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Abstract

Based on observations made on the geometry of the cutting tools and the
degrees of freedom in 3-, 4-, 5-axis numerical control machines, a new
class of geometric algorithms is induced — on the unit Sphere. Spherical
algorithms are useful for determining the type of tool, its path, workpiece

fixturing, and the type of machine.

Basic to these algorithms are four that are presented here: detection of
convexity on the sphere, computation for spherical convex hull,
determination of the spherical convexity of a union and the intersection of
hemispheres. These four algorithms are related by duality and the sharing

of partial results.



1. Introduction

The term "computational geometry" has two interpretations. In his
address to the Royal Society, Robin Forrest [4] used the term in the context
of computations on analytically complex surfaces for geometric design. As
continuity is important to the design of complex surfaces, tangents,
normals, and their (dot and cross) products are basic to the computation.
The other interpretation stems from an almost orthogonal field in geometry
— one that is combinatorially complex. Shamos [16], in his celebrated
dissertation, gave a procedural treatise of classical geometric constructs,
such as the convex hull. Notably, in the discrete domain of vertices, edges,
and polygons, he injected the rigor of algorithm analysis.

This paper is an attempt to unify these two fields of research by addressing
the algorithmic issues of analytically complex geometric entities. Its roots
are humble — numerical control (NC) machining and workpiece setup. But
one of the offsprings is rather pleasant — geometric algorithms on the unit
sphere, or spherical algorithms, the basics of which are presented here.

The applications for which the algorithms are developed involves k-axis NC
machines, where k = 3, 4, or 5. Given an object represented by N free-form
surfaces, NC applications seek the number of setups (i.e. orientations of the
workpieces) and for each setup the tool path. While, it is customary to
compute cutter orientations from surface normals, there are two hidden
implications. First, the type of cutter is already fixed. If the orientation of
the cutter is set to the normal (with the possible difference in the sign of the
vectors), the most "efficient” cutter is the flat-end millf . Second, the type of
NC machine is also pre-determined. For most free-form surfaces, the wide
range of their surface normals can be accommodated only by a 5-axis NC
machine. Now, it is not unreasonable to ask the question: "Can a 3-axis (or
a 4-axis) NC machine with a different cutter accomplish the same task?" To

T If the cutter orientation is orthogonal to the normal, a side mill is implied.



be sure, a 5-axis NC machine is more flexible, but is also much more
expensive (hence less available) than a 3- or 4-axis machine. Furthermore,
the tool path generated for a 3-axis machine is valid for a 4- or 5-axis
machine but not vice versa. These observations lead to the following
problem definition.

Problem MS: Machine Selection. Given a workpiece consisting of N
free-form surfaces, determine the minimum number of axes required of
the NC machine and the type of cutter.

Problem MS as formulated is not without a caveat. It is intuitive that more
setups would be required of a 3-axis machine than that of a 4- or 5-axis
machine as illustrated in Figure 1.1. Since mounting and dismounting a
workpiece is not considered to be productive, it is therefore useful to able to
cut as many surfaces as possible in any single setup. This induce a
companion problem definition:

Problem WS: Workpiece Setup. Given a workpiece consisting of N free-form
surfaces, determine an setup orientation such that the maximum number
of surfaces are accessible.

<Insert Figure 1.1>

One of the useful notions from computational geometry is visibility. Two
points are visible to each other if the line segment joining them has no
intersection [17]. For each point on the surface, it is possible to compute
visible rays (to points at infinity). The intersection of the rays for all points
on the surface forms a visibility cone for the surface. Thus, if the workpiece
is oriented such that the axis of the cutting tool lies in the same direction as
one of the rays in the visibility cone, the corresponding surfaces are
accessible for machining.

Now, consider the geometry of a cutting tool as related to the geometry of a
surface. The directly available information from a point on a surface is the



(a)

oy, tool axis
setup
orientation
Y/
5-axis machining (b) 3-axis machining

Figure 1.1

Machine Selection and Warkpiece Setup.



outward-pointing normal. Indeed, for a surface, there exists a Gaussian
Map which is the intersection of the surface normals with the unit sphere
[7]. Without loss of generality, assume that there are three kinds of cutting
tools for a milling machine: flat-end, semi-ball-end, and ball-end. With
respect to a normal (i.e. a point in the Gaussian Map or GMap), the three
kinds of cutting tools can deviate by an angle v=0, 0 < v< n/2, and v = /2,
respectively. This is illustrated in Figure 1.2. Thus, the visibility of a
normal is enhanced by an angle of 0 <v < /2, depending on the type of
cutting tool used. In the subsequent discussion, the ball-end mill, for which
v = 1/2, is chosen.

<Insert Figure 1.2>

The visibility map, or VMap, for a given surface can now be constructed. A
VMap is an image on the unit sphere whereby every point in the VMap
deviates from a corresponding point in a GMap by v < /2. The construction
of a VMap from a GMap is shown in Figure 1.3. For each point p; in the
GMap, there corresponds a hemisphere c; (because v = n/2). If the GMap is
a single point (e.g. the north pole), the VMap is a hemisphere (e.g. the
Northern Hemisphere). If the GMap consists of two distinct points, the
VMap is the intersection of the two corresponding hemispheres. While a
GMap is not necessarily (spherically) convex, a VMap is guaranteed to be
convex, as it is formed by the intersection of hemispheres that are convex.
(More rigorous definitions of spherical convexity are given in Section 2.)

<Insert Figure 1.3>

Problem WS can now be addressed. A collection of N surfaces is
represented by N VMaps on the unit sphere, some of which may overlap. If
two VMaps intersect, there exists a common direction along which both
surfaces can be machined in a single setup. The degrees of freedom of the
3-, 4-, 5-axis milling machines (Problem MS) are next related to the VMaps.






A 4-axis machine is conceptually a 3-axis machine with a rotating table.
This extra degree of freedom in rotation can be represented by a great
circle, if the rotation covers 2x; otherwise, it is an arc. This situation is
illustrated in Figure 1.4(b). For a single setup, if the given arc (great circle)
passes through a VMap, the corresponding surface is machinable. The
accessibility of surfaces for a 4-axis machine can therefore be formulated as
follows: Given N VMaps on the unit sphere, determine an orientation such
that a given arc (or a great circle) passes through them (maximally). The
utility of a 5-axis machine is now easily representable in spherical
geometry. The two additional degrees of freedom in orthogonal rotation
correspond to a spherical rectangle as illustrated by Figure 1.4(c). Thus,
given a 5-axis machine, the setup of the workpiece can be formulated as a
covering problem: Given N VMaps, determine an orientation such that a
given spherical rectangle covers them (maximally).

<Insert Figure 1.4>

By invoking spherical geometry, the preceding description of NC
machining and setup induces a structure as shown in Figure 1.5. In this
paper, four basic spherical algorithms are presented. They are (1) the
detection of convexity (via hemisphericity), (2) the computation for a
(spherical) convex hull, (3) the determination of the convexity of a union,
and (4) the determination of the intersection of hemispheres. While these
four problems may seem disparate, they are shown to be tightly woven via
duality and the sharing of partial results. In this order, the algorithms are
given, after a brief introduction of terms in spherical geometry and central
projection.

<Insert Figure 1.5>



Figure14  Spherical representation of NC Machines.
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2. Definitions and Representations

In spherical geometry, the objects considered are sets of points on the d
dimensional unit sphere S¢. Let E*! denote the d+1 dimensional Euclidean
space and p = (x},Xy...,X4,;) denote a point in E**?, then

Si=(p:Ipl=1)
In this paper, the discussion will be on S?, the sphere with radius r=1 in
E3. The definitions of the principal objects and important concepts are now
briefly reviewed [15]:

Point. A point p in S? is a unit vector in E3, which is denoted by a 3-tuple
(x1,X9,X3) in this paper. This representation is chosen (over spherical
coordinates) such that the correspondence between S? and E? through
projection can be easily maintained, as will be further explained in
Section 3.

Antipodal points. Two points p and q are called antipodal if p = -q, where p
is called the antipode of q and vice versa. A pair of antipodal points divides
the infinite number of great circles containing them into semicircles.

Circle and Hemisphere. A circle in S? is determined by the intersection of
the unit sphere with a plane which meets the sphere at more than one
point. If the plane contains the origin, the intersection is a great circle;
otherwise, it is a small circle. (In this paper, the term circle is used
interchangeably with small circle.) The surface of the sphere is partitioned
into two hemispheres by a great circle. A closed hemisphere includes the
bounding great circle, while an open hemisphere excludes it. The surface
of the sphere is partitioned into two portions by a small circle; the smaller of
the two is the interior of a small circle. The center of a circle is a point in
the interior and equidistant from all the points on the circle. A circle is
represented by its center and radius in this paper, as its counterpart in the
Euclidean plane.



Line. Aline LinS%isa great circle, the intersection of the unit sphere with
a plane containing the origin. (The term line and the term great circle are
used interchangeably.) Since the radius of a great circle is always equal to
/2 (as explained under Distance), it can be fully represented by the unit
normal of the intersection plane.

Line segment. The line segment joining two distinct points p and q in s?,
denoted by pq, is the shorter of the two arcs in the great circle containing p
and q. This segment is unique, except for the case when p and q are
antipodal points where any great semicircle joining p and q is a segment.

Distance. The distance between two distinct points p and q in S? is the
length of the line segment (the geodesic) joining p and q. It is defined by the
metric:

d(p,q) = cos™ (p-q)
<Insert Figure 2.1>

Polygon. A (spherical) polygon P is a closed path on the sphere of connected
ordered line segments ab, bc,..., pq, qa which do not cut across themselves.
The points a, b, ¢, ..., p, q are called the vertices of P. The line segments ab,
be, ..., pq, qa are called the edges of P.

Hemisphericity. A set of points in S? is said to be hemispherical if it is
contained in some open hemisphere [1].

Convexity. A set of points P in S?is said to be (spherically) convex, if for any
two points p and q in P, the segment joining p and q lies entirely in P. Notice
that, a closed hemisphere contains antipodal points but it does not contain
all the semicircles joining them. Therefore, it is not convex.

Quasi-convexity. A set of points P in S?is said to be quasi-convex, if, for any
pair of non-antipodal points p and q in P, the segment pq is also in P. A
closed hemisphere is quasi-convex [18].
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Figure 2.1 Entities on the Sphere



Strict convexity. A set of points P in S?is said to be strictly convex, if it is
nonempty, includes no antipodal pair, and for any two points p and q in P
the segment pq is also in P [18].

Convex Hull. A (spherical) convex hull of a set of points P in S2, denoted by
SCH(P), is the boundary of the smallest convex set in s containing P [14].

<Insert Figure 2.2>

3. Projecting onto the Euclidean Plane

Since extensive study in Computational Geometry has been done in 2- and
3-dimensional Euclidean space, it is natural to convert a spherical problem
to one in the plane(if possible), apply some planar algorithms, and then
convert the planar solution back for the spherical one. One of the methods
that converts a spherical problem to a planar one is the central projection
(gnomonic projection). However, it does not apply in certain cases.

3.1 Central Projection

Central projection maps a pair of antipodal points in S?toa point in the two
dimensional projective plane P2, which consists of E augmented by a line
at infinity. By emitting a ray from the origin, a point (x;,x9,X3) in S? with
x3 > 0 is mapped to (x;/x3,X9/X3,1) in the plane x5 = 1, corresponding to the
point (x;/x3,X9/X3) in P, By extending the ray in the opposite direction,
(-x1,-Xg,-X3), the antipode of the point (x;,x5,x3) is also mapped to
(X1/X3,%9/X3,1) in x3 = 1 (and thus (x;/x3,%9/X3) in P?). A point (X1,X9,X3) With
x3 = 0 is mapped onto the line at infinity in P2 Central projection therefore
is a two-to-one mapping of points in s? (except for points on the equator) to
points in E2. As illustrated in Figure 3.1, a pair of antipodal points, p and
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-p, in S? are mapped to a point p’ in EZ2, while a great circle is mapped to a
line through central projection.

<Insert Figure 3.1>

Since central projection is a two-to-one mapping, by keeping track of the
sign of x3 for a point, it provides an easy way of going back and forth
between a geometrical problem in S? and a corresponding one in EZ.
Nevertheless, central projection is not a panacea: Not all spherical
problems can be solved by applying planar algorithms to the projected
counterparts. An example is the problem of finding the smallest enclosing
circle for a set of points in S? because a circle in E2 may not be mapped to a
circle in S2%. It is necessary, then, to review the properties of central
projection that allow a spherical problem to be solved in E? and the
limitations that induce new spherical algorithms.

3.2 Properties of Central Projection

The merit of central projection is the one-to-one and onto mapping between
alinein E% and a great circle in s?,

Lemma 3.2.1 Central projection establishes an one-to-one and onto

mapping between great circles in S? and lines in E?, except for the equator,
the great circle that lies on the plane x5 = 0.

Proof. Except the equator, any great circle in S? determines a plane through
the origin in E3, which, when intersecting with the plane x5 = 1, determines

a line in the plane. Conversely, a line in the plane x5 = 1 together with the

origin determine a plane in E3, which, when intersecting with the unit
sphere, determines a great circle in S%. Notice that the plane x5 = 1 is itself a

space EZ a
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By Lemma 3.2.1, central projection preserves incidence since a point
p= (xl,xz,xa) on a great circle L in S? is mapped through central projection

to a point p' = (x 1/x3,x2/x3) on L', the unique image of L in EZ. Obviously,

central projection also preserves collinearity. Because of the above
properties, the intersection of spherical entities (lines, line segments,
polygons, etc.) can be obtained by applying central projection and planar
algorithms.

Lemma 3.2.2 Central projection maps a (spherically) convex polygon on
S, the hemisphere of S? corresponding to x5 > 0, to a convex polygon in E.
Conversely, the inverse of central projection maps a convex polygon in E to
a (spherically) convex polygon on s%,

Proof. Let P be a convex polygon on S2* and P' be the image of P through
central projection. A convex cone in E? with the apex at the origin can be
constructed by intersecting all the halfspaces each of which is defined by a
plane through the origin and an edge of P and contains P. The intersection
of this convex cone with the plane x5 = 1 is P, which is convex since it is the
intersection of two convex sets in E2. The converse can be shown similarly
by constructing a convex cone in E using the edges of P' and the origin. Q

As illustrated in Figure 3.2, a spherically convex polygon not crossing the
equator is mapped to a convex polygons in E? through central projection. On
the other hand, a spherical convex polygon crossing the equator is mapped
to two open polygons. By Lemma 3.2.2, if a proper rotation is known for a set
of points P on S? such that, after the rotation, the set will be on S%*. then the
convex hull for the set can be constructed by applying planar convex hull
algorithm to P', the image of P in EZ through central projection.

<Insert Figure 3.2>
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Figure 32 Central Projection of a Polygon



3.3 Limitations of Central Projection

For certain problems such as finding the smallest enclosing circle for a set
of points in Sz, central projection is not applicable because of the intrinsic
nature of these problems. In order to apply central projection (or any other
projective mapping), some knowledge of the normal of a good projection
plane, e.g. (0,0,1) for x5 = 1, is required. Since a circle in E? is mapped to a
circle in S? if and only if the normal of the projection plane is the normal of
the plane contains the circle in s, finding such a projection and finding the
smallest enclosing circle are essentially the same problem that must be
solved on the sphere.

Central projection suffers from two limitations. First, central projection
does not preserve angle, distance, or area. Therefore, in general, proximity
problems, such as the construction of the Voronoi diagram or minimum
spanning tree, cannot be solved by applying central projection and planar
algorithms.

Second, central projection produces largely distorted images for points close
to the equator in s?, (This is a problem that needs to be taken care of,
because planar algorithms usually do not handle points at infinity.) Hence,
it is important to find some initial rotations such that, after applying the
rotations to the set of points in S? no point lies on the equator and therefore
none is projected to infinity. It is also essential to find a projective plane
such that all projected points are as far away from infinity as possible, so
that large distortions and round-off errors can be avoided.

Problem P (Projective): Finding Initial Rotations. Given a set of N points P
in SZ, find some rotations such that, after P is rotated, none of the points in
P lies on the equatort.

tt It is possible to formulate a problem of finding the optimal initial rotation: Given a set
of N points P in S2, find an optimal rotation such that, after P is rotated, all of the points in P
are the farthest away from the equator. This optimal initial rotation can be determined,
once the largest empty double wedge on the sphere is found. However,it is shown in [3] that

11



One such algorithm (a slightly modified version due to different
dimensionalities) is by Preparata and Muller [13] which finds an initial
rotation R, such that, after applying Ry, no point in P is projected to infinity.
This algorithm, however, does not try to move the points as far away from
the equator as possible.

The algorithm proposed here finds two rotations, R; and R, that move the
points in P as far away from the equator as possible. Let p; = (x;1,%;9,%;3),
i=1,.,N, be points in P. The points p; =(x;;,X;9,%;3) are mapped to
p, = (0,%;9,%;3) when parallelly projected onto the plane x; = 0, itself a space
EZ The unit circle S', the image of the unit sphere in the plane x;, =0, is
partitioned into (circular) segments by the unitized p;' and their antipodes

in S!. Since the partition is symmetrical with respect to (0,0), only the
partition on a semicircle needs to be considered. Arbitrarily, let the
semicircle be one of the two determined by the unitized p,' and its antipode.
The problem is now transformed to finding the maximum (circular) gap

between the points on the semicircle, for which Gonzalez' O(N) algorithm
[5, 16] can be used. Once the maximum gap is found, R, is a rotation that

rotates the circular midpoint of the maximum gap to be on the line x5 = 0 (in
the plane x; = 0). After R, is applied to the unit sphere, the points in P are
moved away from the equator, except for the fixed points (1,0,0) and (-1,0,0).
Let P' be the result of applying R, to P. After points in P' are parallelly
projected onto the plane xy' =0, the same procedure is performed again to
obtain R,.

An illustration of the algorithm is given in Figure 3.3. Given eight points
(unit vectors) on the sphere, where point 3, 4, 5, and 6 are on the equator,
find a rotation R; to move points 5 and 6 away from the equator. After the
points are parallelly projected to the x; = 0 plane, the largest circular gap is
found as shown in Figure 3.3(b). R; is the transformation that rotates the

there are O(N?) empty double wedges. To find the largest empty double wedge, it requires
an enumeration, which takes O(N?) time.

12



bisector of the largest gap to the equator. Figure 3.3(c) shows that points 5
and 6 are moved away from the equator after the application of R;.

<Insert Figure 3.3>

It is noted that, after applying R, to the unit sphere, the (1,0,0) and (-1,0,0)
are the only points that can possibly lie on the plane x3 = 0. The application
of Ry to the unit sphere serves to move these two points away from the

equator. In addition, each rotation locally moves the points as far away
from the equator as possible by moving the circular midpoint of the

maximum gap to the equator. This algorithm runs in O(N) time, where N
is the number of points in P. Since the procedure for finding R, is the same
as that for R1’ only the latter is described here:

Algorithm P: Initial Rotations

Step 1. Parallelly project the points in P onto the plane x; = 0. (This
can be done in O(N) time.)

Step 2. Find the maximum circular gap.

Let p; = (x;1,%;9,%;3), 1 = 1,...,N, be the unit vectors in P and p; = (x;9,%;3)
be the image of p; in the plane x; = 0. Let p;' = (x;9,%;3) be the base
vector and the semicircle considered be consisted of all the vectors
having a positive cross product with p,'. Let q;, i = 1,...,N, represents
the degree of the angle between the two vectors p,' and p;' (or the its
antipode (-x;9,-x;3) if it has a negative cross product with p;). Then
q; = 0. Let qy,; be equal to n. Now Gonzalez's algorithm can be
applied to q, i=1,...,N+1, to find the largest gap and its two end

points, q; and qi. (This can be done in O(N) time.)

Step 3. Compute the locally optimal rotation R.
Let qy be the angle between p,' and (1,0), a unit vector on x3 =0. If

(1,0) has a positive cross product with p,', R; consists of a rotation
of -qq + (qj+qx)/2; otherwise, R, consists of a rotation of qq + (gj+qy)/2.
(This can be done in O(1) time.)

13
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Step 4. Apply R, to P. (This can be done in O(N) time.)

4, Algorithms

Several basic algorithms for solving geometrical problems on the unit
sphere are given. They are useful when applied to determining the
orientations of the workpiece in NC machining.

Problem S1 (Spherical): Detecting Hemisphericity. Given a set P of N points
in S?, determine whether P is hemispherical (contained in an open
hemisphere.) If P is hemispherical, find a great circle which determines a
hemisphere that completely contains P.

The detection of hemisphericity for a set P of N points in S? is basic to
spherical algorithms. Since central projection establishes a one-to-one
relations between points in S? and points in E2 ifPis hemispherical, it is
relatively straight forward to convert a spherical problem for P to a planar
counterpart. On the other hand, if P is not hemispherical (or, more
precisely, if P contains antipodal points), the convex hull for P is the entire
sphere by the definition of convexity.

Problem S1 can be solved in E2 through proper transformations. For
simplicity, assume that none of the points in P lies on the plane x3 = 0. (If
not, Algorithm P described in Section 3.3 can be applied to ensure this.) The
points in P can be partitioned into two possibly empty sets P*, those points
with x3> 0, and P’, those with x5 < 0. If either of the two sets is empty,
Problem S1 is trivial; P is hemispherical and is contained in a hemisphere
determined by the great circle on x5 = 0. If both sets are not empty, P* and P’
are mapped to P* and P in E2, respectively, through central projection.
Planar algorithms can now be applied to find the convex hulls of the two
planar sets, CH(P*) and CH(P"). Given CH(P*) and CH(P"), it is shown in

14



Theorem 4.1 that the set P is not hemispherical if and only if CH(P *) and
CH(P") intersects.

Theorem 4.1 Given a set of N points P, P is not hemispherical if and only if
CH(P") and CH(P") intersects, where CH(.) denotes the convex hull of a set

of points in the euclidean plane and P* P" denote the images of the points
on the x3 >0, x3 < 0 hemispheres, respectively, through central projection.

Proof. First, it is shown that, if CH(P"') and CH(P") intersect, P cannot be
hemispherical. There exists a point p’ € CH(P*) A CH(P") which is the
image of a pair of antipodal points p* € SCH(P") and p- € SCH(P") as
illustrated in Figure 4.1(a). Since SCH(P*) and SCH(P’) are the smallest
convex sets containing P* and P, respectively, any convex set containing P
must contain both. Suppose H is a open hemisphere that contains P. Then
H contains SCH(P*) and SCH(P") which implies that it includes at lease a
pair of antipodal points. This violates the definition of hemisphericity.

Second, it is shown that, if CH(P"‘) and CH(P") do not intersect, P is
hemispherical. For, if they do not, there exists a separating line SL such
that CH(P*) and CH(P") lie on opposite sides of it. Let the great circle
corresponding to SL be L. Then S?is partitioned into 4 regions by L and the
equator as shown in Figure 4.1(b). Suppose P~ exists in the quadrant
(L', P). If P* exists in the quadrant (L*, P*), then CH(P*) and CH(P") are
on the same side of SL by central projection. Since they are not, P* can only
exist in the quadrant (L', P*). Hence, P must be hemispherical to the great
circle L. Suppose P~ exists in the quadrant (L*, P’). Same arguments
applies and P* can only exist in the quadrant (L*, P*). Again, P must be
hemispherical. a

<Insert Figure 4.1>

The algorithm for detecting hemisphericity is immediate.

15
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Algorithm S1: Hemisphericity

Step 1. Construct P*and P by applying the central projection. If
either set is empty, the set P is hemispherical. (This can be done in
O(N) time.)

Step 2. Find CH(P*) and CH(P"). (This can be done in O(NlogN) time
using Graham's algorithm [6] or other convex hull algorithms as
described in [14].)

Step 3. Test if CH(P*) and CH(P") intersects. (This can be done in
O(N) time using the algorithm proposed by O'Rourke et al in [11].) If
so, the set P is not hemispherical. otherwise, go to Step 4.

Step 4. P is hemispherical. Find a separating line for CH(P*) and
CH(P"). (This can be done in O(N) time using Megiddo's algorithm as
described in [9,16].) The plane contains the separating line and the
origin determines the hemisphere.

Problem S2: Constructing Spherical Convex Hull Given a set P of N points
in S%, construct its (spherical) convex hull, SCH(P).

By definition of convexity, if the set P is not hemispherical, SCH(P) is the
entire sphere. Therefore, the first step is to detect whether P is
hemispherical by applying Algorithm S1. Then, if P is hemispherical,
SCH(P) can be constructed from the by-products of the hemisphericity
detection algorithm — the two convex hulls, CH(P*) and CH(P").

Algorithm S2: Spherical Convex Hull

Step 1. Determine if P is hemispherical using Algorithm S1. (This
can be done in O(NlogN) time.) If P is not hemispherical, SCH(P) is
the entire sphere; otherwise, go to Step 2.

16



Step 2. P is hemispherical. Construct SCH(P*) from CH(P™) by
connecting those points in S? that give rise to the vertices of CH(P *),
in the order of tracing the boundary of CH(P*). (This can be done in
O(N) time.) Similarly, construct SCH(P") from CH(PO).

Step 3. Let L = {x | (a:x) =0, a =(aj,ag,a3) } be the great circle found at
Step 1, which determines a hemisphere that completely contains P.
Define a three dimensional rotation R which rotates a = (aj,as,a3) to
(0,0,1). (This can be done in constant time.) Then, after SCH(P*) and

SCH(P") are transformed by R, both are completely contained in s2*,
the hemisphere corresponds to x3 > 0. (This can be done in O(N)

time.)

Step 4. Construct CH(P”") and CH(P™) by applying central projection.
(This requires O(N) time.)

Step 5. Find CH(P”), the convex hull of the union of CH(P”*) and
CH(P™). (This can be done in O(N) time using Shamos' algorithm
described in [14] or Preparata-Hong's in [12].) Construct SCH(P) from
CH(P").

Figure 4.2 illustrates how SCH(P) can be constructed from the by-products
of Algorithm S1. After SCH(P*) and SCH(P") are transformed by the rotation
defined in Step 3 of Algorithm S2, both are on the northern hemisphere
(above the equator L). Through central projection, the two spherical convex
hulls are mapped to two convex hulls, CH(P"*) and CH(P™) in E2. Then, the
convex hull of the union of CH(P”*) and CH(P™"), the shaded region, is
found by constructing the support lines. The complexity of this algorithm is
O(NlogN), which is dominated by that of Step 1.

< Insert Figure 4.2>
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Problem S3: Detecting Hemisphericity of a Union. Given a spherical convex
polygon P with N vertices and a point p in S?, determine if the union of P
and p is hemispherical.

Problem S3 is fundamental, if a dynamic convex hull algorithm is required.
If the union of P and p is found to be hemispherical, its convex hull can be
constructed by using projection and planar algorithms; otherwise, its
convex hull is the sphere. Without falling back to the O(NlogN) algorithm
for Problem S1, S3 is converted to a convex polygon inclusion problem and a
simple O(N) algorithm is presented.

Algorithm S3: Union Hemisphericity

Let the antipode of p be q. Determine whether q is internal to P. Since
the (spherical) convex polygon P can be viewed as the intersection of
the unit sphere S? and all the half-spaces, each of which is
determined by an edge of P and the origin, q in S?is internal to P if it
is internal to the intersection of all the half-spaces thus defined.
Whether q lies in a half-space can be found by taking dot product of q
and the normal of the plane defining the half-space. If q is internal to
P, the union of P and p includes an antipodal pair, p and q, and,
therefore, it is not hemispherical; otherwise, it is hemispherical.

This algorithm requires O(N) time because the detection of whether a point
lies in a half-space takes constant time and the polygon has N edges.

Problem S4: Intersection of Hemispheres. Given N hemispheres H;,
H,,...,Hy, find their intersection.

By observing the duality between a point and a hemisphere on the sphere, It
is shown that Problem S4 is the dual of Problem S2.
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Theorem 4.2 Suppose a hemisphere is defined as H; ={x | (p;x) 20,
D; = (D;1,Di2:D;3), X € S?), i=1,..,N. Then, the intersection of hemispheres
H;nHy NN Hy exists if and only if the set P of points p;, i = 1,...,N, is
hemispherical.

Proof. Suppose P is hemispherical. The intersection H; n Hy 1" Hy exists
since, for any jk, 15jsN, 1<k<N, H; n Hy is not empty. Suppose P is not
hemispherical. Let P* = { p | (p-q;) >0, pe P} where q; is the antipode of
some p; € P. Then P* is the largest subset of P such that the union of P* and
q is hemispherical. Since P is not hemispherical, P* is not empty. Let
I*={il p, eP* }. The intersection of H;, ie I*, exists since P* is
hemispherical. Furthermore, this intersection lies within the open
hemisphere H;' = {x | (p;x) <0, x ¢ S2?) which has no intersection with H;.
Therefore, the intersection H; n Hy n""'n Hy is empty. Q

Theorem 4.3 Let H; = (x | (p;-x) 20, p;= (p;;,Di2:Di3), X € S2 J, i=1,..,N, and
P be the set of points p;, i = 1,...,N. If P is hemispherical, each vertex of the

spherical convex hull SCH(P) corresponds to an edge of the intersection
H;NnHy "N Hy and vice versa.

Proof. First, it is shown that the hemisphere determined by any point in
SCH(P) that is not a vertex is redundant, i.e. it does not contribute to the
boundary of the intersection H;n Hy n*"n Hy. Let py be any point in the
interior of the convex hull and Hy = { x | (py-x) 20, x € S%) be the
hemisphere defined by py. Suppose Hy contributes to an edge of the
intersection. Let the edge be decided by the intersection of Hy and two other
hemispheres, H; and H;. Since py is in the interior of SCH(P), there exists
another point p,, € P in the neighborhood of p, such that the distance
between p,, and the edge contributed by H is greater than /2. Then, the
intersection of the hemisphere determined by p,, , H;, and Hj is smaller
than that of Hy, H;, and H;. Therefore, Hy does not contribute to the
boundary. Now, let py be any point on an edge of SCH(P) and let p; and p; be

the two end points of the edge. The intersection of the hemispheres
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determined by py, p;, and p; has only two vertices (since they are collinear)
and two edges (from p; and p;). Therefore, the hemisphere determined by P,

is redundant.

Second, it is shown that the hemisphere determined by a vertex of SCH(P) is
non-redundant. Let py be a vertex of SCH(P) and Hy be the hemisphere

determined by py. Suppose H; is redundant. Then, there does not exist
X = (X1,X9,X3) such that

Pi1X1 + PioXg + PigX3 2 0, 1<i<N, izk

Pk1X1 + PxoXg + PyaX3 <0
By Farkas' Lemma [10], there exists some y = (yy,....¥k.1,¥k+15--»¥n) Such that
| P11Y1 + +Pk-1,1¥k-1 + Pk+1,1¥k+1 +  + PN1YN = Px1

P12V1 + " +Pk.1,2Vk-1 + Pk+1,2Yke1 + + PN2YN = Pk2

P13¥1 + " +Pk-1,3Vk-1 + Pk+1,3Yke1 +  + PN3YN = Px3

YireeosYk-1Yke 1o YN 20
Therefore, py can be written as a non-negative linear combination of p;,
1<icN, izk. This contradicts the fact that p, is a vertex. Q

Figure 4.6 illustrates the duality between the convex hull of p; and the
intersection of H;. Each edge of the intersection corresponds to a vertex of

the convex hull. Based on Theorem 4.2 and Theorem 4.3, an O(NlogN)
algorithm is proposed here for computing the intersection of hemispheres.

< Insert Figure 4.3>

Algorithm S4: Intersection of Hemispheres

Step 1. Determine if P is hemispherical. (This requires O(NlogN)
time using Algorithm S1.) If P is not hemispherical, the intersection
H, n Hy n""n Hy is empty; otherwise, go to Step 2.

Step 2. Find SCH(P). (This can be done in O(N) time using Algorithm
S2.)
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Figure 4.3 Dhuality between Convex Hull and Intersection



Step 3. Find a point p in the interior of SCH(P). By Theorem 4.3, this
point determines a hemisphere that completely contains the
intersection H; N Hy n""NHy. (This can be done in O(N) time.)

Step 4. Traverse SCH(P) and construct the intersection
H; n Hy 7" Hy. For each edge of SCH(P), the intersection of the two
corresponding hemispheres determines a pair of antipodal points.
One of the pair, which has a positive dot product with p (found at Step
3), is a vertex of H; n Hy n"'n Hy. (This step can be done in O(N) time
since the intersection of two hemispheres can be computed in
constant time by taking the cross-product of the two unit normals.)

5. Conclusions

Unifying two fields of research — one that is analytically complex (but
combinatorially simple) and the other combinatorially complex (but
analytically simple) — may result in one of two outcomes. If an attempt had
been made via the "lowest common denominator” of the two fields, e.g. the
machining of planar surfaces, the outcome would have been predictably
trivial. This paper reflects an attempt to combine the more appealing
aspects of both fields by way of spherical geometry. To avoid duplication of
and to give recognition to past work, central projection is adopted in this
paper.

In computational efficiency, simplicity in structure offers many
advantages. Convexity has been employed as the underlying theme in this
paper in the form of hemisphericity and its related computations.
Hemisphericity is justified by the practical application of NC machining,
and , in particular, the geometry of the cutting tools and the degree of
freedom in 3-, 4-, 5-axis milling machines.
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