is also optimal for any parallel computer with p processors without
concurrent write or without concurrent read operations.

References

[ACG*]

[AG]

[Ba]

[Be]
[BKST]

[c su

[cs2]

[FS]

[K]

[MM]

I-MS1]

[MS2]

[MS3]

INS]

A. Aggarwal, B. Chazelle, L. Guibas, C. O'Dunlaing, and C. Yap, Parallel computational
geometry, Algorithmica (1988), 293-327.
M. J. Atallah and M. T. Goodrich, Efficient parallel solutions to geometric problems, 3..
Parallel Distrib. Comput. 3 ~1986), 492-507.
K. E. Batcher, Sorting networks and their applications, Proc. AFIPS Spring Joint Computer
Conf. (1968), pp. 307-314.
J. L. Bentley, Multidimensional divide-and-conquer, Comm. ACM 23 (1980), 214-229.
J. L. Bentley, H. T. Kung, M. Schkolnick, and C. D. Thompson, On the average number
of maxima in a set of vectors, J. Assoc. Comput. Mach. 25 (1978), 536-543.
R. E. Cypher and J. L. C. Sanz, Data reduction and fast routing: a strategy for efficient
algorithms for parallel message-passing computers, A l g o r i t h m i e a , this issue, 77-89.
R. E. Cypher and J. L. C. Sanz, Optimal sorting on feasible parallel computers, in
preparation.
H. Freeman and R. Shapira, Determining the minimal-area encasing rectangle for an
arbitrary closed curve, Comm. A C M 18 (1975), 409-413.
D. E. Knuth, The Art of Computer Programming, Vol. 1, Addison-Wesley, Reading, MA,
1968.
R. Miller and S. E. Miller, Image processing on hypercube multiprocessors, Proe. SPIE 939,
156-166.
R. Miller and Q. F. Stout, Efficient parallel convex hull algorithms, IEEE Trans. Comput.
37(12) (1988), 1605-1619.
R. Miller and Q. F. Stout, Mesh computer algorithms for computational geometry, IEEE
Trans. Comput. 38(3) (1989), 321-340.
R. Miller and Q. F. Stout, Parallel Aloorithms for Regular Architectures, MIT Press,
Cambridge, MA, 1989.
D. Nassimi and S. Sahni, Parallel permutation and sorting algorithms and a new general
interconnection network, J. Assoc. Comput. Mach. 29 (1982), 642-667.

Efficient Convexity and Domination Algorithms for Hypercube Computers 75

[P] C.G. Plaxton, Load balancing, selection and sorting on the hypercube, Proc. 1st ACM
Symp. on Parallel Algorithms and Architecture (1989), to appear.

\

[PS] F.P. Preparata and M. I. Shamos, Computational Geometry, Springer-Verlag, New York,
1985.

[RV] J.H. Reif and L. G. Valiant, A logarithm sort for linear size networks, J. Assoc. Comput.
Mach. 34 (1987) 60-76.

[RS] A. Renyi and R. Sulanke, Uber die konvexe Hulle von n zufallig gewahlten Punkten, Z.
Wahrsch. Verw. Gebiete 2 (1963), 75-84.

[Se] R. Sedgewick, Algorithms, Addison-Wesley, Reading, MA, 1983.
[St] I. Stojmenovic, Personal communication.

[Sto] Q, F. Stout, Constant-time geometry on PRAMs, Proe. 1988 Internat. Conf. on Parallel
Processing, vol. III, pp. 104-107.

[W] B. Wagar, Hyperquicksort: a fast sorting algorithm for hypercubes, in Hypercube Multi-
processors, SIAM, Philadelphia, PA, 1987, pp. 29~299.

