SEPARATING AND INTERSECTING
SPHERICAL POLYGONS FOR COMPUTING
VISIBILITY ON 3-, 4., AND 5-AXIS MACHINES

Lin-Lin Chen
Shuo-Yan Chou
and
Tony C. Woo
Department of
Industrial & Operations Engineering
University of Michigan
Ann Arbor, MI 48109-2117

Technical Report 91-9
March 1991

.

To appear in ASME Transactions, J. of Mechanical Design

» ,,t;/ /. /

SEPARATING AND INTERSECTING
SPHERICAL POLYGONS FOR COMPUTING
VISIBILITY ON 3-, 4., AND 5-AXIS MACHINES

Lin-Lin Chen
Shuo-Yan Chou
and
Tony C. Woo
Department of
Industrial & Operations Engineering
University of Michigan
Ann Arbor, MI 48109-2117

Technical Report 91-9
March 1991

Separating and Intersecting Spherical
Polygons:

for Computing Visibility on 3-, 4-, and 5-
axis Machines

LIN-LIN CHEN, SHUO-YAN CHOU, and TONY C. WOO

Department of Industrial and Operations Engineering, University of Michigan

Abstract. For the determination of optimal workpiece orientations for 3-, 4-, and 5-axis
numerical control machining and coordinate measurement, sculptured surfaces are mapped on
to the Gaussian sphere. Based on the cutting tool geometry, the Gaussian maps are transformed
into visibility maps which are spherical polygons.

Given a set of n spherical polygons P, we find a hemisphere that contains the largest
number of polygons in P (for 3-axis machines), a great circle that divides P as equally as
possible (for 3-axis machines with two setups), and a great circle that cuts the largest (or the
smallest) number of polygons in P (for 4-axis machines), from which 5-axis machining is then
shown to be a simple extension. These are enabled by an O(vn log n) time algorithm which
computes all the possible ways of cutting P as a partitioning of the unit sphere induced by 2n
spherically-convex polygons, where v is the total number of vertices with each face of the

partitions representing a possible cut of %, all cuts can be enumerated in O(nv) time.

CR Categories and Subject Descriptions: 1.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling-geometric algorithms, languages and systems; F.2.2 [Analysis of
Algorithms and Problem Complexity]: Nonnumerical Algorithms and Problems-
geometrical problems and computations; J.6 [Computer-Aided Engineering]: Computer-
aided manufacturing (CAM)

General Terms: Algorithms, Design, Performance, Manufacturing

Additional Key Words and Phrases: Spherical Algorithms, visibility Algorithms, separation,
bisection, minimal/maximal intersection, densest hemisphere, numerical control machining,

\
coordinate measurement

3/25/91

1. INTRODUCTION

While tool paths can be computed readily from the computer repre-
sentation of sculptured surfaces, their validity depends on the type of
machine and the orientation of the workpiece. In this paper, we con-
sider the extrinsic constraints (the number of axes in a milling ma-
chine or a coordinate measurement machine and the number of se-
tups for a workpiece) together with the intrinsic geometry of the
sculptured surfaces, with two objectives in mind: machine selection
(as minimization of the number of axes) and workpiece orientation
(as minimization of the number of setups).

The normals of a surface are often used to orient a tool. Figure 1
shows that this convention is unnecessary. In Figure 1.1(a), the axis
of a flat-end milling cutter is aligned with the normal at a point in a
surface to avoid excessive gouging. The use of a ball-end milling cut-
ter is illustrated in Figure 1.1(b). As the tip of the ball-end mill has
zero radial velocity, material removal is more efficient if the cutter
axis is not aligned with a surface normal, as illustrated in Figure
1.1(c). The same can be said for the probe of a coordinate measure-

ment machine.

3/19/91

Figure 1.1 Flat-end and ball-end tools

The observation illustrated by Figure 1 leads to the notion of
visibility (or accessibility) by a tool: the visibility of a point can be en-
hanced by up to 180°, if a ball-end tool is used. The visibility of (all the
points in) a surface (to a ball-end tool) can then be computed readily.
Given a surface, its normals form a Gaussian map (or G-Map) on a
unit sphere [12], i.e., a point in a G-Map corresponds to a surface
normal. Enhancing the visibility of a single point in a G-Map by 180°
gives a hemisphere, as illustrated in Figure 1.2(a). For all points in
the G-Map to be simultaneous visible to a ball-end tool, their corre-
sponding hemispheres are intersected as shown in the sequence in
Figures 1.2(b) and 1.2(c). We call such an intersection of hemispheres
the visibility map (or V-Map) of a sculptured surface. In other words,
the workpiece should be oriented such that the V-Map of the surface

contains the given tool axis.

3/19/91

(a) b) (c)

Figure 1.2 Gaussian and visibility maps

Thus, a mechanical object with n surfaces can be represented by
n spherical polygons. If the spherical polygons are V-Maps, and if k
of the n spherical polygons intersect jointly, the corresponding k

surfaces can be machined in a single setup. If, on the other hand, the

3/19/91

spherical polygons are the (unenhanced) G-Maps, they must all be
contained in a hemisphere for them to be machined in a single setup.

Implicit to the above discussion is 3-axis machining, the least ex-
pensive and the most available amongst the 3-, 4-, and 5-axis numer-
ically controlled machines. Revisiting Figure 1.1 confirms the
(hidden) assumption that the tool axis of a 3-axis machine is fixed.
However, machining with a 3-axis could also imply more setups
(dismounting, re-orienting, and then re-clamping the workpiece)
than does on a 4- or 5-axis. This intuition is validated by Figure 1.3,
which shows that the worktable has one and two more degrees of
freedom, for a 4- and a 5-axis machines, respectively, than does on a
3-axis machine. If the worktable of a 4-axis rotates 360°, the cutter
traces a great circle on the Gaussian sphere. To exploit this extra de-
gree of freedom so that the machine "sees" as many surfaces in a
single setup as possible, we seek the orientation of a great circle such
that it intersects (or cuts) the V-Maps maximally. The fifth axis typi-
cally as a limited rotation (of 30° - 80°, depending on the manufac-
turer). Workpiece orientation on a 5-axis machine therefore corre-
sponds to the determination of maximal intersection between the

VMaps and a spherical band.

3/19/91

3-axis

4-axis

M ot

Figure 1.3 3-, 4-, and 5-axis numerically controlled machines

6 3/19/91

We are now ready to formulate the problem of workpiece orienta-
tion on the sphere. We assume that a variety of 3-, 4-, and 5- axis ma-
chines with ball-end tools are available; and that a mechanical com-

ponent with n surfaces is represented by n spherical polygons.

Densest Hemisphere: Given a set of n spherical polygons that are
G-Maps, find a hemisphere that contains the largest number of
them. (This is the "greedy" algorithm for selecting a 3-axis machine

and for determining the workpiece orientation.)

Bisector: Given a set of n G-Maps, find a great circle that separates
them as equally as possible. (This formulation limits the number of
setups on a 3-axis machine to two, though it is not always possible to

access all the given surfaces.)

Maximal Intersection: Given a set of n V-Maps (that are enhanced
G-Maps), find a great circle that intersect the maximal number of
them. (This corresponds to the "greedy" algorithm for selecting a

4-axis machine and for determining the workpiece orientation.)

In this paper, we report algorithms for solving these problems
along with some variations. As a bisection is a special case of a sepa-

rator, we find all the separators for a given set of spherical polygons.

3/19/91

Separator: Given a set of n G-Maps, find a great circle that sepa-

rates them.

As finding the minimal intersection is an extension to finding no in-
tersection (for a separator) and it incurs no additional cost to finding

maximal intersection, we report them as well.

Minimal Intersection: Given a set of n V-Maps, find a great circle

that intersect the minimal number of them.

Together, these five problems are solved in one-fell-swoop by first
computing a partitioning of the sphere by 2n convex polygons based
on the n given polygons in O(vn log n) time, where v is the total
number vertices of the n polygons, and the partitions enumerated in
O(nv) time. In the course of development, some of the allied computa-
tional supports have been previously reported [6]: detecting the hemi-
sphericity (of a G-Map), intersecting n hemispheres (of n points in
a G-Map to construct a V-Map), and determining the spherically

convex hull (of a G-Map as an approximation).

3/19/91

2. DUALITY ON THE SPHERE

Much like the duality between a point and a line in the Euclidean
plane [4,5], there is a duality between a point and a hemisphere on
the unit sphere. By utilizing this duality, the problems of finding cer-
tain great circles can be converted to the problems of finding certain
points. Thus, we can transform the problem of finding bisectors to
that of finding sets of maximally covered points, and at the same
time, equate the problem of finding maximally intersecting great cir-
cles to that of finding sets of minimally covered points. To establish
spherical duality as the basis of our algorithms, we first review ele-
ments from spherical geometry [19].

Let E? denote the three-dimensional Euclidean space and S? denote
the (two-dimensional) surface of the unit sphere. Then, S’ ={p: Ipl=
1,pe E? }. A point p in $? is a unit vector in E® and is represented by a
3-tuple (x,,x,,x,). Two points p and q are antipodal if p = —q, where p
is the antipode of q and vice versa. A line in S? is a great circle, the in-
tersection of the sphere with a plane containing the center of the
sphere, the origin. (We shall use the term line and the term great
circle interchangeably.) The surface of the sphere is divided into two
hemispheres by a great circle. A closed hemisphere includes the
bounding great circle, while an open hemisphere does not.

JFor any two non-antipodal points p and q in S?, the line segment

pq joining them is the shorter of the two arcs in the great circle con-

3/19/91

taining p and q. If p and q are antipodes, then any great semicircle
joining p and q is a segment. The distance between p and q is defined
by the metric: d(p,q) = cos™ (p-q).

A polygon P on the sphere is a closed path of ordered line seg-
ments or edges PiPs, PaPar» Pa1Pm PaP:1 that admits no self-intersec-
tion; the points p,, p,, -, p, are the vertices of P. The opposite of a
spherical polygon P is another spherical polygon ~P represented by
ordered edges Qq;Qs, Q:Q3,» 4.1 Where q, is the antipode of p..

A set of points P in S? is quasi-convex if, for any pair of non-an-
tipodal points p and q in P, the segment pq is also in P. (Note that the
only quasi-convex set that is not contained in any closed hemisphere
is the entire sphere.) A spherically-convex hull of a set of points P in
S?, denoted by SCH(P), is the smallest (quasi-) convex set in $? con-
taining P.

Using these terminologies, we now define the duality between a

point and a hemisphere:

Definition. The dual of a point p on the sphere is a (closed) hemi-
sphere H={x | (p-x) 20, x € S?} and vice versa.

Through the point-hemisphere duality, we establish the duality
between two special kinds of convex polygons: one formed by taking
the spherically-convex hull of a set of points and the other by inter-

secting the dual hemispheres of the points in the set.

10 3/19/91

Theorem 2.1 Let P be a set of points p, i = 1, -+, n, and H, be the dual
hemisphere of p,. If P is not hemispherical (i.e. is not contained in
some closed hemisphere), then H . nH,n - N H, = @. Otherwise,

each vertex of SCH(P), the spherically-convex hull of P, corresponds

to an edge of the intersection H, nH, N - N H, and vice versa.

Proof. We first show that, if P is not hemispherical, then the hemi-
spheres H,, H,, ---, H have no common intersection. Assume that P
is not entirely contained in any closed hemisphere. Then, the set
P*={x1(py;x)20, i=1,.,n, xe S? } must be empty. But P* is also
the common intersection of hemispheres H, H,, -+, H_. Thus, H,, H,,
-+, H, must not have a common intersection.

Next, if P is hemispherical, then each vertex of SCH(P) corre-
sponds to an edge of the intersection H, " H, n - " H_ and vice versa.
Let p, € P. We show that H; is not redundant (i.e. it contributes to the
boundary of the intersection H, " H, n - A H,) if and only if p, is a
vertex of SCH(P).

If p, is a vertex of SCH(P), it must lie outside of SCH(P - {p}}), the
spherically-convex hull of the point set P - {p}). Therefore, p,=
(P,1» PjP;s) cannot be expressed as a positive combination of the other
vectors in P, i.e., there does not exist a vector y = (y,,...,¥;.1:¥;.10-+:¥a)
such that

PuYi + - + P Yja t PuntYju - + Pu¥a = Pin

11

3/19/91

PiY1 * * Pira¥ia + PlaaYju + o+ PaoYa =Py

Pia¥i + + Pipa¥ir + Pjara¥jur + 0 + Pas¥n = Pj3

Yir s Vi Yierr =5 Y 20.
Then, by Farkas’ Lemma [16], there exists some x = (x,x,,%;) such
that

PuX; + DXy + DXy 20, 1<i<n,i#]

DX, + PpX; + PjyX; < 0.
This means that the intersection of H, N - " H;, nH,; n-- " H, and
the complement of H; is not empty. Consequently, H; cannot be redun-
dant.

If p;is not a vertex of SCH(P), then p, can be expressed as a positive

combination of the other vectors in P. Again, by Farkas’ Lemma, the

intersection of H N - N H;, nH,

51NN H and the complement of

H; must be empty. Thus, H; completely contain H, n - n H;, n H;,; N

- N H,. Conversely, H; must be redundant. Qa

It follows directly from Theorem 2.1 that, given a convex polygon
P, the dual of P is the intersection of the dual hemispheres of the ver-
tices of P. In the following, we will use P* to denote the dual of a con-
vex polygon P; the term “convex” is understood to mean “spherically
convex”.

Using the point-hemisphere duality, we now describe how the re-
lationship between a great circle and a convex polygon P can be char-

acterized by way of the relationship between a point and two convex

3/19/91

polygons, P* and ~P*, the dual of P and the opposite of P*, respec-
tively. Here and throughout, i(-) and 8 (-) denote the interior and the

boundary, respectively, of a set.

Lemma 2.2 Let P be a convex polygon. For a given point q on the
sphere, let
H*=(x/(q-x)20,xe 8%) and
H=(x/(q-x)<0,x e §).
Then,
(1) Pci(H*) & qe€i(P¥);
(2) Pci(H) & qe i(~P¥;
(3) PcH* and PN (H*) #0 & q e (P,
(4) PcH and PN (H)#0 & qepB(~P*;and
(5) Pni(H*) #0 and Pni(H) #0 &q ¢ (P* U~P¥),

Proof. Trivial. a

As a great circle is the boundary of a hemisphere, we immediately
have a corollary stating that the bounding great circle S(H) of a hemi-
sphere H has no intersection with a convex polygon P if and only if
the dual point q of H lies in the interior of P* or in the interior of ~P*;
B(H) supports P if and only if q lies on the boundary of P* or ~P*; and
SB(H) intersects the interior of P if and only if q lies outside of P* and

~P*, as illustrated in Figure 2.1.

13 3/19/91

Figure 2.1 Relationships between L and P are characterized by rela-
tionships between q and P*.

14 3/19/91

Corollary 2.3 Let P be a convex polygon on the sphere. For any
great circle L={x | (gx) =0, x € 8%},
(1) LNP=@0 & qei(PYorqei(~P*),
2) LNni(P=@ and LNP#@ < qef(P*)orqef(~P*%, and
(3) LNi(P)#@ & q & (P*u~P*).

By observing that a great circle intersects a polygon if and only if it
intersects its convex hull, we can extend the duality to any spherical

polygon, convex or otherwise:

Theorem 2.4 For any great circle L ={x | (g-x) =0, x € S%}, if a poly-
gon P is not hemispherical, then L NP #0;
otherwise,
() LNP=@ & q € i(SCH(P)*) or q € i(~SCH(P)*);
2) LNni(P)=0 and LNP =0
© qe B(SCHP)* or q € B (~SCH(P)*); and
(3) LNi(P)#0D ¢ q ¢ (SCH(P)* u~SCH(P)¥.

Proof. If P is not hemispherical, then by definition the intersection
of L and P is not empty. For the second part of the theorem, we ob-
serve the following:
(@) LnP=@ & LNASCH(P)=9.
b) Lni(P)=@ and LNnPz?
& Lni(SCH(P)) =9 and L ~nSCH(P) # Q.

15 3/19/91

) LniP)#0 Lni(SCHP))=#9.
Once we have (a), (b), and (c), the second part of the theorem follows

immediately from Corollary 2.3. Q

We have classified great circles with respect to a single polygon by
utilizing the point-hemisphere duality. In the next section, we will
examine the classification of great circles when more than one

spherical polygon is given.

3. CLASSIFICATION OF EQUIVALENT GREAT CIRCLES

Given a set of spherical polygons P={P; | i = 1,..., n } that are convex
or otherwise, we classify great circles based on their relationships
with the polygons in Z. Let us define two great circles L, and L, to be
cut-equivalent (or equivalent, for short), if they intersect the same
subset of polygons. (To simplify the discussion, if a great circle sup-
ports a polygon, we consider it intersecting the polygon.) By invoking
the point-hemisphere duality just established, we show that the dual
points of a set of equivalent great circles fall inside specific faces of
the partitioning of the sphere induced by the convex polygons,
SCH(P)* and ~SCH(P)*,i=1,...,, n.

16

3/19/91

Corollary 3.1. Let P, i = 1,..., n, be polygons that are individually
hemispherical. Then, a great circle L intersects only polygons P, i =
L..., m, if and only if the dual point q of L satisfies the following:

{q ¢ i(SCH(P)*) and q ¢ i(~SCH(P)*), fori=1,.., m, and
q € i(SCH(P)*) or q € i(~SCH(P)¥), fori=m+l,..,n.

Proof. Follows directly from Theorem 2.4. Q

In Corollary 3.1, it is necessary that all the n polygons be individ-
ually hemispherical. Otherwise, SCH(P) would be the entire sphere
and SCH(P)* would be the empty set. This limitation, however, is not
severe, since, if a polygon is not hemispherical, it intersects all great
circles. Thus, algorithmically, non-hemispherical polygons are easy
to handle; for each great circle, we simply increase the number of in-
tersections by the number of non-hemispherical polygons.

From Corollary 3.1, by using the partitions on the sphere induced
by the polygons, SCH (P))* and ~SCH(P))*, i = 1,..., n, if two points p
and q fall inside the same partition (called a face), then we know that
the great circles determined by p and q intersect the same set of poly-
gons. (Note that the converse is not true.) The great circles deter-
mined by p and q are thus equivalent. This implies that the number
of sets of equivalent great circles cannot be greater than the number
of faces in the partitions. Therefore, once the partitions are available,

it is possible to enumerate all sets of equivalent great circles by

17

3/19/91

traversing the faces. Our algorithm for computing all sets of equiva-

lent great circles follows:

Algorithm COMPUTE-ALL-SETS-OF-EQUIVALENT-GREAT-CIRCLES

Input:
Output:

Step 1:

Step 2:

Step 3:

Step 4:

A set of spherical polygons P={P; | i=1,..,n}.
Partitioning of the sphere. In addition, implicitly associ-
ated with each face of the partitions is an ownership vec-
tor denoting the subset of polygons intersected by the
dual line of a point in the face.

For each spherical polygon in 2, determine whether it is
hemispherical. Let Py denote the subsets of hemispheri-
cal polygons.

For each polygon P in P, compute its spherically-con-
vex hull, SCH(P), and obtain its dual, SCH (P)*. Let
C={SCH(P)*, ~SCH(P)* | Pe %).

Compute the partitions of the sphere induced by the con-
vex polygons in C.

For each face of the partitions, record (implicitly) the

ownership vector of the face.

Let v be the total number of vertices of polygons in P. For Step 1,

we can determine P4 in O(v) time by formulating the hemisphericity

detection problem as a linear program and applying algorithms de-

scribed in [7,15). We can then compute for Step 2 the convex hull for

3/19/91

each polygon in P4 using O(v) time, taking advantage of the fact that
we are given polygons as opposed to a point set. Once we have the con-
vex hulls, we can obtain C in O(vy) time, where vy is the number of
vertices of the convex hulls, by applying the algorithm described in
[6]. (In the worst case, vy = Vv.)

For Step 3, we construct the partitions induced by the set of convex
polygons (C = {C,,..., C,, ~C,,..., ~C,}, where C; = SCH(P,)*. To each
point p on the sphere, we assign an ownership vector u(p) = (u,(p),
u,(p),...,u,(p)), where

1, ifpe i(C);
ui(p) = {—1, ifpe i(~Cy;
0, otherwise.
(Note that, since i(C;) and i(~C;) have no intersection, it is impossible
to have p € i(C;) and p € i(~C;).) Let L be the dual great circle of p.

Then, from Corollary 3.1, the ownership vector has

=0, if L intersects the polygon that corresponds to C;;
u(P)] %0, otherwise.

Following the definition of equivalence of two great circle L, and
L,, let two points p and q be equivalent if u(p) = u(q). We then define a
face of the partitions to be the largest connected subset of equivalent
points. We then let the ownership vector of a face F be the same as
that of any point in F, i.e., u(F) = u(p), for any p € F. Figure 3.1 illus-
trates an example of a face and its ownership vector. In the
Appendix, we present an O(nv log n) time algorithm for constructing

this spherical partitioning.

3/19/91

u(F) =1{0,1,-1}

Figure 3.1 A face in a partitioning and its ownership vector

At Step 4, we record implicitly the ownership vector for each face
in the partitions. To start with, each face can be covered by the convex
polygons contributing to its boundary. However, simply accounting
for these polygons is not sufficient, because a face can also be covered
by polygons completely containing the face. Now, computing the

ownership vector for each face from scratch would require

O(n? v log (%)) time because there are O(nv) faces and O(n log (-:;—))

time is required to determine the ownership vector of a facet. To re-

tIf a polygon C; contributes to the boundary of a face, then we can determine
whether C; covers the face in constant time; otherwise, we can do so in O(log v:)

2 3/19/91

duce this time complexity, we make the following observation: The
two sets of convex polygons covering a pair of adjacent faces differ by
exactly one element — the convex polygon whose edges separate the
two faces. By utilizing the adjacency relationship among the faces,

we can obtain the ownership vectors through propagation. The time

complexity becomes O(n log (%) + nv (Tp)), where T, is the time to

propagate the ownership vector from a face to an adjacent one. Here,
if we explicitly store the ownership vector of each face, then Ty > O(n)
(because making a copy of an ownership vector takes O(n) time) and
the time complexity of propagation is at least O(n2 v). We can further
reduce the time complexity by storing the ownership vectors implic-
itly: We store the ownership vector of an arbitrary face along with a
face-adjacency graph recording the difference between the ownership
vectors of two adjacent faces. Then, Tp = O(1) and we can complete the
propagation in O(nv) time.

Since we can compute the ownership vector of an arbitrary face
trivially, we only describe how we can construct the face-adjacency
graph. Let Gr denote the face-adjacency graph where each node rep-
resents a face and two nodes are connected with an edge if their cor-
responding faces are adjacent. For each node, we store the face-id;

for each arc, we store the polygon-id that is different between the

O(logv;) <

n
time. Thus, we can compute the ownership vector of a face in
, i=1

O(n log (%)) time.

21

3/19/91

ownership vectors of the two faces corresponding to the end points of
the edge. Then, Gpis the dual graph of the spherical partitioning ob-
tained in Step 3. We can therefore construct the face-adjacency graph
by performing a breath-first search on the faces, which requires
O(nv) time. Consequently, we can implicitly represent the ownership
vectors for all faces in O(nv) time.

In summary, we have presented an algorithm that computes a
representation of all sets of equivalent great circles with respect to a
given set of polygons. For each set of equivalent great circles, this
representation also records the subset of polygons intersected by the
great circles. The time complexity of this algorithm is dominated by
Step 3 which requires O(nv log n) time.

4. APPLICATIONS

By using the dual representation of all sets of equivalent great circles,

many problems involving the finding of certain great circles can be

solved efficiently. We illustrate with five examples.

4.1, Separation

Given a set P of n polygons on the sphere, any great circle that does

not intersect any of the polygons in P divides the set into two subsets,

3/19/91

P and P, one of which may be empty. We call such a great circle a

separator of the set P.

Problem P.1 (All Separators). Given a set P of n polygons on the
sphere, find all separators of P.

To find all separators, we first apply Algorithm Compute-Sets-of-
Equivalent-Great-Circles to obtain a representation of all equivalent
great circles. Since equivalent great circles intersect the same subset
of polygons in 2, if a great circle L is a separator of P, then all great
circles equivalent to L are also separators. What remains is to deter-
mine which sets of the equivalent great circles are separators. Since
a separator admits no intersection with the polygons in P, the owner-
ship vector of its dual point, u(q), consists of either 1’s or -1's. (Recall
that if u;(q) = 0 then the dual great circle of q intersects polygon
P, € P.) Thus, we have the following algerithm.

Algorithm FIND-ALL-SEPARATORS

Stepl. Apply Algorithm Compute-All-Sets-of-Equivalent-Great-
Circles.

Step2 Find all set of equivalent great circles with ownership
vector consists of either 1's or -1’s.
Traverse all sets of equivalent great circles starting from

the face whose ownership vector is explicitly stored.

3/19/91

Count the number of zero terms, k, in this ownership
vector. If £ = 0, then the corresponding set of equivalent
great circles are separators. The ownership vector and &
are updated during the traversal in constant time with

the aid of the face-adjacency graph.

Since Step 1 requires O(nv log n) time and Step 2 requires O(nv)
time, the computing of the representation of all separators, can be

achieved in O(nv log n) timet .

4.2. Bisection

As in the applications of 3-axis machining and coordinate measure-
ment, it may be desirable to find separators which divides a given set

of n polygons equally. Given a set P of n polygons on the sphere, a

~t We note here that a representation of the separators of 2 can also be obtained
using the following algorithm: Let 2 = (P, | i = 1, .., n }. Then, we can
construct the dual polygons (SCH (P)*! i =1, ..., n} in O(v) time. We can then
centrally project these dual polygons onto the x, = 1 plane. It is not difficult to
show that the dual points of the separators fall inside the common intersection of
the projected polygons. Since computing this intersection requires O(v log v)
time, a representation of the separators can be obtained in O(v log v) time. This
approach, however, does not apply when we need to distinguish between
separators, e.g. Problem P.2.

3/19/91

great circle L is a bisector of Pif L is a separator of P and L divides P
into two subsets P and P such that

| card(®) - card(?) | = n (modulo 2),

where card(-) denotes the cardinality of a set. The division of 2 in-

duced by a bisector is called a bisection.

Problem P.2 (All Bisections). Given a set P of n polygons on the
sphere, find all possible bisections of the set P.

If a separator L divides Pinto two subsets P and P, then

Y u@)],

i=1

| card(?") - card(?) | =

where q is the dual point of L. From the definition of a bisector, an al-
gorithm for finding all the bisectors is immediate by modifying Step 2
of Algorithm Find-All-Separators slightly.

Algorithm FIND-ALL-BISECTORS

Step1l. Apply Algorithm Compute-All-Sets-of-Equivalent-Great-
Circles. |

Step2 Find all set of equivalent great circles that are bisectors.
Traverse all sets of equivalent great circles starting from
the set whose ownership vector was explicitly stored.

Count the number of zero terms, k, and compute the

3/19/91

sum of all terms, s =) u;(q), in this ownership vector.

i=1
Ifk=0and |s| =n (modulo 2), then the corresponding
set of equivalent great circles are bisectors. During the
traversal, £ and s can be updated in constant time by us-

ing the face-adjacency graph.

The additional updating in Step 2 does not affect the overall time

complexity which remains O(nv log n).

4.3. Minimally/Maximally-Cutting Great Circles

A generalization of Problem P.1 is the problem of finding the great
circles that intersect the minimum number of polygons rather than
those that does not intersect any polygon in P. Clearly, if there exists
a separator for the given set of polygons, then Problem P.3 reduces to
Problem P.1.

Problem P.3 (Minimally Cutting Great Circles). Given a set Pof n
polygons on the sphere, find great circles that intersect the smallest

number of the polygons in 2.

3/19/91

The opposite to Problem P.3 is the problem of finding the great cir-

cles that intersects the maximal number of the polygons in 2.

Problem P.4 (Maximally Cutting Great Circles). Given a set Pofn
polygons on the sphere, find great circles that intersect the largest

number of the polygons.

This is a generalization of the problem of finding a stabbing line
[2,8,9,11] which intersects a set of n polygons in the ensemble. In
particular, Edelsbrunner, Guibas, and Sharir [9] gives an
O(v a(v) log v) time algorithm for constructing a representation of the
stabbing lines of polygons with a total number of v vertices, where
a(v) is the inverse of Ackerman’s function. Hershberger’s result in
[11] reduces the time complexity of computing a representation of
stabbing lines for a set of polygons to O(v log v) time. Obviously, if a
stabbing great circle exists for the set of spherical polygons, then
Problem P.4 reduces to the stabbing line problem. However, if a stab-
bing line does not exist, we may still want to determine which great
circles intersect the largest number of polygons, as in the application
of 4- and 5-axis numerical control machining. In such cases, naively
applying the stabbing line algorithm to solve Problem P.4 would yield

a time complexity of

T + () To-D + (1) To-2) + -+ () T,

3/19/91

in the worst case, where T(k) denotes the time required to compute
the representation of a stabbing line of k of the n polygons.

We present an O(nv log n) algorithm for solving Problem P.4 as
well as for Problem P.3. Let the set of given polygon be P={P; | i=
1,..., n}. Also, let a great circlebe L = {x | (q-x) =0, g,xe S?}, i.e., q s
the dual point of L. Now, from Corollary 3.1, we know that if the own-
ership vector u(q) has u;(q) = 0, then L intersects polygons P;. Thus,
Problem P.3 and Problem P.4 can be solved by finding the sets of
equivalent great circles with the minimum number and the maxi-
mum number, respectively, of the zero terms in their ownership vec-

tors.

Algorithm MIN (MAX)-CUTTING-GREAT-CIRCLES

Step1. Apply Algorithm Compute-All-Sets-of-Equivalent-Great-
Circles.

Step2 Traverse all sets of equivalent great circles starting from
the set whose ownership vector is explicitly stored.
Count the number of zero terms, k, in this ownership
vector. While traversing the sets of equivalent great cir-
cles, update £ in constant time by using the face-adja-
cency graph and keep track of the current minimum (or
maximum) value of £ and the set(s) of great circles real-

izing the optimum.

3/19/91

4.4. Densest Hemisphere

The previous problems are all concerned with the finding of optimal
great circles. Of equal interest are problems that find optimal hemi-

spheres, one of which is the following:

Problem P.5 (Densest Hemisphere). Given a set Pof n polygons on the
sphere, find a hemisphere that contains the largest number of the

polygons in P.

A similar problem concerning points on the sphere has been dis-
cussed by Johnson and Preparata [13], in which a set of v points is
given and an O(v? log v) algorithm is reported for determining a
densest hemisphere (i.e. a hemisphere that contains a largest subset
of points)t. Here, we are given a set of n polygons on the sphere, and
we present an O(nv log n) algorithm for determining a hemisphere
that contains the largest subset of polygons, where v is the total num-
ber of vertices in the polygons.

An examination of the characteristics of the dual point of a dens-
est hemisphere reveals the algorithm. Let H* ={x | (gx) 20,

q,x € S* } be a hemisphere, and q be its dual point. Now, from

T 'We note that the densest hemisphere of a point set can be determined in O(v?)
time by using the algorithm described in [5].

3/19/91

Theorem 2.2, a spherically-convex polygon P is contained in H' if and
only if q is in the interior of P*. This implies that if the ownership vec-
tor u(q) has terms ui(q) = 1, i € {1,..., n}, then H' contains the polygons
P,. Thus, H' is a densest hemisphere if u(q) has the largest number of

1's.

Algorithm DENSEST-HEMISPHERE

Step1. Apply Algorithm Compute-All-Sets-of-Equivalent-Great-
Circles.

Step2 Traverse all sets of equivalent great circles starting from
the set whose ownership vector was explicitly stored.
Count the number of terms that equals to 1 in this own-
ership vector. Let this number be k. While traversing the
sets of equivalent great circles, update £ in constant
time by using the face-adjacency graph and keep track of
the current maximum value of £ as well as a hemi-

sphere realizing it.

5. SUMMARY

We have identified a set of computational geometry problems on the
sphere: cutting spherical polygons with zero, minimal, and maximal

intersections. These problems are shown to utilize the same struc-

0 3/19/91

ture — sets of equivalent great circles which partition the unit sphere.
The solutions to these problems offer new benchmarks in computa-
tional complexity.

Perhaps equally satisfying, the solutions address unsolved prob-
lems in numerical control machining and coordinate measurement:
the determination of workpiece orientation such that the number of
setups is minimized on a 3-, 4-, or 5-axis machine with a ball-end tool

can now be effected.

REFERENCES

(11 A.V. Aho, J.E. Hopcroft, and J.D.Ullman, The Design and Analysis of
Computer Algorithms, Addison-Wesley, Reading, Mass., 1974.

(21 D. Avis and R. Wenger, Polyhedral Line Transversals in Space, Discrete
and Computational Geometry, 1989.

(31 B. Baumgart, A Polyhedron Representation for Computer Vision, National
Computer Conference, AFIPS Conf. Proc., 589-596, 1975.

4] K.Q. Brown, Geometric Transformations for Fast Geometric Algorithms,
Ph. D Thesis, Dept. of Computer Science, Carnegie Mellon Univ., Dec. 1979.

(5] B.M. Chazelle, L.J. Guibas, and D.T. Lee, The Power of Geometric Duality,
BIT 25, 76-90, 1985.

(6] L.L. Chen and T.C. Woo, Computational Geometry on the Sphere, to appear in
Transactions of ASME, Journal of Trans. , Mech. , and Automation in
Design.

71 KL. Clarkson, A Las Vegas Algorithm for Linear Programming When the
Dimension is Small, Proc. of IEEE Symposium on Foundations of Computer
Science, 452-456, 1988.

31

3/19/91

(8] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag,
1987.

91 H. Edelsbrunner, L.J. Guibas, and M. Sharir, The Upper Envelope of
Piecewise Linear Functions: Algorithms and Applications, Discrete and
Computational Geometry, 4(4), 311-336, 1989.

(10] L.J. Guibas and J. Stolfi, Primitives for the Manipulation of General
Subdivisions and the Computation of Voronoi Diagram, ACM Trans. on
Computer Graphics, Vol.4, No. 2, Apr. 1985, 74-123.

(11] J. Hershberger, Finding the Upper Envelope of n Line segments in O(n log n)
Time, Discrete and Computational Geometry, *** 1989,

(12] D. Hilbert and S. Cohn-Vossen, Geometry and the Imagination, New York:
Chelsea, 1952.

(13] D.S. Johnson and F.P. Preparata, The Densest Hemisphere Problem,
Theoretical Computer Science, 93-107, 1979.

(14] D.E. Knuth, The Art of Computer Programming. Vol. I: Fundamental
Algorithms, Addison-Wesley, Reading, Mass., 1968.

[15] N. Megiddo, Linear time algorithm for linear programming in R3 and re-
lated problems, SIAM J. of Comput. 12(4), 759-776, Nov. 1983.

(16] K G. Murty, Linear Programming, New York: Wiley, 1983.

(17] J. O'Rourke, C. Chien, T. Olson, D. Naddor, A New Linear Algorithm for
Intersecting Convex Polygons, Computer Graphics and Image Processing 19,
384-391, 1982.

(18] F.P. Preparata and M.1. Shamos, Computational Geometry — An Introduction,
Springer Verlag, 1985.

(19] P. J. Ryan, Euclidean and Non-Euclidean Geometry — An Analytic Approach,
New York: Cambridge University Press, 1986.

[20] R. Sedgewick, Algorithms, Addison-Wesley, 1983.

[21] T.C. Woo, A Combinatorial Analysis of Boundary Data Structure Schemata,
IEEE Computer Graphics and Applications, 19-27, March, 1985.

3/19/91

APPENDIX. COMPUTING A SPHERICAL PARTITIONING BY CONVEX

POLYGONS IN O(nv log n) TIME

Let C={C,,.., C, } be a set of convex polygons on the sphere. These
convex polygons partition the surface of the sphere into faces, each
consisting of points covered by the same subsets of polygons in (.
Since this partitioning is embedded on the sphere, we can represent
it by using any of the data structures for planar graphs, such as the
doubly-connected-edge-list data structure [18], the winged-edge data
structure [3], the symmetric data structure [21], or the quad-edge

data structure [10]. Here, we use the winged-edge data structure.

Each face can be a simple polygon or a polygon with holes, assum-
ing that all vertices of polygons in C are in general position. (Figure
A.1 illustrates a non-simple face.) Simple faces can be constructed
from the intersection relationships among the convex polygons. To
construct holes for non-simple faces, however, it is necessary to iden-
tify outer contours formed by sets of polygons in C, where each set
consists of polygons that intersect at least one other polygon in the
set. A set of such polygons is called a connected component. By defini-
tion, there is no intersection between polygons from two connected
components. Thus, two connected components are either mutually
exclusive or one contains the other. Consequently, containment rela-

tionships among the connected components can be represented by a

3/19/91

binary tree. Each connected component is represented by a node with
two pointers: one points to a connected component mutually exclusive
with it and the other points to a connected component contained by it.
For example, let X; and X; be the two connected components which
consist of three and two convex polygon respectively, as illustrated in
Figure A.1. Then, in the containment tree, X; points to X, indicating
containment. With these containment relationships, we can identify

a non-simple polygonal face.

a non-simple
polygon

Figure A.1 A non-simple face in a partitioning

With this terminology, we present the algorithm for constructing
the spherical partitions by a set of convex polygons:

A 3/19/91

Algorithm SPHERICAL-PARTITIONING-BY-CONVEX-POLYGONS
Input: A set of convex polygons C= (C,,..., C,}.
Output: A representation of the spherical partitioning by the
polygons in (.
Step1l. Construct simple faces by utilizing intersection relation-
ships among the polygons in C.
1.1 Compute the intersections among the polygons.
1.2 For each edge, sort the intersection points.
1.3 Merge the coincident intersection points.
14 Determine simple faces.
Step2 Construct non-simples faces by utilizing containment
relationships among the polygons in C.
2.1 Identify the connected components.
2.2 Establish containment relationships among the

connected components.

We now describe the algorithm in detail and analyze the time
complexity required of each step:

Step 1. (1.1) To identify all the intersection points, we find the in-
tersection between each pair of convex polygons. Assuming that all
the vertices are in general position, the intersection of two edges is a

point which is recorded for both edges. Let v; denote the number of

3/19/91

vertices of convex polygon C;,i=1,.,nandletv = 2 v,. Then, we
i=1

n-1 n
can identify all the intersection points in z 2 O(v; + v)) = O(nv)

i=1 j=i+1
time by using the convex polygon intersection algorithm described in
[17].

(1.2) For each edge, we sort the intersection points (by their para-
metric values). The intersection points split the original edges into a
number of segments. Let these new edges inherit the orientations of
the edges from which they are split. Since each convex polygon can
intersect an edge at two points in the worst case, each edge can con-
tain at most 2(n-1) intersection points. Therefore, we can finish the
sorting in O(vn log n) time.

(1.3) We complete the intersection graph by merging coincident in-
tersection points. At the same time, we sort the incident edges in
counter-clockwise order for each intersection point. To analyze the

time complexity required for the sorting, we observe that, for an edge

with m distinct intersection points p, i = 1,..., m, we have

Z e; S 2(n-1), where e, is the number of edges incident at p, (This is

{=1
because each edge has at most 2(n-1) intersection points). Thus, we
can complete sorting incident edges for all intersection points on an
edge in O(n log n) time. (The worst case happens when (n-1) edges
incident at a single point.) We therefore can merge coincident inter-

section points in O(vn log n) time.

3/19/91

(1.4) We determine simple faces by performing a traversal of the
graph formed by the intersecting convex polygons. The traversal
starting at an arbitrary vertex and stops when all vertices have been
traversed. We can complete this traversal in O(nv) time as there are
O(nv) edges in the graph.

Step 2. (2.1) We then identify the connected components. In (1.1),
we have already identified the intersections between any two polygons
in C. With this information, we can determine the connected compo-
nents in O(n?) time by performing a depth-first-search on the inter-
section graph as described in [20].

(2.2) We establish the containment relationships among the con-
nected components by utilizing the containment relationships among
the polygons. Let X; and %; be two connected components. If a poly-
gon C; € X contains another polygon C; e %;, then %] contains %;. On
the other hand, if neither X nor X; contains each other, they are mu-
tually exclusive. For any two non-intersecting convex polygons C; and
C;, we can determine in O(log v; + log v;) time whether C; contains C;,
C; contains C;, or neither, by checking‘point inclusion [18]. Thus, we

can determine such relationship between pairs of polygons from dif-

ferent connected components in O(n? log (%))T time. We can then

complete the containment tree time by applying topological sort [14]

n-1 n "
T I 30Uogvi+logy) = (1) 3 Ollogv;)
1=1) + i=

< (n-1) O(n log (-t-:—)) = 0(n? log (—Z—))

3/19/91

UN\VERSITY OF MICHIGAN

AN

39015 04733 8226

(
)
]
s p

gons.

B
3/19/91

