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Efficient Convexity and Domination Algorithms for 
Fine- and Medium-Grain Hypercube Computers 1 

Ed Cohen, z Russ Miller, 2 Elias M. Sarraf, 3 and Quentin F. Stout 4 

Abstract. This paper gives hypercube algorithms for some simple problems involving geometric 
properties of sets of points. The properties considered emphasize aspects of convexity and domination. 
Efficient algorithms are given for both fine- and medium-grain hypercube computers, including a 
discussion of implementation, running times and results on an Intel iPSC hypercube, as well as 
theoretical results. For both serial and parallel computers, sorting plays an important role in geometric 
algorithms for determining simple properties, often being the dominant component of the running 
time. Since the time required to sort data on a hypercube computer is still not fully understood, the 
running times of some of our algorithms for unsorted data are not completely determined. For both 
the fine- and medium-grain models, we show that faster expected-case running time algorithms are 
possible for point sets generated randomly. Our algorithms are developed for sets of planar points, 
with several of them extending to sets of points in spaces of higher dimension. 
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1. Introduction. Computational geometry is a rapidly growing field, with applica- 
tions to robotics, VLSI design, plant layout, and many other areas. Numerous 
serial algorithms have been developed for a large number of geometric problems, 
forming a somewhat organized body of results [PSI. However, parallel algorithms 
for problems in computational geometry have lagged behind serial algorithms, 
with most of the parallel algorithms appearing in the last few years [AG], [ACG*]. 
In this paper we consider hypercube algorithms for a few simple problems 
involving sets of points in two-dimensional Euclidean space, and provide efficient 
algorithms for problems involving convexity and domination (defined below). We 
also indicate some extensions to data in higher dimensions. While the algorithms 
are designed explicitly for hypercube computers, they borrow ideas used in 
geometric algorithms for other parallel computers, and they in turn can be utilized 
on other parallel computers. 
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Algorithms are given for both fine- and medium-grain hypercubes. In afine-grain 
machine, such as the 65,536 processor Connection Machine manufactured by 
Thinking Machines, Inc., each processor is quite simple, typically bit-serial with 
a small amount of memory. For  the problems we consider, we assume that each 
processor in a fine-grain machine starts with one data point. 

In a medium-grain machine there are many microprocessor-like processors, each 
with a substantial amount of memory. For  our geometric problems, we assume 
that each processor in a medium-grain machine starts with many points, perhaps 
thousands, and that there may be a thousand processors. Hypercubes from 
NCUBE, Intel, and FPS are examples of medium-grain machines, though appar- 
ently only NCUBE has installed a thousand-processor machine so far. 

Throughout  this paper, an n-cube denotes an n-dimensional binary hypercube 
with 2" processors, labeled with n-bit binary strings. These labels may be inter- 
preted as binary representations of numbers from 0 to 2" - 1, where two processors 
are connected if and only if their labels differ by exactly one bit. Note: we use lg to 
mean log 2, and In to mean 1Oge. 

The best serial and parallel solutions for many geometric problems depend upon 
sorting, and in fact sorting is often the slowest part of the algorithm [PS]. For 
hypercubes this causes a problem since it is not clear that good sorting algorithms 
are known with respect to all possible input. A sorting algorithm with the current 
best worst-case time on fine-grain hypercubes is Bitonic Sort [Ba], which sorts 2 n 
items stored one per processor in an n-cube in | 2) time. We define Sort(2") to 
be the time to sort 2 n items in an n-cube. Since the largest known lower bound 
for sorting on an n-cube is f~(n), it is not clear that Bitonic Sort is optimal. If an 
expected-case sorting algorithm can be tolerated, then the algorithm of [RV] can 
be used to sort 2" items stored one per processor on an n-cube, in expected | 
time. 

For  medium-grain hypercubes, the best sorting algorithms are found in [CS2] 
and [P]. These algorithms sort 2 c" items per processor in an n-cube (for a total 
of 2 "(1 +c) items) in | time. For any fixed c > 0 this achieves linear speedup, 
but requires that the number of items per processor grows as a power of the 
number of processors. It is also not known whether the constants involved are 
low enough to make these algorithms of practical interest. Practical algorithms 
with good observed performance are known [W], achieving linear speedup with 
far fewer items per processor, but it is not clear how low the item/processor ratio 
can go and still attain linear speedup. Further, these practical algorithms can 
exhibit poor worst-case behavior. 

Because of the dependence on sorting, and the uncertain status of sorting times, 
several of our algorithms are first developed for presorted data. Notice that 
given a presorted algorithm with running time T(2"), an arbitrary input version 
of the algorithm will solve the same problem in T(2") + Sort(2") time. We also 
analyze algorithms for data sets consisting of random points, chosen independently 
and uniformly from a variety of unit-area regions, such as a square or circle. In 
this situation many of the points can be quickly eliminated from further considera- 
tion without any sorting, which has the effect of r~tpidly reducing the problem to 
one involving far fewer points. Although our algorithms are optimized for 
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randomly distributed data, each algorithm works correctly no matter what the 
distribution. 

In Section 2 we define the various geometric properties for which we develop 
algorithms. In Section 3 some global parallel operations are defined and their 
implementation times on the hypercube are given. These form the building blocks 
of our algorithms. In Section 4 we give algorithms for fine-grain machines, using 
worst-case analyses. Section 5 contains efficient algorithms for sets of random 
points, using expected-case analyses. In that section we also evaluate alternative 
algorithms by analyzing the tradeoffs that occur. One important point in such an 
analysis is that we need to deal with the expected maximum completion time, 
rather than the expected completion time, when a task is broken into parallel 
subparts. Finally, Section 6 contains additional comments. 

2. G e o m e t r i c  P r o p e r t i e s .  Throughout  this paper, point without further modifiers 
means a point of Euclidean 2-space, given via Cartesian coordinates. To avoid 
various definitional and algorithmic complications of little interest, we assume that 
no set contains duplicate points. Given two points (x 1, Yl) and (x 2, Y2), we say 
that (xl, Yl) dominates (x2, Y2) if x 1 > x 2 and Yl > Y2. Given a set S of points, a 
point p in S is maximal if it is not dominated by any other point. This definition 
extends to higher dimensions in the obvious manner. By determining the maximal 
points of S we mean that there is a Boolean flag associated with each point in S, 
and at the end of the algorithm a point's flag is true if the point is a maximal point 
of S, otherwise the flag is false. Figure 1 illustrates maximal points. We use maximal 
(S) to denote the set of maximal points of S. Notice that no two maximal points 
can have the same x-coordinate, and no two can have the same y-coordinate. Also 
notice that if the maximal points are ordered by decreasing x-coordinates, then 
their y-coordinates are increasing. 

The convex hull of a set S of points, denoted hull(S), is defined to be the minimum 
convex set containing S. A point p ~ S is an extreme point of S if p r hull(S - {p}). 
For  finite sets, p is an extreme point if and only if it is a vertex of the smallest 
convex polygon containing all points of S. Determining the extreme points of S is 
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defined analogously to determining the maximal points of S. We use extreme(S) 
to denote the set of extreme points of S. 

Two properties that are used repeatedly are 

maximal(S ~ T) _~ maximal(S) w maximal(T) 

and 

extreme(S u T) ~ extreme(S) u extreme(T), 

for any sets S and T. 
Besides determining the extreme points of a set, we often need to determine the 

edges of the convex hull. To do so, it is convenient to number the extreme points 
in counterclockwise order, starting with the topmost  point. (If there are two 
topmost  points, then choose the rightmost one of these as the starting point.) If 
a point has number i, then it is an endpoint of edges to points numbered i - 1 
and i + 1, where these indices are interpreted modulo the number of extreme 
points. 

Notice that any set can have at most two topmost  extreme points, and similarly 
has at most two bottommost ,  two leftmost, and two rightmost extreme points. 
Also notice that in a counterclockwise traversal of extreme points from the 
rightmost extreme point (topmost in the case of a tie) to the topmost  one (rightmost 
in the case of a tie), the extreme points occur in decreasing x-coordinate order, 
and all are maximal. However, not all maximal points are extreme points. 

One technique for reducing the amount  of data to be combined in finding 
extreme points of a set S is first to find all the maximal points of S (call this set 
M1). Next, find all the maximal points M 2 using the revised definition that (x 1, Y0 
dominates (x 2, Y2) if x 1 _> x 2 and Yl -< Y2, then, all maximal points M 3 where 
domination is revised to xl < x2 and yl _< Y2, and, finally, all maximal points M 4 
where domination is revised to xt < x2 and Yl 2 Y2. Since 

extreme (M 1 ~ M2 ~ M3 u M,)  = extreme(S), 

if maximal points can be found rapidly and if few points are maximal under one 
of these four definitions, then the problem of determining extreme points of the 
original set has been rapidly reduced to finding extreme points of a much smaller 
set. 

Several properties of a point set can be quickly determined from its extreme 
points. For  example, the diameter of a set is the maximal (Euclidean) distance 
between any pair of points, and it is easy to see that the diameter of a set is the 
diameter of the extreme points of the set. A smallest enclosing rectangle of a set S 
is a rectangle of minimal area containing S. Such a rectangle must have one side 
along an edge of the convex hull of S, with all four sides touching the convex hull 
[FS]. 

Many of the geometric techniques and facts used in this paper  are also used for 
serial algorithms. A fairly comprehensive overview of serial algorithms for compu- 
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tational geometry appears in [PS], containing extensive references to most of the 
simple facts mentioned here without attribution. 

3. Global Operations. Global  operations form the foundation of our algorithms. 
These include broadcast, in which one processor sends a value to all others, and 
report, in which all processors start with a value and there is a commutative 
semigroup operation such as maximum or sum which is applied to the values, 
resulting in a single value arriving at a designated processor. (Throughout this 
paper we assume that all relevant semigroup operations can be computed in 
constant time). Well-known hypercube algorithms can be used to perform these 
operations in t0(n) time on an n-cube. 

Another common operation is parallel prefix, in which every processor i starts 
with a value v~ and ends up with V o * ' " * v ~ - l ,  where �9 is some associative 
operation. The postfix operation is defined analogously. Both prefix and postfix 
can be computed in to(n) time on an n-cube in a straightforward manner. On a 
medium-grain n-cube, if each processor starts with m values, then report, prefix, 
and postfix can be accomplished in to(n + m) time. 

Routing on a parallel computer, namely delivering messages from source nodes 
to their destinations, can be accomplished via a fixed number  of sorting steps 
[MS3], so arbitrary routing on a fine-grain n-cube can be accomplished in | 2) 
time if each processor initiates a fixed number  of messages and receives a fixed 
number of messages. If there is a constant c < 1 such that only 2 c" items are being 
routed in an n-cube, then the routing can be accomplished in | time, where 
the implied constant depends upon c, by using the sorting algorithm in [NS]. 
While the best worst-case time to sort on a fine-grain n-cube is still unknown, it 
was shown in [-Ba] that merging two sorted sets stored one item per processor 
can be completed in to(n) worst-case time. 

For  all of the O(n)-time operations it is easy to see that the times are optimal 
in the worst case since information starting in one processor of an n-cube might 
need to travel at least n communication links to reach its bit-complemented 
destination processor. 

An interesting use of parallel prefix and merging can be used to solve a variety 
of search problems. A simple example follows. Suppose R = {r l , . . . ,  rN} is an 
ordered set of real numbers such that 

--o0 = r  o < r 1 < " "  ~ r N < r N +  1 = - ~ - ~ ,  

and S is a set of M or fewer real numbers. Suppose for each s e S we want to find 
the elements r i, ri+ 1 e R such that r~ < s _< r~+ 1- If R and S are sorted and stored 
one per processor in an lg(N + M)-cube, then, by merging them, each s e S will 
fall between the appropriate elements of R. Using a prefix operation to find the 
largest element of R occurring earlier in the sorted order, and a postfix operation 
to find the least element of R occurring later, the problem is solved 
in O(log(N + M)) time. Variations of this operation have been called a grouping 
operation or a merge search [MS2], [St]. Here it is referred to as ordered search. 
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4. Fine-Grain Algorithms. Throughout this section we assume that points are 
initially stored one per processor in a fine-grain hypercube. Let Sort(N) denote 
the best worst-case time to sort N items stored one per processor in an lg(N)-cube. 
Because several algorithms involve sorting, and Sort(N) is only known to be 
bounded between f~(log N) and O(log 2 N), we state the times of some algorithms 
in terms of Sort(N). In all cases, the algorithms, statements of the results, and 
analyses remain correct if time is interpreted as expected-case time and Sort(N) is 
the best expected-case time to sort. 

4.1. Domination. In FAG] it was shown that a simple "sweep" algorithm can 
be used to find maximal points efficiently on almost any parallel computer. First 
sort the points by decreasing x-coordinate (breaking ties by decreasing y-co- 
ordinate). Then use a prefix computation to determine, for each point, the largest 
y-coordinate of any preceding point. Note that a point p is maximal if and only 
if p's y-coordinate is greater than this value. This is a direct parallelization of a 
natural serial solution to the problem, having the nice property that it yields 
optimal algorithms on a variety of parallel computers of interest. For the 
hypercube it gives the following. 

PROPOSITION 1. Given a set of no more than N points stored one point per processor 
in an lg(N)-dimensional hypercube, if the points have been presorted by x-coordinate, 
then the maximal points can be determined in | N) time. I f  the points have not 
been presorted, then the maximal points can be determined in | time. 

The number of points dominated by each maximal point can be determined by 
counting the number of points a maximal point does not dominate. If a maximal 
point (x, y) does not dominate (x', y'), then it must be that either x < x' or y < y', 
but not both since (x', y') does not dominate (x, y). The number of dominated 
points with greater x-coordinate is the position of (x, y) when the set is sorted in 
decreasing x-coordinate order, minus the number of preceding points with the 
same x-coordinate. The number of preceding points with greater y-coordinate can 
be similarly determined. The number of points with the same x-coordinate can be 
determined by a prefix operation. Note that having presorted data will not help 
the asymptotic running time since this algorithm uses two sorts. 

THEOREM 2. Given a set of no more than N points stored one point per processor 
in an lg(N)-dimensional hypercube, for every maximal point, the number of points it 
dominates can be determined in O(Sort(N)) time. 

Next we consider the problem of determining for every point (not just maximal 
points) the number of points it dominates. We exploit a multidimensional divide- 
and-conquer approach [Be] to solve this problem. The sort- or merge-dominated 
algorithm is based on the following observation. Suppose point sets S and T are 
such that, for every point (x, y)~ S and (x', y')E T, either x < x' or x = x' and 
y < y'. Then no point in S dominates any point in T, and a point p s T dominates 
each point in S with y-coordinate no greater than p's. The number of points that 
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p ~ T dominates in S can be determined by sorting the two sets by y-coordinate, 
breaking ties by placing smaller x-coordinates first, and then taking p's position 
minus the number of points in T that precede p. (If S and T were initially sorted, 
then this reduces to a simple use of merging.) A generalization of the result follows. 

THEOREM 3. Fix d >_ 2. Given a set S of no more than N d-dimensional points 
stored one per processor in an lg(N)-dimensional hypercube, determining the number 
of points every point dominates, or determining the number of points dominating every 
point, can be accomplished in O(log a N) time. 

4.2. Convexity. While extreme points are similar to maximal points, the differ- 
ences can also be quite significant. For example, if the points are sorted by 
x-coordinate, then no simple information from points lying on one side of a point 
will provide enough information to decide whether or not the point is an extreme 
point. Using a divide-and-conquer approach first applied to PRAM algorithms, 
Cypher and Sanz [CS1] developed a | 2 N)-time algorithm, and Miller and 
Stout [MS1] developed a | algorithm, for determining the extreme 
points of a set of N points on an lg(N)-dimensional hypercube. The [MS1] 
algorithm has the additional property that it needs only | N) time if the~data 
is presorted. The divide-and-conquer algorithm given in [MS1] finds lines of 
support between linearly separable convex hulls based on the assumption that the 
points are presorted so that there are N 1/4 groups of N 3/~ points, where the ith 
group is stored in the ith subhypercube. This yields a running time recurrence of 
the form T(N) = T(N 3/r + | N), which is | N). 

PROPOSITION 4. Given a set S of no more than N points stored one per processor 
in sorted order in an lg(N)-dimensional hypercube, in | N) time the extreme 
points can be determined where the counterclockwise numbering and the coordinates 
of the preceding and following extreme points are known for every extreme point. 

Given the extreme points and order information, several other properties of the 
convex hull can be easily determined by triangulating the convex hull so that the 
first point in the counterclockwise ordering is a vertex of every, triangle. Using 
this, we obtain 

COROLLARY 5. Given a set of no more than N points stored one per processor in 
sorted order in an lg(N)-dimensional hypercube, in | N) time the area, centroid, 
and perimeter of the convex hull of the points can be determined. 

To determine a smallest enclosing box for a set S, first determine for each hull 
edge e i a smallest enclosing box Bi containing an edge collinear with e~. Then a 
smallest enclosing box of the set is a minimum area box of any of these smallest 
boxes. For each edge, we need to find the "opposite" point with a support line 
parallel to the edge, and also the points with perpendicular support lines. These 
are just search problems where each extreme point has an interval of support 
angles, and the edges form searching elements looking for the points defining the 
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interval containing their support angle. (Support angles correspond to supporting 
half-planes and are in the range [0, 2~), where 0 ~ zc.) On the hypercube this can 
all be accomplished in logarithmic time using the ordered search operation 
discussed in Section 3. This approach has been previously used on mesh computers 
[MS2], and seems to be an efficient approach on almost any parallel computer. 
The diameter can be found similarly since the diameter is the largest distance 
between pairs of points with angles of support differing by re. 

COROLLARY 6. Given a set of no more than N points stored one per processor in 
sorted order in an lg(N)-dimensional hypercube, in O(log Ny time a smallest enclosing 
box and the diameter can be determined. 

5. Algorithms for Random Point Data Sets. For very large data sets, sorting may 
involve a considerable amount of time. However, for sets of random points, it may 
be possible to avoid sorting and solve geometric problems more efficiently. This 
section concentrates on fine- and medium-grain hypercube algorithms to solve the 
domination and convex-hull problems for random point data input. Following 
some definitions and the discussion of the relationships between random data and 
efficient expected-case running times, Section 5.1 describes domination algorithms 
on medium-grain machines, with experimental results being given in Section 5.2. 
Sections 5.3 and 5.4 cover algorithm descriptions and experimental results for the 
convex-hull problem, respectively. Section 5.5 discusses algorithms for random 
points on fine-grain machines. Finally, algorithms for higher-dimensional data are 
described in Section 5.6. 

Random points can be defined in a wide variety of ways. For simplicity we 
assume that the points have been independently chosen from a unit square or unit 
circle using a uniform distribution, though many of our techniques work with 
much more general distributions. The phrase set of  random points denotes a data 
set generated in this manner. The fact that convexity and domination algorithms 
can have faster expected times on sets of random points is well known for serial 
algorithms. In [PS] it is shown that for the random data sets we consider in this 
section (described in detail later), the expected running time to determine maximal 
points for N d-dimensional points is O(N). Furthermore, it is shown in [PS] that 
for two-dimensional data of the form considered in this section, the extreme points 
can be determined with an expected running time of O(N). The use of randomiza- 
tion for faster parallel algorithms is also well known, but so far there has been 
little work on exploiting random data sets on parallel algorithms for geometric 
problems. (See, however, [Sto].) 

Given a set of N random points chosen from the unit square using a uniform 
distribution, it can be shown that the expected number of maximal points is 
HN=/_.i=lt~'i=Ntl/i~/j= In(N) + y + O(1/N), where y is Euler's constant [K]. Further, 
H N has a standard deviation of O(log 1/2 N). It is also known that for the same 
distribution the expected number of extreme points is (8)[In(N) + 7] + 0(1) [RS]. 

Since the expected number of maximal or extreme points for the unit square 
distribution is relatively small, we can hope to eliminate rapidly most of the points 
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from consideration. Given a set of N random points from a unit square, a point 
(x, y) can be expected to dominate (N - 1)xy points. Therefore, a point P which 
maximizes xy is expected to dominate the most points. Notice that P is necessarily 
maximal. 

Once P is detected, every point dominated by P can be eliminated from further 
consideration as a maximal point. It can be shown that this single elimination 
step will remove all but (~)(N 1/2) points, on average, from consideration as maximal 
points. The remaining points form two sets, namely those with the x-coordinate 
larger than P and those with the y-coordinate larger than P. In each set we can 
recursively apply the procedure of choosing the point which is expected to 
dominate the most points in the respective set. Since each  application finds one 
new maximal point, the number of applications is the number of maximal points. 
In this section we consider results for random points chosen from the unit square 
and random points chosen from regions that do not allow for such a simplistic 
reduction so quickly. 

5.1. Random Point Domination on Medium-Grain Machines. There are two 
natural ways to implement a domination algorithm for random data chosen from 
a unit square on a medium-grain machine: 

(1) The 9lobal version is a recursive routine where at each step of the recursion, 
a globally expected best point is found and used to eliminate as many points 
as possible. (As described above, the first step of the algorithm would choose 
P, a point with maximum xy value.) 

(2) The local algorithm first solves the domination problem independently on each 
processor. After finding the maximal points restricted to each processor, these 
points are combined to find the maximal points of the entire set. Since we 
expect relatively few locally maximal points, there are several reasonable 
techniques for combining local solutions to obtain the global solution. One 
natural way is to use a report procedure, where at each step every processor 
merges its candiate maximal points with the candidates received and eliminates 
those in either group that are dominated by a point from the other group. 

Various blends of these two methods are also possible. To determine which of 
these approaches to use, we analyze the first stage of each. Given p processors, 
one stage of the global algorithm will take cl(N/p) time for each processor to find 
its best candidate, c2 lg(p) time for the processors to determine the globally best 
candidate, and c3(N/p) time for each processor to eliminate dominated points, for 
some constants cl, c2, and c 3. At the end of the stage there are on average c4N 1/2 
points remaining for c 4 a constant. 

One stage of the local algorithm will take cl(N/p) + c3(N/p) time, and will leave 
a total of c4p(N/p) ~/z = c g p l ( 2 N  1/2 points. Therefore, by spending cz lg(p) time on 
communication, the global algorithm reduces tile average number of points 
remaining from c4pl/2N 1/2 to c4N x/2, which Will reduce the time of the next stage. 

Once these constants have been measured for a particular implementation, for 
any given values of N and p we can then predict which of these two approaches 
would be best for the first stage. As the stages are repeated, the communication 
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time required by the global algorithm increases, since at stage i there are 0(2 i) 
points being detected. Therefore, after an implementation-dependent number of 
global reduction stages, local reduction is used, followed by a combination step 
to determine the global solution. 

Note that the maximum number of points remaining in any processor needs to 
be taken into consideration since the time of a stage depends on the slowest 
processor to complete that stage. This maximum grows with p as well as N/p, 
though the increase with an increase in p is quite slow. 

Another factor that needs to be examined is how many stages of reduction 
should be performed for the local algorithm, since the number of "best" reduction 
candidates doubles at each stage. Experiments have shown that, at some point, it 
is faster to perform the "sweep" domination technique, instead of doing additional 
reduction passes. The number of reduction stages (prior to performing "sweep" 
domination) will depend on the number of points reduced each time and the 
overhead costs of performing the reduction. 

5.2. Experimental Results for Domination on a Medium-Grain Machine. In this 
section we give results of parallel domination algorithms on a 16-node Intel iPSC1 
hypercube at SUNY, Buffalo. Restricting our attention for the moment to the 
global approach, we obtain the following asymptotic result as a point of reference. 

PROPOSITION 7. Given N random points chosen from a unit square and dis- 
tributed Nip per processor in an lg(p)-dimensional hypercube, the maximal points 
can be determined in O(N/p + log(p) log(N)) expected time by the global approach. 

Our results show that beyond the first one or two global stages there is little 
additional load-balancing benefit from the global approach since the number of 
points remaining is extremely small. Due to the fact that global stages use extra 
communication, we have found it better to switch to a local approach after a few 
stages and then combine the results. Extensive testing was performed and results 
verify our analyses of time and expected number of points remaining. 

Table 1. Th,e number of points remaining in a cube after each global pass.* 

Points remaining in Points remaining in 
Number of passes unit square tilted unit square 

0 100,000 100,000 
1 615 24,599 
2 523 12,278 
3 328 6,177 
4 220 3,144 
5 218 1,673 
6 216 872 

Number of maximal points 122 289 

* As the number of remaining points approaches the number of maximal points, the 
reduction passes become less useful. 
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Table 2. Running times for Dominat ion program with unit square point distribution.* 

61 

Running time in 
Number  of processors Points per processor milliseconds Speedup 

1 100,000 37,625 1.00 
2 50,000 18,375 2.05 
4 25,000 9,075 4.15 
8 12,500 4,575 8.22 

16 6,250 2,455 15.36 

* The program performed one global reduction and two local reductions, befor performing a local 
"sweep" algorithm. Extensive testing showed this to be the most efficient algorithm. The data 
were randomly generated each time accounting for the apparent superlinear speedups. 

Table 1 shows that the first few global passes rapidly reduce the number of 
points to be considered. In our tests, the time for the initial |  reduction 
dominated the minimal | p log N) time for communication and combination 
steps, giving us near linear speedup over the data tested. (See Table 2.) 

Since our reduction techniques rapidly reduce the number of points to consider 
for random points chosen from a unit square, we consider additional random 
point distributions which have a greater expected percentage of maximal points. 
Distributions in the shape of a unit circle and of a 45 ~ tilted unit square were 
examined, and the results from the tilted unit square distribution are discussed 
here. It can be shown that points chosen independently from a tilted unit square 
using a uniform distribution will have approximately order n 1/2 expected maximal 
points. Notice that no point can dominate more than 75% of the tilted unit square. 
Therefore, the percentage of points remaining after each reduction stage for tilted 
square distributions is expected to be higher than for unit square distribution. 
This is confirmed by our experiments as can be seen in Table 1. 

The method we used for choosing reduction points for the tilted square 
distribution was different than for a nontilted square, and involves three stages. 
The first stage chooses the point with the maximum xy  product, as before. The 
second stage chooses two points, one with maximum x value and one with 
maximum y value. For the third and subsequent stages, we chose points closest 
to the center of the northeast wall for a given group of points. (See Figure 2.) 
Using this reduction technique, the average percentage of points eliminated was 
75 for the first stage and 50 for each following stage. For the tilted square it was 
found that the best performance was achieved by performing several global 
reduction passes followed by a local "sweep" algorithm and a final combination 
step. 

We considered three ways of performing the final combination. The most 
efficient of those is now described. First, every node locally sorts its candidate 
maximal points. Then, at each step of the report process, the points are merged 
(maintaining their sorted order), while dominated points are eliminated by keeping 
track of the current maximal y-value. This is simply a modified version of the 
"sweep" technique. Using this technique, dominated points are eliminated at each 
step, and no further work is needed when the points reached the final node. 
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Fig. 2. Unshaded areas indicate the points dominated by the various reduction points (number 1 
indicates the first reduction point, number 2 indicates the second two reduction points, etc.). 

Analysis of the expected running time of the algorithm shows that we may be 
able to achieve near linear speedup, provided the number of iterations and number 
of processors used is reasonable for the problem. The global reduction takes 
(9((N/p) + (2 i- ~ log p)) time, where the (N/p) term dominates while the number of 
iterations i is small. The local reduction takes (9(Nip) time. The local domination 
takes time proportional to the serial sort time with respec to the number of points 
left to consider. For the random point distribution on the tilted square, the 
expected local domination time (i.e., the "sweep" algorithm) is 

(9(N1/2/plog(N1/2/p)). 

Finally, the time for the report is (9(N1/2). Therefore, the expected running time 
for the tilted square distribution is (9(N/p + 2 i- 1 log p + NIl2). Our tests were 
performed with 100,000 random points distributed evenly across the nodes, and 
the number of local and global reduction iterations varying from one to five. In 
all cases, the first term dominated and speedups approached linear. (See Table 3.) 

TaMe 3. Running times for Domination with tilted square point distribution, with six 
global passes. 

Running time in 
Number of processors Points per processor milliseconds Speedup 

1 100,000 64,740 1.00 
2 50,000 32,825 1.97 
4 25,000 16,640 3.89 
8 12,500 8,610 7.52 

16 6,250 5,050 12.82 
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Other reduction techniques were examined and are briefly described here. For 
the tilted square,, notice that by omitting the "maximum x and maximum y" 
reduction stage and proceeding immediately to the "closest to the center" 
reduction strategy, the expected number of points reduced during the second stage 
of the algorithm would be approximately 63%. This compares favorably with the 
50% expected reduction achieved by using the "maximum x and maximum y" 
reduction as a second stage. However, experiments on the iPSC1 have shown that 
including "maximum x and maximum y" reduction as the second stage improves 
the total running time of the algorithm. We attribute this to the fact that the tests 
performed in the "maximum x and maximum y" reduction are somewhat different 
from the tests performed in the "closest to the center" reduction. The "maximum 
x and maximum y" reduction uses two simple comparisons (y > max_y 
and x > max_x) in determining the points of interest, while the "closest to the 
center" reduction uses a single distance comparison ( ( x - x_cur ren t )2+  
(y - y_current) 2 < (distance_current) 2) to determine the point of interest. There- 
fore, although using "maximum x and maximum y" reduction as the second 
reduction stage of the algorithm reduces fewer points on average than proceeding 
immediately to the "closest to the center" reduction, the "maximum x and 
maximum y" reduction is used as a second stage reduction since it reduces the 
total running time of our algorithm on the iPSC1. 

We examined other combinations of these reduction strategies, as well. For 
example, after observing the results just described, we considered using the 
"maximum x and maximum y" reduction as the first stage, since it is also expected 
to reduce 75% of the points. However, experiments again showed that the original 
method described is faster (about 5%) than using the "maximum x and maximum 
y" reduction as the first reduction stage. We should point out, however, that since 
these results have been determined experimentally on an Intel iPSC1, variations 
of the algorithm or changes in the low-level implementation details, such as the 
ones we have described, might be more efficient on other hypercubes. 

The analysis for unit square distribution is similar, except that the 
expected number of maximal points is smaller, and gives a running time of 
|  + 2 i- 1 log p + log N). (See Table 2.) 

5.3. Random Point Convex Hull on Medium-Grain Machines. The same approach 
used in determining the maximal points of a random set of data can be used to 
find the extreme points. Given random input chosen from a uniform distribution 
on the unit square, first locate a point closest to each of the four corners of the 
square, and then eliminate any points in the quadrilateral determined by these 
four points. After this elimination, there are four sets of points remaining outside 
the quadrilateral, one corresponding to each side. During the second step of the 
algorithm, locate the point the furthest distance from the side of each of the four 
sets. This creates a situation as in Figure 3, where the points inside the triangles 
are eliminated and the remaining points are subdivided into two regions. The 
algorithm extends recursively within regions containing potential extreme points. 
As a serial algorithm this approach is called "Quickhull" in [PSI, and has 
apparently been independently discovered by several authors. 
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Fig. 3. Quickhull reduction. Points inside the triangles are eliminated. Points l, r, and h subdivide 
the set S(1) into sets S(1, 1) and S(1, 2). 

In a parallel convex-hull algorithm, a global Quickhu!l approach can be used 
as a data reduction technique to eliminate most points from consideration. This 
technique is used in [MM] to solve the convex-hull problem for digitized picture 
input, and follows the approach taken in the global domination algorithm of the 
previous section. After a number of global Quickhull iterations, each processor 
will attempt further data reduction by performing a local Quickhull reduction. 
The final solution can then be determined by combining the local results using a 
report operation. It should be noted that experimentation indicates that a global 
Quickhull technique should be used initially as a data reduction technique to 
reduce the number of points per processor, since a local Quickhull reduction leaves 
a much larger number of points in at least one processor. Two combine steps were 
implemented. The global-combine step uses a report procedure to collect the points 
remaining into a single processor. This is followed by a serial convex-hull 
algorithm (Graham scan [Se]) on the (remaining) data to determine the final 
solution. Conversely, the local-combine step uses the Graham scan hull algorithm 
to eliminate points during each iteration of the report step. 

5.4. Experimental Results for Convex Hull on Medium-Grain Machine. In this 
section we give results of convex-hull algorithms that were implemented on a 
16-node lntel iPSC1 hypercube at SUNY, Buffalo. Both the global-combine and 
the local-combine versions of the algorithms were implemented for a variety of 
iterations of Quickhull. The input to these algorithms is a set S of N random 
points. The set S is distributed throughout the p nodes of the hypercube so that 
each node has N/p points. In this section we explore algorithms based on two 
different input sets. The first is a set of random points chosen from a uniform 
distribution on the unit square. For this set of input, [PS] has shown that there 
are @(log N) expected extreme points. The second, which has | U3) expected 
extreme points [-PSI, is a set of r a n d o m ~ i n t s a z h o ~ f x O ~ a  uniform distribution 
on the unit circle. Notice that tilted square distribution has the same expected 
number of extreme points as square distribution. 
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Since the expected number of extreme points is relatively small for both sets of 
inputs, we hope to eliminate quickly most of the points from consideration. The 
first iteration of the Quickhull algorithm takes O(N/p) time for each processor to 
find local corner points, | p) time to find and distribute the global corner 
points, and | time to eliminate local points enclosed in the quadrilateral 
formed by these four global points. For random data on the unit square, the 
expected number of points remaining after the first iteration of Quickhull is 
O(N1/2). For random data on the unit circle, the expected number of remaining 
points after the first iteration of Quickhull is N(1 - 2/~) + o(N). Notice that at 
every stage of the parallel convex-hull algorithm for random data on the unit 
circle there are more points remaining for consideration than for random data on 
the unit square. Therefore, it is expected that the running times of algorithms for 
the circular distribution will be longer than for the square distribution. 

We chose to implement the Graham scan as the serial convex-hull algorithm 
since it is efficient and has a guaranteed worst-case | log N) running time. 
Other serial algorithms, such as "package wrapping" [Se], have a good running 
time on random points, but the worst-case running time is | which occurs 
when all the points are on the hull. Since the Quickhull algorithm is used for data 
reduction, the Graham scan algorithm will be more efficient than "package 
wrapping" during the final combine step since most of the remaining points will 
be on the convex hull. 

The running time of our algorithm is influenced by the number of iterations of 
the Quickhull algorithm. Let T~(N) be the running time of the algorithm for N 
random points chosen from a uniform distribution on the unit square on a 
hypercube with p processors. Then 

(1) T~(N) =O(N/p  + log p) + T's(N1/2), 

where | + log p) is the cost to run the first iteration of Quickhull and T's(N 1/2) 
is the time to run the algorithm on the remaining points. Since each additional 
iteration of Quickhull on data from a square distribution reduces the number of 
points by a fraction, the cost of the ith such iteration, for small i, is approximately 
determined by 

(2) T,s(Ni/2/ci-1) = T;(N1/2/ci ) + O(N1/Z/(pci-1) + 2i+1 log p), 

where c is the reduction factor. Therefore, the number of iterations needed to 
reduce the data to its extreme points is approximately 

(3) x = lg(N1/2/lgN)/lg c. 

So, it is expected that after [x + 17 Quickhull iterations the data will be reduced 
to the set of extreme points. 

The analysis as presented would be correct if a uniform reduction of points 
occurred in all intervals. Unfortunately, this is not a valid expected-case assump- 
tion as imbalances in the number of points distributed to regions may arise 
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throughout the algorithm. Therefore, some regions will require a slightly larger 
number of iterations, in the expected case, to reduce its set of points to its extreme 
points. However, the value x can be computed at the outset of the algorithm, and 
subsequently used to determine a checkpoint for the algorithm. That is, after some 
number of iterations, dependent on x, a global decision can be made as to how 
many more iterations of Quickhull will be performed, based on the number of 
points in intervals, before another checkpoint is made. While the algorithm must 
terminate eventually, these global checkpoints can also be used to determine a 
point at which to initiate a local reduction algorithm (for the outstarMing intervals), 
followed by a global combination of these outstanding intervals. This would avoid 
the situation of a few (bad) intervals resulting in a large number of additional 
iterations of Quickhull. We observed that after running the algorithm for [-x + 1-] 
iterations, all of the extreme points have been determined. 

It should also be noted that it is possible for minor load balancing problems 
to arise due to imbalances in the number of points that each processor is 
responsible for as the algorithm progresses. However, these balancing problems 
are minor since the running times of the algorithm during the later stages are 
dominated by communication costs. 

For random data chosen from a uniform distribution on the unit circle, each 
Quickhull iteration reduces the number of points by a fraction. The cost of the 
ith iteration, for small i, is 

(4) Tc(N/k i-a) = T'~(N/k i) + | i) + 2 i+ ~), 

where k is the reduction factor. The number of iterations used in the algorithm is 
based on the expected number of Quickhull iterations and the expected number 
of extreme points. The number of Quickhull iterations to reduce the data to the 
set of extreme points can be determined to be 

(5) y = (2 log N)/(3 log k). 

As in the case of the distribution on the unit square, this analysis is based on a 
flawed uniform reduction assumption. Nevertheless, both of these analyses can be 
useful for implementation purposes, as was done for some the results presented 
below. 

Figure 4 gives sample running times for variations of the convex-hull algorithm 
for 100,000 random points chosen from a uniform distribution on the unit square. 
The significant reduction in the running time of the algorithm after the first 
iteration is due to the fact that, for random data on a unit square, the Quickhull 
data reduction technique reduces the expected number of points from N to | 1/2). 
Figure 5 is a plot of the number of points remaining versus the number of iterations 
of the global Quickhull reduction. As shown in Figure 5, the first Quickhull 
iteration eliminated in excess of 99% of the points, leaving, approximately 750 
points to consider from the original 100,000 points. It is interesting to note that 
since the Graham scan algorithm on each processor runs in | log(N/p)) time, 
the first Quickhull iteration itself lead to an 83% reduction in the running time 
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Fig. 4. Convex-hull algorithm on random data from a uniform distribution on the unit square. 
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Table 4. Speedup of convex-hull algorithm for each iteration of Quickhull 
for ~andom data on the unit square. 

Speedup per iterations of Quickhull 
Number of 
processors 0 1 2 3 4 5 

0 1.00 1.00 1.00 1.00 1.00 1.00 
r 2.14 1.99 1.99 1.99 1.99 1.99 
2 4.38 3.96 3.95 3.96 3.96 3.96 
3 9.18 7.86 7.89 7.92 7.92 "7.92 
4 18.99 15.04 15.22 15A6 15.50 15.38 

on a single node. After the fifth iteration of the Quickhull algorithm, the data was 
completely reduced to the set of extreme points. Therefore, additional iterations 
or a local Quickhull algorithm will only serve to increase the running time of the 

algorithm. 
Table 4 presents the speedups of the algorithm for different numbers of iterations 

of Quickhull versus the number of processors for random data on the unit square. 
As can be seen from Figure 4 and Table 4, near linear speedup was achieved with 
respect to the number of nodes tested. Notice also that this speedup was attained 
with respect to a given number of iterations of the Quickhull algorithm. For  the 
data on the unit square, it was noticed that after the first iteration of Quickhull, 
the running times are dominated by the local processing times of the additional 
Quickhnll iterations of the algorithm. The Quickhull iterations run in 
|  + log p) time, where M is the maximum number of points left in any  node, 
| is the cost of local processing, and | p) is the cost of communication. If 
the number  of points left in every node is approximately the same, then it can be 
expected that doubling the number of nodes will reduce the processing cost by 
half while adding a linear cost for communication. As long as the local processing 
is expensive compared with the communication costs, good speedup will be 
obtained. Eventually, as more nodes are added, the local processing will become 
less expensive compared with the communication cost, resulting in a situation 
where adding more nodes will degrade the performance of the algorithm. As can 
be seen in Figure 4 and Table 4 the speedups generally decrease as the number 

of processors increases. 
The algorithm that we described works well for random data on the unit square, 

due to the fact that the first Quickhull iteration eliminates most of the points. 
Next, we consider random data on the unit circle. This is a more interesting 
situation since the expected number  of extreme points is far greater then the 
expected number  of extreme points for random data on the unit square. 

Figure 6 shows sample running times for 100,000 random points chosen from 
a uniform distribution on the unit circle. Notice that the running times without 
any Quickhull data reductions are approximately the same as the running times 
of the algorithm on a square distribution of data. This is due to the fact that the 
running time of the Graham scan algorithm is largely independent of the number 
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Fig. 6. Convex-hull algorithm for random data from a uniform distribution on the unit circle. 

69 

of extreme points. Figure 6 also confirms our expectation that for a circular 
distribution of data, the first Quickhull iteration will not reduce the running time 
as significantly as in the case of data on the unit square. The reduction in the 
running time of the algorithm after the first quadrilateral data reduction step for 
the circular data was approximately 55% compared with over 80% reduction in 
the running time of the algorithm for the square data. This is mainly due to the 
fact that the Quickhull reduction technique does not eliminate points as fast for 
the circular distribution when compared with the square distribution. As shown 
in Figure 7, after one iteration of Quickhull on the circular data, approximately 
40,000 points remained, where for the square data Figure 5 shows that only 750 
points remained. Notice that both of these numbers confirm our earlier analysis 
concerning the expected number of points remaining after the first Quickhull 
iteration. It took seven iterations of the Quickhull algorithm to reduce the circular 
data to its extreme points, as opposed to the five iterations that it took for the 
square data. Therefore, more work is required to eliminate points in a uniform 
distribution on the unit circle. 

As shown in Figure 6, each of iterations 2 and 3 of the Quickhull algorithm 
resulted in approximately 40% reduction in the running times from the previous 
iteration. Figure 8 shows that for data in a circular pattern, the second and third 
iteration of the Quickhull algorithm will eliminate a large number of points. As 
can be seen in Figure 7, approximately 9800 and 2550 points remained after 
iterations 2 and 3 of the Quickhull algorithm, respectively. By analyzing the 
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Fig. 7. Number of points remaining after Quickhull iterations from an input of 100,000 random 
point on a unit circle. 

geometric prop~ties of the square and triangles created by the Quickhull techni- 
que inside the circle we determined a reduction factor of 3.6 and 4.5 for iterations 
2 and 3, respectNely. This compares favorably to the results presented in Figure 
7. Table 5 shows the speedups of the algorithm with respect to the number of 
Quickhuil iterations versus the size of the cube for random data on the unit circle. 
Figure 6 and Table 5 show that the parallel convex-hull algorithm resulted in 
excellent speedups for small-dimensional hypercubes. But, as in the case of the 

[• First  Quickhu l !  i tera t ion 

Second  Qu ickhu l l  i ter;i t ioll  

Fig. 8. Quickhull reduction of data on the unit circle. 
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Table 5. Speedup of convex-hull algorithm for each iteration of Quickhull for random data on the 
unit circle. 

Speedup per iterations of Quickhull 
Number of 
processors 0 1 2 3 4 5 6 7 

0 1.00 1,00 1.00 1.00 1.00 1.00 1.00 1.00 
1 2.05 2,06 1.99 1.98 2.00 1.99 1.99 1.99 
2 4.17 4,06 3.97 3.88 3.92 3.92 3.94 3.93 
3 8.38 8.17 7.73 7.58 7.58 7.62 7.70 7.70 
4 6.80 16.24 14.98 14.24 14.14 14.54 14.70 14:66 

unit square distribution, the speedups fell below linear for increased iterations of 
Quickhull and larger-dimensional hypercubes because the local processing became 
less expensive relative to the cost of communication between the nodes. 

Figures 9 and 10 compare the running times of the local-combine version of the 
convex-hull algorithm with the 9lobal-combine version of the convex-hull algo- 
rithm, for square and circular distribution, respectively. Figure 9 presents the 
results for runs of three, four, and five iterations of Quickhull for square distribu- 
tion and Figure 10 presents the results for runs of five, six, and seven iterations 
of Quickhull for circular distribution. As can be seen from Figures 9 and 10, the 
91obal-combine version ran slightly faster than the local-combine version for 
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Fig. 9. Local combine version versus global combine version of convex-hull algorithm for random 
data points on the unit square, 
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iterations 3, 4, and 5 for the square distribution and iterations 6 a n d 7  for the 
circular distribution. However, for fewer iterations of Quickhull, the local-combine 
version is faster than the global-combine version. This is due to the fact that for a 
relatively large number of points that need to be combined, the local Graham scan 
algorithm during the report operation is more efficient than allowing the points 
to mount up in node 0 and then running the Graham scan algorithm on all those 
points. Therefore, we conclude that when the number of points needing to be 
combined is relatively small, the global-combine version of the parallel convex-hull 
algorithm is desirable. 

5.5. Fine-Gra& Mach&es. Algorithms for sets of random points can also be 
developed that are more efficient than worst-case algorithms on fine-grain ma- 
chines. For instance, given a set of N random points chosen from a unit square 
distributed one per processor on a hypercube with N processors, using the first 
step of the global Quickhull approach reduces the number of points to | 
These | ~/2) points can then be sorted in | N) time INS], and then the 
algorithm for presorted data sets can be utilized. This combination of approaches 
gives the following. 

THEOREM 8. Given a set of  no more than N random points chosen from a unit 
square stored one per processor in an lg(N)-dimensional hypercube, in O(log N) 
expected time 

(1) the maximal points can be determined; 



Efficient Convexity and Domination Algorithms for Hypercube Computers 73 

(2) the extreme points can be determined, each having its counterclockwise numbering 
and the coordinates of the following and preceding extreme point; 

(3) the area, centroid, and perimeter of the convex hull can be determined; and 
(4) a smallest enclosing box and the diameter can be determined. 

5.6. Higher-Dimensional Data. The basic idea of identifying points which elimi- 
nate many other points can be extended to points chosen from the unit cube in 
d-dimensional space, for any fixed d. The expected number of maximal and extreme 
points is | d- 1 N) [BKST], and for finding maximal points we can show that 
the expected number remaining after the best candidate has eliminated points is 
O(N(d- 1)/d). The same basic global approach for determining maximal points works 
essentially as before. 

Determining extreme points is somewhat more complicated, but can be ap- 
proached by first finding 2 d sets of"maximal"  points obtained by using all possible 
choices of < and _> for each dimension, as in Section 2. The extreme points must 
be a subset of these generalized maximal points, and for fixed d there are only 
O(log d-1 N) points remaining, on average. For these points, a slower, more 
complicated algorithm can be utilized, and as long as it runs in polynomial time 
in the number of points, it will yield a time polylogarithmic in N. One simplistic 
possibility is to take each point and see if it is contained in the hull of d + 1 other 
remaining points, for all possible choices of the d + 1 points. This requires | a+ 2) 
calculations if there are x points remaining, which can be performed in | d+ 2/p) 
time by p processors. This is O(N/p), so in O-notation the extra difficulty in 
determining extreme points does not appear. 

THEOREM 9. For any fixed d, given N points chosen independently from a uniform 
distribution on the unit d-dimensional cube, distributed Nip per processor in an 
lg(p)-dimensional hypercube, in O(N/p + log p log d- 1 N) expected time 

(1) the maximal points can be determined; 
(2) the extreme points can be determined, each with its counterclockwise numbering 

and the coordinates of the following and preceding extreme point; and 
(3) the area, centroid, and perimeter of the convex hull can be determined. 

THEOREM 10. For an 3, fixed d, given a set of no more than N points chosen 
independently from a uniform distribution on the unit d-dimensional cube, stored one 
per processor in an lg(N)-dimensional hypercube, then in | N) expected time 

(1) the maximal points can be determined; 
(2) the extreme points can be determined, each with its counterclockwise numbering 

and the coordinates of the following and preceding extreme point; 
(3) the area, centroid, and perimeter of the convex hull can be determined; and 
(4) a smallest enclosing box and the diameter can be determined. 

6. Comments. We have given parallel algorithms for a hypercube to determine 
geometric properties of sets of points. Because of the dependence upon sorting, 
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we have also analyzed the time needed if the points were appropriately presorted, 
or if they were randomly chosen from a uniform distribution. In both situations 
the times are faster than if sorting is performed using the sorting algorithm 
currently having the best worst-case sorting time. For medium-grain machines any 
sorting algorithm must take f2(N log(N)/p) time, and hence when N/p= ~(lg p) 
the medium-grain algorithms given here for random points will be faster than any 
general-purpose algorithm for unsorted data. It should be noted that although 
some of the algorithms we have presented have been optimized for specific 
distributions of points, each of these works correctly regardless of the distribution. 

While we have treated the medium- and fine-grain machines separately, it is 
possible to combine the approaches and improve upon the results for random 
points on medium-grain machines when N = O(p2). In this case, after the first 
global stage of determining maximal points the expected number of points 
remaining is less than the number of processors. Redistributing these points results 
in a configuration suitable for a fine-grain algorithm for nonrandom data. Using 
this approach shows that each of the problems noted in Proposition 7 and 
Theorem 8 can be solved in | + log p) time, which is optimal for all values 
of p and N. It is also optimal for any parallel computer with p processors without 
concurrent write or without concurrent read operations. 
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