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Abstract. This paper gives n-dimensional analogues of the Apollonian circle packings in
Parts I and II. Those papers considered circle packings described in terms of their Descartes
configurations, which are sets of four mutually touching circles. They studied packings
that had integrality properties in terms of the curvatures and centers of the circles. Here
we consider collections of n-dimensional Descartes configurations, which consist of n + 2
mutually touching spheres.

We work in the space Mn
D

of all n-dimensional oriented Descartes configurations
parametrized in a coordinate system, augmented curvature-center coordinates, as those
(n + 2) × (n + 2) real matrices W with WT QD,nW = QW,n where Q D,n = x2

1 +
· · · + x2

n+2 − (1/n)(x1 + · · · + xn+2)
2 is the n-dimensional Descartes quadratic form,

QW,n = −8x1x2+2x2
3+· · ·+2x2

n+2, and QD,n and QW,n are their corresponding symmetric
matrices. On the parameter spaceMn

D
of augmented curvature-center matrices, the group

Aut(Q D,n) acts on the left and Aut(QW,n) acts on the right. Both these groups are isomorphic
to the (n + 2)-dimensional Lorentz group O(n + 1, 1), and give two different “geometric”
actions. The right action of Aut(QW,n) (essentially) corresponds to Möbius transformations
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acting on the underlying Euclidean space Rn while the left action of Aut(Q D,n) is defined
only on the parameter spaceMn

D
.

We introduce n-dimensional analogues of the Apollonian group, the dual Apollonian
group and the super-Apollonian group. These are finitely generated groups in Aut(Q D,n),
with the following integrality properties: the dual Apollonian group consists of integral
matrices in all dimensions, while the other two consist of rational matrices, with denom-
inators having prime divisors drawn from a finite set S depending on the dimension. We
show that the Apollonian group and the dual Apollonian group are finitely presented, and
are Coxeter groups. We define an Apollonian cluster ensemble to be any orbit under the
Apollonian group, with similar notions for the other two groups. We determine in which di-
mensions there exist rational Apollonian cluster ensembles (all curvatures are rational) and
strongly rational Apollonian sphere ensembles (all augmented curvature-center coordinates
are rational).

1. Introduction

In Part I we considered Apollonian circle packings, and observed that there exist such
packings where the circles all had integer curvatures and the quantities (curvature) ×
(circle center) had integer entries. We gave an explanation for this phenomenon, in
terms of the Descartes configurations in the packing. A Descartes configuration is a
configuration of four mutually tangent circles, with all six tangency points distinct. We
introduced the spaceMD of all ordered, oriented Descartes configurations, parametrized
in a coordinate system expressed in terms of the curvatures and centers of the circles in
the packing.

The explanation of the integrality properties was as follows. This configuration space
of ordered, oriented Descartes configurations was shown to be a principal homogeneous
space for the Lorentz group O(3, 1), a six-dimensional real Lie group which we identified
with the real automorphism group Aut(Q D) of a quaternary quadratic form

Q D(x1, x2, x3, x4) = x2
1 + x2

2 + x2
3 + x2

4 − 1
2 (x1 + x2 + x3 + x4)

2,

which we called the Descartes form. We showed that the set of all Descartes configu-
rations in the packing formed an orbit of a discrete subgroup A acting on this space,
which was independent of the packing, and which we termed the Apollonian group. This
group consisted of 4×4 integer matrices, and the integrality properties of the Apollonian
group explained the occurrence of packings with integral curvatures and (curvature) ×
(circle center) data. If a single Descartes configuration in the packing has such integrality
properties, then every Descartes configuration in the packing inherits such properties,
and thus all the circles in the packing have such properties.

Part I also introduced two other discrete subgroups of Aut(Q D), which had integrality
properties and a geometric interpretation. These were the dual Apollonian group A⊥
and the group generated by both the Apollonian group and the dual Apollonian group
together, which we called the super-Apollonian group AS .

In this paper we study to what extent these results carry over to the n-dimensional
case. We show that there exist n-dimensional analogues of the Apollonian group, dual
Apollonian group and super-Apollonian group. We study properties of their orbits on
the parameter spaceMn

D of n-dimensional ordered, oriented Descartes configurations
which we call Apollonian cluster ensembles. We determine to what extent properties of
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the two-dimensional case extend to the n-dimensional case. One immediate difference
is that in dimensions n ≥ 4 the orbits of the Apollonian group no longer correspond
to sphere packings; the spheres in these configurations overlap. However, the groups
involved still have rationality properties, and we consider the question when there exist
ensembles having all curvatures rational and/or having all data (curvature) × (sphere
center) rational.

In Section 2 we describe six properties that hold in the two-dimensional case, and
then summarize what the main results of this paper say about generalizations of these to
higher dimensions. Some of them generalize completely, others only in an infinite set of
specific dimensions, and some are specific to dimension 2.

In Section 3 we describe the parameter space Mn
D of all n-dimensional ordered,

oriented Descartes configurations in a coordinate system, augmented curvature-center
matrices, as those (n + 2) × (n + 2) real matrices W with WT QD,nW = QW,n where
Q D,n = x2

1 + · · · + x2
n+2− (1/n)(x1+ · · · + xn+2)

2 is the (matrix of the) n-dimensional
Descartes quadratic form and QW,n = −8x1x2 + 2x2

3 + · · · + 2x2
n+2. On the space

Mn
D of augmented curvature-center matrices, the group Aut(Q D,n) acts on the left and

Aut(QW,n) acts on the right. Both these groups are isomorphic to the (n+2)-dimensional
Lorentz group O(n+1, 1), and give two different “geometric” actions. The right action of
Aut(QW,n) (essentially) corresponds to Möbius transformations acting on the underlying
Euclidean space Rn while the left action of Aut(Q D,n) is defined only on the parameter
space.

In Section 4 we define the n-dimensional analogues of the Apollonian group, the dual
Apollonian group and the super-Apollonian group introduced in Part I. As we just noted
above, one immediate difference with the two-dimensional case is that in dimensions n ≥
4 the orbits of the Apollonian group no longer correspond to sphere packings; the spheres
in these configurations overlap. Furthermore, even viewed in the parameter spaceMn

D

the action of the n-dimensional Apollonian groupAn is not discrete. However, the action
of the dual Apollonian group A⊥n is discrete onMn

D for all n ≥ 2. To restore a discrete
group action for the Apollonian group and the super-Apollonian group in certain higher
dimensions, it suffices to view it as a diagonal action onMn

D(R)×
∏

p|n−1Mn
D(Qp), in

whichMn
D(Qp) is a p-adic parameter space. This can be done in dimensions for which

there are rational points in the parameter spaceMn
D =Mn

D(R).
In Section 5 we determine presentations for the Apollonian groupAn in all dimensions

n ≥ 3. In dimension 3 there are extra relations of the form (Si Sj )
3 = I whenever i 
= j .

The group An is a hyperbolic Coxeter group in all dimensions n ≥ 3.
In Section 6 we investigate rationality properties of Apollonian cluster ensembles.

We prove that strongly rational configurations exist if and only if the dimension n = 2k2

or n = (2k + 1)2.
In Section 7 we consider to what extent the duality operator D defined in dimension

2 has an n-dimensional analogue. In dimension 2 this operator takes a Descartes config-
uration D to a dual Descartes configuration D′ consisting of four circles, each of which
is orthogonal to all but one of the circles in the packing. We observe that this operation
has a geometric analogue in dimension n ≥ 3, which maps the configuration D to the
set E of n + 2 spheres having the property of being orthogonal to all but one of the
spheres in D. These spheres in E do not form a Descartes configuration, but have an
equi-inclination property instead. In dimensions n ≥ 3 this operation does not have an
algebraic interpretation in Aut(Q D,n).
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In Section 8 we make some concluding remarks, stating some unresolved questions.
In the Appendix we describe the action of the n-dimensional Möbius group Möb(n)

on (ordered, oriented) Descartes configurations, encoded via an isomorphism, as the
action of Aut(QW,n).

The general framework of this paper was developed by the second author (JCL), who
also did much of the writing. This paper is a revised and extended version of a preprint
originally written in 2000.

2. Main Results

The object of this paper is to study to what extent the properties of Apollonian circle
packings studied in Parts I and II have n-dimensional analogues. The two-dimensional
case had the following six features:

(P1) [Parameter Space Property] The spaceMD of all ordered, oriented Descartes
configurations can be identified with the set of real intertwining matrices W
under congruence between two rational quadratic forms in four variables, the
Descartes form Q D and a certain form QW , i.e. WT QDW = QW . We called the
4 × 4 matrix W the augmented curvature-center coordinates of the associated
ordered, oriented Descartes configuration. The parameter space MD is a real
algebraic variety and a principal homogeneous space for the Lorentz group
O(3, 1).

(P2) [Orbit Property] There exist three groups of matrices in Aut(Q D) of determi-
nants ±1, the Apollonian group A, the dual Apollonian group A⊥ and the
super-Apollonian group AS , which have geometrically characterizable actions
on Descartes configurations. In particular, the set of Descartes configurations
in an Apollonian circle packing comprise a single orbit of a single Descartes
configuration under the action of the Apollonian group (disregarding orientation
and ordering).

(P3) [Integer Matrix Property] The Apollonian group, dual Apollonian group and
super-Apollonian group each consist of integer matrices. Thus all three groups
are discrete subgroups of GL(4,R). They each have a discontinuous action on
the parameter spaceMD of ordered, oriented Descartes configurations.

(P4) [Coxeter Group Property] Each of the Apollonian group, dual Apollonian group
and super-Apollonian group have group presentations as hyperbolic Coxeter
groups.

(P5) [Integral Packing Property] There exist integer Apollonian circle packings, ones
in which all Descartes configurations have integer curvatures. Furthermore, there
exist super-integral Descartes configurations, ones whose augmented curvature-
center coordinate matrices W are integer matrices. There are super-integral
Apollonian packings, ones in which every Descartes configuration has this
property. The set of all super-integral ordered, oriented Descartes configura-
tions forms 672 orbits under the action of the super-Apollonian group.

(P6) [Duality Operator] There exists a duality operator D in Aut(QD) given by a
fixed matrix GL(4,R) with half-integer entries. It acts by conjugacy on the
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super-Apollonian group and gives an outer automorphism of order 2 of this
group. This outer automorphism conjugates the Apollonian group to the dual
Apollonian group. The duality operator has a geometric interpretation in terms
of its action on individual Descartes configurations.

The results of this paper generalize each of these features, which we consider in or-
der. The parameter space property (P1) generalizes to all dimensions, as was shown by
three of the authors in [23]. Results in this direction were established earlier by Wilker
[35], who used the term cluster for an ordered, but not oriented, Descartes configuration.
There is a notion of augmented curvature-center coordinates for an ordered, oriented
n-dimensional Descartes configuration, and a parameter spaceMn

D of all such config-
urations, specified by a matrix condition that intertwines two quadratic forms in n + 2
variables under conjugacy, as was shown in [23]. Furthermore, the spaceMn

D has the
structure of a principal homogeneous space for O(n + 1, 1). We present these results in
Section 3.

The orbit property (P2) generalizes to all dimensions. There exists an n-dimensional
version of the Apollonian group, the dual Apollonian group and the super-Apollonian
group, with the same geometric interpretation of their actions on Descartes configura-
tions. These are described in Section 4. We define an Apollonian cluster ensemble to be
an orbit of a single (ordered, oriented) Descartes configuration under the action of the
Apollonian group. However, there is a sphere packing interpretation of the geometric
packing corresponding to this orbit in dimension 3 only, and not in dimensions n ≥ 4.

The integer matrix property (P3) partially generalizes to all dimensions, as we discuss
in Section 4. The n-dimensional Apollonian group, dual Apollonian group and super-
Apollonian group each consist of integral matrices in dimension 3, and they act discretely.
The dual Apollonian group consists of integer matrices in all dimensions, and so is a
discrete subgroup of GL(n + 2,R) and acts discontinuously on the parameter space
Mn
D. However, for n ≥ 4 the Apollonian group and super-Apollonian group consist of

rational matrices, with denominators whose prime factors all divide n−1. The Apollonian
group An is not a discrete subgroup of GL(n + 1,R) for n ≥ 4 and does not have
a discontinuous action on Mn

D (Theorem 4.1). However, we can restore discreteness
by adding an action on some p-adic groups, for those primes p dividing n − 1. That
is, the super-Apollonian group AS

n can be embedded discretely by a diagonal action
inside GL(n + 2,R)×∏p|n−1 GL(n + 2,Qp) for all n. For certain dimensions n, those
characterized in Section 6 as n = 2k2 or n = (2k + 1)2 for k ≥ 1, one can get
a discontinuous diagonal action of the super-Apollonian group on a parameter space
Mn
D(R) ×

∏
p|n−1Mn

D(Qp). For this it is necessary that the p-adic parameter spaces
Mn
D(Qp) have enough points. Finally on the level of “packings” in the weak sense of

spheres not crossing each other, this holds in dimensions 2 and 3 for all these groups,
and holds for the dual Apollonian groupA⊥n for all n ≥ 4 (Theorem 4.3), but not for the
other two groups.

The hyperbolic Coxeter group property (P4) partially (and perhaps completely) gen-
eralizes to all dimensions. We show in Section 5 that for all n ≥ 3 the n-dimensional
Apollonian group is a hyperbolic Coxeter group (Theorems 5.1 and 5.2). For n = 3 the
group has an extra relation, which explains the existence of the structures “The Bowl of
Integers” and “The Hexlet” studied by Soddy [31]–[33] and Gosset [17]. It may be true
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that in all dimensions the dual Apollonian group and super-Apollonian group are also
hyperbolic Coxeter groups, but we leave these as open questions.

The integral packing properties in (P5) generalize to all dimensions in weakened
forms. In Section 6 we observe that in all dimensions n ≥ 3 there exist Apollonian
cluster ensembles in which every sphere has a rational curvature, with denominators
divisible only by a certain finite set of primes, those dividing n − 1 (Theorem 6.1).
We then consider the question in which dimensions n does there exist a super-rational
Descartes configuration, i.e. one whose augmented curvature-center coordinate matrix
WD is a rational matrix inMn

D? We prove this can be done if and only if the dimension
n = 2k2 or n = (2k + 1)2 for some k ≥ 1 (Theorem 6.3).

The duality operation in (P6) giving a conjugacy between the Apollonian group and
the dual Apollonian group, appears to exist algebraically only in dimension 2. In Section 7
we show that viewed as a geometric action, there does exist a natural “duality operator”
acting on Descartes configurations in all dimensions n ≥ 2. However, in dimensions
n ≥ 3, the image of this operator is not a Descartes configuration, but instead is a
collection of n+2 spheres, each of which intersects the others in a particular fixed angle
θn , which depends on the dimension n (Theorem 7.2).

3. Descartes Configurations and Group Actions in Rn

3.1. Descartes Configurations and Augmented Curvature-Center Coordinates

We start with the generalization of the Descartes circle theorem to the n-dimensional case.
A Descartes configuration in Rn consists of (n + 2) pairwise tangent (n − 1)-spheres
(S1, S2, . . . , Sn+2) in Rn , with all points of tangency distinct. This result, which was
termed the Soddy–Gossett theorem in [23], after Soddy [30] and Gossett [16] (although
it was discovered earlier in the three-dimensional case), states that if the spheres have
disjoint interiors then

n+2∑
j=1

1

r2
i

= 1

n

(
n+2∑
i=1

1

ri

)2

. (3.1)

The Descartes circle theorem is the case n = 2.
The Soddy–Gossett theorem holds for all Descartes configurations, including config-

urations where one sphere encloses the others, provided that we assign appropriate signs
to the curvatures, so that the configuration has a (total) orientation, as defined below. An
oriented sphere is a sphere together with an assigned direction of unit normal vector,
which can point inward or outward. If it has radius r then its oriented radius is r for an
inward pointing normal and −r for an outward pointing normal. Its oriented curvature
(or “signed curvature”) is 1/r for an inward pointing normal and −1/r for an outward
pointing normal. By convention, the interior of an oriented sphere is its interior for an
inward pointing normal and its exterior for an outward pointing normal. An oriented
Descartes configuration is a Descartes configuration in which the orientations of the
spheres are compatible in the following sense: either (i) the interiors of all n+2 oriented
spheres are disjoint, or (ii) the interiors are disjoint when all orientations are reversed.
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Each Descartes configuration has exactly two compatible orientations in this sense, one
obtained from the other by reversing all orientations. The positive (total) orientation of a
Descartes configuration is the one in which the sum of the signed curvatures is positive,
while the negative (total) orientation is the one in which the sum of the curvatures is
negative. One can check that the sum of the curvatures cannot be zero.

Now let bi = 1/ri denote the (signed) curvature of the i th sphere of an ordered
(totally) oriented Descartes configuration, and let b = (b1, . . . , bn+2). The geometry
of such a Descartes configuration is encoded in the signed curvature vector b. In the
positively oriented case, where

∑n+2
j=1 bj > 0, one of the following holds: (i) all of

b1, b2, . . . , bn+2 are positive; (ii) n + 1 are positive and one is negative; (iii) n + 1 are
positive and one is zero; or (iv) n are positive and equal and the other two are zero. These
four cases correspond respectively to the following configurations of mutually tangent
spheres: (i) n + 1 spheres, with another in the curvilinear simplex that they enclose;
(ii) n + 1 spheres inscribed inside another larger sphere; (iii) n + 1 spheres with one
hyperplane (the (n + 2)nd “sphere”), tangent to each of them; and (iv) n equal spheres
with two common parallel tangent planes.

We can reformulate the Soddy–Gossett theorem in matrix terms. Let bi = 1/ri denote
the (signed) curvature of the i th sphere of an ordered, oriented Descartes configuration,
and let b = (b1, . . . , bn+2), then (3.1) becomes

bT QD,nb = 0, (3.2)

in which QD,n is the symmetric matrix associated to the n-dimensional Descartes
quadratic form, defined below.

Definition 3.1. The n-dimensional Descartes quadratic form Q D,n is the quadratic
form in n + 2 variables whose associated symmetric matrix is

QD,n := In+2 − 1

n
1n+21T

n+2, (3.3)

in which 1 = (1, 1, . . . , 1)T is a column vector of length n + 2.

Here the original Descartes quadratic form is

QD,2 = I − 1
2 11T = 1

2




1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1


 . (3.4)

In [23] three of the authors of this paper showed that there exists a parametrization of
the setMn

D of all ordered, oriented Descartes configurations in Rn , using a coordinate
system involving the curvatures and centers of the spheres, which appears as Theorem 3.1
below.

Definition 3.2. Given an oriented sphere S in Rn , its curvature-center coordinates
consist of the (n + 1)-vector

m(S) = (b, bx1, . . . , bxn), (3.5)
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in which b is the signed curvature of S (assumed nonzero) and x(S) = x = (x1, x2, . . . , xn)

is its center. For the degenerate case of an oriented hyperplane H , its curvature-center
coordinates m(H) are defined to be

m(S) = (0,h), (3.6)

where h := (h1, h2, . . . , hn) is the unit normal vector that gives the orientation of the
hyperplane.

To see the origin of this definition in the degenerate case, let the point of H closest
to the origin be z = λh for some real value λ. For t > |λ|, let St be the oriented sphere
of radius t centered at (t + λ)h, which has center in direction h from the origin and
contains z. As t → ∞ the oriented spheres St clearly converge geometrically to the
oriented hyperplane H , and m(St ) = (1/t, (1+ λ/t)h)→ m(H) = (0,h).

Curvature-center coordinates are not quite a global coordinate system, because they
do not always uniquely specify an oriented sphere. Given m ∈ Rn+1, if its first coordinate
b is nonzero then there exists a unique sphere having m = m(S). However, if b = 0, the
hyperplane case, there is a hyperplane if and only if

∑
h2

i = 1, and in that case there is
a pencil of hyperplanes that have the given value m, which differ from each other by a
translation.

We obtain a global coordinate system for spheres by adding an additional coordinate.
This coordinate incorporates information about the sphere S̄ obtained from S by inversion
in the unit sphere. In n-dimensional Euclidean space, the operation of inversion in the
unit sphere replaces the point x by x/|x|2, where |x|2 = ∑n

j=1 x2
j . Consider a general

oriented sphere S with center x and oriented radius r . Then inversion in the unit sphere
takes S to the sphere S̄ with center x̄ = x/(|x|2−r2) and signed radius r̄ = r/(|x|2−r2).
If |x|2 > r2, then S̄ has the same sign as S. In all cases,

x
r
= x̄

r̄
(3.7)

and

b̄ = |x|
2

r
− r. (3.8)

Definition 3.3. Given an oriented sphere S in Rn , its augmented curvature-center co-
ordinates of S are given by the (n + 2)-vector

w(S) := (b̄, b, bx1, . . . , bxn) = (b̄,m), (3.9)

in which b̄ = b(S̄) is the curvature of the sphere or hyperplane S̄ obtained by inversion
of S in the unit sphere, and the entries of m are its curvature-center coordinates. For
hyperplanes we define

w(H) := (b̄, 0, h1, . . . , hn) = (b̄,m), (3.10)

where b̄ is the oriented curvature of the sphere or hyperplane H̄ obtained by inversion
of H in the unit sphere.
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Augmented curvature-center coordinates provide a global coordinate system for ori-
ented spheres: no two distinct oriented spheres have the same coordinates. The only
case to resolve is when S is a hyperplane, i.e. b = 0. Relation (3.7) shows that
(b̄, bx1, . . . , bxn) are the curvature-center coordinates of S̄, and if b̄ 
= 0, this uniquely
determines S̄; inversion in the unit circle then determines S. In the remaining case,
b = b̄ = 0 and S = S̄ is the unique hyperplane passing through the origin whose unit
normal is given by the remaining coordinates.

Given a collection (S1, S2, . . . , Sn+2) of n+2 oriented spheres (possibly hyperplanes)
in Rn , the augmented matrix W associated with it is the (n+ 2)× (n+ 2)matrix whose
j th row has entries given by the augmented curvature-center coordinates w(Sj ) of the
j th sphere.

To state the next result, we introduce another quadratic form.

Definition 3.4. The (n-dimensional) Wilker quadratic form QW,n is the (n+2)-variable
quadratic form given by the symmetric (n + 2)× (n + 2) matrix

QW,n :=

 0 −4 0
−4 0 0

0 0 2In


 . (3.11)

This name is made in honor of J. B. Wilker [35], who introduced in spherical ge-
ometry a coordinate system analogous to augmented curvature-center coordinates, see
Sections 2, pp. 388–390, and 9 of [35]. However, he did not formulate any result explicitly
exhibiting a quadratic form like QW,n; see the remark on p. 349 of [23].

Theorem 3.1 (Augmented Euclidean Descartes Theorem). The augmented matrix
W =WD of an oriented Descartes configurationD of n+2 spheres {Si : 1 ≤ i ≤ n+2}
in Rn satisfies

WT QD,nW =

 0 −4 0
−4 0 0

0 0 2In


 . (3.12)

Conversely, any real solution W to (3.12) is the augmented matrix WD of a unique
ordered, oriented Descartes configuration D.

Proof. This is proved as Theorem 3.3 in [23].

Theorem 3.1 states that the augmented curvature-center coordinates of an ordered,
oriented Descartes configuration give an intertwining map between the Descartes form
and the Wilker form. We note that the Soddy–Gossett theorem is a special case of
Theorem 3.1, encoded as the (2, 2) entry of the matrix WT QD,nW.

Both the Descartes quadratic form and the Wilker quadratic form are equivalent over
the real numbers to the Lorentzian quadratic form

QL,n(x) := −x2
0 + x2

1 + · · · + x2
n+1, (3.13)
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see Section 3.2. This quadratic form has a large group of real automorphisms under
congruence

Aut(QL,n) = {U ∈ GL(n,R): UT QL,nU = QL,n},
which is the Lorentz group O(n + 1, 1). In consequence both the Descartes quadratic
form Q D,n and Wilker quadratic form QW,n have automorphism groups under (real)
congruence which are conjugates of the Lorentz group.

The Descartes form is not only equivalent to the Lorentz form over the real numbers,
but sometimes over the rational numbers. In dimension 2 the Descartes and Lorentz
forms are rationally equivalent, where one has

QL,2(x) = JT
0 QD,2J0, (3.14)

with

J0 = 1

2




1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1


 .

In dimension 2 the Wilker form QW,2 is also rationally equivalent to both the Descartes
form and the Lorentz form, as shown in Section 3.1 of Part I.

In higher dimensions these three forms are not always rationally equivalent. A nec-
essary condition for rational equivalence of two quadratic forms is that their deter-
minants differ by a rational square. We have det(QL) = −1, det(QD) = −2/n and
det(QW ) = −2n+4. It follows that a necessary condition for rational equivalence of the
Descartes and Lorentz forms in dimension n is that n = 2k2; for the Wilker and Lorentz
forms in dimension n that n = 2k; and for the Descartes and Wilker forms in dimension
n that n = k2 for odd k or n = 2k2 for even k. All three of these necessary conditions
hold if and only if n = 2k2.

In Section 6 we show that the last condition is sufficient for equivalence of the
Descartes and Wilker forms.

3.2. Möbius and Lorentz Group Actions

The Augmented Euclidean Descartes Theorem yields two group actions on the space of
Descartes configurations. The group Aut(Q D,n) acts on the left and the group Aut(QW,n)

acts on the right, as

WD �→ UWDV−1, with U ∈ Aut(Q D,n), V ∈ Aut(QW,n).

The two group actions obviously commute with each other. The following result gener-
alizes the two-dimensional case, where the Lorentzian form QL,2 is given in (3.14).

Theorem 3.2.

(1) The groups Aut(Q D,n) and Aut(QW,n) are conjugate over the real numbers to
Aut(QL,n) ≡ O(n + 1, 1).
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(2) The group Aut(Q D,n) acts transitively on the left on the parameter spaceMn
D of

all ordered, oriented Descartes configurations. Given two such Descartes config-
urationsD andD′ there exists a unique U ∈ Aut(Q D,n) such that UWD =WD′ .

(3) The group Aut(QW ) acts transitively on the right on the space of all ordered,
oriented Descartes configurationsMn

D. Given two such Descartes configurations
D and D′ there exists a unique V ∈ Aut(QW,n) such that WDV−1 =WD′ .

Remark. This result allows one to define both a left and right O(n + 1, 1) action on
the space Mn

D, which depends on the choice of conjugacy made in (1). Then (2) and
(3) show both these actions are transitive and have a trivial stabilizer. This gives Mn

D

the structure of a principal homogeoneous space (or torsor) for O(n + 1, 1), for each of
these actions.

Proof. Part (1) follows for QW,n on taking QL,n = ZT QW,nZ with

Z = 1√
2




1
2 − 1

2 0
1
2

1
2 0

0 0 In


 .

It then follows for Q D,n because it is conjugate to QW,n by Theorem 3.1, using WD for
any fixed Descartes configuration.

Parts (2) and (3) follow immediately from (1), because Aut(QL,n) = O(n+1, 1) acts
transitively.

Since the spheres in a Descartes configuration appear as the rows in the augmented
matrix WD of an oriented Descartes configuration, the action on the right by elements
of Aut(QW,n)maps spheres to spheres. This action can essentially be identified with the
Möbius group of linear fractional transformations acting on the one-point compactifica-
tion R̂n of Rn . More precisely, it corresponds to a direct product of the Möbius group
with {I,−I}, because the Möbius group preserves total orientation of Descartes config-
urations. A precise description of the isomorphism is given in the Appendix. (The case
n = 2 was treated in Appendix A of Part I.)

The action on the left, by Aut(Q D,n), mixes together the different spheres in the
original Descartes configuration, and does not make sense as an action on individual
spheres. This group action is intrinsically associated to the (n(n + 1)/2)-dimensional
(real) parameter spaceMn

D of oriented Descartes configurations.

4. Apollonian Groups and Apollonian Cluster Ensembles

In Parts I and II we studied Apollonian circle packings in terms of the Descartes config-
urations they contain. We showed they consisted of a single orbit of a discrete subgroup
of the automorphism group Aut(Q D,2) of the Descartes quadratic form Q D,2. We also
introduced another discrete subgroup of Aut(Q D,2), the dual Apollonian group, and, in
addition, the super-Apollonian group, which is the subgroup of Aut(Q D,2) generated by
the Apollonian group and the dual Apollonian group together.
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We show there are analogues of these three groups in all dimensions n ≥ 3, which are
subgroups of Aut(Q D,n) consisting of rational matrices. We call these the n-dimensional
Apollonian group, dual Apollonian group and super-Apollonian group. We then define
an Apollonian cluster ensemble to be an orbit of the Apollonian group. This provides
a generalization of Apollonian packing to all dimensions, though it turns out not to
correspond to a sphere-packing in dimensions n ≥ 4.

4.1. n-Dimensional Apollonian Group

The n-dimensional Apollonian group An = 〈S1,S2, . . . ,Sn+2〉 consists of (n + 2) ×
(n + 2) matrices with

Sj := I+ 2

n − 1
ej 1T − 2n

n − 1
ej eT

j , (4.1)

where e j is the j th unit coordinate (column) vector and 1 = e1 + · · · + en+2 =
(1, 1, . . . , 1)T . That is, Sj is the identity matrix in all rows but the j th row, and where has
−1 on the diagonal, and all off diagonal elements equal to 2/(n − 1). It is straightforward
to check that An ⊂ Aut(Q D,n). The relations S2

j = I are evident.
The algebraic action of the operator Sj on the augmented curvature-center coordinates

WD of a Descartes configuration D is to take it to Sj WD, which is WD′ for some D′.
The geometric interpretation of this action is to fix all (oriented) spheres in the Descartes
configuration D except the j th sphere, and to replace that sphere with the unique other
sphere that is tangent to the remaining n+1 spheres, assigned an appropriate orientation;
this is D′. For a fixed Descartes configuration D this operation can also be realized by
a Möbius transformation that is an inversion with respect to the sphere that passes
through the n(n + 1)/2 tangency points of the remaining n+ 1 spheres in the Descartes
configuration. (The existence of such a sphere is demonstrated in Theorem 7.1.)

It is apparent thatAn is a group of integer matrices for n = 2 and 3, while for n ≥ 4 it
is not always integral, consisting of rational matrices whose denominators contain only
powers of primes that divide n − 1.

Theorem 4.1. The Apollonian group An is a discrete subgroup of GL(n + 2,R) for
n = 2 and n = 3. It is not a discrete subgroup of GL(n + 2,R) for all n ≥ 4.

Proof. The group An is discrete in dimensions 2 and 3 since it is then a subgroup of
GL(n + 1,Z).

We consider the element S1S2, and show for n ≥ 4 that the set {(S1S2)
k : k ≥ 1 does not

contain the identity matrix, but the closure of this set does contain the identity matrix. The
(n+1)×(n+1)matrix S1S2 is a product of two reflections, so it has determinant 1 and has
n of its eigenvalues equal to 1. Its first two rows are (a2

n − 1,−an, a2
n + an, a2

n + an, . . .)

and (an,−1, an, an, . . .) in which an = 2/(n − 1), and all other rows are those of
the identity matrix. Its two nonunit eigenvalues are e±iθn with cos(θn/2) = an/2, so
θn = 2 cos−1(1/(n − 1)). Since these two eigenvalues are distinct, it follows that S1S2

is diagonalizable. Now 	n := {(S1S2)
k : k ≥ 1} contains diagonalizable elements with

all eigenvalues arbitrarily close to 1, so it contains the identity matrix as a limit point.
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When n ≥ 4 it is well known that θn is an irrational multiple of π , whence 	n does not
contain the identity matrix, which shows that the Apollonian group An is not a discrete
subgroup of GL(n + 1,R).

Because the Apollonian group is arithmetic one can view it as a discrete group if one
considers its actions on certain p-adic groups GL(n+2,Qp) for p | n−1. Let n∗ = n−1
if n is even, and (n − 1)/2 if n is odd. Then one can establish that the Apollonian group
An is a discrete group when embedded diagonally in GL(n+2,R)×∏p|n∗ GL(n+2,Qp).
Using this structure, one may obtain a discrete (i.e. discontinuous) diagonal action of the
Apollonian group on the spaceMn

D(R)×
∏

p|n∗Mn
D(Qp), whenever all of the parameter

spaces Mn
D(Qp) are nonempty. Here the spaces Mn

D(Qp) are defined as the p-adic
solutions to the conditions in (3.12). The criterion in Section 6.2, shows that Mn

D(R)

contains rational solutions, hence p-adic solutions for all p, when n = 2k2 or (2k+ 1)2,
for some k ≥ 1.

4.2. n-Dimensional Dual Apollonian Group

The n-dimensional dual Apollonian group A⊥n = 〈S⊥1 ,S⊥2 , . . . ,S⊥n+2〉 consists of (n +
2)× (n + 2) matrices with

S⊥j := I+ 21eT
j − 4ej eT

j . (4.2)

That is, S⊥j is the identity matrix in all columns except the j th column, where it has −1
as a diagonal entry and 2 for all off-diagonal entries. The groupA⊥n is a group of integer
matrices in all dimensions n. It is straightforward to check that A⊥n ⊂ Aut(Q D,n). It is
evident that (S⊥j )

2 = I holds for all j . The geometric interpretation of the operation S⊥j
on a Descartes configurationD is that it encodes inversion with respect to the i th sphere
of that configuration.

Theorem 4.2. The dual Apollonian group A⊥n is a discrete subgroup of GL(n + 2,R)
for all n ≥ 2.

Proof. This holds since A⊥n is a subgroup of the discrete group GL(n + 2,Z).

Orbits of this group, acting on Descartes configurations, retain a “packing” property
at the level of individual spheres.

Theorem 4.3. For all n ≥ 2, an orbit of the dual Apollonian group A⊥n acting on a
single Descartes configuration gives a “packing” of spheres in the weak sense that no
two spheres in distinct Descartes configurations of the orbit cross each other, i.e. any
two such spheres either coincide, or are disjoint or are tangent.

Proof. This can be seen geometrically by constructing the dual packing starting from
a single Descartes configurationD. The spheres in the resulting “packing” are all nested
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inside spheres of D, and we call the level of a sphere its depth of nesting inside some
sphere of D, the spheres in D being assigned level 0. One proceeds in stages, where at
stage k − 1 one has the set of Descartes configurations {S⊥ik−1

S⊥ik−2
· · ·S⊥i1

WD}, in which
each i j 
= i j−1. We assert as an induction hypothesis, that each stage k − 1 Descartes
configuration has all but one of its spheres at level k − 1, with one sphere at level k − 2.
This holds for the base case k = 2 by inspection. At stage k each multiplication by a
generator takes a particular Descartes configuration at stage k−1 and maps (n+1) of its
spheres inside one level k − 1 sphere of the configuration. (Here the condition ik 
= ik−1

is used.) The new Descartes configuration then consists of (n + 1) spheres nested to
depth k insideD, contained in one outer sphere nested to depth k−1. Furthermore, each
level k Descartes configuration is nested inside a unique level (k − 1)-sphere, of which
there are (n + 2) · (n + 1)k−2 choices. It follows that the new level k spheres cannot
cross any spheres at any levels up to k − 1, and they also cannot cross any other level
k spheres because they are either inside different level k − 1 spheres, or if they are in
the same level k − 1 sphere, then they form part of a single Descartes configuration.
Thus the noncrossing property holds at depth k, and the result follows by induction
on k.

4.3. n-Dimensional Super-Apollonian Group

The n-dimensional super-Apollonian group AS
n is the group generated by An and A⊥n ,

so that

A⊥n = 〈S1,S2, . . . ,Sn+2,S⊥1 ,S⊥2 , . . . ,S⊥n+2〉.
This group consists of integer matrices when n = 2 or 3, and of rational matrices
otherwise. In particular, AS

n is a discrete subgroup of GL(n + 2,R) for n = 2 or n = 3,
and is not a discrete subgroup for n ≥ 4. The property that some spheres in different
Descartes configurations intersect nontangentially when n ≥ 4 is inherited from the
action of the Apollonian group.

We do not know if the super-Apollonian group is a Coxeter group. We do know that its
generators satisfy the Coxeter relations given in the following lemma. It seems plausible
that for n ≥ 4 these are a generating set of relations; if so, thenAS

n would be a hyperbolic
Coxeter group.

Theorem 4.4. The super-Apollonian groupAS
n=〈S1,S2, . . . ,Sn+2,S⊥1 ,S⊥2 , . . . ,S⊥n+2〉

has generators satisfying the relations.

S2
j = I and (S⊥j )

2 = I, 1 ≤ j ≤ n + 2, (4.3)

and

Sj S⊥k = S⊥k Sj when j 
= k. (4.4)

Proof. This is a direct calculation from the definition. To appreciate (4.4) one can
consider more generally (n+ 2)× (n+ 2)matrices Sj (λ) whose entries are the identity
matrix except in the j th row, where they are −1 on the diagonal and λ off the diagonal.
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Then Sj (λ)
2 = I holds for 1 ≤ j ≤ n, but the extra relations (4.4) hold only when

λ = 2/(n − 1). (Compare the ( j, k)th entry of the products Sj S⊥k and S⊥k Sj .) Note
however that Sj (λ) ∈ Aut(Q D,n) if and only if λ = 2/(n − 1).

As mentioned above for the Apollonian group, there is a discrete action of the super-
Apollonian group in certain dimensions, given by its diagonal action ofAS

n on the product
parameter spaceMn

D(R) ×
∏

p|n∗Mn
D(Qp), provided that all the spacesMn

D(Qp) are
nonempty. As shown in Section 6.2, this will be the case when n = 2k2 or (2k+ 1)2, for
some k ≥ 1.

4.4. Apollonian Cluster Ensembles

In the two-dimensional case Apollonian packings could be described as (a) a collection
of circles, or (b) the orbit of four circles under a certain discrete group of Möbius
transformations or (c) the Descartes configurations given by an orbit of the Apollonian
group. The first two of these notions do not generalize to all dimensions, but version (c)
does.

Definition 4.1. An Apollonian cluster ensemble in n dimensions is defined to be the
orbit of the Apollonian group An of a given ordered, oriented Descartes configuration
D0 in the parameter spaceMn

D.

This object can be viewed as a discrete set in the parameter spaceMn
D of all (ordered,

oriented) Descartes configurations in dimension n. In dimension n = 3 the spheres in an
Apollonian cluster ensemble yield a sphere packing. However, in dimensions n ≥ 4 the
spheres in any such ensemble overlap and no longer correspond to a packing, as shown
by Lemma 4.1. Because the Apollonian group consists of rational matrices, we can ask if
there are n-dimensional Apollonian cluster ensembles with rationality properties, either
of their curvatures or of their full augmented curvature-center coordinate matrices WD.

Similarly one can define a dual Apollonian cluster ensemble to be an orbit of the dual
Apollonian groupA⊥n of a single Descartes configuration. It is necessarily a discrete set,
because A⊥n has an integral structure, so the identity matrix is isolated in the group A⊥n .
We can ask about rationality or integrality properties of orbits of this group.

A super-Apollonian cluster ensemble is an orbit of the super-Apollonian group AS
n .

We can ask about rationality properties of orbits of this group, and integrality properties
in dimensions n = 2 and n = 3. For n = 2 these were answered in Part II, and for n = 3
we show in Section 6 that the integral WD does not exist. For n ≥ 4 these orbits are
not discrete, but in certain dimensions can have a rational structure inherited from the
super-Apollonian group, see Section 6.

5. Presentation for the n-Dimensional Apollonian Group

In [18] we obtained a presentation for the super-Apollonian group AS
2 in dimension

2, which established that it was a hyperbolic Coxeter group. Theorem 4.4 gave some
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nontrivial relations in the super-Apollonian group AS
n , all of Coxeter type. There are

additional relations, at least in dimension 3, see Theorem 5.1. It may well be that AS
n is

a hyperbolic Coxeter group for all n ≥ 3. However, it seems a complicated problem to
determine a presentation of AS

n in general, and here we establish a more limited result.
We determine a presentation for the Apollonian groupAn in dimensions n ≥ 3, given

in the next two results. In all cases it is a hyperbolic Coxeter group.

Theorem 5.1. For dimension n = 3 the Apollonian group A3 = 〈S1,S2,S3,S4,S5〉
has the relations S2

j = I for 1 ≤ j ≤ 5 and the additional relations

(Sj Sk)
3 = I, when j 
= k. (5.1)

These are a generating set of relations, and A3 is a hyperbolic Coxeter group.

Proof. Recall that

S1 =



−1 1 1 1 1

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


 (5.2)

and the other Sj are permutations of the j th and first rows and columns of S1. It is easy to
check that the generators satisfy all the relations given above; in what follows we denote
this set of relations R. We note that relations (5.1) can be written in either of the forms
(Sj Sk)

2 = SkSj or Sj SkSj = SkSj Sk .
We now consider a general word U = U1U2 · · ·Un with each Uj = Si j , where

inverses of generators are eliminated by relations S−1
i = Si . A subword of U is any word

Uj Uj+1 · · ·Uk . We call a word reduced if it has the following properties:

(i) 2-reduced. It contains no subword of form Sj Sj .
(ii) B-reduced. It contains no subword of form V1V2 · · ·V2m in which V1 = V3,

V2 j = V2 j+3 for 1 ≤ j ≤ m − 2, and V2m−2 = V2m .

Conditions (i) and (ii) together allow the refinement of (ii) to assert V1 = V3 
= V2,
V2 j = V2 j+3 
= V2 j+2 and V2m−2 = V2m 
= V2m−1. Also the case m = 2 rules out
words Sj SkSj Sk . The definition also implies: every subword of a B-reduced word is also
B-reduced.

We assert that every nonreduced word can be simplified to a reduced word of a shorter
length, using the relations R. If (i) is violated, then using the relation S2

j = I we may
replace the subword by the empty word, shortening it by two. If (ii) holds then we can
replace the subword by V2V3 · · ·V2m−1, decreasing its length by two. This reduction is
done by a sequence of replacements of the form Sj SkSj by SkSj Sk applied successively
at positions 1, 3, . . . , 2m−3, which ends with V2 at the beginning and V2m−1V2mV2m at
the end. Then the final letters V2mV2m are deleted by rule (i), achieving a shortening by
two. Starting with any word U and applying this reduction process, we eventually arrive
at a reduced word or the empty word.
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The theorem is equivalent to the assertion that each nonempty reduced word is not the
identity. For if the relations R did not generate all relations, there would exist another
relation, necessarily forcing some nonempty reduced word to be the identity.

We introduce some (matrix) invariants associated to a word in the generators. Let ej

be the j th unit (column) vector, i.e. the j th column of the 5× 5 identity matrix, and set
15 = (1, 1, 1, 1, 1)T . We define

σj (U) := eT
j U15, (5.3)

the sum of entries in row j of U, and

	(U) := 1T
5 U15, (5.4)

the sum of all entries of U, which we call its mass.
We compute the effect on these invariants of multiplying by a generator. The matrix

Sj U has all rows but the j th row the same as U, with its j th row equal to the sum of all
rows of U minus twice its j th row, which yields

σj (Sj U) = 	(U)− 2σj (U), (5.5)

and σk(Sj U) = σk(U) if k 
= j . It also gives

	(Sj U) = 2	(U)− 3σj (U). (5.6)

Now, we define

δj (U) := 	(Sj U)−	(U). (5.7)

This quantity measures the increase in the total mass of a matrix when we multiply by
Sj . Two key properties of this measure are that if j 
= k then

δj (SkU) = δj (U)+ δk(U), (5.8)

while if j = k then

δj (Sj U) = −δj (U). (5.9)

To verify these, first observe that

δj (U) = (2	(U)− 3σj (U))−	(U) = 	(U)− 3σj (U).

Therefore

δj (SkU) = 	(SkU)− 3σj (SkU)

= 2	(U)− 3σk(U)− 3σj (U)

= 	(U)− 3σj (U)+	(U)− 3σk(U)

= δj (U)+ δk(U),
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which gives (5.8). Similarly, using (5.7),

δj (Sj U) = 	(Sj Sj U)−	(Sj U)

= −(	(Sj U)−	(U))
= −δj (U).

One consequence of these two properties is that

δj (SkU) = δk(Sj U) if j 
= k. (5.10)

Another consequence is

δj (SkSj U) = δk(Sj U)+ δj (Sj U) = (δj (U)+ δk(U))− δj (U) = δk(U). (5.11)

We assert that all nonempty reduced words U = Sj U′ have

δj (U′) > 0, (5.12)

so that 	(U) > 	(U′). If this is proved, then since U′ is also reduced, we obtain by
induction on the length of U that

	(U) ≥ 	(Un) = 7 > 	(I ) = 5,

so that U cannot be the identity matrix, and the theorem follows.
We establish (5.12) by induction on the length n of U = U1U2 · · ·Un = U1U′, where

we suppose U1 = Sj . In the base case n = 1, we consider that U′ = I , and we then have

	(Sj ) = 7 ≥ 	(I ) = 5,

completing the base case. Now suppose n ≥ 2 and that the induction hypothesis holds
up to n − 1. We write U = Sj SkU′′ with U′′ of length n − 2, noting that j 
= k. We are
to show δj (U′) > 0. Now (5.8) gives

δj (U′) = δj (SkU′′) = δj (U′′)+ δk(U′′). (5.13)

The induction hypothesis gives δk(U′′) > 0. If Sj U′′ is reduced, then δj (U′′) > 0 by
the induction hypothesis and we are done. So suppose Sj U′′ is not reduced. Since U′′ is
reduced, a nonreduced subword in it must be an initial segment, which either fails to be
2-reduced or B-reduced.

Suppose first that Sj U′′ is not B-reduced, having an initial B-word V1 · · ·V2m which
begins Sj SlSj so that Sj U′′ = Sj SlSj V, for some l 
= j . We also have l 
= k since
U′ = SkU′′ is 2-reduced. Now we have, using (5.10),

δj (U′) = δj (SkU′′) = δk(Sj U′′). (5.14)

Applying the B-reduction procedure to the initial segment V1 · · ·V2m simplifies the word
Sj U′′ to a word SlSj V′ that is shorter by two letters than Sj U′′, but is equal to it as a
matrix. It follows using (5.14) that

δk(SlSj V′) ≡ δk(Sj U′′) = δj (U′). (5.15)
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We now assert that SlSj V′ itself is reduced. To see this, write SlSj V′ = V2V3 · · ·V2m−1V′′

with V′′ = Sr St V′′′. Since U′′ = Sj V′ was reduced, any further reduction involves a sub-
word X that contains V2m−2Sr . Now Sr 
= V2m or else U′′ includes V2mSr = V2mV2m

contradicting U′′ being reduced. Next Sr 
= V2m−1, for otherwise U′′ would contain the
subword V2m−2V2m−1V2mV2m−1 which is a B-word since V2m = V2m−2, contradicting
U′′ being reduced. It follows that V2m−2Vm−1Sr = V2mV2m−1Sr consists of three dis-
tinct letters (generators). Thus any nonreduced subword X = X′V2mV2m−1Sr X′′ inside
SlSj V′ must be a B-word. However, then U′′ contains the B-word V2mV2m−1V2mSr X′′,
contradicting U′′ being reduced. We conclude that SlSj V′ is reduced. We deduce that
SkSlSj V′ is reduced, because SlSj V′ is reduced and Sk differs from both of its first two
letters. The induction hypothesis now applies to give δk(SlSj V′) > 0, which with (5.15)
gives δj (U′) > 0.

The remaining case is that when Sj U′′ is not 2-reduced. Then U′′ = Sj V and U =
Sj SkSj V. We have then, by (5.11), that

δj (U′) = δk(V).

If SkV is reduced, then the induction hypothesis gives δk(V) > 0, which gives the desired
result. If it is not reduced, then it is either not 2-reduced or B-reduced. If it is not 2-
reduced, then we have V = SkV′, in which case the original word U = Sj SkSj SkV′

is not B-reduced, contradicting the hypothesis. If SkV is not B-reduced, then we have
V = SlSkV′, with l 
= k, and U = Sj SkSj SlSkV′, which shows that l 
= j . Now we have
by (5.11) again that

δk(V) = δk(SlSkV′) = δl(V′).

If SkV′ is reduced then the induction hypothesis gives δl(V′) > 0 which implies that
δj (U′) > 0 as desired. If it is not 2-reduced then V′ = SkV′′ and this contradicts U being
reduced. There remains the case where V′ is not B-reduced. Then we get V′ = SmSlV′′,
with δk(V′) = δm(V′′). We can continue recursively in this way until the entire word U
is used up and there are not enough letters to have any B-reduced word. We then obtain

δj (U′) = δk(V) = δl(V) = · · · = δn(V(r)) > 0.

This completes the induction step, proving (5.12), and the theorem follows.

Theorem 5.2. For dimension n ≥ 4 the Apollonian group An = 〈S1,S2, . . . ,Sn+2〉 is
a hyperbolic Coxeter group whose only relations are

S2
j = In+2 for 1 ≤ j ≤ n + 2.

Proof. Suppose n ≥ 4. We must show that no nonempty product of the Sj ’s, with
distinct adjacent terms, is equal to the identity matrix In+2.

Let gn = 1/(n − 1) and let Aj = 1
2 (Sj − In+2) so that Sj = In+2 + 2Aj . Then Aj

has all entries zero except for the j th row, in which all entries are gn except for the j th
element, which is −1. Let

A = gn1n+21T
n+2 − nIn+2
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be the matrix with −1 on the main diagonal and gn elsewhere, so that its (i, j) element
is

a(i, j) =
{−1, if i = j,

gn, if i 
= j.

Then Aj and A both have j th row (a( j, 1), . . . , a( j, n + 2)). We note that A is
nonsingular.

Suppose that k ≥ 2, that 1 ≤ j1, . . . , jk ≤ n + 2, that no two consecutive jr ’s are
equal, and that S is the product S = Sj1 Sj2 · · ·Sjk . We assume that S = In+2 and derive
a contradiction. We have

S− In+2 = Sj1 Sj2 · · ·Sjk − In+2

= (In+2 + 2Aj1) · · · (In+2 + 2Ajk )− In+2

= 2
∑

1≤r≤k

Ajr + 4
∑

1≤r<s≤k

Ajr Ajs

+ 8
∑

1≤r<s<t≤k

Ajr Ajs Ajt + · · · + 2kAj1 · · ·Ajk .

The Aj ’s multiply more simply than the Sj ’s, compensating for the more com-
plicated expression involving them. A product like 8Ajr Ajs Ajt , which we call an A-
product, has one nonzero row, row jr , which is equal to row jt of A multiplied by
8a( jr , js)a( js, jt ). The terms of the latter product are −1 or g − n, depending on
whether or not jr = js and js = jt . We call the scalar 8a( jr , js)a( js, jt ) the a-
product corresponding to the A-product 8Ajr Ajs Ajt . In general, an a-product has the form
±2αgβn , α > β.

The j th row of S − In+2 gets a contribution from each A-product that starts with
Aj . It is a linear combination of rows of A determined by the last subscript in each
contributing A-product. Because this linear combination is zero, each of its coefficients
must be zero, since A is full rank. Therefore, for each t and u in { j1, . . . , jk}, the sum
of all the A-products corresponding to A-products that start with At and end with Au

must be zero. This sum is a polynomial in the variable g = gn , call it Pt,u(g). Because
A-products have the form ±2αgβ, α > β, the coefficient of gi

n in this polynomial is
divisible by 2i+1, so we may write

Pt,u(g) =
k−1∑
i=0

ct,u,i 2
i+1gi

for integers ct,u,i .
Now consider Pj1, jk (g). This has degree k − 1. In fact, the only A-product that can

contribute an a-product of degree k − 1 is 2kAj1 · · ·Ajk , and since successive Ajr ’s are
distinct, the corresponding a-product is 2k gk−1

n , i.e. cj1, jk ,k−1 = 1. Therefore, by the
Rational Root Theorem, since gn = 1/(n − 1) is a root of Pj1, jk (g), we must either have
n − 1 dividing 2k , or n = 2m + 1 for some m > 1, in which case gn = 1/2m . Writing
ci = cj1, jk ,i we then have

Pj1, jk (gn) =
k−1∑
i=0

ci 2
i+1gi

n = 0.
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On multiplying by 2m(k−1)−k this yields the equation

k−1∑
i=0

ci 2
(m−1)(k−1−i) = 0,

with integer entries ci . We now check that this equation is impossible (mod 2). All terms
except the last are even since (m− 1)(k− 1− i) > 0 when 0 ≤ i ≤ k− 2. The (k− 1)st
term in the last sum is ck−120 = 1, so we get 0 ≡ 1 (mod 2), the desired contradiction.
We conclude that S 
= In+2, and the theorem follows.

6. S-Integral Apollonian Cluster Ensembles (Dimension n)

We study integrality and rationality properties for Apollonian cluster ensembles. Given
a finite set of primes S, we say that a rational number is S-integral if its denominator is
divisible only by powers of primes in S. By convention we let S = 1 denote the case
when there are no primes in S.

The Apollonian group consists of integer matrices in dimensions 2 and 3, and retains
an S-integral structure in all dimensions, for suitable S. In each dimension n we consider
the questions:

(1) Does there exist some S and an Apollonian cluster ensemble all of whose Descartes
configurations consist of spheres having S-integral curvatures (“S-integral ensemble”)?

(2) Does there exist some S and an Apollonian cluster ensemble all of whose Descartes
configurations have augmented curvature-center coordinate matrices WD S-integral
(“super S-integral ensemble”)?

We show that S-integral ensembles exist in all dimensions, if S is chosen properly.
However, we show that super S-integral ensembles can exist only in dimensions n = 2m2

or n = (2m + 1)2, for integer m, again with S chosen appropriately.

6.1. S-Integral Apollonian Cluster Ensembles

We say that an Apollonian cluster ensemble is S-integral if the curvature of every sphere
in the ensemble is S-integral.

Theorem 6.1. In each dimension n ≥ 2 there exists an S-integral Apollonian cluster
ensemble in which S is specified as:

(1) S is the set of primes dividing n − 1 if n is even.
(2) S is the set of primes dividing (n − 1)/2 if n is odd.

Proof. It suffices to show that the Descartes equation

bT QD,nb = 0 (6.1)

has a nonzero S-integral solution b for each n ≥ 2.There is such a configurationDwhich
is not only S-integral, but integral, with curvatures (0, 0, 1, 1, . . . , 1). It consists of two
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parallel hyperplanes separated by distance 2 together with n unit spheres whose centers
comprise the vertices and an (n−1)-dimensional simplex in a hyperplane parallel to the
two hyperplanes in the configuration, and lying midway between them.

The other Descartes configurations in the Apollonian cluster ensemble and super-
Apollonian cluster ensemble generated by this configuration are S-integral, where S is
the set of primes dividing the denominator of 2/(n − 1), since they have associated
matrices UWD for some U in the Apollonian group.

In dimension 2 we can take S = 1, as we saw in [19]. In that case an Apollonian cluster
ensemble consists of the Descartes configurations in an Apollonian circle packing. In
[20] we studied, in various number-theoretic questions related to the integer, curvatures
appearing in integer Apollonian circle packings.

6.2. Super-S-Integral Apollonian Cluster Ensembles

We say that a Descartes configuration D is super-S-integral if its augmented curvature-
center coordinate matrix WD is S-integral. Similarly, an Apollonian cluster ensemble
is super-S-integral if every Descartes configuration D in the packing has an S-integral
augmented curvature-center matrix. The next lemma reduces the question of super-S-
integrality of an Apollonian cluster ensemble to that of a single Descartes configuration.

Theorem 6.2. If a single Descartes configuration is super-S-integral, then the Apollo-
nian cluster ensemble it generates is super-S′-integral, where S′ consists of S together
with all primes dividing the denominator of 2/(n − 1).

Proof. This follows from the fact that the Apollonian group consists of rational ma-
trices whose entries have denominators that are divisible only by primes dividing the
denominator of 2/(n − 1), when put in lowest terms.

It seems to be a difficult problem to determine, for specific S, for which dimensions
there might exist a super-S-integral Descartes configuration. We consider the weaker
question of whether in a given dimension there exists a super-S-integral Descartes con-
figurations for some S. This is the same as the existence of Descartes configurations D
having a rational augmented curvature-center matrix WD, and we call such Descartes
configurations super-rational.

According to the Augmented Euclidean Descartes Theorem (Theorem 3.1), super-
rational Descartes configurations occur exactly in those dimensions n in which there
exists an invertible rational matrix W such that

WT QD,nW = QW,n :=

 0 −4 0
−4 0 0

0 0 2In


 , (6.2)

that is, the quadratic form Q D,n is rationally equivalent to the form QW,n . We use this
fact to determine in which dimensions such configurations exist.
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Theorem 6.3. A necessary and sufficient condition on the dimension n for a super-S-
integral Descartes configuration to exist for some S is that n = 2k2 or (2k − 1)2 for
some positive integer k.

To establish this result, we proceed in a series of lemmas.

Lemma 6.4. Given a Descartes configurationD inRn its associated augmented matrix
WD has

det(WD)2 = n2n+3. (6.3)

Proof. This follows from taking determinants in (3.12), since the right side has deter-
minant −2n+4 while the left side has determinant det(WD)2 det(QD,n) and

det(QD,n) = −2

n
. (6.4)

To verify this last statement, we apply the following row operations to the matrix Qn .
Add rows 2 through n+2 to the first row, to get a new first row that has all entries−2/n.
Then add this row multiplied by − 1

2 to each of the other rows. Aside from the first row,
the first column is zero, and the lower right (n + 1) × (n + 1) matrix is the identity.
However, this matrix obviously has determinant −2/n.

Lemma 6.5. If a super-rational Descartes configuration exists in dimension n, then
necessarily n = 2k2 or (2k − 1)2 for some positive integer k.

Proof. A necessary condition for the existence of a Descartes configuration D whose
augmented matrix WD has rational entries is that det(WD) be rational. This requires
that n2n+3 be the square of a rational number. By Lemma 6.4, this holds for even n if
and only if n is twice a square, and for odd n if and only if n is an (odd) square.

To prove the sufficiency of this condition, we use the theory of equivalence of rational
quadratic forms, see [7] or [9]. We write Q �Q Q′ to mean that the (rational) quadratic
form Q is rationally equivalent to Q′. To apply the decision procedure, we first diagonalize
Qn over the rationals, which we do for all n ≥ 2.

Lemma 6.6. For each n ≥ 2, the Descartes quadratic form QD,n = In+2 −
(1/n)1n+21T

n+2 has

QD,n �Q diag

(
n − 1

n
,

n − 2

n − 1
, . . . , 2

3 , 2, 2, 2,−2

)
. (6.5)

Proof. We diagonalize the quadratic form as on pp. 92–94 of [9]. Set

M (n+2) := QD,n = (x0 + y0)In+2 − y01n+21T
n+2,
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where x0 = (n − 1)/n, y0 = 1/n. At the j th stage of reduction we will have

QD,n �Q diag(d1, d2, . . . , dj ,M (n+2− j)),

where

M(n+2− j) = (xj + yj )In+2− j − yj 1n+2− j 1T
n+2− j (6.6)

for certain xj , yj . The reduction step is

(W( j))T M(n+2− j)W( j) = diag(dj+1,M(n+1− j)). (6.7)

To specify W( j) we first let Wm(α) be the m × m real matrix

Wm(α) =

1 α · · ·α

0 Im−1


 ,

and we set

W( j) :=Wm+2− j

(
yj

xj

)
. (6.8)

Substituting this in (6.7), its left side yields a matrix with the form of the right side with

dj+1 = xj ,

and with xj+1, yj+1 given by the recursion

yj+1 = yj +
y2

j

xj
, (6.9)

xj+1 + yj+1 = xj −
y2

j

xj
. (6.10)

Solving this recursion, by induction on j , we obtain

xj = n − j − 1

n − j
, 0 ≤ j ≤ n − 2,

yj = 1

n − j
, 0 ≤ j ≤ n − 2.

This yields the diagonal elements

dj = n − j − 1

n − j
, 1 ≤ j ≤ n − 3, (6.11)

with

QD,n �Q diag

(
n − 1

n
, . . . , 2

3 , d2,M(4)

)
.
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We find d2 = x3 = 2
3 and

M(4) = (xn−2 + yn−2)I4 − yn−2141T
4 =

1

2




1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1


 = QD,2.

For the final step in the reduction we use

N T (QD,2)N = diag(2, 2, 2,−2), (6.12)

with

N =




1 −1 −1 1
−1 1 −1 1
−1 −1 1 1

1 1 1 1


 .

This completes the reduction.

Proof of Theorem 6.3. The necessity of n = 2k2 or (2k−1)2 was proved in Lemma 6.5.
The sufficiency is equivalent to proving that if n = 2k2 and n = (2k − 1)2 then

QD,n �Q QW,n :=

 0 −4 0
−4 0 0

0 0 2In


 .

We begin by noting the rational equivalence

QW,n �Q diag(−2, 2, . . . , 2, 2) = diag(−2, 2In+1) (6.13)

via the matrix

W0 = 1

2


1 1 0

1 −1 0
0 0 2In


 .

By permuting variables we have QW,n �Q diag(2, 2, . . . , 2,−2). Thus the theorem is
equivalent to showing that QD,n is rationally equivalent to diag(2, 2, 2, . . . ,−2). Lemma
6.6 gives

QD,n �Q
(

n − 1

n
,

n − 2

n − 1
, . . . , 3

2 , 2, 2, 2,−2

)
,

�Q (n(n − 1), (n − 1)(n − 2), . . . , 3 · 2, 2, 2, 2,−2), (6.14)

using at the last step a conjugacy by W = diag(n, n − 1, . . . , 2, 1, 1, 1, 1).
The Hasse–Minkowski theorem says that two rational quadratic forms of the same

dimension are equivalent if and only they have the same signature, the ratio of their
determinants is a nonzero square and they are p-adically equivalent for all primes p, see
pp. 96ff of [9]. Lemma 6.6 shows that the signatures of QD,n and diag(2, 2, 2, . . . , 2,−2)
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agree, and the hypothesis n = 2k2 or n = (2k − 1)2 is exactly the condition that the
ratio of their determinants is a square of a rational number, and it remains to check the
p-adic invariants.

The p-adic invariants σp(Q) are defined (mod 8), and for a diagonal form Q =
diag(d1, d2, . . . , dn), one has

σp(Q) ≡
n∑

j=1

σp(dj ) (mod 8). (6.15)

We recall formulas for σp(d) when d ∈ Z, see pp. 94–96 of [9]. Write d = bpl with
(b, p) = 1. For p ≥ 3, and an even power l = 2 j ,

σp(d) ≡ p2 j ≡ 1 (mod 8), (6.16)

while for an odd power l = 2 j + 1,

σp(d) ≡
{

p (mod 8) if (b/p) = 1,

p + 4 (mod 8) if (b/p) = −1.
(6.17)

If p = 2 then for an even power l = 2 j ,

σ2(d) ≡ b (mod 8), (6.18)

while for an odd power l = 2 j + 1,

σ2(d) ≡
{

b if b ≡ ±1 (mod 8),

b + 4 if b ≡ ±3 (mod 8).
(6.19)

Now (6.14) gives

σp(QD,n) ≡
n−3∑
j=0

σp((n − j)(n − j − 1))+ 3σp(2)+ σp(−2) (mod 8),

while (6.13) gives

σp(QW,n) ≡
n−3∑
j=0

σp(2)+ 3σp(2)+ σp(−2) (mod 8).

To show equality of these, it suffices to show that for all p,

n−3∑
j=0

σp(2) ≡
n−3∑
j=0

σp((n − j)(n − j − 1)) (mod 8) (6.20)

holds whenever n = 2k2 or n = (2k − 1)2.
Consider first the case that p ≥ 3 is odd. Then each σp(2) = 1, so

n−3∑
j=0

σp(2) ≡ n − 2 (mod 8). (6.21)
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Now if p does not divide (n − j)(n − j − 1) then σp((n − j)(n − j − 1)) = 1. The
terms divisible by p occur in blocks of two consecutive terms, and we claim that if p
divides j then

σp(( j + 1) j)+ σp( j ( j − 1)) ≡ 2 (mod 8). (6.22)

Suppose j = bpl , where (b, p) = 1 and l ≥ 1. If l is even, both terms on the left side of
(6.22) are 1 (mod 8) by (6.16), while if l is odd, then if p ≡ 1 (mod 4), then (−1/p) = 1,
so the two terms both have values p (resp. p + 4) according as (b/p) = 1 (resp. −1),
and their sum is 2p ≡ 2 (mod 8). If p ≡ 3 (mod 4), then (−1/p) = −1, so exactly one
of (±b/p) takes the value −1, and the two terms add up to 2p + 4 ≡ 2 (mod 8). Thus
(6.22) follows. Thus adding up the right side of (6.20) and grouping terms divisible by
p in consecutive pairs gives

n−3∑
j=0

σp((n − j)(n − j − 1)) ≡
n−3∑
j=0

1 ≡ n − 2 (mod 8). (6.23)

There remains an exceptional case where p | n, in which case n(n − 1) is divisible by
p and is an unpaired term. Since n = 2k2 or (2k − 1)2, thus pl | n with l even, hence
σp(n(n − 1)) = 1 in this case, and (6.23) holds. This establishes (6.20) for p ≥ 3.

Now consider the case p = 2. Certainly σ2(2) = 1 so (6.21) holds. We claim that

σ2((2 j + 1)2 j)+ σ2(2 j (2 j − 1)) ≡ 0 (mod 8). (6.24)

Write 2 j = 2lb with b odd, and by checking all possible cases using (6.18) and (6.19),
one verifies (6.24). Suppose n = 2k2. Then in the right side of (6.20) all terms pair
except the first and last, and (6.24) yields

n−3∑
j=0

σ2((n − j)(n − j − 1)) ≡ σ2(n(n − 1))+ σ2(3 · 2)

=
{−1+−1 if k ≡ 0 (mod 2)

1+−1 if k ≡ 1 (mod 2)

= n − 2 (mod 8),

so (6.20) holds. If n = (2k − 1)2 ≡ 1 (mod 8) then all term pair except the last term,
and (6.24) yields

n−3∑
j=0

σ2((n − j)(n − j − 1)) = σ2(3 · 2) ≡ −1 (mod 8),

so (6.20) holds in this case.

Theorem 6.3 establishes the existence of super-rational Descartes configurations in
the given dimensions, but does not give a bound for the denominators of the rationals
appearing in these configurations. It could be that in certain dimensions n = 2k2 and
(2k + 1)2 there exist strongly integral Descartes configurations, i.e. ones with S = 1.
However, even if such configurations exist for some n > 2, then the Apollonian cluster
ensemble containing them would not inherit the super-integrality property, but only
super-S

′
-integrality as in Theorem 6.2. We leave this as an open problem.
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7. n-Dimensional Duality Operator

In the two-dimensional case we showed that there exists a duality operator D ∈ Aut(Q D)

which took each Descartes configuration D to a new Descartes configuration D′ that
consists of four circles orthogonal to the original circles, each passing through three
of the intersection points of the circles of D. We showed that D was contained in the
normalizer of the super-Apollonian group in two dimensions.

The geometric duality operation based on orthogonal spheres generalizes to higher
dimensions as follows. Given n + 1 mutually tangent spheres in n dimensions, there is
a unique sphere through their points of tangency, and this sphere is orthogonal to each
of the given n + 1 spheres, as given in the following (known) result.

Theorem 7.1. Given n + 1 mutually tangent (n − 1)-spheres {Ci : 1 ≤ j ≤ n + 1} in
Rn having disjoint interiors, there exists a unique (n − 1)-sphere C⊥ passing through
the n(n + 1)/2 tangency points of these spheres. At each such tangency point the normal
to the sphere C⊥ is perpendicular to the normals of the two spheres Ci and Cj tangent
there.

Proof. The assumption of disjoint interiors (we allow interior to be defined as “exterior”
for one sphere) is equivalent to all n(n + 1)/2 tangency points of the spheres being
distinct. For dimension n = 2 there is a unique circle through any three distinct points.
However, for n ≥ 3 the conditions are over-determined, since n + 1 distinct points
already determine a unique (n − 1)-sphere, and the main issue is existence.

Both assertions of the theorem are invariant under Möbius transformations (which
preserve angles), and there exists a Möbius transformation taking a set of n+1 mutually
tangent (n−1)-spheres inRn having disjoint interiors to any other such set, see Theorem 3
of [35]. Thus it suffices to prove the result for a single such configuration, and we consider
the configuration of n+ 1 mutually touching spheres of equal radii whose centers are at
the vertices of a regular n-simplex, and tangency points of the spheres are the midpoints
of its edges. The first assertion of the theorem holds in this case because there is an
(n − 1)-sphere whose center is at the center of gravity of this simplex, which passes
through the midpoints of every edge of the simplex. Indeed, the isometries preserving an
n-simplex fix the center of gravity and act transitively on the edges. Note that for n = 2
the simplex is an equilateral triangle and C⊥ is the inscribed circle; however, for n ≥ 3
the sphere C⊥ is neither inscribed nor circumscribed about this simplex.

For the second assertion of the theorem, in this configuration the sphere C⊥ has each
edge of the n-simplex lying in a tangent plane to the sphere; so the normal to C⊥ at the
midpoint of an edge is perpendicular to that edge. Two spheres Ci and Cj intersect at the
midpoint of an edge, and the normal to their tangent planes points along this edge; thus
this normal is perpendicular to the normal to C⊥ there.

The second assertion in Theorem 7.1 explains why the sphere C⊥ is termed “orthog-
onal.” Thus, given a Descartes configuration of n + 2 spheres Ci , we get a system of
n + 2 “orthogonal” spheres

D⊥ := {C⊥1 , . . . ,C⊥n+2},
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where C⊥i is associated to the n + 1 spheres obtained by deleting Ci . When n = 2 the
new spheres are mutually tangent and give a new Descartes configuration; this gives
the “duality” operation D. For n ≥ 3, however, the spheres are not mutually tangent.
In fact, for all n their curvatures satisfy a relation similar in form to the original (two-
dimensional) Descartes relation, namely,

n+2∑
i=1

1

r2
i

= 1

2

(
n+2∑
i=1

1

ri

)2

, (7.1)

and not the Soddy–Gossett relation

n+2∑
i=1

1

r2
i

= 1

n

(
n+2∑
i=1

1

ri

)2

, (7.2)

satisfied by Descartes configurations in n-dimensions, see Theorem 1.2 of [23]. (We
omit a proof of (7.1).) In particular, for n ≥ 3 given a Descartes configurationD, the set
D⊥ := {C⊥1 , . . . ,C⊥n+2} of orthogonal spheres is not a Descartes configuration.

The question arises, are these n + 2 “orthogonal” spheres in any special relation to
one another? We answer this in terms of an inversive invariant of two arbitrary (not
necessarily tangent) oriented spheres.

Definition 7.1.

(i) The separation between two oriented spheres C1 and C2 with finite radii r1 and
r2, and with centers distance d apart, is

�(C1,C2) := d2 − r2
1 − r2

2

2r1r2
, (7.3)

provided both spheres are inwardly oriented or outwardly oriented, and is oth-
erwise the negative of the right side of this formula.

(ii) The separation of an oriented sphere C1 of finite radius r1 and an oriented
hyperplane C2 is

�(C1,C2) := d

r1
, (7.4)

where d is the (signed) distance from the center x1 of C1 to C2, measured so that
d ≥ 0 if x1 is not in the interior of C2 and C1 is inwardly oriented, or if x1 is in
the interior of C2 and C1 is outwardly oriented, and d < 0 otherwise.

(iii) The separation between two oriented hyperplanes C1 and C2 is

�(C1,C2) := − cos θ, (7.5)

where θ is the dihedral angle between the designated normals at a point of
intersection.
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The separation of two spheres is an inversive invariant, hence a Möbius invariant;
that is,

�(g(C1), g(C2)) = �(C1,C2) (7.6)

holds for any Möbius transformation g. This concept appears in [4], where the term
separation is introduced for it, but the concept1 was used earlier by Mauldon [25] in
1962, who used the term inclination to mean the negative of �(C1,C2), and showed it
was an inversive invariant. The absolute value of �(C1,C2) was studied on p. 29 of [2]
under the name of an inversive product of two spheres.

The separation�(C1,C2) of two spheres can be expressed in terms of their augmented
curvature-center coordinates as

�(C1,C2) = 1
2 w(C1)

T Knw(C2)

= − 1
2 (b̄(C1)b(C2)

+ b(C1)b̄(C2))+ b(C1)b(C2)

n∑
j=1

xj (C1)xj (C2), (7.7)

where Kn(1) is given by

Kn =

 0 −1 0
−1 0 0

0 0 2In


 . (7.8)

This formula can be proved by a simple algebraic calculation. Using it, one can check
that for two tangent spheres C1 and C2, �(C1,C2) = 1, if (1) C1 and C2 are externally
tangent and both are inwardly oriented or outwardly oriented, or (2) C1 and C2 are
internally tangent and one is inwardly oriented, the other is outwardly oriented. In all
other cases two tangent spheres have�(C1,C2) = −1, and orthogonal spheres are those
with �(C1,C2) = 0.

From Theorem 7.1 one obtains

�(C⊥,Cj ) = 0 for 1 ≤ j ≤ n + 1, (7.9)

and these relations determine C⊥ up to orientation. It can also be shown that if a set
of tangent spheres {C1, . . . ,Cn+1} have oriented curvatures bn+1 = (b1, . . . , bn+1), and
centers xj , then for either orientation the orthogonal sphere C⊥ has oriented curvature q
satisfying

q2 = 1

2


 1

n − 1

(
n+1∑
j=1

bj

)2

−
n+1∑
j=1

b2
j


 , (7.10)

1 The idea of considering such an inversive invariant traces back to work by Clifford [8] in 1868 and by
Darboux [14] in 1872. However, neither Clifford’s nor Darboux’ definition was precisely�(C1,C2). Clifford
defines the power of two spheres to be the square distance of their centers less the sum of the squares of their
radii, i.e. d2 − r2

1 − r2
2 , and Darboux also uses the same quantity [14, p. 350].
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and (oriented) center x satisfying

qx = −bn+1(
1
2 QD,n−1)C, (7.11)

in which C is an (n + 1)× n matrix whose j th row is bj xj .
An oriented Descartes configuration in Rn is characterized in terms of separation as

a set of n+2 oriented spheres, each pair of which has�(Ci ,Cj ) = 1, when i 
= j. Thus
such a configuration has the following property.

Definition 7.2. A collection of oriented spheres is equiseparated if all values�(Cj ,Ck)

with j 
= k are equal.

The equiseparation property can also be viewed as an equiangularity property, because
for two oriented circles that intersect or touch one has

�(C1,C2) = − cos θ, (7.12)

where θ is the angle between oriented normals at a point of intersection of the two circles.
We now show the duality operation preserves equiseparability in all dimensions.

Theorem 7.2 (Equiseparation Theorem). Given an oriented Descartes configuration
D = (C1,C2, . . . ,Cn+2) in Rn , if the dual spheres are properly oriented then the (ori-
ented) dual configuration (C⊥1 ,C⊥2 , . . . ,C⊥n+2) is equiseparated, with

�(C⊥j ,C⊥k ) =
1

n − 1
if j 
= k. (7.13)

Proof. In this result the orientation assigned to the dual spheres in the theorem depends
on all n + 2 spheres in the Descartes configuration, and the orientation of C⊥j cannot be
consistently assigned from the n + 1 oriented spheres {Ci : i 
= j} alone. If all n + 2
spheres Cj are inwardly oriented, then n+1 of the spheres C⊥j will be inwardly oriented
and one outwardly oriented, the last being the one of largest radius. If all but one of the
n + 2 spheres are inwardly oriented, and one outwardly oriented, then all n + 2 spheres
C⊥j will be inwardly oriented.

Since the result is invariant under inversion, it suffices to prove it for a single Descartes
configuration. We consider the special oriented Descartes configuration where the cur-
vatures are (0, 0, 1, 1, . . . , 1). Here we have two parallel planes, which we take as
x1 = ±1, and n unit spheres, all with centers on the plane x1 = 0. Their centers
form a regular simplex in this plane. We may take one of these centers at (0, ξ, 0, 0, . . .)
where ξ 2 = 2(n − 1)/n. Consider the “orthogonal” spheres that pass through the point
T = (1, ξ, 0, 0, . . . , 0). There are n such spheres, and all but one of them is a hyper-
plane containing the points T and (−1, ξ, 0, 0 . . . , 0), and the centers of all but one of
the original unit spheres. These centers form the vertices of a regular (n − 1)-simplex,
so these n − 1 “orthogonal” planes are equiangular satisfying (7.12), where θ is the
angle between the normals of two facets of a regular n-simplex. It follows that these
orthogonal planes satisfy (7.13). The final “orthogonal” sphere through T is orthogonal
to the plane x1 = 1 and all the n original unit spheres. Its center is thus (1, 0, 0, . . .)
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and its radius is ξ . Hence it is also equiangular with the n − 1 “orthogonal” planes,
with cos θn = −1/(n − 1). These angles are all equal to the one formed by connect-
ing the vertices of a regular simplex to its center, i.e. the angle in a triangle of sides
ξ, ξ and 2. Finally, the last two “orthogonal” spheres meet at the same angle in the
plane x1 = 0.

8. Concluding Remarks

This paper studied generalizations of the basic properties of two-dimensional Apollonian
packings and super-Apollonian packings. We gave fairly complete answers but left open
a few problems.

The first problem is to determine a presentation of the super-Apollonian groupAS
n in

dimensions n ≥ 3, in terms of the given generators. Is this group always a hyperbolic
Coxeter group?

There are some unanswered questions concerning rational and integral structures on
Descartes configurations. In Section 3.1 we raised the question of determining those
dimensions n in which the Descartes form Q D,n , the Wilker form QW,n and the Lorentz
form QL,n are rationally equivalent. In Section 6 we gave a necessary and sufficient
condition for rational equivalence of the pair (Descartes, Wilker), namely, that n = 2k2

or n = (2k−1)2. For the other two pairs, (Descartes, Lorentz) and (Wilker, Lorentz), we
gave the necessary conditions n = 2k2 and n = 2k, respectively. It remains to determine
necessary and sufficient conditions in these cases.

Finally, we left open the question of whether there is any dimension n ≥ 3 in which
there exist strongly integral Descartes configurations. Although strong integrality will
not be preserved under the action of the super-Apollonian group (since n ≥ 4), it would
be preserved under the action of the dual Apollonian groupA⊥n , which consists of integer
matrices in all dimensions.
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Appendix. Möbius Group Action

The Möbius group action given in Appendix A of Part I straightforwardly extends to
n-dimensions.

The (general) Möbius group Möb(n) is the group generated by reflections in spheres
or planes in the one-point compactification R̂n = Rn ∪ {∞} of Rn , see Chapter 3 of [2].
(Beardon denotes it G M(R̂n).) This group has two connected components, and we let
Möb(n)+ denote the connected component of the identity. The extended Möbius group
G M∗(n) is defined by G M∗(n) := Möb(n)× {−I, I}. Here {−I, I} are in the center of
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Table 1. Group isomorphisms.

G M∗(n) = Möb(n)× {−I, I} ∼✲ Aut(QW,n)
∼✲ O(n + 1, 1)

Möb(n)

π

❄∪

✻

∼✲ Aut(QW,n)
↑

π

❄∪

✻

∼✲ O(n + 1, 1)↑

π

❄∪

✻

Möb(n)+
∪

✻

∼✲ Aut(QW,n)
↑
+

∪

✻

∼✲ O(n + 1, 1)↑+

∪

✻

Orthogonal group

Orthochronous

orthogonal group

Special orthochronous

orthogonal group

this group, and we write elements of G M∗(n) as±g, in which g ∈ Möb(n), and the sign
indicates which of ±I occurs. The group G M∗(n) has four connected components.

The purpose of this Appendix is to define an action of G M∗(n) on the right on the
parameter spaceMn

D, given in Theorem A.1 below. This amounts to finding an explicit
isomorphism between G M∗(n) and Aut(QW,n). The case n = 2 was treated in Appendix
A of Part I [18, Theorem 7.2], where it was shown that the Möb(2) action preserves (total)
orientation of Descartes configurations. The same property holds for the Möb(n) action
treated here, by a similar proof which we omit.

Relevant isomorphisms are given in Table 1. The isomorphism between G M∗(n) and
Aut(QW,n) appears as the horizontal arrow on the left in the top row. This map when
restricted to the smaller groups Möb(n) and Möb(n)+, gives the other two horizontal
isomorphisms on the left side of the table. Table 1 also indicates isomorphisms on its
right side to the orthogonal group O(n + 1, 1) and corresponding subgroups, which we
defer discussing until after the following result.

Theorem A.1. Let G M∗(n) := Möb(n) × {I,−I}. There is a unique isomorphism
π : G M∗(n)→ Aut(QW,n), with image elements V±g := π(±g), such that the following
hold:

(i) For g ∈ Möb(n) the augmented curvature-center coordinates for each ordered,
oriented Descartes configuration D satisfy

Wg(D) =WDV−1
g . (A.1)

(ii) The action of −I on augmented curvature-center coordinates is

W−D =WDV−1
−I = −WD. (A.2)

This reverses the orientation of the Descartes configuration.

Proof. We compute the action of Möb(n) on augmented curvature-center coordinates.
Let (b̄, b, w1, w2, . . . , wn) = (((

∑n
i=1 x2

i )− r2)/r, 1/r, x1/r, x2/r, . . . , xn/r) be the
augmented curvature-center coordinates of the sphere

n∑
i=1

(yi − xi )
2 = r2.
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This sphere can be recovered from these coordinates via
n∑

i=1

(byi − wi )
2 = 1, (A.3)

and the orientation of the sphere (inside versus outside) is determined by the sign of b.
An oriented “sphere at infinity” is a hyperplane given by

y · h = m, (A.4)

and its associated curvature-center coordinates are

(b̄, b, w1, w2, . . . , wn) = (2m, 0, h1, h2, . . . , hn), (A.5)

where h = (h1, h2, . . . , hn) is the unit normal vector, and the orientation is given by the
convention that the normal h points inward.

The group Möb(n) is generated by

(1) translations ty0(y) = y+ y0;
(2) dilations dr (y) = ry with r ∈ R, r > 0;
(3) the rotation o(y) = Oy, where O is an n × n orthogonal matrix;
(4) the inversion in the unit circle jC(y) = y/|y|2.

Given g ∈ Möb(n), we let g̃ denote the corresponding action on the curvature-center
coordinates of an oriented circle. The action of translation by y0 = (y0,1, y0,2, . . . , y0,n)

is

t̃y0(b̄, b, w1, w2, . . . , wn)

=
(

b̄+2
n∑

i=1

wi y0,i+b
n∑

i=1

y2
0,i , b, w1+by0,1, w2+by0,2, . . . , wn+by0,n

)
.

The action of a dilation with r ∈ R (r > 0) is given by

d̃λ(b̄, b, w1, w2, . . . , wn) = (r b̄, b/r, w1, w2, . . . , wn).

The action of rotation o with orthogonal matrix O is

õ(b̄, b, w1, w2, . . . , wn) = (b̄, b, w′1, w
′
2, . . . , w

′
n),

where (w′1, w
′
2, . . . , w

′
n) = (w1, w2, . . . , wn)OT . The action of inversion in the unit

circle is

j̃C(b̄, b, w1, w2, . . . , wn) = (b, b̄, w1, w2, . . . , wn).

All of these actions apply to “spheres at infinity” and extend to linear maps on the
(n + 2)× (n + 2) matrices WD.

The translation operation is given by right multiplication by the matrix

V−1
ty0

:=




1 0 0 . . . 0∑n
i=1 y2

0,i 1 y0,1 . . . y0,n

2y0,1 0
. . .

...
... In

2y0,n 0
. . .



,
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and one verifies (A.1) holds by direct computation. For the dilation dr , with r ∈ R, r > 0
the right action is by the matrix

V−1
dr

:=

r 0 0

0 1/r 0
0 0 In


 .

For rotation o, the right action is by the matrix

V−1
o =:=


1 0 0

0 1 0
0 0 OT


 .

For the inversion jC in the unit circle, the permutation matrix

V−1
jC
= VjC = P(12) =


0 1 0

1 0 0
0 0 In


 .

It is easy to verify that the above matrices are all in Aut(QW ). Since QW,n = AT QL,nA
where

A =
√

2


 1 1 0
−1 1 0

0 0 In


 ,

we have that a matrix U ∈ Aut(QW,n)
↑ if and only if eT

1 AUA−1e1 > 0. One checks that
all the above matrices are actually in Aut(QW,n)

↑, so that the map so far defines a homo-
morphism of Möb(n) into Aut(QW,n)

↑ � O(n + 1, 1)↑, identified with the isochronous
Lorentz group. The group Möb(n) acts simply transitively on ordered Descartes config-
urations, as observed by Wilker [35, Theorem 3, p. 394], and the group Aut(QW,n) acts
simply transitively on ordered, oriented Descartes configurations, as implied by Theorem
3.1. Because Aut(QW,n)

↑ is of index 2 in Aut(QW,n) � O(n + 1, 1), we conclude that
the map so far defines an isomorphism of Möb(n) onto Aut(QW,n)

↑.
To complete the proof, we define the action of −I to be

(V−I )
−1 = V−I = −In+2. (A.6)

It has the effect of reversing (total) orientation of the Descartes configuration, and does
not correspond to a conformal transformation. Since −In+2 /∈ Aut(QW,n)

↑, adding it
gives the desired isomorphism of G M∗(n) onto Aut(QW,n).

We now return to the data in Table 1, giving the isomorphisms of Aut(QW,n) and its
subgroups to the orthogonal group O(n+ 1, 1) and its two subgroups O(n+ 1, 1)↑, the
orthochronous orthogonal group, and O(n+1, 1)↑+, the special orthochronous orthogonal
group, which is the connected component of the identity of the orthogonal group O(n+
1, 1). The set of isomorphisms given by the three horizontal arrows on the right in Table 1
are obtained by any fixed choice of real matrix A that intertwines QW,n and QL,n by
QW = AT QL,nA, in which case the isomorphism is Aut(QW,n) = A−1 O(n + 1, 1)A
sending V �→ AVA−1. Such matrices A exist in all dimensions. It is shown in Section 3.1
that rational matrices A do not exist in all dimensions; a necessary condition for existence
is that the dimension n be even.
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