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Abstract. Apollonian circle packings arise by repeatedly filling the interstices between
four mutually tangent circles with further tangent circles. Such packings can be described
in terms of the Descartes configurations they contain, where a Descartes configuration is a
set of four mutually tangent circles in the Riemann sphere, having disjoint interiors. Part
I showed there exists a discrete group, the Apollonian group, acting on a parameter space
of (ordered, oriented) Descartes configurations, such that the Descartes configurations in a
packing formed an orbit under the action of this group. It is observed there exist infinitely
many types of integral Apollonian packings in which all circles had integer curvatures, with
the integral structure being related to the integral nature of the Apollonian group. Here we
consider the action of a larger discrete group, the super-Apollonian group, also having an
integral structure, whose orbits describe the Descartes quadruples of a geometric object we
call a super-packing. The circles in a super-packing never cross each other but are nested
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to an arbitrary depth. Certain Apollonian packings and super-packings are strongly integral
in the sense that the curvatures of all circles are integral and the curvature x centers of all
circles are integral. We show that (up to scale) there are exactly eight different (geometric)
strongly integral super-packings, and that each contains a copy of every integral Apollonian
circle packing (also up to scale). We show that the super-Apollonian group has finite volume
in the group of all automorphisms of the parameter space of Descartes configurations, which
is isomorphic to the Lorentz group O (3, 1).

1. Introduction

Apollonian circle packings are arrangements of tangent circles that arise by repeatedly
filling the interstices between four mutually tangent circles with further tangent circles.
A set of four mutually tangent circles is called a Descartes configuration. Part I studied
Apollonian circle packings in terms of the set of Descartes configurations that they
contain. It is observed that there exist Apollonian circle packings that have a very strong
integral structure, with all circles in the packing having integer curvatures, and rational
centers, such that curvature x center is an integer vector. We termed these strongly
integral Apollonian circle packings. An example is the (0, 0, 1, 1) packing pictured in
Fig. 1, with the two circles of radius 1 touching at the origin, and with two straight lines
parallel to the x-axis.

Part I gave an explanation for the existence of such integral structures. This uses a
coordinate system for describing all (ordered, oriented) Descartes configurations D in
terms of their curvatures and centers, which forms a 4 x 3 curvature-center coordinate
matrix Mp, and a more detailed coordinate system, augmented curvature-center coor-
dinates, using 4 x 4 matrices Wp. The strongly integral property of a single Descartes
configuration is encoded in the integrality of the matrix Mp. The set of all (geometric)
Descartes configurations in an Apollonian packing can be described as a single orbit of
a certain discrete group A of 4 x 4 integer matrices; algebraically there are 48 orbits of
ordered, oriented Descartes configurations giving rise to the same geometric packing,

Fig. 1. The integer Apollonian packing (0, 0, 1, 1).
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Fig. 2. The integer Apollonian packing (—1, 2, 2, 3).

which correspond to the 48 possible ways of ordering the circles and totally orienting the
configuration. The integrality of the members of A is the source of the strong integrality
of some Apollonian circle packings. As a consequence of this group action, if a single
Descartes configuration in the packing is strongly integral, then they all are; hence every
individual circle in the packing is strongly integral.

There are infinitely many distinct integral Apollonian circle packings. Two more of
them are pictured in Figs. 2 and 3, the (—1, 2, 2, 3)-packing and the (-6, 11, 14, 15)-
packing, respectively. Any integral packing can be moved by a Euclidean motion so as
to be strongly integral, as will follow from results in this paper.

Part I introduced some further integral actions on Descartes configurations, involving
a “duality” operator D leading to a dual Apollonian group A+ . Combining this group with
the Apollonian group leads to a large group of integer 4 x 4 matrices, the super-Apollonian
group A5, which acts on the set of all (ordered, oriented) Descartes configurations. Part I
showed that the super-Apollonian group is a hyperbolic Coxeter group. It defined an
Apollonian super-packing to be an orbit A%[D] of a single Descartes configuration
D under this group. Such a super-packing is called infegral if the initial Descartes
configuration has integer curvatures, and is strongly integral if the curvature-center
coordinates Mp of the initial Descartes configuration are integral. These properties hold
for all Descartes configurations in the packing if they hold for one.

In this paper we study the geometric structure of super-packings, and their integrality
properties. A striking geometric fact is that the circles in a super-packing do not overlap,
as shown in Section 3. Figure 4 shows circles of curvature at most 65 in the super-
packing generated from the (0, O, 1, 1) configuration in Fig. 1 above. (The generating
Descartes configuration is indicated with slightly darker lines.) Here the horizontal and
vertical scales of the figure are roughly from —2.2 < x <22 and —2.2 <y < 2.2.
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Fig. 3. The integer Apollonian packing (—6, 11, 14, 15).
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Fig. 4. An initial part of the (0, 0, 1, 1) super-packing (square of sidelength 4.4).
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This picture is representative of the whole super-packing; we show in Section 6 that
this super-packing is periodic under the two-dimensional lattice generated by the shifts
x—>x4+2andy —> y+2.

We cannot picture the whole super-packing because the circles in it are dense in the
plane; they nest inside each other to an arbitrary depth. One can show that the set of
points lying in the interior of an infinite nested sequence of such circles has full Lebesgue
measure. However, there is an interesting structure visible if we increase the scale of the
circles. In Section 6 in Fig. 8 we show all circles of curvature at most 200 inside the
super-packing above, inside the unit square 0 <x <1, 0 <y < 1.

This paper is concerned with the integrality properties of some super-packings, and we
study successively stronger integrality properties. In Section 4 we require the curvatures
to be integral, in Sections 5 and 6 both the curvatures and curvature X center must be
integral, and in Section 8 the augmented curvature-center coordinates of all Descartes
configurations in the super-packing must be integral. At this last level we show that there
are exactly 14 such super-packings, viewed as rigid geometric objects. In Section 2 we
give a more detailed description of our results.

The general framework of this paper was developed by the second author (JCL), who
also did much of the writing. This paper is an extensive revision of a preprint written in
2000, and adds new results in Sections 3 and 6.

2. Summary of Main Results

We consider Apollonian super-packings. Analogously to part I, an Apollonian super-
packing may be considered as either a geometric object or an algebraic object, as follows:

(i) [Geometric] A geometric Apollonian super-packing is a point set on the Riemann
sphere C = R?U{oo}, consisting of all the circles in four orbits of a certain group
G 45(D) of Mobius transformations inside the conformal group Mob(2) acting
on the four circles {C;, C», C3, C4} in a given Descartes configuration D. The
group G 4s(D) depends on D.

(ii) [Algebraic] An (algebraic) Apollonian super-packing is a set of ordered, ori-
ented Descartes configurations, given by 48 orbits of the super-Apollonian group
AS[D]. The augmented curvature-center coordinates of its elements are ASWp :=
{UWp: U e A5}

A geometric super-packing can be described in terms of its unordered, unoriented
Descartes configurations. From this viewpoint, each geometric Apollonian super-packing
corresponds to 48 different algebraic super-packings; there are 24 choices of ordering
the four circles and 2 choices of total orientation of the configuration. We can consider
geometric super-packings as unions of a countable number of Apollonian packings.
This leads to interesting questions concerning the way these Apollonian packings are
embedded inside the geometric super-packing. We note that as a point set, the geometric
super-packing is invariant under the group action G 4s(D). However, it is not a closed
set, and its closure is the entire Riemann sphere R? U {oo}.

A large part of the paper considers the integrality properties of curvatures and cen-
ters of some super-packings. These questions are mainly studied using algebraic super-
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packings, although we also consider questions concerning the associated geometric
super-packing, such as its group of symmetries under Euclidean motions.

In Section 3 Theorem 3.1 shows that each geometric super-packing is a packing in
the sense that the circles in it do not cross each other transversally, as mentioned above.
Theorem 3.2 specifies certain subcollections of geometric super-packings which are
genuine packings in the sense that the interiors of the circles do not overlap.

In Section 4 we study integer super-packings, in which all circles have integer curva-
tures. Integer super-packings are classified up to Euclidean motions by a single invariant,
their divisor g, which is the greatest common divisor of the curvatures in any Descartes
configuration in the packing. Theorem 4.1 shows that for each g > 1 there is a unique
such integral super-packing, up to a Euclidean motion. We also show in Theorem 4.3 that
for each geometric Apollonian circle packing that is integral, there exists a Euclidean
motion taking it to one that is strongly integral.

In Section 5 we study strongly integral super-packings, which are those whose cur-
vatures are integral and whose curvature x center is also integral. Strongly integral
super-packings are geometrically rigid: Theorem 5.1 shows that for each integer g > 1
there are exactly eight strongly integral geometric super-packings which have divisor g.
Here we do not allow the packings to be moved by Euclidean motions.

In Section 6 we study the relations between integer Apollonian packings and strongly
integral super-packings. Without loss of generality we restrict to primitive integer super-
packings, those with divisor 1. Theorem 6.1 shows that each of the eight kinds of these has
alarge group of internal symmetries, forming a crystallographic group. For convenience
we fix one of them and call it the standard strongly integral super-packing; results proved
for it have analogues for the other seven. Theorem 6.2 shows that each primitive integral
Descartes configuration (except for the (0, 0, 1, 1) configuration) occurs in this packing
with the center of its largest circle being contained in the closed unit square 0 < x <
1, 0 < y < 1, and the location of this circle center is unique. Theorem 6.3 deduces
that the geometric standard strongly integral super-packing contains a unique copy of
each primitive integral Apollonian packing, except for the (0, 0, 1, 1) packing, having the
property that the center of its bounding circle lies inside the closed unit square. Figures 5—
7 show the locations of all primitive integer Apollonian packing with a bounding circle
of curvature 6, 8§ and 9, respectively. The unit square is indicated by slightly darker
shading in the figures. Note that in Fig. 5 the three Apollonian packings are generated by
Descartes configurations with curvature vectors (—6, 7, 42, 43), (-6, 10, 15, 19) and
(—6, 11, 14, 15); these are root quadruples in the sense of Section 4 in [3].

In Section 7 Theorem 7.1 shows that the super-Apollonian group is a finite index
normal subgroup of the group Aut(Qp, Z) of integral automorphs of the Descartes
quadratic form. The latter group can be identified with an index 2 subgroup of the
integer Lorentz group O(3, 1, Z), and this identification allows us to identify the super-
Apollonian group with a particular normal subgroup AS of index 96 in 0(3,1,72),
defined after Theorem 7.1.

In Section 8 we study super-packings all of whose Descartes configurations are super-
integral in the sense that their augmented curvature-center coordinate matrices Wp are
integer matrices. Theorem 8.1 shows there are exactly 14 geometric super-packings of
this kind.

The last section, Section 9, makes a few concluding remarks.
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Fig. 5. Integer Apollonian packings with a bounding circle of curvature 6.

Fig. 6. Integer Apollonian packings with a bounding circle of curvature 8.
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Fig. 7. Integer Apollonian packings with a bounding circle of curvature 9.

The Appendix considers minimal conditions to guarantee that a Descartes configura-
tion is strongly integral. Theorem A.l shows that a configuration is strongly integral if
(and only if) three of its four circles are strongly integral.

3. Geometric Apollonian Super-Packings

In this section we consider properties of geometric Apollonian circle packings. We view
such a super-packing as a point set on the Riemann sphere € = C U {o0}. W first note
that it is not a closed set. It is not hard to show that its closure is the whole Riemann
sphere. Each geometric Apollonian packing has a group invariance property under a
certain group of Mobius transformations which depends on the super-packing, which is
the group generated by the countable set of groups of Mobius transformations that leave
invariant some Apollonian packing contained in the super-packing.
Our object is prove the following “packing” property of geometric super-packings.

Theorem 3.1. A geometric Apollonian super-packing is a circle packing in the weak
sense that no two circles belonging to it cross each other transversally. Circles in the
geometric super-packing may be nested or tangent to each other.

Before giving the proof, we describe the nature of the geometric packing in terms of
nesting of circles. We view the packing A5[Dy] as generated from an initial (positively



Apollonian Circle Packings, II 9

oriented) Descartes configuration Dy, by multiplication by a finite set of generators of
the super-Apollonian group. Each circle in the super-packing has a well-defined nesting
depth d (relative to the generating configuration Dy) which counts the number of circles
in the packing which include C in their interior. Here the notion of “interior” is defined
with respect to the initial Descartes configuration Dy. The Apollonian group generators
move “horizontally,” leaving constant the nesting depth of any circles they produce. The
dual Apollonian group generators move “vertically,” by reflecting three of the circles in a
configuration into the interior of the fourth circle, they increase the nesting depth by one.
‘We show there is a unique “normal form” word of minimal length in the generators that
produces a Descartes configuration D containing C. The nesting depth of C is exactly
equal to the number d of generators of A~ that appear in this normal form word. The
circles at nesting depth O are those circles in the Apollonian packing generated by Dj.
Each circle C at nesting depth k > 1 contains a unique Apollonian packing, consisting
of it plus all circles at depth k 4 1 nested inside it.

Proof of Theorem 3.1. 'We view the geometric super-packing on the Riemann sphere
C=cCcu {oo}, so the initial Descartes configuration Dy consists of four circles on
the sphere. In this case each circle defines a spherical cap. We choose an ordering and
orientation of Dy (this does not affect the geometry), requiring that Dy have positive
(total) orientation.

Let the super-packing be A5[Dy] = ASWp,. We consider the effect of the super-
Apollonian group generators acting on the left on the matrix Wp,. The Descartes
configurations in the super-packing are given by D = U,,U,,_; - - - U;[Dy] with each
Ui € {S1,82.S3. 54,51, S5, S5, Si}. We consider words in the group measured by
their length m. The stage m circles will consist of all new circles added using products
of m generators. We may without loss of generality restrict to normal form words, which
are those that satisfy the two conditions:

(i) If Uy = S;, then Uy, # S; and Upyy # ;- with j # i
(i) fU;, = Sll, then U, # Sll

Equivalently, looking backwards, if Ugy; = Sil then either Uy = S; or else U; =
SJJ.- for some j # i. A word may be put in normal form by canceling adjacent equal
generators, since all S? = (Si)? = I, and by moving towards the right' in the word as
far as possible any generator Si-, using the property that it commutes with all S; with
Jj # i. These operations eventually put a word in normal form, without increasing its
length. The operations do not change the Descartes configuration D it represents.

We prove the theorem by induction on the number of symbols m in a normal form
word, which we call the stage of the induction. The induction hypotheses at stage m are
as follows. Here we let C; refer to the circle at row i of the associated (ordered, oriented)
Descartes configuration.

(1) Each normal form word of length m produces either one or three new circles,
according as U,, = S;, where it is the circle C; or U,,, = SJJ.-, where it is the three
circles C; with i # j.

! That is, moving it towards the beginning of the word.
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(2) The nesting depth of any new circle produced at this stage is equal to the number
of occurrences of a letter in .A* in its generating normal form word.
(3) Each new circle produced has an empty interior, when it first appears.

In particular, hypothesis (3) implies that all circles produced at stage m have disjoint
interiors, and that each such circle contains no circles from earlier stages in its interior. If
the induction is proved, then hypothesis (3) guarantees that the nesting depth of a circle
is well-defined when it is first produced, because no new circle will ever include it in
its interior. Hypothesis (3) also guarantees that all circles produced by the end of stage
m 41 do not cross. As a consequence no two circles in the packing cross, using property
(3) applied at that level m which is the greater of the levels of the two circles. Thus the
theorem will follow.

The base case m = 0 of the induction is immediate, consisting of the initial Descartes
configuration Dy. We now show the induction step for m + 1, given m. We are given
a Descartes configuration D' = U,,1[D] = U, 11U, - - - U1 [Dy] with a normal form
word.

To establish hypothesis (1) for m + 1, suppose first that U1 = S;-. We assert that
the ith circle C; of D was a new circle produced at stage m. For either U,, = S;, in
which case it was the unique new circle in D by induction hypothesis (1) at stage m,
orU, = S]J.- with j # i, in which case it was one of three new circles produced at
stage m. By induction hypothesis (2) the circle C; has an empty interior at stage m. The
three circles {ij: J # i} in the new configuration D’ contained in the interior of C; are
therefore new circles. They do not cross, being part of a Descartes configuration. Thus
hypothesis (1) holds for m + 1 in this case.

Suppose next that U, = S;, so the possible new circle is C;. If Dy := UgUg_; - - -
U, [Dy] is the maximal length subword such that U, = Sjl for some j, with 1 < k <
m, then D’ belongs to the Apollonian packing generated by Dy, since all subsequent
generators belong to the Apollonian group. If no such & exists, then D’ is in the Apollonian
packing generated by the original Descartes configuration Dy. For k > 1, this Apollonian
packing is entirely contained in the interior of a bounding circle C = C; first produced
at stage k — 1. At that time the interior of C was empty, by induction hypotheses (2)
and (3) at stage kK — 1. The only Descartes configurations that can ever enter the interior
of the circle C must do so by a reflection in C and these are exactly those normal form
words starting with initial segment U;Uy_; - - - Uj. (This follows from the uniqueness of
a circle when it is created, hypothesis (3) applied at stage k.) The words containing this
initial segment at the same depth, with all subsequent letters in .4, fill out an Apollonian
packing at this depth. In particular, each such normal form word produces one new circle
in this Apollonian packing. Recall that all the circles in the Apollonian packing inside
the bounding circle C have disjoint interiors (Theorem 4.1 of Part I). These circles all
have the same depth, and (1) holds in this case. Normal form words that have another
subsequent generator in A+ confine the resulting Descartes configuration to the inside
of a single circle in the Apollonian packing A[D;] already produced, and all longer
words with this prefix are entirely contained inside this circle. In particular, they do
not coincide with C/, the new circle produced by the normal form word corresponding
to D'. It follows that the circle C; is new, so hypothesis (1) holds for m + 1 in this
case.
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There remains the case where U, ;1 = S; and all previous U; € A. Then U,,,;; - - -
U, [Dy] belongs to the Apollonian packing generated by Dy, and is at depth 0. Here C; is
new since the generation of an Apollonian packing creates one new circle at each step,
and any word that contains an element of A" moves the Descartes configuration inside
an older circle in this packing, from which it cannot escape. Thus C; is a new circle in
this case, and hypothesis (1) holds.

Hypothesis (2) holds for m + 1 in the case U,, = S;" because the three new circles
produced have nesting depth one greater than the nesting depth of C; at the previous level,
to which induction hypothesis (2) applied. It also holds in the remaining case U,, = S;
because the argument above showed that the nesting depth did not increase in this case.

Hypothesis (3) holds if U,,+; = Si*. Now circle C; was first created only at stage
m, and the only other possible sequences leading to a Descartes configuration including
this circle must start from D,, and use a generator U,,;1 = S; with j # i. In all other
cases the resulting Descartes configuration includes no circle inside C;, so the interiors
of the three new circles produced are empty at the end of stage m + 1.

In the remaining case, U, = S;, we have already observed that the new circle C;
produced is disjoint from all other circles in the Apollonian packing A[D;] created by
level m, which are necessarily contained in the bounding circle C of D;. As mentioned
above, all Descartes configurations containing a circle inside C must have an initial
segment of their generating word, giving the unique normal form word that first generates
C, at stage k < m. Other depth m 4+ 1 words with this initial segment, and with all
subsequent U; drawn from the Apollonian group generators, produce new circles in
the Apollonian packing A[Dy], disjoint from C;. Any normal form word at depth m +
1 with this initial segment, which contains some generator Sjl afterwards, produces
a Descartes configuration contained inside a circle of the Apollonian packing A[Dy]
different from C. It follows that the interior of C; is empty at the end of stage m + 1, as
required.

This completes the induction step and the proof. |

Super-packings have some properties that are genuine packing properties. The proof
of Theorem 3.1 established in hypothesis (3) shows that the finite set of circles at stage m
of the construction, starting from a generating Descartes configuration D, all had disjoint
interiors. It also gives the following stronger result.

Theorem 3.2. For a geometric Apollonian super-packing given with a generating
Descartes configuration D, and each k > 1, the set of all circles having nesting depth
exactly k with respect to D have pairwise disjoint interiors. These circles can be viewed
as forming an infinite collection of Apollonian packings, each missing one circle; the
missing circle is a bounding circle at depth k — 1.

Proof. The proof of Theorem 3.1 shows that the nesting depth of a circle is well-defined.
Circles at nesting depth k have disjoint interiors, since no two of them cross, and the
only way for two of them to have an interior point in common is for one to be nested
inside the other, which would violate the nesting ordering.

Given a normal form word U := U, U,,_;---U; with U,, = Sf‘, and containing
exactly k elements of AL = (SIL, Szl, Sé‘, Sj‘), the set of all normal form words having
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V as the prefix and all other letters U; € A for j > m produce all the circles in an
Apollonian packing A[D,,], with D,, = U[Dy]. All these circles are at depth k except
for the outer circle of D,,, which is its ith circle. Enumerating all possible such U
as prefixes represents the set of nesting depth k circles as a collection of Apollonian
packings, each excluding one circle when k > 1. |

Remarks. (1) The proof of Theorem 3.1 is a geometric analogue of the presentation
for the super-Apollonian group proved in Part I [4, Theorem 6.1].

(2) The analogous result to Theorem 3.1 fails to hold in all dimensions n > 4,
as explained in Part III. The “nesting” property of the dual Apollonian configurations
resulting from “vertical” moves still exists and works in all dimensions. However, the
“horizontal” motions moving spheres around in Apollonian packings produces spheres
that cross in dimensions n > 4, see Lemma 4.1 in [5].

(3) We cannot easily visualize a geometric super-packing as a completed object be-
cause the circles in it are dense in the plane. We can however picture a partial ver-
sion of it that pictures all circles of size above a given threshold, in some finite re-
gion of the packing. The integral super-packings we are most interested in have a pe-
riodic lattice of symmetries (see Theorem 6.1), so it suffices to examine a finite re-
gion of the packing. Figure 4 in Section 1 and Fig. 8 in Section 6 exhibit part of a
super-packing.

(4) Every circle C in a geometric super-packing A%[D] has associated to it a unique
Apollonian packing of which it is the bounding circle. If it is a depth & circle (relative
to the starting configuration D), then this Apollonian packing consists of all depth k + 1
circles contained in the interior of C.

4. Integral Super-Packings

An Apollonian super-packing is integral if it contains one (and hence all) Descartes
configuration whose circles have integer curvatures.

An invariant of an integral super-packing is its divisor g, which is the greatest common
divisor of the curvatures of the circles in any Descartes configuration in the super-packing.
The quantity g is well-defined independent of the Descartes configuration chosen, using
the relation Mp = UMp between two such configurations, where U € AS. Since U is
an integer matrix with determinant 1, it preserves the greatest common divisor of each
column of the integer matrix Mp. Here the first column encodes the curvatures of the
circle.

Theorem 4.1. Foreachinteger g > 1 there exists an integral Apollonian super-packing
with divisor g. The associated geometric super-packing is unique, up to a Euclidean
motion.

As an immediate corollary of this result, the integral super-packing with divisor g
contains at least one copy of every integral Descartes configuration having divisor g.
Each such Descartes configuration generates an integral super-packing with divisor g,
so the corollary follows by the uniqueness assertion.
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We defer the proof of Theorem 4.1 to the end of the section. It is based on a reduction
theory which finds inside any such integral super-packing a Descartes configuration
having particularly simple curvatures.

Theorem 4.2. Let D be an integral Descartes configuration, with divisor g =
gcd(by, by, bz, by). Then the Apollonian super-packing AS[D] generated by D contains
a Descartes configuration having a curvature vector permutation of either (0,0, g, g)
or (0,0, —g, —g), with the former case occurring if by + by + bz + by > 0 and the latter
case if by + by + b3 + by < 0.

Proof. Since the super-Apollonian group A preserves the (total) orientation of Des-
cartes configurations, it is sufficient to show that for a positively oriented integral
Descartes configuration D with curvatures (b, by, b3, by), by + by + by + by > 0,
there exists U € A5 and a permutation matrix P, such that

P,U(by, by, b3, bs)" = (0,0,g,8)".

We measure the size of the curvature vector v = (by, b, b3, bs)T of a Descartes
configuration by

size(V) := 1Tv = by + by + b3 + ba.

We claim that for positively oriented integral Descartes configurations with greatest
common divisor g, we have

size(v) > 2g,

and equality holds if and only if v is a permutation of (0, 0, g, g). If all curvatures
are nonnegative this is clear, since at most two can be zero, and the other two are
positive integers. Now in any Descartes configuration at most one circle can have negative
curvature, call it by = —a (a € Z.), in which case it encloses the other three. Each of
these three enclosed circles has a larger curvature in absolute value than the bounding
circle, sob; > a+ 1 fori = 2,3,4. Thus size(v) > —a+3@+1) > 2a +3 > 2g,
which proves the claim.

We give a reduction procedure which chooses matrices in A5 to reduce the size and
show that the procedure halts only at a vector of form (0, 0, g, g), up to a permutation. To
specify it, we observe that for the curvature vector v = (by, by, b3, by)T of any integral
Descartes configuration with b; < b, < b3 < by, we have

size(Sqv) = 17Syv < 17v = size(v) .1

and equality holds if and only if b1b; + bybs + bsb; = 0. To see this, we have S4v =
(b1, ba, b3, b)T where

by =2(by + by + b3) — by = by + by + by — 2/b1by + bybs + bsb;.

Thus

17S,v — 17v = b, — by = —4/bby + byb3 + b3b; < 0.
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Equality can hold if and only if b1b, + b,b3 + b3b; = 0, which proves the observation.
Note that b; < 0 when the equality in (4.1) holds. Also note that g = gcd(by, by, b3, bs)
is an invariant under the action of A5,

Starting with any positively oriented integral Descartes configuration with curvature
vector (b1, by, b3, by)T, where b; is the largest number, we apply S; € A. By (4.1), size(V)
decreases but cannot be negative, so after a finite series of S; we arrive at a positively
oriented integral Descartes configuration with curvatures v = (b}, b}, b5, bg)T, where
ged(by, by, by, b)) = g and the smallest curvature, say b}, satisfies b; < 0, and the
size of v' cannot be reduced by the action of the Apollonian group .A. Call this the
basic reduction step. Note that the basic reduction step involves only matrices in the
Apollonian group and therefore moves around inside a single Apollonian packing.

If b} = 0 then necessarily b, = 0, whence the curvature vector is (0, 0, b5, bg)T, and
by g = ged(b}, b, b5, by), we have by = g and the reduction halts. If b < 0, applying
ST, we getanew Descartes configuration with v/’ = (—b}, b, +2b, by+2b}, b, +2b))7,
which is positively oriented and lies in a new Apollonian packing and has

size(V") = size(V) + 4b| < size(V).

Thus the size strictly decreases and is nonnegative. Now we may re-apply the basic
reduction step. Continuing in this way we get strict decrease of size(v) at each step, with
the only possible halting step being the smallest curvature equals zero. Since the size
of the curvature vector is bounded below and decreases by at least one at each step, the
procedure terminates at (0, 0, g, g), up to a permutation. |

Proof of Theorem 4.1.  For existence, the super-packing generated by a Descartes con-
figuration with curvature vector (0, 0, g, g), which is a homothetically scaled version of
the configuration (0, 0, 1, 1) pictured in Fig. 1, is necessarily integral with divisor g.

For uniqueness, Theorem 4.2 shows that any two geometric integral Apollonian
super-packings with divisor g each contains a Descartes configuration whose curva-
tures are (0, 0, g, g) up to permutation and orientation. Now it is true that any two such
Descartes configurations with identical curvature vectors are congruent, i.e. one is ob-
tainable from the other by a Euclidean motion. This is obvious by inspection for the
(0,0, g, g) Descartes configuration, which necessarily consists of two touching circles
of radius 1/g and two parallel lines.

Now the Euclidean motion that takes one Descartes configuration to the other, also
takes the super-packing generated by the first configuration to the one generated by the
other, because the super-packing is defined by the action of the super-Apollonian group
on the left on the Descartes configuration Wp, and this commutes with the Euclidean
motion acting as a Mobius transformation on the right. This establishes uniqueness. [

We can use the freedom of a Euclidean motion allowed in Theorem 4.1 to make an
internal Apollonian super-packing strongly integral.

Theorem 4.3. For each integral geometric Apollonian super-packing there is a Eu-
clidean motion that takes it to a strongly integral geometric Apollonian super-packing.
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Proof. Using Theorem 4.2 each integral geometric Apollonian packing contains a
Descartes configuration D with curvatures (0, 0, g, g); note that for a geometric packing
the order and orientation of the Descartes configuration do not matter. The curvature
vector determines the Descartes configuration up to congruence. We can now find a
strongly integral Descartes configuration D’ with this curvature vector. For g = 1 such
a configuration is given explicitly by (6.1) below, and for larger g we obtain a strongly
integral configuration from it using the homothety (x, y) — (1/g)(x, y). There exists
a Euclidean motion that maps D to D', since they are congruent configurations. This
motion maps the super-packing A5[D] to the super-packing A°[D’], which is strongly
integral. O

5. Strongly Integral Super-Packings

A Descartes configuration D is strongly integral if its associated 4 x 3 curvature center-
coordinate matrix Mp is an integer matrix; this property is independent of ordering or
orientation of the Descartes configuration. A super-packing is called strongly integral
if it contains one (and hence all) Descartes configurations having this property. Since a
strongly integral super-packing is integral, it has a divisor g as an invariant.

Our main object in this section is to classify strongly integral super-packings, as
follows.

Theorem 5.1.

(1) For each g > 1 there are exactly eight different geometric Apollonian super-
packings that are strongly integral and have divisor g.

(2) The set of all ordered, oriented Descartes configurations that are strongly integral
and have a given divisor g fill exactly 384 orbits of the super-Apollonian group.

This theorem classifies these super-packings as rigid objects, not allowed to be moved
by Euclidean motions. To prove this result we derive a normal form for a “super-root
quadruple” in a super-packing of the kind above, as follows.

Theorem 5.2. Given a strongly integral Apollonian super-packing A°[Dy] with the
divisor g > 1, there exists a unique “reduced” Descartes configuration D € AS[Dy]
whose curvature-center coordinate matrix M = Mp is of the form A,, ,1g] or B,, ,[g]
form,n € {0, 1}, up to a permutation of rows, where

0 0 1 0 1 0

0 0 -1 0 1 0
Apalgl=%|, L Bulgd=x| . 6D

g m—2 n g m n—2

and the sign is determined by the orientation of Dj.

Proof. For a strongly integral Apollonian super-packing A%[Dy] with the divisor g, by
Theorem 4.2 there exists a strongly integral Descartes configuration D € Ag[Dy] with
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curvatures £(0, 0, g, g). The two straight lines in D must be parallel to either the x-axis
or y-axis. It follows that the 4 x 3 curvature-center coordinate matrix Mp is of the form
A, nlgl, or By, ulg], for some m, n € Z, up to a permutation of rows.

We now reduce m, n to take the values 0, 1 using the following identities, which are
easy to check:

P34yS3A, (8] = Aol Pi34S3B,, 1[g] = B, n—2lgl,
P34ySsA i8] = Anganlel, P34)SsBy, 1[g] = By niolgl,
P(12)S1TAm,n[g] = Am,n+2[g P P(IZ)S{Bm,n[g] = Bm+2,n[g]a

]
]
]
P12)S; Analg]l = Apnalgl.  Pa2SyBualgl = Bu2algl:
where P is the permutation matrix that exchanges i and j. Also note that P;S; =
Se)Po, PoST = Sf(i)P(,. Hence there is a series of group operations in A% which takes
Mp to a permutation of A, ,[g] or B, ,[g] withm, n € {0, 1}. This proves the existence
of the “reduced” Descartes configuration in the Apollonian super-packing A5[Dy].

To prove the uniqueness, it suffices to show that the 24 x 8 x 2 = 384 Descartes
configurations, whose curvature-center coordinate matrices are

{PAm,n[g]’ Pan[g] | P € Perm4, m,n e {O, 1}},

are in different Apollonian super-packings. (There are two signs for each of A, ,[g]
and B,, ,[g].) In what follows we let Am,n[g] and flm,n[g] denote the unique 4 x 4
augmented curvature-center coordinate matrices extending A,, ,[g] and B,, ,[g], re-
spectively; uniqueness holds by Theorem 3.1 of part I.

Note that each S; and S” preserves the (total) orientation of the Descartes configu-
ration, as well as the parity of every element of Mp. First we show that the matrices
A, »lg] and B, ,[g] (m,n € {0, 1}) are in distinct orbits of AS x Permy. To see this,
for each integral vector v € 7Z*, let (V) be the number of even terms in v, and for any
strongly integral Descartes configuration D let

kK (Mp) = (k(v1), k(V2), k(v3)),

where vy, v, v3 are the column vectors of Mp. Then x (Myp) is invariant under the
action of AS x Permy. Form, n € {0, 1} and k(Apm.nlg]) and k (B, ,[g]) are all distinct
except k(A1 olg]) = k(Bo.1lg]) = (x,2,2), where * is 2 if g is odd, and 4 if g is even.
However, A; o[g] and By ;[g] cannot be equivalent under the action of AS x Permy.
Arguing by contradiction, assume that there exists a matrix U € A5 x Permy such
that UA, o[g] = Bo.1[g]. This relation lifts to augmented curvature-center coordinates:

UA | o[g] = Bo.1[g]. It follows that U = (A} o[g])"'Bo.1[g] is unique. We can directly
verify that for m, n € Z,

2(n+1)/g 0 0 1

. B 2(1 —n)/g 0o 0 -1

Am,n[g] - (mz + nz _ 1)/g g m n 3
(m=2>+n*~1)/g ¢ m=2 n



Apollonian Circle Packings, II 17

2m+1)/g 0 1 0
_ B 21 —m)/g 0 -1 0
Bm,n[g] - (mZ +n2 _ 1)/g g m n ) (52)

(m*+n—-27>-1)/g ¢ m n—2

by checking that these satisfy the identity of Theorem 3.2 of part I necessary and
sufficient to be augmented curvature-center coordinates. Now it is easy to verify that
PayPo3DA, olg]l = Bo.1[g], where D = —Q) is defined as in Section 3 of Part I [4],

-1 1 1

1 1 -1 1
D=2, B (5.3)

1 1 I —1

By the uniqueness P14 P23 D = U € AS xPermy, which is impossible since AS x Permy
consists of integral matrices only, while D has half-integers. In conclusion, A,, ,[g] and
B,...[g] (m,n € {0, 1}) are in distinct orbits of A5 x Perm,.

The final step is to show that for any permutation P # I, PA,, ,[g] (resp. PB,, ,[g])
cannot be obtained from A,, ,[g] (resp. B, ,[g]) by an action of AS. That is, we claim:
if for a permutation matrix P € Permy, there exists a matrix U € AS such that

UAm,n[g] = PAm,n[g] or UBm.n[g] = PBm,n[g]v

then P =1L

To establish the claim, consider again the 4 x 4 augmented curvature-center coor-
dinate matrices Am.,,[g] and ﬁm,n[g]. From Section 3.1 of Part I [4], for any Descartes
configuration D, the curvature-center coordinate matrix Mp can be uniquely extended to
a4 x 4 augmented curvature-center coordinate matrix Wp. It follows that if UA,, ,[g] =
PA,, .[g]. then the equality holds for their 4 x 4 augmented curvature-center coordinate
matrices, i.e. UAm,n[g] = PAm,n[g]. It implies U = P € A% N Perm,. However, com-
paring the size of U and P, where the size of a matrix U is defined as f(U) := 17U1, we
have f(P) := 17P1 = 4 forP € Permy, and f(U) := 17U1 > 8forany U € A5, U # 1
(see Section 5 of Part I [4]). Therefore the only possibility is U = P = I. The same
argument applies to B, ,[g], and the claim follows.

We conclude that a reduced Descartes configuration of the form (5.2) in any strongly
integral Apollonian super-packing exists and is unique. O

Proof of Theorem 5.1. (1) Since there are 48 orbits of ordered, oriented Descartes con-
figurations corresponding to each geometric super-packing, to show there are exactly
eight geometric super-packings it suffices to show that the strongly integral Descartes
configurations form 384 orbits of the Apollonian group, which we do below.

(2) We enumerate the complete set of ordered, oriented Descartes configurations that
are strongly integral, with greatest common divisor g, as follows. By Theorem 5.2, any
such Descartes configuration is equivalent under the action of A5 to a permutation of a
Descartes configuration whose 4 x 3 curvature-center coordinate matrix is of the form
Ay or By, withm,n € {0, 1}. The uniqueness of Theorem 5.2 asserts that the 24
permutations of A,, ,[g] (B, »[g]) are all in distinct orbits of the super-Apollonian group.
Considering the two choices of orientations, we get 24 x 8 x 2 = 384 orbits. |
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6. Primitive Strongly Integral Super-Packings

The strongly integral super-packings having a given curvature with greatest common
divisor g are each obtainable from one with g = 1 by homothety. A homothety (x, y)
r(x, y) changes all curvatures by 1/r while leaving (curvature) x (center) unchanged.
Applying the homothety with r = 1/g takes a strongly integral super-packing with
greatest common divisor g to one with greatest common divisor equal to 1.

We now consider strongly integral super-packings having g = 1, which we call
primitive super-packings. Results for them carry over easily to those with divisor g > 1
by applying a homothety. Theorem 5.1 showed there are exactly eight such packings.

For convenience we single out a particular one of them and term it the standard
strongly integral super-packing. We choose this to be the super-packing generated by
the ordered, oriented Descartes configuration having

0 0 1 2 0 0 1
0 0 -1 2 0 0 -1

Mp, = | 0 sothat Wp, = 0 1 1 0 6.1)
1 - 0 01 -1 0

This corresponds to a (0, 0, 1, 1) Descartes quadruple, with the centers of the two cir-
cles lying along the x-axis and the circles touching at the origin (0, 0). The associated
geometric integral super-packing is the one pictured in Fig. 4. Results proved below for
the standard super-packing apply generally to all eight primitive integral super-packings,
using the Euclidean motions mapping between them described after the proof of Theo-
rem 6.1 below.

We first show that the geometric standard strongly integral super-packing has a large
group of symmetries, which form a crystallographic group of the plane.

Theorem 6.1. The geometric standard strongly integral super-packing is invariant
under the following Euclidean motions:

(1) The lattice of translations (x, y) — (x +2,y) and (x,y) — (x,y + 2).
(2) The reflections (x, y) — (—x, y) and (x,y) — (x, —y).

The crystallographic group generated by these motions is the complete set of Euclidean
motions leaving the geometric standard strongly integral super-packing invariant.

Proof. The key fact used is that the action of the super-Apollonian group on Descartes
configurations commutes with the action of Euclidean motions acting on Descartes
configurations as Mobius transformations. This was shown in Part I [4, Theorem 3.3(4)].

(1) There is a Descartes configuration corresponding to Dy shifted by two in the x-
direction and the y-direction; call them D and Dy, respectively. These are given by the
actions of S; and S+, respectively. Treating the x-shift first, we then have

A3[Do] = AS[D}] = A5t (Dy)],

in which t,: z — z + 2 is the Euclidean motion translation by v = (2, 0) as in Ap-
pendix A of Part I, and the ordered, oriented Descartes configuration D, is a permutation
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of Dy. Then the geometric super-packing associated to A%[Dp] is therefore identical
with that of AS[Dy], and that of AS[t, (Dy)] translates it by (2, 0). Thus the geomet-
ric packing is invariant under this translation. The argument for translation by (0, 2) is
similar.

(2) This geometric Descartes configuration Dy is invariant under the reflections
(x,y) — (—x,y)and (x, y) — (x, —y) viewed as Mobius transformations. The effect
of these transformations on the ordered, oriented Descartes configuration is to permute
its rows. It follows as in (1) that the associated geometric Apollonian super-packings are
identical.

To see that these motions generate the full group of Euclidean motions leaving the
super-packing invariant, we observe that the full group acts discontinuously on the plane.
This is because the image of the (0, 0, 1, 1) configuration is either left fixed, or else it
moves a distance of at least two in some direction, so that its circles do not overlap.
Thus it must be contained in a crystallographic group whose translation subgroup is
given by (1) above. Now the only possibilities are to extend the group by a subgroup
of the finite point group of motions leaving (0, 0) fixed (of order 8) and leaving the
lattice Z[(0, 2), (2, 0)] of translations invariant. Here (2) gives an extension of order 4.
No larger extension occurs by observing that otherwise the image of the (0, 0, 1, 1) and
(—1,2,2,3) configurations at the origin would cross themselves. O

One can now check that the eight primitive geometric strongly integral super-packings
given by Theorem 5.1 are obtained from the standard strongly integral super-packing by
eight cosets of the Euclidean motions (x, y) — (x + 1,y), (x,y) — (x,y + 1) and
(x,y) = (¥, x) with respect to the symmetries in Theorem 6.1. They are specified by
the location and orientation of the (0, 0, 1, 1) configuration.

Our next result shows that every primitive integral Descartes configuration with no
curvature zero occurs inside the geometric standard strongly integral super-packing in a
specified location.

Theorem 6.2. In the geometric standard strongly integral super-packing, for each
(unordered) primitive integral Descartes quadruple (a, b, c, d) except for (0,0, 1, 1),
there exists a Descartes configuration having these curvatures, such that the center of
its largest circle lies in the closed unit square {(x,y): 0 <x <1, 0 <y < 1}. The
location of the center of this largest circle is unique.

Proof. To establish existence, we first show that a Descartes configuration of the curva-
tures occurs somewhere inside the standard integral super-packing. This holds because
the super-packing generated by such a configuration is an integral super-packing with
divisor 1, which by Theorem 4.1 is unique up to a Euclidean motion. Thus the standard
strongly integral super-packing must contain an isometric copy of it. Now that we have
such a configuration inside the packing, we can use the translation symmetries in The-
orem 6.1 to move it so that its largest circle has its center inside the half-open square
{(x,y): =1 <x < 1,—-1 <y < 1}. If we have —1 < x < 0 then we apply the
symmetry (x,y) — (—x,y), while if —1 < y < 0 we apply (x,y) — (x, —y), as
necessary.
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To establish uniqueness, we argue by contradiction. If uniqueness failed, there would
exist a Euclidean motion taking one of these Descartes configurations to the other.
Since a single Descartes configuration generates the entire super-packing, we conclude
that the super-packing is left invariant under this extra Euclidean motion. Theorem 6.1
described all such automorphisms and all of them, except the identity, map every point
in the interior of the unit square square strictly outside the square. This contradicts the
assumption that the center of the largest circle of the first configuration is mapped to that
of the second, when at least one of these points is strictly inside the unit square. In the
remaining cases where both centers lie on the boundary, one shows they are must lie on
the same boundary edge and that the automorphism leaves this edge fixed, so they are
identical. Note that this argument shows in passing that the largest circle is unique, once
(0,0, 1, 1) is excluded. O

We come now to the main result of this section, which asserts that the geometric
standard super-packing contains a copy of every integral Apollonian circle packing in a
canonical way. The circles in the geometric standard super-packing can be foliated into
a union of geometric Apollonian packings.

Theorem 6.3.

(1) Each circle in the standard super-packing with its center inside the half-open
unit square {(x,y): 0 < x < 1, 0 <y < 1} is the exterior boundary circle of
a unique primitive integral Apollonian circle packing contained in the geometric
standard integral super-packing.

(2) Every primitive integral Apollonian circle packing, except for the packing
(0,0, 1, 1), occurs exactly once in this list.

Proof. (1) Letthe circle C be given. Recall from the proof of Theorem 3.1 that there is a
unique minimal length normal form word U,,,U,,,_; - - - U{[Dy] of generators of the super-
Apollonian group that yields a Descartes configuration D containing the given circle C,
say in its jth position. Normal form requires that U,, = S; or Si* for some i # j. Then
multiplying by SJJ.- also gives a normal form word, and the Descartes configuration

D' :=S;[D] = 8;UpUy- - Ui[Dy]

consists of the circle C plus three new circles nested inside the interior of C. This
Descartes configuration D’ generates an Apollonian packing having the circle C as the
outer boundary, contained in the standard strongly integral super-packing. It is unique,
because if there were a second Apollonian packing inside the bounding circle it would
contain circles crossing those in the first packing, contradicting Theorem 3.1.

(2) Recall from Sections 3 and 4 in [3] that inside each integer Apollonian packing
is a positively oriented Descartes configuration whose absolute values of curvatures
(a, b, c, d) are minimal, which is called a root quadruple. Theorem 4.1 of [3] showed
that aside from the root quadruple (0, O, 1, 1) every root quadruple is of the form a <
0 < b < ¢ < d. Root quadruples are characterized by satisfying the extra condition

a+b+c>d. 6.2)
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All the circles in the resulting Apollonian packing are contained inside a bounding circle
of curvature N = |a|, i.e. radius 1/N. Theorem 6.2 shows that for each root quadruple,
with all curvatures nonzero, there is a matching Descartes configuration whose largest
circle has its center inside the unit square and this largest circle is unique. The Apollonian
packing contained inside this circle is the integral packing with the given root quadruple,
and itis unique by the result of (1). (In some cases, like (—1, 2, 2, 3) the root configuration
is not unique, but the root quadruple and the packing itself are always unique.) Thus every
primitive integer Apollonian circle packing, except (0, 0, 1, 1), occurs exactly once with
the bounding circles having their centers in the closed unit square. O

The initial part of the standard super-packing to depth 200 inside the unit square is
pictured in Fig. 8.

One can make further computer experiments plotting the circles having various curva-
tures restricted (mod 4) inside the unit square. The results for circles having curvatures 1
(mod 2), 2 (mod 4) and 0 (mod 4) and size at most 200 are pictured in Figs. 9—11.

Fig. 8. A “deeper” initial part of a super-packing (square of sidelength 1).
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Fig. 9. Circles of curvature 1 (mod 2).

The figures empirically indicate that the following extra reflection symmetries occur;
the line of symmetry is indicated on the figure with a dotted line:

(a) 1 (mod 2) circles are symmetrical under reflection in the line x = 1 — y.
(b) 2 (mod 4) circles are symmetrical under reflection in the horizontal line y = %

(c) 0 (mod 4) circles are symmetrical under reflection in the vertical line x = %

Based on this experimental evidence, one of the authors (CLM) conjectured that these
symmetries hold. They were subsequently proved by Northshield [10].

We may also illustrate these symmetry properties at the level of circles of a fixed
curvature. Recall from Section 3 that each such circle contains a unique Apollonian
packing having it as the outer circle. Such a circle can then be labeled by root quadruple
in the sense of [3] of this integral Apollonian packing. The cases of curvature —6, —8
and —9 corresponding to the three cases above were pictured in Section 2. In our paper
considering number-theoretic properties of integral Apollonian packings, it was shown
in Theorem 4.2 of [3] that the number of distinct primitive integral Apollonian packings
with a given curvature —n of the outer circle had an interpretation as a class number
h*(—4n?) of positive definite binary quadratic forms of discriminant A = —4n?, under
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Fig. 10. Circles of curvature 2 (mod 4).

GL(2, Z)-equivalence. One can raise the question whether there is some interpretation
of the extra symmetries (a)—(c) above in terms of the associated class group structure
under SL(2, Z) equivalence.

7. The Super-Apollonian Group Has Finite Covolume

In this section we show that the super-Apollonian group is of finite volume as a discrete
subgroup of the real Lie group Aut(Qp) =~ O(3, 1). This follows from the fact that
the integer Lorentz group O (3, 1; Z) has finite covolume in O (3, 1), and the following
result.

Theorem 7.1.

(1) The super-Apollonian group AS is a normal subgroup of index 48 in the group
Aut(Qp, 7). The group Aut(Qp, Z) is generated by the super-Apollonian group
and the finite group of order 48 generated by the 4 x 4 permutation matrices
and +1.
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Fig. 11. Circles of curvature 0 (mod 4).

(2) The super-Apollonian group AS is a normal subgroup of index 96 in the group
G =Jo0@3,1;2)],", where

11 1 1

{1t 1 -1 -1
J"ZE 1 -1 1 -1
1 -1 -1 1

The group G is generated by Aut(Q p, 7)) and the duality matrix D, and consists
of matrices with integer and half-integer entries.

The duality matrix D is given by (5.3) in Section 5. This result allows us to associate to
the super-Apollonian group the normal subgroup AS = Jo ! A5J of the integer Lorentz
group O (3, 1; Z), of index 96.

The proof of Theorem 7.1 is derived in a series of four lemmas. Let I" be the group
generated by adjoining to A the elements of the finite group of order 48 given by
Permy and £/, and let I = (T, D). The lemmas prove that ' = Aut(Qp,Z) and
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r =1J 03, 1; Z)Jy !, Then analysis of cosets of A in these groups permits us to
determine the index of A in these groups and show normality.
To determine I' and I we will show

I <Autr(Qp,Z) <T =G.

It is easy to show that I' is a subgroup of I" of index 2, and D € " but D ¢ Aut(Qp, Z),
so we get Aut(Qp,Z) = I' = (A5, Permy, &I). It is easy to check the inclusion I' <
Aut(Qp, Z) since the generators S;, SiT, P, and £I of I" are all in Aut(Qp, Z). The
inclusion Aur(Qp, Z) < G is proved in Lemma 7.2. The equation G = I is proved in
the next three lemmas. In Lemma 7.3 we prove that the integer Lorentz group is exactly
the group Aut(Lz) of invertible linear transformations that leave the integral Lorentz
cone Ly invariant. Lemma 7.4 states that in order to show that a group G of invertible
linear transformations of Lz equals Aut(Lz), it is enough to show that (1) the action
of G on Ly is transitive, and (2) there exists a point v € Lz such that the stabilizer
S, ={Ue Aut(Lz) | Uv = v} is a subset ofg Using Lemma 7.4, we check that (1) the
action of JoI'J on Ly is transitive, and (2) Jo I'J contains the stabilizer S, of the point
v=(1,1,0,0) € Lz. This proves G = r.

Lemma 7.2. [t is true that

Aut(Qp,Z) < G = J03, 1; )J; .

Proof. LetU € Aut(Qp, Z). We need to show that the entries of J, 1UJO = JoUJy are
all integers. Since Jo = %IIT — T, where

0000
001 1
T=1o 101 |
0110
we have
JoUJo = ; (Z U,,-) 11" — 1117UT - iTU11” + TUT, (7.1)

where TUT is an integer matrix.
From U'QpU = Qp and Qp = 3(2I — 117), we have

v'er-1nhHu=21-11". (7.2)

Denote by v; the ith column of U, and by size(v) := 17v the size of a vector v. Equating
the entries of (7.2) we get 2v; - v; — size(v;) size(v;) = 28;; — 1. In particular, size(v;),
i =1,2,3,4 are odd integers. It follows that the matrix %IITUT is integral.

Note that Aut(Q p, Z) is closed under transposition. This is because

U e Aut(Qp,7Z) = UTQpU =Q, = UTQ,UQ,U" =U"
= UQpU" = WU'Qp) 'U" =@Qp) ' =Qp
= UT € Aur(Qp, Z). (7.3)
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Applying the same argument of the preceding paragraph to U7, we then prove that the
matrix TU117 is integral.

Again using 2v; - v; — size(v;) size(v;) = 25;; — 1, summing overi, j = 1,...,4,
we get

2
(Z U,-,j> =2(vi+ Vo +Vv3+vy) (Vi +V2+V3+ vy + 8.
i

Note that v + vy + V3 + V4 = (size(r1), size(ry), size(r3), size(rs))” where r; is the ith
row of the matrix U. The sum ) _, (size(r;))? is a multiple of 4 since each size(r;) is odd.
It follows that (3, ; U; ;)* is a multiple of 8. Since >_i; Ui jis an integer, we conclude
that Zi.j U;,j is a multiple of 4 and the matrix %(Zi,j U;j)117 is integral. This proves
Lemma 7.2. |

Clearly A%, Perm, and %1 are subgroups of Aut(Q p, Z). Let I" be the group generated
by AS, Permy and %1, and let = (I", D). Then I is a subgroup of [" of index 2.

The Lorentz light cone is the set of points { (Yo, y1, y2, ¥3)T € R*: —y2+y3+y3+y? =
0}. Let Lz be the set of integer points in the Lorentz light cone, i.e.,

Lz :={(o, y1, 2, y)" € Z* —y5 + yi +y3 + y3 = 0},

and let Aut(Lz) be the set of linear transformations that leave Lz invariant.
Lemma 7.3. Aut(Lz) = O3, 1, 7).

Proof. 1t is clear that O(3, 1;Z) € Aut(Lz). To show the other direction, let U €
Aut(Lz). For any integer point v € Lz, Uv € Lz. Therefore (Uv)” Q. (Uv) = 0, i.e.
vI'(UT Q U)v = 0. It is easy to check that the only symmetric matrices Q satisfying
v'Qv = 0 for all v € Ly are of the form Q = diag[—a, a, a, a]. Hence UTQ,/U =
c2Q, where ¢ = det(U).

Let

O O ==
|

—_— O =

—_—0 O =

0 0

Note that every column vector of X is an integer pointin Lz.LetY = UXandZ = U~'X.
Since U € Aut(Lz), every column of Y and Z is also an integer point in L. Therefore
det(Y) = cdet(X) = —2c, and cdet(Z) = det(X) = —2. For each (yo, y1, y2, y3)7 €
Lz, we have yé = yl2 + y22 + y32. It follows that either yo, y;, ¥, y3 are all even, or yy
and exactly one of y, y», y3 are even. In both cases, det(Y) and det(Z) are even. This
forces ¢ = £1. Hence UT QU =Q,,i.e. Uec O3, 1).

Since U maps points (1, £1,0,0)7, (1,0, £1,0)7, (1,0,0, £1)7 to integer points,
if (a,b,c,d) isarow of U, then a £ b, a £ ¢, a = d € Z. Thus there exist integers
a, b, c,d of the same parity such that a = a'/2, b = b'/2, ¢ = '/2,d = d'/2.
However, by (7.3) UQ:U” = Q. This implies —a® + b*> + ¢ 4+ d* = %1. Therefore
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prP+c?+d? =a? (mod 4). Hence a’, b/, ¢/, d’ must all be even, which means a, b,
¢, d are integers, and U € O(3, 1; Z). O

Lemma 7.4. Let G be a group of linear transformations that preserves Ly, If the action
is transitive, and there exists a point v € Ly such that the stabilizer S, = {U € Aut(Ly) |
Uv = v} C G, then G = Aut(L7z).

Proof. Clearly, G C Aut(Lz). For any P € Aut(Lyz), assume P(v) = v'. Since G acts
transitively on Ly, there exists G € G such that G(v') = v. That is, GP(v) = v. So
GP c S, C G, and then P € G™!G = G. This proves Aut(Lz) C G. O

Lemma7.5. ['=G=J,03,1;2)];".

Proof. By Lemma 7.3, it is sufficient to prove that
3, 'TJo = JoTJo = Aut(Lz). (7.4

It is straightforward to check that JoS; Jo, J OSiTJ 0, JoPsJo and JoDJ are integer matrices.
In particular,

2 -1 -1 -1

1 0o -1 -1
JoS1Jo = 1 -1 o0 -1 |"

1 -1 -1 0

JoP34Jo = P34 and JoDJy = diag[l, —1, —1, —1]. Therefore Jof‘JO C 03, 1,7Z) =
Aut(Ly).
For any integer point (yo, y1, y2, y3) € Lz, —y§ + y12 + y% + y32 = 0 implies yy +
yi + y2 + y3 =0 (mod 2). Hence Jo(yo, y1, y2, y3)” is integral. It follows that
Jo(Ly) = {(a1, ar, a3, as) € Z*: (a1, a», a3, as) are curvatures

of a Descartes configuration}.

Then Theorem 4.2 implies that JoI'J, acts transitively on the integral Lorentz light cone
Lz, where —1I exchanges the total orientation of a point in L.

We use Lemma 7.4 to prove (7.4) with G = Jof‘Jo. Letv:=(1,1,0,0) € Lz and
consider its stabilizer

S:={Ue 0@, 1;Z): Uv=v, U'Q,U=Q,}.
Assume U = (u;, J')?, j=1- Solving the equations
U(1,1,0,00" = (1,1,0,00",  U'Q.U=Q, (7.5)
we obtain the following linear and quadratic relations between the entries of U:

up =1—uy, U3 = uss, U4 = U4,

uyp = 1—uo, Uz = —u3, Ugy = —Uq,
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and

2 2 2 2
Uzs + Uyy = Uzy + Uyy = 1, U33U34 + Ugzlgy = O,
U3 = U31U33 + Uqilly3, U4 = U31U34 — U41U44,

uz = 5 (U3 +ugy).
It follows that the matrix U can be expressed as
14+t —t gm+hn km+lIn
t 11—t gm+hn km+lIn

m —m g k ’
n —n h l

(7.6)

where t = (m?> +n?)/2,¢g>+h* =k> +1*> =1, and gk + hl = 0. Since g, h, k,l € Z,
we must have (g, h), (k, 1) € {(£1,0), (0, £1)}.

We can classify matrices of the form (7.6) into four types, up to a possible multipli-
cation by P34) as follows:

141 —t m n
t 11—t m n
Type I: —m 1 ol
n —n 0 1
141t —t m -—n
t 1—t m -—n
Type II: m —m 1 o |
n -n 0 -1
141t —t -m n
t 1—t —m n
Type II: m “m -1 ol
n —n 0 1
141t —t —-m —n
t 1—t —-m —n
Type IV: “m -1 o |
n —n 0 —1

where t = (m? + nz)/2 andm,n,t € Z.
We denote a matrix of type X with parameters m, n by U(m, n; X). The following
equations can be easily checked:

U(m, n; DUK, ;1) = U(m +k,n+1; 1),
Um,n; IDUK, ;1) = Um + k,n —[; 1),
U(m, n; IDUk, ;1) = U@m —k, n + [; 1II),
U(m, n; IV)U(k, ;1) = U(m — k,n —[;1IV).
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Also we have
UL, ;D' =U(-1,-1; 1), U(l,—1;: D' =U(-1, 1; D).

Therefore the stabilizer S, is generated by P34, U(0, 0; I), U(0, 0; IT), U(0, 0; III),
U(0, 0; IV) together with A = U(1, 1; 1), B =U(, —1;I).

Note that U(0, 0; T) =U(0, 0; )2, U(0, 0; IIT) =P5,U(0, 0; IN P34 and U(0, 0; IV) =
U(0, 0; IDU(O, 0; IIT). Thus S, is generated by the matrices P34, A, Band C = U(0, 0; II).

Now one can check that

Py = JoPauJo € JoTJo,
C = diag[l, 1, 1, —1] = Jo(—IP53P,D)Jo € JoT'Jo,

JoS1Jo) diag[1, 1, —1, —11 = Jo(SiP12P34)Jo € Jo[ Jo,

B = (JoP3.J0)C(J0S2J0)C € JoT'Jo.

Hence S, € JoI'Jo. By Lemma 7.4 JoT'Jo = Aur(Lz) = O3, 1; Z), or, equivalently,
I'=Jy0(3,1;Z)J;". This finishes the proof. O

Proof of Theorem 7.1. Lemmas 7.2 and 7.5 show that I' < Aut(Qp,7Z) < G. Hence
I' = Aut(Qp, Z) since T is a subgroup of G of index 2 and the duality matrix D is not in
Aut(Qp, Z). In other words, Aut(Q p, Z) is generated by the super-Apollonian group A5
and the finite group of order 48 generated by the 4 x 4 permutation matrices and 7. The
super-Apollonian group A’ is anormal subgroup of Aut(Q p, Z), since P, S;Ps-1 = S, i,
and P, S/ P,1 = S[ ;. The index is 48 since .AS N (Permy x {+1}) = I (see Section 5
of Part I [4]).

By Lemma 7.5, the group G is generated by Aut(Qp, Z) and D. Note that D* = |
and DS;D = S!. It follows that the super-Apollonian group is a normal subgroup of G
with index 96. |

_ The second part of Theorem 7.1 can be rephrased as asserting that the conjugate group
AS = Jy.AJo is a normal subgroup of index 96 in O (3, 1). Its generators S; = JOSngl
and SJJ- = JOSj-J(;l are given by

2 -1 -1 -1 2 -1 1
-1 0 -1 -1 . 1 0 1
Stly —p o - ™ S2= 1 _
1 -1 -1 0 -1 1 -1
and
2 1 -1 1 11 -1
. 1 0 1 -1 -1 0 -1 1
Ss=1 1 1 o | ™ S=1_, 1
1 -1 1 0 1 1 1 0
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The generators Sjl = JOSj-Ja ! are given by
QL QT

which follows using S = 8T and Jo = J§ = J;".

8. Super-Integral Super-Packings

This section treats the strongest form of integrality for super-packings, which is that
where one (and hence all) Descartes configurations in the super-packing have an integral
augmented curvature-center coordinate matrix Wp. We say that a Descartes configura-
tion with this property is super-integral, and the same for the induced super-Apollonian
packing. The following result classifies such packings.

Theorem 8.1.

(1) These are exactly 14 different geometric super-packings that are super-integral.
(2) The set of ordered, oriented Descartes configurations that are super-integral
comprise 672 orbits of the super-Apollonian group.

These packings are classified here as rigid objects, not movable by Euclidean motions.
To prove this result, it suffices to determine which strongly integral configurations are
super-integral. The next result classifies the possible types of super-integral Descartes
configurations, according to the allowed value of their divisors.

Theorem 8.2. Suppose that an ordered, oriented Descartes configuration D in R? has
integral curvature-center coordinates M = Mp, and let g = gcd(ay, as, as, as), where
(ay, ar, as, aq) is its first column of signed curvatures. Then D has integral augmented
curvature-center coordinates Wp if and only if one of the following conditions hold:

i g=1,or
(i) g = 2, and each row of M has the sum of its last two entries being 1 (mod 2), or
(iii) g = 4, and the last columns rows of M are congruent to

(mod 2).

[l e e N}

0 1
0 1
0 or 1
0 1

—_—

Proof. By Theorem 5.2, there exists a matrix U € A5 and a permutation matrix P such
that

PUMD = Am,n [g] or Bm,n[g]’

for some m,n € {0, 1}, where A,, ,[g] and B, ,[g] are given in~(5.1), and thf:ir cor-
responding augmented curvature-center coordinate matrices are A,, ,[g] and B, ,[g],
given in (5.2). Since each generator of A5 preserves the super-integrality, as well as the
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parity of every element of Wp, it follows that Wy is integral if and only if one of the
following conditions holds:

1. g=1,o0r
2. g =2,and m*> +n*> —1 =0 (mod 2), or
3. g =4, and the reduced form is Ay 1[4] or B o[4], up to a permutation of rows.

In case 2 we need m +n = 1 (mod 2); in case 3 the condition is equivalent to the one
stated in the theorem. O

Proof of Theorem 8.1. (1) Since each geometric super-packing corresponds to 48 dis-
tinct orbits of the super-Apollonian group on ordered, oriented Descartes configurations,
to show there are exactly 14 geometric super-packings, it suffices to show there are ex-
actly 672 orbits of the super-Apollonian group that are super-integral, which is (2).

(2) Theorems 5.2 and 8.2 allow us to classify the set of ordered, oriented Descartes
configurations that are super-integral by the action of .AS. From the criterion of Theorem
8.2, we have:

1. For g = 1, any strongly integral Descartes configuration is super-integral.

2. For g = 2, half of those orbits are super-integral, namely, those whose reduced
forms are Ao 1[2], A1,0[2], Bo.1[2] or B; o[2], up to a permutation of rows.

3. For g = 4, one-fourth of those orbits are super-integral, namely, those whose
reduced form are Ag [4] or Bj ¢[4], up to a permutation of rows.

4. For g # 1, 2, 4, there are no super-integral Descartes configurations.

More details of this calculation are given in Table 1. To explain the notation in
Table 1, for any 4 x 4 integral matrix W, let g; be the greatest common divisor of
entries wy;, Wz, W3;, Wa; in the ith column. Then the action of AS preserves the
vector g = (g1, 82, &3, 8&4). (For W = Wp, g5 is the greatest common divisor of the
curvatures.) In each row of the table we give the number of orbits of A% formed by
the set of ordered, oriented Descartes configurations that are super-integral with the

Table 1. Orbits of super-integral Descartes configura-
tions classified by g.

Number of orbits

g of AS Representative
(1, 1,1, 1) 96 A1l Bialll
@ LLD 96 Arolll,  Boalll
(1,1,2,1) 43 Apol1]
(1,1,1,2) 48 By ol1]
4,1,2,1) 43 Ap,1[1]
“4,1,1,2) 438 Bio[1]
(1,2, 1,1) 96 Arol2],  Bo1l2]
(2,2,2,1) 43 Ao,112]
(2,2,1,2) 43 Bi (2]
(1,4,2,1) 43 Ao,1[4]

1,4,1,2) 48 By [4]
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given g. We also list the representatives of those orbits. Note that each entry in the
column labeled “Representative” stands for 48 orbits, obtained by taking two choices
of (total) orientation, and 24 choices of permutation of rows. Also note the symmetry
that the configurations with g are inverse of the ones with g = P;,g. We conclude from
the table that the set of ordered, oriented Descartes configurations that are super-integral
comprise of 384(1 + % + %) = 672 orbits of the super-Apollonian group. a

9. Concluding Remarks

This paper showed that the ensemble of all primitive, strongly integral Apollonian circle
packings can be simultaneously described in terms of an orbit of a larger discrete group,
the super-Apollonian group, acting on the standard strongly integral super-packing.
Study of the locations of the individual integer packings inside the standard super-
packing, presented in Section 6, leads to interesting questions, not all of which are
resolved. The standard super-packing also played a role in analyzing the structure of the
super-Apollonian group as a discrete subgroup, carried out in Section 7.

The various illustrations show the usefulness of graphical representations, as a guide
to both finding and illustrating results. This contribution is due in large part to the
statistician co-authors (CLM and ARW). Graphics were particularly useful in finding
extra symmetries of these objects, such as those illustrated in Figs. 9-11 and subsequently
proved by Northshield [10]. However, one must not forget the adage of Stark [12, p. 225]:
“A picture is worth a thousand words, provided one uses another thousand words to justify
the picture.” Section 3 of this paper provides such a justification for certain features of
Fig. 4.

There remain some open questions, particularly concerning the classification of all
integer root quadruples classified by fixed curvature —N of the bounding circle. This
quantity is known to be interpretable as a class number, as described in Theorem 4.2
of [3]. In Section 6 we observed some symmetries of these root quadruples inside the
standard super-packing, see Figs. 4-6. There is a new invariant that can be associated to
such quadruples, which is their nesting depth as defined in Section 4 with respect to the
generating quadruple Dy of the standard super-packing. It would be interesting to see
whether this invariant might give some further insight into class numbers.
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Appendix. Strong Integrality Criterion

This appendix establishes that to show that a Descartes configuration is strongly integral
it suffices to show that three of its four circles are strongly integral. This affirmatively
answers a question posed to us by K. Stephenson.
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Theorem A.1. A Descartes configuration D has integral curvature-center coordinates
My if and only if it contains three circles having integer curvatures and whose curvature
X centers, viewed as complex numbers, lie in Z[i].

Proof. The condition is clearly necessary, and the problem is to show it is sufficient. We
write the circle centers as complex numbers z; = x; +iy;. So suppose D contains three
circles with curvatures by, b,, b; € Z and with curvature x centers b1z, b,z,, b3z €
Z\[i]. We must show that the fourth circle in the configuration has b4 € Z and byz4 € Z[i].

For later use, we note that Theorem 3.1 of Part I [4] has a nice interpretation using
complex numbers z to represent circle centers. This was formulated in [6] as the Complex
Descartes Theorem. It gives

bizi + b3z5 + b3z3 + bizy = L(bizy + bozo + bazs + bszs)’. (A.1)
and
btz +b32y+b323+b32s = 3 (0121 +br2> + b3z +bazy) (b1 +br+b3+bs).  (A2)
We claim that b4 € Z. This is proved in the following two cases.

Case 1: byb,bs # 0. We first suppose that z; = 0. If both x, and x3 are zero, then
—1/by = 1/by+1/b3, whichmeans b1by+b,b3+b3b; = 0.Hence by = by+by+b3 € Z.
Otherwise by permuting z, and z3 if necessary we may assume that x, # 0. Then the
following equations encode the distance between the circle centers, since the circles
touch:

s 1 1)\
X +y, = b_1+b_2 ) (A.3)

. 1 1\?
X3 +y3 = b_1+b_3 , (A4)

11\
(X3—X2)2+(y3—y2)2=<b—2+b—3)- (A.5)

We wish to solve these equations for y; in terms of by, by, b3, x| and x,. To this end we
subtract the first two equations from the third and obtain

2y 4y = (4 L) (L L) (L LY mg
X2 X = — —_ — — — | = _ = R.
2X3 + Y2)3 b b b b by b

Calling the right side of this equation R, we obtain

1
X3 = =—(R = 2y2y3),
2x2

where the division is allowed since x, 7 0. Substituting this in the second equation
yields a quadratic equation in y3, with x3 eliminated, namely (after multiplying by 4x§),

1 1)?
4(x3 + y))y3 —4Rysys + R — 4x] (b_1 i E) —0.
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Since ys is rational, this equation has rational solutions, so the discriminant A must be
the square of a rational number. After some calculation one obtains

A = 16252 (b]bz + bibs + b2b3)
: (b1bab3)?

Since x», b1, by are nonzero it follows that b;b, 4+ brbs + b1b3 is a perfect square.
Viewing the Descartes equation as a quadratic equation in b4 we obtain the formula
by := by + by + b3 +2/b1b; + byb3 + b1 b3, which shows that both roots are integers.
These are the oriented curvatures of the two possible choices for the fourth circle in the
Descartes configuration, so by € Z.

Now assume that z; = x| + iy is arbitrary. Define

(52, ) :=(x2 —x1,y2—y1) and (s3,13) := (X3 — X1, y3 — y1).

Then s7, 15, 53, t3 are rational numbers, and they also satisfy (A.3)—(A.5) (just replace
X2, ¥2, X3, ¥3 in (A.3)—(A.5) by 52, 17, 53, 13, respectively). By the preceding argument,
we again have 16s3(b1by + babs + b1b3)/(b1bab3)? = g for some rational number q.
This implies that b1b, + bybs + b1 bs is a perfect square and consequently that b4 is an
integer.

Case 2: b1bybs = 0. This is proved similarly, with an easier calculation.
The claim follows, so by € Z.
We now proceed to show that byz4 € Z[i]. Now (A.1) gives

bazs = b12) + byzy + b3z3 & 2/b12,br2s + brzrbszs + b2, b3z3. (A.6)
Equation (A.2) gives

(bl + bz + b3 - b4)b4Z4
= 2(biz) + b3y + b323) — (b1 + by + b3 + ba) (0121 + bazy + b3z3). (A7)

We treat two mutually exhaustive cases.

Case 1: by + by + b3 # by. Then (A.7) gives byz4 = x4 + iy, for some rational numbers
x4, y4. However, bz, byz,, bsz3 are integers by hypothesis, whence (A.6) shows that
byz4 is an algebraic integer. Since x4, y4 are rational, we conclude that b4z, must be an
integer, i.e. in Z[i].

Case 2: by + by + bs = by. In this case we have b b, + brbs + b1b; = 0. Now from
(A.7), we have

biz) + b32o + b3z3 = (b1 + by + b3)(b121 + bazs + b323),
which can be simplified to

b2b3Z1 + b1b3Z2 + b1b213 =0.
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Thus

(b121) (b222) + (b222) (b323) + (b323) (b1Z1)

b1b3z; 4+ b1byz
= bi(byzy + bﬂﬁ% + (by22) (b323)
—bybs

b2
= —b%z% — b%z% + 2,25 | bobz — —l(bg + b%)
) b2b3

—bi(zy — 23)%.

Now b} (z,—23) is a Gaussian rational number whose square is integral. Hence b (z, —23)
must be integral. It follows that byzy = b1z + byzy + b3zz + 2b\(2, — 23)i is
in Z[i]. O

Since the Apollonian group consists of integer matrices, all Descartes configurations
in an Apollonian packing generated by a strongly integral Descartes configuration are
strongly integral. This explains the integrality properties of curvatures and curvature x
center pictured in the packing in Section 1, for example. The previous result now gives
a weaker necessary and sufficient condition for an Apollonian packing to be strongly
integral.

Theorem A.2. AnApollonian circle packing is strongly integral if and only if it contains
three mutually tangent circles which have integer curvature-center coordinates.

Proof. Suppose we are give three mutually tangent circles in the packing that are
strongly integral. Any set of three mutually tangent circles in the packing is part of some
Descartes configuration in this packing. This follows from the recursive construction of
the packing, which has a finite number of circles at each iteration. If iteration j is the
first iteration at which all three tangent circles are present, at that iteration they neces-
sarily belong to a unique Descartes configuration. Theorem A.1 now implies that this
Descartes configuration is strongly integral. It then follows that the whole Apollonian
packing is strongly integral. This proves the “if”” direction, and the “only if”” direction is
immediate. O
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