THE UNIVERSITY OF MICHIGAN
COMPUTING RESEARCH LABORATORY

OPTIMAL GRAPH CLUSTERING PROBLEMS
WITH APPLICATIONS TO
INFORMATION SYSTEM DESIGN

Wan Ping Ehlang
—

CRL-TR-30-84

June 1984

Room 1079, East Engineering Building
Ann Arbor, Michigan 48109
USA

Tel: (313) 763-8000



é‘Y\Cm

U PH &




ABSTRACT

OPTIMAL GRAPH CLUSTERING PROBLEMS

WITH APPLICATIONS TO INFORMATION SYSTEM DESIGN

by

Wan Ping Chiang

Chairmen: Toby J. Teorey, William C. Rounds

Information system design problems, including database
and softwarex can often be represented in terms of directed
or undirected graphs. Some of these problems typically
involve determining how to cut the graph into a set of
nonvoid and disjoint subgraphs such that each of the
subgraphs satisfies a set of constraints while an objective
function defined over the subgraphs is optimized.

This class of information system design problems 1is
analyzed with the following three objectives: First, to
formally define this class of problems as an Optimal Graph
Clustering (OGC) problem and classify it 1into a set of
subproblems. Second, to find efficient algorithms that give
an exact and optimal solution to each problem with
nontrivial objective function and constraints. And third,
to demonstrate these algorithms' usefulness by formalizing

and solving some information system (database and software)



design problems.

Eight classes of digraphs (general digraph, acyclic
digraph, out-necklace, out-tree, out-star, in-necklace, in-
tree and in-star) and four classes of wundirected graphs
(general wundirected graph, necklace, tree and star) are
considered and are used to classify the OGC problem into
thirty-five subproblems. These subproblems are shown to be
NP-complete problems.

Dynamic programming and enumerative approaches are used
to show that eighteen OGC subproblems with a given graph
that has n-1 arcs or n arcs can be solved in
pseudopolynomial time., It is also determined that 1in the
rest of the NP-complete problems, if the graphs are sparse
(i.e., the.number of arcs does not exceed the number of
vertices greatly) they are solvable by computer.

The class of possible objective functions and
constraints applicable to these solutions such that all time
complexities remain the same is also defined. All monotonic
objective functions and constant time computable constraints
are found to be applicable.

The solutions' wusefulness is demonstrated by solving
three information system design problems: B-tree secondary
storage allocation, translation of an integrated schema into

a hierarchial schema, and database record clustering.
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CHAPTER 1

INTRODUCTION

This dissertation studies a class of information system
(database and software) design problems that has the two
following characteristics:

1) The problem can be represented as a graph (directed or
undirected).

2) The problem is how to cut the graph into a set of
nonvoid and disjoint subgraphs such that each of the

subgraphs satisfies a set of constraints while an

objective function defined over the subgraphs is

optimized.
Some examples of this class of problems are:

B-tree secondary storage allocation (see Chapter 6);
translation of database integrated schema to IMS
schema (see Chapter 6);

- database record clustering (Schkolnick '77),'(Chiang &
Teorey '82), (also see Chapter 6);
computational objects allocation in distributed
systems (Jenny '82);
software system partitioning (Belady & Evangelisti

'81); and

+ program restructurfﬁg (Ferrari '76).



There have been approaches to some of these problems,
but they are wusually specific to 1isolated cases or
restricted to simple objective function and constraints.
This dissertation goes beyond isolated cases to provide a
generalized and unified framework for this class of problems
and provide a set of efficient and structuralized solutions
to them. Efforts are also spent to extend the objective
function and constraints. The purpose of this study is thus
threefold:

- 1) To formally define this class of problems as an

Optimal Graph Clustering (OGC) problem and classify it

into a set of subproblems.

2) To find efficient algorithms that give an exact and
optimal solution to each problem with nontrivial
objective function and constraints. Heuristic or
approximate solutions are not considered.

3) To demonstrate these algorithms' usefulness by
formalizing and solving some information system
(database and software) design problems.

The first purpose is taken up 1in this chapter. The
definition of the OGC problem and the classification of it
into a set of optimal graph clustering subproblems are
presented in section 1.1. The complexity issues of the
subproblems‘are studied in section 1.2. Section 1.3 gives a
literature survey of the OGC problem and section 1.4 gives
the organizatién of this dissertation.

The graph theory terminology used throughout this



dissertation follows those of Harary ('69) and Aho et al
('74). If a different term/notation is used, it will be

followed by the established term/notation in brackets.

1.1 Problem Definition and Classifications

Given a (connected) graph G=(V,E) with vertex set V and
arc set E, a clustering K of G is defined as a cutting of G
into a set of nonvoid and disjoint (connected) subgraphs by

removing some arcs in G. Thus, a clustering K 1is an

assignment function which assigns either 0 or 1 to each arc
of E. An assignment with value 0 means the arc is. removed
(or cut) while a 1 assignment means the arc is not removed
(or cut). Each clustering K can be represented as a set of
arc assignmenté Xij’ i.e.,

K = { | X.. = K((v.,vj)) for all (Vi'vj)eE} (see

xij 1j i
Figure 1-la),
or a set of clusters it induces, i.e.,
K = {C|C is a cluster induced by K}.
Each of these clusters is a (connected) subgraph of G (see
Figure 1-1b).

Let |E| represent the number of arcs in G and let PK
represent the set of all possible clusterings of G. Thus,
PK contains 2IEI possible clusterings of G. A clustering of
G which satisfies a given set of constraints defined for a

problem is called a feasible clustering. Let Eﬁf be the

subset of PK which contains only feasible clusterings.
Based on the above, an Optimal Graph Clustering (OGC)

problem can be defined as:



b)

B=3
Wi (wi=1)

Figure 1-1a) A clustering with X 4=Kye=0, X =X, =X =1

Figure 1-1b) Three clusters induced by the clustering



Given: 1) a graph G=(V,E);
2) an objective function F;
3) two constraints: one limit the size of each
cluster and the other requires each cluster to
be a (connected) subgraph of G.
Find: a clustering K which satisfies these two
constraints and has optimal objective function

F(K).

In this dissertation, only twelve classes of graphs are

considered. They are:

(connected) directed graph -- general digraph (Gg),
acyclic digraph(Ga), out-necklace(G_,) [contra
functional digraph (Harary '69)1], out—tree(Gt,), out-
star(Gs;), in—necklace(th) [functional digraph

(Harary '69)1], in-tree(G,,), in-star(Gsl) (see Figures
1-2 and 5-1la);

+ (connected) undirected graph -- general undirected

graph(Gu), necklace(Gn) [unicyclic graph  (Harary

'69)], tree(G,), star(Gs) (see Figure 5-1b).

t

The OGC problem can be classified into many subproblems
by wusing the class of graph given and the class of cluster
induced by a clustering. Since an wundirected graph can
never be obtained by clustering a directed graph and vice
versa, the OGC problem can first be classified into two

families of problems. One family deals with the directed

| graph and is called an Optimal Digraph Clustering (0ODC)

problem. The other deals with the undirected graph and is



general digraph

acyclic digraph

°' e ° out-necklace

e e out-tree

FOT

Figure 1-2 Five classes of digraphs.



called an Optimal Undirected Graph Clustering (OUC) problem.

Both ODC and OUC problems can be refined into a set of
subproblems based on whether a <class of graph can be
obtained by clustering another class of graph. A class of
graph B (e.g., out-tree) is a subclass of a class of graph A
(e.g., acyclic digraph), denoted A --> B, if B is a class of
graph obtainable by clustering A (i.e., B can be a subgraph

of A).

Proposition 1.1:

a) ----> Gno————-—-—--T
T“"> Gio > Ggo
G ---> G
g a l
I-—-—> G,y == Gg
_———> Gn1 ___________
b) Gu -=> Gn -=> Gt -=> GS
Proof:
a) (Gg -=> G ,): A necklace is one in vhich every vertex has

indegree 1. Given a general digraph with cycles and q m-
indegree vertices Vir Vor eees vq in it (i.e., those that
have in-degree more than 1), to transform an m-indegree
vertex 2 into an 1indegree 1 vertex we need to remove
id(vi) - 1 arcs, where id(vi) is the indegree of Vi By
repeating all combinations of the removal process, we can
find at least one occurrence of an out-necklace. If this
is not true, then the original given digraph 1is an

acyclic digraph, which 1is a contradiction. Thus, Gg——>



G

noe The rest of the subclass relations in a) can be

proved similarly. Q.E.D.
b) Similar to a). Q.E.D.
Using Proposition 1.1, the set of subproblems for ODC
is: (The first subscript of ODC or OUC 1is the class of

cluster 1induced; the second 1is the class of the graph

given.)
\digraph|general acyclic out(in)- out(in)- out(in)-
\given |digraph digraph necklace tree star
c%gg&i;;\\ Gg Ga Gn°(Gn1) Gt°(Gt1) Gs°(Gsl)
Gg | ODCgg
Ga ODCag ODCaa _____________________________
G : ODC, o ODC_ 4 o
Gt° ODCt°g ODCtoa ODCt°n° ODCtoto
GS° ODCSog ODCs°a ODCSono ODCs°to ODCSoso
o ODC 1 g ODC_ ;. ,
G, ODCyyy  ODCiyy | ODCiupy  ODCyuy,
Gy ODCg,g  ODCeuy | ODCgypy ODCgyys  ODCyus
The set of subproblems for OUC is:
\graph |[general
cluster\given| graph necklace tree star
induced \\ Gu Gn Gt | GS
Gu OUCuu _________________________________
Gn OUCnu OUCnn
Gt OUCtu OUCtn OUCtt
Gs OUCsu OUCsn OUCst OUCss

1.2 Complexity Issues



All the OGC subproblems being discussed in this

dissertation are NP-complete problems. To prove that, it is

only necessary to show that ODCs oDcC

, and OUCSs are.

Osol sls

To show OUCss' ODCSoso and ODCslsl are NP-complete, it is
only necessary to show that the integer versions of them
with integer objective value function and constraint
are. The integer versions of these three problems can be
defined as follows:

Given:

1) a star/out-star/in-star;

2) an objective function:

F(K) = > f.. + X,. where
T 1] 1]
all (Vi’vj)
f is a positive integer value associated with each

ij
arc (Vi'vj);

3) two constraints:
3.1) every cluster must be a star/out-star/in-star or

its subclass;

3.2) let a vertex weight be a positive integer value

L associated with each vertex and the cluster
weight of a cluster be defined as the sum of all
vertex weights 1in the cluster; every cluster
weight must be less than or equal to a positive
integer B.

Find: a feasible clustering K such that F(K) is

minimized.

Proposition 1.2: All OGC subproblems considered in this
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dissertation are NP-complete problems.

Proof: Bertolazzi et al ('80) showed the subset sum problem
is polynomial reducible to the integer version of
OUCSS. Since the former has been shown to be NP-complete,
the latter is also NP-complete. The same technique can also
is

be used to show the integer version of ODCs°s°/0Dcslsl

NP-complete by replacing the term "tree" with "out-tree/in-

tree".
Since the integer version of OUCss/ODCs°s°/ODCslsl is
NP-complete, the general version of OUCss/ODCs°s°/ODCslsl

that is defined in section 1.1 is also NP-complete by using

the proof by restriction technique (Garey & Johnson '79).
Again, using proof by restriction, since the rest of the
OGC subproblems are mere generalizations of the general

version of OUCSS/ODC /ODCSISI, they are also NP-complete.

s°s®
Q.E.D.

The fact that all of the OGC subproblems discussed in
this dissertation are NP-complete does not mean efficient
and practical algorithms cannot be found to solve them,

Because they are also number problems, eighteen

pseudopolynomial time solutions have been found in this

dissertation (see those enclosed in the dashed lines in the
two tables above). One advantage of pseudopolynomial time
solutions is that they are practical (efficient) in many
real life applications. A second advantage is that they can
often be turned into fully polynomial time approximate

schemes (Garey & Johnson '79).
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1.3 Literature Survey

Many studies on the OGC problem originated from
diversed application areas. Some of them are listed at the
beginning of this chapter. Most of the early approaches
formalize the problem too generally (as an ouc,, or ODCgg
problem) and are very difficult. Thus, either heuristic
algorithms are proposed or problems with restricted
objective function and constraints have been solved.

Lukes ('72,'74,'75) used a dynamic programming

technique to solve OUC,, and ODC with restricted

tet®
objective function and constraints and provided an O(n-Bz)
solution for the latter. The n is the number of vertices in
the given graph .and B 1is an integer weight bound of the
clusters. In this study, Lukes' technique 1is wused with
considerable modifications and extensions.
Recently, efficient algorithms have been found for
ODCtoto and OUCss‘ They are:
Bertolazzi et al ('80) developed an 0(n:B) algorithm
for the integer version of OUC i
+ Johnson and Niemi ('83) found an O(nz‘B) algorithm for
a nonnegative integer version of ODCtoto where the
objective function value, the vertex weight and the
bound B are nonnegative integers;
+ Schrader ('83) devised an approximations algorithm for
ODCt°t°;
+ Perl and Snir ('83) discﬁssed a generalized solution

for the integer version of ODCtoto -- the
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generalization is to allow an additional integer bound

on the total objective function value of each cluster.

1.4 The Organization of the Dissertation

This dissertation is organized into seven chapters. 1In
Chapter 1, the motivation, the problem definition and
classifications, complexity issues and a literature survey
are presented. In Chapters 2 through 4, three subsets of
the ODC problem solutions involving only general digraph,
acyclic digraph, out-necklace, out-tree and out-star are
presented (See Figure 1-2). The discussions are restricted
to a simple objective function and two constraints. The
division of these ODC problems into three chapters can be
formulated as an ODC problem. Its solution is discussed in
Appendix A.

In Chapter 5, solutions presentéd in Chapters 2 to 4
are used to solve the rest of the ODC problems and all of
the OUC problems. Also included are: how to deal with
disconnected graphs and graphs with parallel arcs or loops;
an extension to the class of objective functions and
constraints that can be defined for all OGC subproblems so
that the time complexity of the corresponding algorithm
remains the same; and a technique to lessen the high
complexity of algorithms presented in Chapter 4.

In Chapter 6, three information system design problems
are presented to demonstrate the usefulness of the
solutions. The three applications are: B-tree secondary

storage allocation, translation of a database integrated
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schema into an IMS schema, and database record clustering.
A summary of results and a future research direction

are given in Chapter 7.



CHAPTER 2

OPTIMAL OUT-TREE/OUT-STAR CLUSTERING OF

OUT-TREE/OUT-STAR PROBLEMS

This chapter analyzes and solves three ODC problems:

OoDC ODC and ODC

tOtO! sOto SOSO

Since the algorithm used to solve ODC

(cluster 1 in Appendix A).
toto is fundamental to
the understanding of all solutions to the OGC subproblems, a
detailed description of the approach to solving it and its
solution are first presented in section 2.1. In section 2.2,
~a solution for ODCs°t° is discussed. The solution for

ODC is given in section 2.3,

s’s®

Throughout this chapter and Chapters 3 and 4, two simple
constraints and a simple objective function are used. They
are defined in terms of:

1) a vertex weight L which is a nonnegative integer, and

it is associated with each vertex V. of V;
2) an arc value fij’ which is a nonnegative real number,
and it is associated with each arc (vr,vj) of E; and

3) a weight bound B, which is a nonnegative integer.

Also, it is defined here that cluster weight W(C) is the sum

of the vertex weight of all vertices in cluster C and a

cluster value F(C) is the sum of the arc values of all arcs

in cluster C.

14
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2.1 Optimal Out-Tree Clustering of an Out-Tree Problem

t°t°)
The ODC

(opC
fogo problem is to find a set of nonvoid and
disjoint clusters that are subgraphs of the given out-tree
such that a set of constraints (one of them requires each
cluster being an out-tree or its subclass) is satisfied
while an objective function is optimized.

A maximization version of ODC is defined as:

tOtO
Given:

1) an out-tree G=(V,E);
2) two constraints on the set of clusters induced by a
clustering K are:

a) cluster graph class constraint: every cluster must

be an out-tree or its subclass;

b) integer cluster weight constraint: every cluster Cp
must have a cluster weighf less than or equal to B;

3) an objective function F:PK--> R*u{0} (nonnegative real
number) which is defined as the sum of the cluster

values of all clusters Cp induced by a clustering K,

i.e,
F(K) = > F(C)
all Cpinduced by K p
- > (> £io)
all Cpinduced by K (i,j)ECp J
=> f.. = Xeo o+ £...

> :

Xi5°1 1] (i,3)eE *J 1]

Find: a feasible <clustering K such that F(K) is
maximized.

A minimization version of ODC can be defined

tote
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similarly by changing the objective function to

F(R) = > f.. - > f..
(i,3)ee I X..=1%J

Xij=o (1,J)€Eto
and the problem is to find a feasible clustering K such that
F(K) is minimized.

Obviously, the maximization and minimization versions
are equivalent. Hereafter, only the maximization version
will be used to define problems and to 1illustrate their
solutions. The solution approach will first be presented in

section 2.1.1 and an algorithm to solve ODC in section

tete

2.1.2.

2.1.1 A Sequential Clustering Approach to ODCt°t°
From the definition of a clustering (section 1.1) an

enumerative clustering approach can be used to solve ODCtoto

and the rest of the problems being considered in this
dissertation. Such an approach consists of three steps:

1) Enumerate all possible clusterings by cutting all
possible combinations of one arc, two arcs, ..., and m
arcs.

2) Determine a subset of the set of possible clusterings
that satisfies all constraints.

3) Find an optimal value clustering among these feasible
clusterings.

The first step forms

(T) + (g) + oo (2) = 2™ clusterings
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and is therefore impractical. It is proposed here that a

sequential clustering approach can solve ODCtoto in
pseudopolynomial time.
Given an out-tree G, a sequential clustering approach

sequences the clustering process into a finite sequentially

ordered stages. At each stage, a larger set of subgraphs of

G, which is obtained from the immediate previous stage by
adding a vertex or an arc, is considered. Because the set of
sugraphs of G considered at one stage contains only one more
vertex or arc than ité immediate previous stage, the set of
all feasible clusterings of one stage can be obtained from
the immediate previous stage by simple operations (i.e.,
operations that take constant time to execute). The main
thrust is to use the integer cluster weight constraint and
objective function to define an elimination rule such that
at most a constant number of feasible clusterings (B)
remains at each stage. Thus, the problem can be solved in
pseudopolynomial time.

To describe how the clustering process is sequenced
and to identify the simple operations needed in the
sequential clustering approach, it 1is necessary to first
define some terms and notations.

Terms and Notations:

Let the given out-tree G=(V,E) have m arcs and n vertices
and let Vroot,be the root of G. For each v €V, G[vr] is
any subgraph of G rooted at v_.. od(vr) is the outdegree

of V. where od(vr)=0 if V. is a leaf vertex. For each
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vrev‘and i, OSiSOd(Vr), G[vr,i] is the subgraph of G
induced by Vo by 1its first i children (from left to
right), and by all their descendants (see Figure 2-1).
Note that Glv t,od(v )]=G and G[vr,O] is the
subgraph of G consisting of only the vertex V.. A

subgraph G[vr,i] of G rooted at v_ is a complete subgraph

r

if 1 = od(vr) and is a partial subgraph if i < od(vr).
Observe that G[vr,i+1] is a larger subgraph of G than
G[vr,i]. It not only contains the partial subgraph
G[vr,i] rooted at v, but also the complete subgraph
rooted at Vj’ which is the i+lth child of V. (denoted by
G[vj,od(vj)]), and the arc (Vr’vj) connecting the two

subgraphs G[vr,i] and G[vj,od(vj)].

The clustering process is sequenced in stages by

visiting the vertices of G in postorder traversal sequence

(Aho et al '74). At each vertex ~ G[vr,O] is first

considered and then G[vr,l], G[vr,2], ceey G[vr,od(vr)].
Since there are n vertices and m arcs, there are m+n stages.
Figure 2-2 shows all eleven stages of the clustering process
of the out-tree that has six vertices and five arcs given in
Figure 2-1. Note that each vertex V. is 1involved in
od(vr)+1 stages.

In Figure 2-2, because the vertices are visited 1in
postorder traversal sequence, at each stage of the
clustering process, the grapﬁ considered are a set of

subgraphs of G (not necessarily a single connected

subgraph). For example, at stage 6, there are two
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G[2,0] @ G[2,2] o

G[2,1] 0

B=3
Vvi (wi=1)

Figure 2-1 An out-tree and its G[vr,i]'s.



20

(=)

oo O
Molo 2

; (2)
9% ojto

°Q
g *
R

Figure 2-2 The eleven stages of the clustering process of
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subgraphs: {Vv = {2,4}, E = {(2,4)}} and {V = {5,6}, E =
{(5,6)}}. Except for maybe one, each éubgraph in the set is
a complete subgraph of G. For example, at stage 6, subgraph
{v = {5,6}, E = {(5,6)}} is a complete subgraph rooted at 5
while {Vv = {2,4}, E = {(2,4)}} is a partial subgraph rooted
at 2. At stage 7, there is only one subgraph rooted at 2
and it is a complete subgraph. There are two patterns of
changes in the set of subgraphs considered from stage to

stage:
1) If all subgraphs in stage k are complete subgraphs,
then in stage k+l1 the set of subgraphs considered will

contain a new vertex as a separate subgraph. This

stage_k+1 is called a new vertex stage (e.g., stages

1,2,3,5,8,and 9 in Figure 2-2).

2) 1If one of the subgraphs in stage k is a partial
subgraph, then in stage "k+l1 the set of subgraphs
considered will contain a new arc which connects the
root of this partial subgraph with the root of a

complete subgraph existing in the set of subgraphs
considered in stage k. This stage k+1 is called a new
arc stage (e.g., stages 4,6,7,10,and 11 1in Figure

2-2).
Since the set of subgraphs of G considered at each néw stage
only contains one more new vertex or arc than the immediate
previous stage, there is no need to form all possible
cluSterings from scratch for each new stage. This means

that if the set of all possible clustering PK, of stage k is
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known, the set of all possible clusterings PKk+1 of the next
stage k+1 can be obtained by some simple operations on PK, .

The set of all possible clustering PRy formed at stage
k can be represented by s subsets of clusterings if there
are s disjoint subgraphs considered at that stage. Each
subset of clusterings represents the set of all possible
clusterings for each subgraph. Let each clustering be
represented by the set of clusters it induces. For example,
in Figure 2-2, {v={4},E=0},{{v={5,6},E=0},
{v={5,6},E={(5,6)}} is all possible clusterings of the two
subgraphs in stage 4. To obtain all possible clusterings of
stage 5, a new vertex stage, an operation which "inserts"
vertex 2 as a separate cluster 1into the set of possible
clusterings is needed. Thus, the resulting clusterings of
stage 5 is {v={2},E=0}, {{4},E=0}, {{v={5,6},E={(5,6)
},{v={5,6},E=0}}. Consider stage 6, a new arc stage, since
vertices 2 and 4 are connected by arc (2,4), there is a
possibility that {v={2},E=0} and {Vv={4},E=0} could be
"connected" together to form one cluster after clustering
(i.e, assignment X24=1) or not be connected together but
simply "put" next to each other (i.e., assignment X24=0).
Thus, the new set of possible clusterings in stage 6 is
{{v={2,4},B={(2,4)}},{v={2,4},E=0}},
{{v={5,6},E={(5,6)1},{v={5,6},E=0}}.

It is now obvious that the necessary operations needed
in the sequential clustering approach are an insertion

operation in the new vertex stage and connect/put operations



23

in the new arc stage. To formalize these operations, let
(6lvy,0a(vy)],  Glvy,0da(vy)l, ..., Glvg,0d(vl, ...,
G[vr,i]} be the set of mutually disjoint subgraphs rooted at
Vl’V2’°‘°'Vj""'Vr that are being considered in stage k,
with G[vj,od(vj)] as the i+lth complete child subgraph of
v.. Let PK, be the set of all possible clusterings formed
at stage k. PKk includes PK(G[vl,od(vl)], PK(G[vz,od(vz)])

“eoy PK(G[vj,od(vj)], ..., and PK(G[vr,i]) because there are
r disjoint subgraphs considered at stage k. The operations

needed in the two types of stages are:

For new vertex stage:

At stage k+l, the set of subgraphs considered is
{Glvy,0d(vy)], G[vz,od(vz)], ceey G[vj,od(vj)], cees
G[vr,1], G[vp,O]} where G[vp,O] represents the new vertex v
~ that is introduced. There is only one way to obtain a
clustering of a single vertex, which 1is a cluster
containing only this vertex. Thus, the new set of all
possible clusterings can be obtained by inserting
{{V={vp},E=®}} into PK,, i.e.,

INSERT operation:

= PK, U {{v={vp},E=®}}.

PKk+l

For new arc stage:

At stage k+l, the set of subgraphs considered is
{G[vl,od(vi)], G{vz,od(vz)], cees G[vj_l,od(vj )1, Glv.
od(v

j+l’
J+l)] cey G[vr_l,od(vr_l)], G[vr,i+1]} where G[vr,1+l]

is a subgraph formed by connecting G[vj,od(vj)] and G[vr,i]
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that exist in stage k with an arc (vr,vj). Let the set of

]
by PK[vj,od(vj)] and PK[vr,i] respectively. Thus,

possible clusterings of G[v.,od(vj)] and G[vr,i] be denoted

PK,,; = PK, - PK[v_,i] - PK[vj,od(vj)] v PRv_,i+1].

Let K[vr,i] and K[vj,od(vj)] be any two clusterings of
PK[vr,i] and PK[vj,od(vj)] respectively. Let K[vr,i] =
{Cl’CZ""’Cq}’ and K[vj,od(vj)] = {Cl',Cz',...,Cp'}, and
assume C1 and Cl' are clusters that contain the root of
G[vr,i] and G[vj,od(vj)] respectively.

The set of all possible clusterings for PK[vr,i+l] can
be obtained from all possible combinations of K[vr,i] in
PK[vr,i] and K[vj,od(vj)] in PK[vj,od(vj)] for assignment
xij= 0 (denoted by PK°[vr,i+l]) and 1 (denoted by
PKl[vr,i+1]) on arc (vr,vj), i.e.,

PK[vr,i+1] = PK°[vr,i+l] v PK‘[vr,i+l];

PK°[vr,i+l] = {K°[vr,i+l] is formed using PUT for every
pair of K[vr,i] and K[vj,od(vj)]};

PK‘[vr,i+l] = {K‘[vr,i+1] is formed using CONNECT for
every pair of K[vr,i] and K[vj,od(vj)]}, where

PUT operation:

K°[vr,i+l] = K[vr,i] U K[vj,od(vj)];

CONNECT operation:

K‘[vr,1+1] = {cz,c3,...,cp,c2',c3',...,cq'} v {cl }

where C1" is equal to the connecting of clusters Cy

and C;' by arc (vr,vj).

To obtain all feasible clusterings instead of just all

possible clusterings, the out-tree cluster and cluster
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weight constraints need to be enforced in each stage. This
can be easily done because:

1) Any cluster formed 1in the sequential clustering
approach is a subgraph of an out-tree and is also an
out-tree itself. Thus, the out-tree cluster
constraint is automatically enforced in the process.

2) For each pair of clusterings from PK[vr,i] and
PK[vj,od(i+l)], only the CONNECT operation form a new
cluster Cl" which has a new higher <cluster weight
value. To make sure every cluster formed is less than
B at each new arc stage, the CONNECT operation can be

made conditional as follows:

IF w(cl) + w(cl') < B THEN
K‘[vr,1+1] = {cz,c3,...,cp,c2 ,c3',...,cq'}u{cl"}

Thus, the set of all feasible clusterings formed at stage

k+1 (denoted PK£+1) can be easily obtained by applying
either INSERT or PUT/conditional CONNECT operations on PKi.
2.1.2 ODC -1 Algorithm

tete
For computational purpose, let each feasible clustering
K of a subgraph be represented by a triplet
(F(K),W(K),CF(K)) that <contains the following three

components:

1) A wvalue component F(K) which stores the sum of the

cluster values of all the <clusters induced by the

clustering.

2) A weight component W(K) which stores the cluster
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weight of the cluster that contains the root of the

subgraph.

3) A configuration component CF(K) which stores the

clusters induced by this clustering of the subgraph
and each cluster is represented by the vertices in it
enclosed by "< >",

At each stage of the clustering process, if there are s
subgraphs considered at a stage, there are s sets of
feasible triplets formed. Each of these s sets of feasible
triplets represents all feasible clusterings of a subgraph
considered at that stage.

Notation:

Let PKi and PK}f{+l now represent all feasible triplets

produced at stages k and k+1, and let PKf[vr,i+1],
PKf[vr,i], and PKf[vj,od(vj)] now represent all feasible
triplets of the subgraph G[vr,i+1], G[vr,i] and
G[vj,od(vj)] respectively. Let K[vr,i+l], K[vr,i] and
K[vj,od(vj)] be a feasible triplet 1in PKf[vr,i+l],
PKf[vr,i] and PKf[vj,od(vj)] respectively.

The three operations can now be redefined in terms of

triplet formation:

INSERT operation:
pri . = I v {(0,v_,<v_>)}
k+1 k rWprSVp7l e
PUT operation:

form K°[vr,i+1] with
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F(K[Vr,i+l]) F(R[v_,1i]) + F(K[vj,od(vj)]),

W(K[vr,i+l])

w(K[vr,i]), and

CF(K[vr,i+1]) = CF(K[Vr.i]) u CF(K[Vj,Od(Vj)]).

Conditional CONNECT operation:
IF W(Cl) + W(Cl') < B THEN
form K‘[vr,i+l] with

F(K[Vr,i+1])=F(K[vr,i]) + F(K[vj,od(vj)]) + frj’

w(x[vr,i+i])=w(cl) + W(C;'), and

CF(K[v_,i+1])= {cz,c3,...,cp,c ', c3',...,cq'}

u {Cl v Cl'}.

For example, let {(0,1,<4>)},{(0,1,<5><6>),(2,2,<5,6>)} be
the set of all feasible triplets formed at stage 4 in Figure
2-2. The feasible triplet sets formed at stage 5 using the
INSERT operation are
{(0,1,<2>)},{(0,1,<4>)},{(0,1,<5><6>),(2,2,<5,6>)}. The
feasible triplet sets formed at stages 6 and 7 using the PUT
and conditional CONNECT are: (Assume B=3 and va (wp=l).)

stage 6:

{(0,1,<2><4>),(3,2,<2,4>)},

{(0,1,<5><6>),(2,2,<5,6>)};

stage 7:

{(0,1,<2><4><5><6>),(2,1,<2><4><5,6>),
(3,2,<2,4><5><6>),(5,2,<2,4><5,6>),(7,2,<2,5><4><6>),
(9,3,<2,5,6><4>),(10,3,<2,4,5><6>) }.

In the above example, every new vertex stage forms one

additional new triplet wusing INSERT while every new arc
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stage can double the number of triplets formed 1in the
immediate previous stage using PUT/conditional CONNECT.
Thus, unless reduction of the number of feasible triplets
can be done at the end of each new arc stage, the total
computation time can still be exponential. Fortunately,
some triplets formed at each new arc stage can be eliminated
because they can never be extended to the optimal clustering

of the out-tree.

The 1idea 1is to define a dominance relation on the set

of new feasible triplets formed at each new arc stage. Let
Kl and K2 be any two feasible triplets formed at the same
new arc stage. K, dominates K, if F(K;) 2 F(K,) and w(K,) <

W(Kz).

Proposition 2.1: The dominated triplet K, cannot be
extended to the optimal clustering of the out-tree.
Proof: (See Proposition 4.4 in Chapter 4 where a
generalized proof is given.) Q.E.D.

Proposition 2.1 implies that at the end of each new arc
stage, all dominated triplets can be eliminated. The

elimination can be done in two steps by decomposing W(Kl) <

W(Kz) into

W(Kl) = w(xz) and W(Kl) < W(Kz):

step 1) W(Kl) = W(K2) and F(K,) 2 F(Kz):

1) 2
For triplets that have the same weight, retain
the one with the highest value and eliminate the
rest. Thus, only one triplet remains for each

integer weight value.
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step 2) W(K,) < W(Kz) and F(Kl) > F(Kz):
For every remaining triplet Ky, if it has higher
weight than another triplet Ky but have lower or
equal value, then eliminate K,.
Assume that every vertex has vertex weight 1. Since the
weight of a triplet which represents a feasible clustering
of a subgraph is an integer less than or equal to B, the
maximum number of triplets remaining for a subgraph after
each stage is B. If the vertex has weight higher than 1,
and suppose Z is the maximum number of vertices that can be
put in a cluster with cluster weight less than or equal to
B, then the maximum number of triplets remaining for a
subgraph after each stage is Z (<B).
A complete algorithm called ODCt,to—l can now be

specified:

ALGORITHM: ODC 1

tote
INPUT: an out-tree G;
OUTPUT: an optimal out-tree clustering of G and its value;
PROCESS:

I) FOR each v, visited in postorder traversal sequence

DO:

1) FOR j=0 to od(v_ ) DO:

from PKf

1.1) IF j=0 THEN form a new prE K

k+1
using INSERT; ELSE
f f .

1.2) form a new PK, ., from PK, using PUT and

conditional CONNECT;
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eliminate all dominated triplets;

END;

I1) find the optimal value clustering in PK;+n\and RETURN
the solution;

END.

Proposition 2.2: The running time of algorithm ODCtoto—l is
O(n-Zz) (or O(n-Bz) if every vertex has vertex weight 1).

Proof: Every new vertex stage takes constant time while
every new arc stage takes 2-22 time because of the PUT and
conditional CONNECT. Thus, step I) takes O(n-zz) time. Step

I1) takes 0(Z) time. The time complexity of oDC, , is

to
therefore O(n-Zz). Q.E.D.

Example: Applying ODCtoto—l to the example given in Figure
2-2, the following 24 triplets are formed during the

clustering process:

formed formed elimi. elim. by
formed by INSERT by P/C by P/C Dominate rel.
triplets (stage #) (stage #) (stage #) (stage #)
(0,1,<4>) 1 6
(0,1,<6>) 2 4
(0,1,<5>) 3 4
(0,1,<5><6>) 4 7
(2,2,<5,6>) 4 7
(0,1,<2>) 5 6
(0,1,<2><4>) 6 7
(3,2,<2,4>) 6 7
(0,1,<2><4><5><6>) 7 7
(2,1,<2><4><5,6>) 7 10
(7,2,<2,5><4><6>) 7 10
(9,3,<2,5,6><4>) 7 7
(3,2,<2,4><5><6>) 7 7
(5,2,<2,4><5,6>) 7 7
(10,3,<2,4,5><6>) 7 10
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(0,1,<3>) 8 11

(0,1,<1>) 9 10
(2,1,<1><2><4><5,6>) 10 10
(7,1,<1><2,5><4><6>) 10 10
(10,1,<1><2,4,5><6>) 10 11
(5,2,<1,2><4><5,6>) 10 10
(10,3,<1,2,5><4><6>) 10 10
(10,1,<1><2,4,5><6><3>) 11
(15,2,<1,3><2,4,5><6>) 11

The optimal solution is (15,2,<1,3><2,4,5><6>).

Further improvements on ODC -1 can be made, but since the

tet®
time complexity will not change, we will not discuss them

here.

2.2 Optimal Out-Star Clustering of an Out-Star Problem

(opc )

s°s”®
The ODCsoso problem is to find a set of bounded out-
star clusters, or 1its subclass clusters (i.e, those that
have cluster.weight less than B), from an out-star such that
the total wvalue of the set 1is optimized. A formal
definition for the problem is the same as that of ODCt°t°
except that the given digraph is an out-star and each
cluster Cp must be an out-star or its subclass.

Since an out-star 1is a special case of out-tree, all
previous results of ODCt°t° are applicable here. Thus, an

algorithm ODCsoso—l, which is identical to ODC 1, can be

tote
used to solve ODCsoso and even have a lower time complexity.

Proposition 2.3: The application of ODCSOS,-I yields a time
complexity of 0(n-2).
Proof: The time complexity 1is O(n-Z) instead of o(n-z%)

because each PKf[vj,od(vj)] has only one triplet in it
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instead of Z triplets. Thus, each new arc stage takes 0O(n-Z)

time. Q.E.D.

Example: Applying the ODCtoto—l to the out-star shown 1in

Figure 2-3 yields the optimal clustering solution as

(8,3,<1,3,4><2>),

2.3 Optimal Out-Star Clustering of an Out-Tree Problem

(opC )

s°t°®
The ODCSoto problem 1is to find a set of bounded out-
star clusters, or its subclass clusters, from an out-tree
such that the total value of the set is maximized. A formal
definition for this problem is the same as that of ODCt°t°
except that each cluster Cp must be an out-star or its
subclass.

The constraint that each cluster must be an out-star
or 1its subclass can be enforced in many ways (e.g.,
incorporate the constraint as an additional condition for
applying conditional CONNECT). The following proposition
suggests the most effective way to enforce the constraint

while 1lowering the time complexity of the solution

algorithm.

Proposition 2.4: Only two triplets need to be retained in
each PKf[vj,od(vj)]. One has a cluster containing vj alone,
the other has the maximum value.

Proof: The constraint that each cluster must be an out-star
or its subclass means that if a vertex vj is connected to

its parent vertex v, in a cluster by the conditional CONNECT
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Figure 2-3 An example out-star and its
optimal clustering result.
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operation (i.e., assignment er=l), then v. cannot have any
child Vi connected to it (i.e., every assignement Xjk must
be 0) and vice versa (otherwise the formed cluster is not an
out-star or its subclass). Thus, not every pair of triplets
in PKf[vr,i] and PKf[vj,od(vj)] can be used by conditional
CONNECT to form a new triplet. As a matter of fact, only a
triplet in PKf[vj,od(vj)] which contains vy alone as a
cluster can be used to form a new triplet with every triplet
in PKf[vi,i].

Similarly, given a triplet K[vr,i] in PKf[vr,i], there
is no need to form Z triplets from K[vr,i] and every triplet
in PKf[vj,od(vj)] using PUT. This is because all these 2
formed triplets have the same weight and thus only the one
with the highest value remains at the end of this stage.
This implies that only the triplet in PKf[vj,od(vj)] with
the maximum value is necessary to form a new cluster with
every triplet in PKf[vr,i] using PUT.

From both arguments above, it can be concluded that
there is only two triplets needed to be retained for each
PKf[vj,od(vj)]. Q.E.D.

An algorithm ODCs,to—l for ODCs°t° can thus be easily

modified from ODCtoto as follows:

ALGORITHM: ODC 1

s°te
INPUT: an out-tree G;

OUTPUT: an optimal out-star clustering of G and its value;
PROCESS:

I) FOR each v, visited in postorder traversal sequence
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DO:
1) FOR j=0 to od(vr) DO:

1.1) same as 1.1) of ODC, o4 0=1;

1.2) same as 1.2) of ODCt,t,—l;
END;

2) eliminate all triplets except two: the triplet
obtaining a cluster that contains v. alone and the
triplet with the highest value;

END;
II1) same as II) of ODC(t°t®)-1;

END.

Proposition 2.5: The running time of algorithm ODCsot,—l is

o(n-2).

Proof: Immediate from that every PKf[vj,od(v.)] contains

only two triplets. Q.E.D.

Example: Applying ODCs,to—l to the out-tree shown in Figure

2-1, the optimal clustering solution is

(15,2,<1,3><2,4,5><6>).



CHAPTER 3

OPTIMAL OUT-TREE/OUT-STAR/OUT-NECKLACE CLUSTERING

OF GENERAL DIGRAPH/ACYCLIC DIGRAPH/NECKLACE PROBLEMS

This chapter uses the cluster graph class constraint

and ODCtoto/ODC

problems: ODC

/ODCs to analyze and solve eight ODC

s°t?®
OoDC

OnD

OoDC ODC

toa' tonol ODC

tOgl
nene and ODCnog (clusters 2, 3, 4, 5 and 6 in Appendix

s°ne°’
ODC

A). Since the solution of the first three problems can be
directly applied to the rest, an analysis and solution of
the first three problems are given first in sections 3.1 and
3.2. The solution to the next three problems are given in

section 3.3. 1In section 3.4, solutions to the last two are

given.

3.1 The Structures of the Set of Possible Clusterings that
Satisfy the Cluster Graph Class Constraint

Let K, and Kj be any two clusterings of a digraph G. Ky
< Kj if every cluster induced by K, is a subgraph of some
cluster induced by Kj. For example, in Figure 3-1, each Kq,

4 K5, K8, K9, KlO and K12 < Kl‘ Note that if Ki < Kj,
then K. can be obtained from Kj by removing some arcs in K..

K

The < relation is reflexive, transitive and anti-symmetric.

It induces a partial ordering on the set of all possible

36
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clusterings PK of G. Let [PK,<] denote the partly ordered

set (poset) that consists of a set PK and a partial ordering

relation < on PK.

For any two elements Ki and Kj in PK, an element Kk in

PK is called the greatest lower bound, or meet of Ki and Kj’

denoted by Ki-Kj if

Kk < Ki’ KkSKj, and
b4 Kl in PK such that Klsxi and KISKj imply KlSKk'
Dually, an element Km € PK is called the least upper

bound, or join of Ki and Kj, denoted by Ki+Kj' if
K,<K_ and KjSKm and
v Kl in PK such that KiSKl and KjSKl imply KmSKl.
A lattice 1is a partly ordered set which has a least
upper bound and a greatest lower bound for every pair of

elememts. Let x and y be any of the five digraph

classes. Define the set of all x clusterings of a specific y

as the subset of all possible clusterings of vy which
satisfies the constraint that each of these clusterings

induces cluster of type x or it subclass.

Proposition 3.1: The set of all out-tree clusterings of an

out-tree (and out-star clusterings of an out-star) together
with the < relation form a lattice.

Proof: This is immediate from the fact that every subgraph
of out-tree/out-star 1is an out-tree/out-star. Thus, every
possible clustering is an out-tree clustering and the set

forms a lattice. Q.E.D.

But the set of out-tree clusterings of a general
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Figure 3-1 All possible out-tree clusterings of an
acyclic digraph.
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digraph, acyclic digraph or out-necklace is not a lattice
because it does not always have a least upper bound for each
pair of elements. For example, in Figure 3-1, Kl-K2=K4 and
K3+K10=K1, but K3+K7 is undefined.

A poset [PK,<] is a join-semilattice (meet-semilattice)

if for any two elements K. and Kj in the poset PK, Ky + Kj

(K. « K.) exists.
1 ]

Proposition 3.2: The set of all out-tree clusterings of a

general digraph (acyclic digraph, out-necklace) together

with the < relation form a meet-semilattice.

. by K., let
j YRy

C= Cian then form three clusters (where n represents graph

Proof: For each cluster Ci induced by Ki and C

intersection):

l) Ci _Co
2) C. - C.
J

3) C.

The set of all clusters so formed for each pair of clusters
from Ky and Kj' denoted by Ky r is also a clustering of PK
because each cluster 1is an out-tree or it subclass.
Obviously, Kk < Ki and Kk < Kj'

Now, assume that there is a Kl in PK such that KISKi,
KlsKj and K, <K, . Let C=C; n Cj # § be an induced cluster
in Kl‘ By KkSKl, C must also be a subgraph of some C'
induced by Kl’ Assume C-C'#@, then C' cannot be a subgraph
of Dboth K, and Kj‘ Thus, C' is not a subgraph of both K,

and Kj' This contradicts the assumption that K,<K, and

K1SKj. Therefore, Klsz. This means that VKl in PK such
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that KlSKi and KISKj imply Klsxk. Thus, the set of all out-
tree clusterings of a general digraph/acyclic digraph/out-
necklace together with < form a meet-semilattice. Q.E.D.
An element K, €EPK is maximal when there is no other
element Kj in PK from which KiSKj (a minimal element is
similarly defined). For a lattice, there is always one
minimal element and one maximal element. In a meet-
semilattice, we note that there 1is always one minimal

element (e.g., Ky, in Figure 3-1) and many maximal elements

(e.g., K, and K, in Figure 3-1).

Proposition 3.3: The poset formed by the set of out-tree
/out-star clusterings of an out-tree/out-star and the <

relation has only one maximal out-tree/out-star clustering.

Proof: Immediate from the set of all out-tree/out-star
clusterings of an out-tree/out-star which together with the

< relation form a lattice (from Proposition 3.1). Q.E.D.

Proposition 3.4: The poset formed by the set of out-tree
clusterings of an out-necklace and the < relation has K

maximal out-tree clusterings if the number of arcs in the

only cycle in the out-necklace is K.

Proof: Each vertex in an out-necklace has indegree 1, while
each vertex in an out-tree also has indegree 1 except for
the root which has indegree 0. Thus, a maximal out-tree
clustering can be obtained by removing a minimum of one arc
from an out-necklace. But 'not all sets of clusterings

generated by removing one arc from the out-necklace are
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out-tree clusterings. It is only those that are formed by
removing an arc in the cycle of the out-necklace are out-
tree clusterings. Thus, if there are K arcs in the out-

necklace, there are K maximal out-tree clusterings. Q.E.D.

Proposition 3.5: The poset formed by the set of out-tree
clusterings of an acyclic digraph and the < relation has

L = %T a; maximal out-tree clusterings
i=1

if the acyclic digraph has p m-indegree vertices where each
has indegree a;.
Proof: Let the indegree of the set of m-indegree vertices
in the given acyclic digraph be 811 851 eeey ap. To form a
maximal out-tree clustering from the acyclic digraph
requires the removal of the "redundant" arcs that exist in
each of the m-indegree vertices so that every m-indegree
vertex can be reduced to have indegree 1. There are

(%1_,) (ag_l) © e (Bply)

p
a2 C ee. * ap combinations.

Thus, there are ?T a. maximal out-tree clusterings.

: i

1=1 Q.E.D.
Proposition 3.6: The poset formed by the set of out-
necklace clusterings of a general digraph and the < relation

has at most

P
L =17 a; maximal out-necklace clusterings
i=1

if the general digraph has p m-indegree vertices where each

has indegree a;.
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Proof: Similar to the proof given for Proposition 3.5.

Q.E.D.

3.2 Optimal Out-Tree Clustering of General Digraph, Acyclic

Digraph and Out-Necklace Problems (ODC oDC oncC )

t°g’ t°a’ t°n°®
tog’ toa and ODCt°n° problems are to find a

set of bounded out-tree clusters, or its subclass clusters,

The ODC ODC

from a general digraph, acyclic digraph and out-necklace
respectively such that the total value of the set is
optimized. |

Again, the enumerative clustering approach is too
expensive to use. A better approach is to use the maximal

out-tree clustering concept and the ODC -1 discussed 1in

tete
section 2.1. A maximal out-tree clustering induces a set of
largest out-tree clusters that can be obtained from an
acyclic digraph or out-necklace by removing minimal number
of arcs from the m-indegree vertices. Since any possible
out-tree clustering, including the optimal one, < one of the
maximal out-tree clustering (or can be obtained by
additional arc removals of the 1induced clusters), thé
optimal solution can thus be found in one of the maximal

out-tree clusterings. We can do that by using ODC 1,

tote
The optimal out-tree clustering of an acyclic digraph or
out-necklace 1is therefore the maximumm value one among the
set of optimal out-tree clusterings obtained from all

maximal out-tree clusterings. An algorithm for these two

problems can be formulated as follows:



43

ALGORITHM: ODC,, =1/0DC,, .-

INPUT: an acyclic digraph/out-necklace G;

1

OUTPUT: an optimal out-tree clustering and its value;
PROCESS:
1) FOR each maximal out-tree clustering of G which
induces one or more out-tree clusters DO:

1.1) apply algorithm ODC 1l to obtain an optimal

toto_
solution for each out-tree cluster;

1.2) IF the sum of the optimal out-tree clustering
values of these out-tree clusters is the largest
value so far, keep the solution;

END;

2) RETURN the last solution kept;
END. ﬂ

An algorithm for ODC , hamed ODCtog-l, is similar to

t°g
a—l except that instead of applying ODC

algorithm ODC 1

toto
1 is wused and all occurrences of

to
in step 1.1, ODCt°n°_
maximal out-tree clusterings are changed to maximal out-

necklace clusterings.

Proposition 3.7: The ODC 1, ODC -1 and ODCCto -1

t°n°e t°a g

algorithms find
1) the optimal out-tree clustering of out-necklace in
0(n-2%-K) time;
2) the optimal out-tree clustering of acyclic digraph in
O(n-zz-L) time; and
3) the optimal out-tree clustering of general digraph in

O(n-zz-E-L) time.



Proof:

1)

2)

3)
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In step 1 of ODCton,—l, a given maximal out-tree
clustering induces only one out-tree cluster. Thus,
steps 1.1 and 1.2 take O(n~22) by Proposition 2.2.
Since there are K maximal out-tree clusterings to
search for (see Proposition 3.4) in the step, the time
complexity is 0(n-z2x).

In step 1 of ODCtoa—l, let a given maximal out-tree
clustering contain w out-trees with Ny Nyyees, Ny
vertices respectively in them. Steps 1.1 and 1.2 take
0(n, -z%)+0(n,+2%)+...+0(n +2%) = 0(n-2%) time to

find an optimal solution. Since there are L maximal
out-tree clusterings to search for (see Proposition
3.5§ in step 1, the time complexity is O(n-ZZ-L).

In step 1 of ODC 1, let a given maximal necklace

t°g
clustering contain w necklaces with NyyNyyeee Ny
vertices respectively in them. Steps 1.1 and 1.2 take
2 2 2 _ 2 =
O(nl-z 'K1)+O(n2oz -K2)+...+O(nw-z -Kw) = 0(n+2°+K)
where K is the maximum of all K;, l<isw. Since there

are L maximal out-necklace clusterings to search for,

the time complexity is O(n-ZZ-K-L). Q.E.D.

Example: The general digraph shown in Figure 3-2a contains

the two maximal out-necklace clusterings that are in Figures

3-2b and c.

Applying ODCtog-l to the general digraph shown in

Figure 3-2a, we find the optimal solution 1in Figure 3-2b

which

has a total value of 16 and 2 clusters:



b)

c)

LT

B=3
VVi (wi=1)

n

Figure 3-2 A general digraph and its two
- maximal out-necklace clusterings.
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Cluster 1 contains vertices 1 and 3.
Cluster 2 contains vertices 2, 4, 5 and 6.
3.3 Optimal Out-Star Clustering of General Digraph, Acyclic

sOg’ )
and ODCs°n° problems are to find a

Digraph and Out-Necklace Problems (ODC oDC

oDC

s®a’ s°n?®

The ODC ODC

s°g’ s’a
set of bounded out-star clusters, or its subclass clusters,
from a general digraph, acyclic digraph, and out-necklace
respectively such that the total value of this set is
optimized. An approach to solving ODCSoa and ODCsono can be
formulated similarly to the approach bresented in section
3.2, which is to use the maximal out-tree clustering concept
and the efficient ODCs°t° algorithm. This is based on the
fact that an out-star is a subclass of an out-tree. Since
any optimal out-star clustering of the given digraph
(acyclic digraph or out-necklace) < one of the maximal out-
tree clusterings, the optimal solution can be found in one

of them. oDC 1 will obtain an optimal out-star

s°t°

clustering for each maximal out-tree clustering and the
clustering with the maximum value is then the optimal out-
star clustering of the given digraph. Thus, two algorithms,

ODC -1 and ODC

soa l, can be formulated for ODCsoa and

Sono-
ODCSono as follows:

ALGORITHM: ODCsoa“l/ODC 1

s°n°®
INPUT: an acyclic digraph/out-necklace G;

OUTPUT: an optimal out-star clustering and its value;

PROCESS :



1)

2)

END.
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FOR each maximal out-tree clustering of G which

induces one or more out-tree clusters DO: |

1.1) apply algorithm ODCsot,-l to obtain an optimal
solution for each out-tree cluster;

1.2) IF the sum of the optimal out-star clustering
values of these out-tree clusters is the largest
value so far, keep the solution;

END;

RETURN the last solution kept;

An algorithm for ODCs°g’ named ODCsog—l, is similar to

ODCsoa-l except that instead of applying ODCsot—l in step
1.1, ODCs,no—l is needed and all occurrences of maximal out-
tree clusterings are replaced by maximal out-necklace

clusterings.

Proposition 3.8: The ODC

1, ODCS°a~1 and ODCSO -1

s°n° g

algorithms find:

1)

2)

3)

Proof:

Q.E.D.

Example: Applying ODCs°

the optimal out-star clustering of out-necklace in

O(n+Z+K) time;

the optimal out-star clustering of acyclic digraph in

O(n+Z:L) time; and

the optimal out-star clustering of general digraph
in o(n+Z+K:L) time.

Similar to the proof given for Proposition 3.7,

g to Figure 3-2a, we obtained the
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optimal solution for Figure 3-2b, which has total value 14
and contains 2 out-stars:
Star 1 contains vertices 1, 3 and 4.

Star 2 contains vertices 2, 5 and 6.

3.4 Optimal Out-Necklace Clustering of Out-Necklace and

General Digraph Problems (ODCnono, ODCnog)

The ODCnono and ODCnog problems are to find a set of
bounded out-necklace clusters, or 1its subclass clusters,
from a given out-necklace and general digraph respectively,
such that the total value of this set is optimized. The

oDC problem is first solved in section 3.4.1 and the

n°n®

solution is then used to solve ODCnog in section 3.4.2.

3.4.1 ODC!;ono Problem

An unique property of an out-necklace is that it has
only one cycle in it., To find a set of out-necklace
clusters from 1it, observe that if the weight of the cycle
contained in a given out-necklace is less than B, then the
optimal out-necklace clustering will always contain the
cycle in one of the induced clusters. If the cycle is
overweight, then the optimal out-necklace will never contain

the cycle in one of the clusters. Thus the ODC problem

n°n®
can be divided into two subproblems where each deals with
one of these two possibilities.

The ODCtoto-l algorithm can be used to solve the first

subproblem if we observe that by aggregating all vertices in

the cycle into one vertex and replacing all the arcs going
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out of the vertices in this cycle by arcs going out of this
newly formed vertex, the out-necklace becomes an out-tree
with the newly formed vertex as the root. This newly formed
root can then be assigned a weight equal to the total weight
of all vertices in the cycle and the total value of the
cycle can be added on later to the cluster induced by the
optimal clustering that contains the root.

The second subproblem can be easily solved because to
find an optimal out-necklace clustering which contains no
cycle in any of the induced clusters is to find an optimal

out-tree clustering of the out-necklace. Thus, the ODC 1

tono—
algorithm can be used to solve this problem.

An algorithm for ODCn"n" can be formulated as follows:

ALGORITHM: O0DC 1

n°n°
INPUT: an out-necklace;
OUTPUT: an optimal out-necklace clustering and its value;
PROCESS:
1) IF the total weight of the K vertices on the cycle is
less than B, THEN
1.1) transform the out-necklace into an out tree as
described above;
1.2) apply the ODC, 4 o-1 algorithm to find an optimal
solution;
1.3) replace the root in the configuration of the
optimal solution obtained in 1.2) by all K

vertices in the cycle;

1.4) add to the value of the optimal solution obtained
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in 1.2) the total value of the cycle;
1.5) RETURN the configuration and its value obtained
in 1.3) and 1.4);
2) ELSE
2.1) apply the ODCtono—l algorithm to find an optimal
solution;
2.2) RETURN the configuration and its value;

END.

Proposition 3.9: The ODCnono—l algorithm finds the optimal
solution in 0(n-z%:K) time.

Proof: Step 1) takes O(n-Zz) time from Proposition 2.2.
Step 2) takes O(n-ZZ-K) time from Proposition 3.7. Thus,

the time complexity is O(n-zz-K). Q.E.D.

Example: The out-necklace shown in Figure 3-3a contains a
cycle with weight 3<B=4. It is transformed into an out-tree

as shown in Figure 3-3b. Applying the ODC 1 algorithm

tote
obtains an optimal solution which has value 14 and contains
2 clusters:

Cluster 1 is an out-necklace with vertices 1, 2, 3 and 4.

Cluster 2 is an out-necklace with vertex 5.

3.4.2 ODCnog Problem

We tackle this problem by using the same idea wused in
solving ODCtog. Since the optimal out-necklace clustering
of a general digraph < one of the maximal out-necklace
clusterings, the optimal solution can be found among this

maximal set. The approach is to use ODCnono to obtain an
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b) (10)

B =4
Vv, (w;=1)

Figure 3-3 An example out-necklace and
its optimal clustering result.
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optimal out-necklace clustering for each maximal out-
necklace clustering. From this set of optimal out-necklace
clusterings, the one clustering with the maximum value is
then the optimal out-necklace clustering for the given
digraph.

An algorithm for ODCnog can be formulated as follows:

ALGORITHM: ODCnog-l
INPUT: a general digraph G;
OUTPUT: an optimal out-necklace clustering and its value;
PROCESS:
1) FOR each maximal out-necklace clustering of G which
induces a set of out-necklace clusters DO:

1.1) apply algorithm ODC -1 to obtain an optimal

n°n°
solution for each out-necklace cluster;

1.2) IF the sum of the optimal out-necklace clustering
values of the set of out-necklace clusters is the
largest value so far, THEN keep the solution;

2) RETURN the last solution kept;

END.

Proposition 3.10: The ODCn,g—l algorithm finds the

2.%-L) time.

optimal solution in O(n-2
Proof: Similar to the proof given for 3) of Proposition

3.7. Q.E.D.

Example: By applying the ODC_, -1 algorithm to the general

ng
digraph shown in Figure 3-2a, we obtain the optimal solution

in Figure 3-2c. This optimal solution has value 20 and
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contains 2 clusters:
Cluster 1 is an out-necklace with vertices 1 and 3.

Cluster 2 is'an out-necklace with vertices 2, 4, 5 and 6.



CHAPTER ¢

OPTIMAL. ACYCLIC DIGRAPH/GENERAL DIGRAPH CLUSTERING

OF ACYCLIC DIGRAPH/GENERAL DIGRAPH PROBLEMS

This chapter generalizes the sequential clustering
approach - presented 1in section 2.1 to analyze and solve

oDC ODCgg and ODCag (cluster 7 in Appendix A). onC_. is

aa’

solved in section 4.1, ODCgg in section 4.2 and ODCag in

section 4.3.

4.1 Optimal" Acyclic Digraph Clustering of an Acyclic
Digraph Problem (ODCaa)

The onC,_ . problem is to find a set of bounded acyclic
digraph clusters, or its subclass clusters, from a given
acyclic digraph such that the total value of the set is
optimized. A formal definition for the problem can be
- obtained by replacing all occurrences of an out-tree by an

acyclic digraph in the formal definition of ODC that is

teote
given 1in section 2.1. The solution approach will first be
presented in section 4.1.1 and then an algorithm to solve

the problem in section 4.1.2.

4.1.1 A Sequential Clustering Approach to ODCaa
Section 2.1 in Chapter 2 has presented a sequential

clustering approach which obtains the optimal solution of an

54
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out-tree through a sequence of clustering increasingly
larger set of subgraphs such that all feasible clusterings
of each set can be constructed from those of the immediate
previous set using simple operations. This approach can be
applied to oDC_ . as well except that the given acyclic
digraph must be restructured into a tree-like structure so
that the same approach can be successfully applied. This

tree-like structure, T=(V,E°vE®), has the same vertex set V

as the original digraph G=(V,E) but divides the arc set E

into a tree arc set E° (e.g., solid lines in the second

figure in Figure 4-1) and a co-tree arc set E'* (e.g., dash

lines in the same figure).

An algorithm for constructing such a tree-like
structure from an acyclic digraph with a designated root v
can be devised by modifying the depth-first search algorithm
(Aho et al '74) for undirected graphs. The only
modification is to ignore the arc direction of the acyclic
digraph in the restructuring process. Thus, instead of

parent child relation, an undirectional relation is-related-

to is defined on the vertex set V of G such that a vertex v,
is-related-to v, if either (vr,vj)eE or (vj,vr)EE. The

restructuring algorithm named RESTRUCTURE-1 is as follows:

ALGORITHM: RESTRUCTURE-1(G,v)

INPUT: an acyclic digraph G=(V,E) with a designated root v;
OUTPUT: T=(V,E°uE!);

PROCESS:

ALGORITHM: Search—l(vr)
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Figure 4-1 An acyclic digraph and its tree-like structure.
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PROCESS:
1) mark v as "visited";
2) FOR each vertex vy which is-related-to v_ DO:
2.1) 1IF vj is not visited THEN add the arc (i.e.,
(Vr'vj) or (Vj’vr) € E) to E°;
CALL Search-l(vj);
2.2) ELSE add the arc (i.e., (vr,vj) or (vj,vr) €
E) to E‘;
END;
I) CALL Search-1(v);
II1) RETURN T;

END.

Proposition 4.1: The run time of algorithm RESTRUCTURE-1 is
O(Max(m,n)) where m is the number of arcs and n is the
number of vertices in G.

Proof: Immédiate from the SEARCH algorithm of Aho et al
('74). Q.E.D.

An important feature of T = (V,E® v E!) 1is that its
vertex set V together with its tree arc set E° form a tree
(if we ignore the direction of each tree arc). The m+n
stage sequential clustering process can thus be based on

this tree just like the one for ODC -1 (see Figure 4-2).

tote®
But a complication 1in the clustering process is that all
those co-tree arcs should also be considered. This creates
a need to consider forming a set of clusterings with the

"bounded nonchild descendant" in addition to the "child"

vertices at each stage Dbecause of the additional
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possibilities of cluster formation induced by those co-tree
arcs. For -example, vertices 1,2 and 3 in Figure 4-1 could
form a cluster. At the stages when vertex 2 is considered
(e.g., stage 7 in Figure 4-2), a set of clusterings should
be formed not only with vertex 4 but also with vertex 3. To
formalize this idea, some new terms and additional processes
are needed.

If there is a path (ignore the arc direction) from the
root of T to V. and a path from v, to vj in the tree formed
by Vv and E°, then V. is the ancestor of vjiand vj is the
descendant of V.. In the case where V. is-related-to v, in
the tree by a tree arc, then V. is also called the parent of
v. and vj the child of V..

]

A vertex-'vj is called a neighbor of a vertex V. if vj

satisfies one of the following two rules:

1) vj is a child of V..

2) vj is a nonchild descendent of V. and vj lies on a

path v, X ,%X,,..0,x (p20) such that if p=0, then

V.
p'"]
V. is-related-to vj by a co-tree arc. If p>0, then
all x's are ancestors of V. and'xp is-related-to v. by
a co-tree arc (e.g., 1in Figure 4-1, vertex 3 is a

nonchild descendant of 2 and lies on the path

2,1,3.).

Also, vj is a bounded nonchild neighbor of V. if both of the
follbwing two rules are true:

1) Vs is a neighbor of V..

- 2) V3 is a nonchild descendant and the path



59

stage

©,

(o]

Figure 4-2 The eleven stages of the clustering process.
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Vr’xl’x2""'xp’vj is bounded, i.e.,

w(vr,xl,xz,...,xp,vj) < B (e.g., in Figure 4-1, vertex
3 is a bounded nonchild neighbor of vertex 2 if B=3
and VquV(wq=l)).

To find the set of neighbors and bounded nonchild
neighbors for each vertex, two functions-- DF-NO and LOW --
are needed. DF-NO assigns depth-first search numbers to
vertices in the order they are visited in the construction
of T=(V,E°uE*) from a given digraph G=(V,E). For each
vertex V. in V, LOW: V-->Z* can be defined as:

LOW(Vr)= MIN({DF-NO(Vr)} u
{DF—NO(vk)Ithere exists a co-tree arc (i.e.,
(Vk’vj) or (vj,vk)) in E* such that vy is a
deséendant of Vo and vy is an ancestor of . in
the tree formed by V and E°}).

The DF-NO for each vertex in V can be easily obtained
during the construction of T for the given digraph. The LOW
value cankalso be easily obtained because the definition of
LOW can be reformulated recursively as:

LOW(v .)=MIN( {DF-NO(v )}
v {LOW(vj)|vj is a child of vr}
v {DF—NO(vk)lvr is-related-to v, by a co-tree arc
and v, is an ancestor of vr}).
An algorithm called RESTRUCTURE-2, which is modified
from Aho et al's ('74) SEARCHB for finding T, LOW and DF-NO

values for each vertex, is as follows:

ALGORITHM: RESTRUCTURE-2(G,v)
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INPUT: an acyclic digraph G=(V,E) with a designated root v;

7

OUTPUT: a T=(V,E°vE*) with LOW and DF-NO values for each
vertex;
PROCESS:
ALGORITHM: Search—2(vr)‘
PROCESS:
1) mark v. as "visited";
DF-NO(v ) = df-count;

LOW(vr) = DF—NO(vr);

df-count df-count + 1;

2) FOR each vertex vj that is-related-to v. DO:
2.1) IF vj is not visited DO:

o

2.1.2) CALL Search—2(vj);

2.1.1) parent(vj) = v

2.1.3) LOW(v, ) = MIN(LOW(vr),LOW(vj));
2.2) ELSE IF v, is not parent(vr) THEN
LOW(v_) = MIN(LOW(v_), DF-NO(vj));
END;
I) df-count = 1;
I1) CALL Search-2(v);

III) RETURN T with LOW and DF-NO values for each vertex;
END.

Proposition 4.2: The run time of algorithm RESTRUCTURE-2 is

the same as that for RESTRUCTURE-1.

Proof: Immediate from algorithm SEARCHB from Aho et al
('74). Q.E.D.

Using the DF-NO and LOW values of each vertex Ve @
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neighbor list Lnb[vr] and a bounded nonchild neighbor 1list

Lbn[vr] of the vertex can be defined for each subgraph

“rooted at v
Lplv,] = {vjlvjech(vr)} v {vklvkELnb[vj]

s.t. LOW(Vk)SDF-NO(Vr)};

o
=]
<
—
1

{vmlvm¢ch[vr] and vaLnb[vr] and LOW(v_) <
DF-NO(vr) and W(vr,xl,xz,...,xp,vm)SB}.

An algorithm for finding T=(V,E°vE!) with a neighbor list
Lnb[vr] and a bounded nonchild neighbor list Lbn[vr] for

each vertex vr can thus be formulated as follows:

ALGORITHM: RESTRUCTURE-3(G,v)
INPUT: an acyclic digraph G with a designated root v;
OUTPUT: a T=(V,E°uE!) with a neighbor list Lnb[vr] and a
bounded nonchild neighbor 1list Lbn[vr] for each
vertex vr;
PROCESS:
ALGORITHM: Search-3(v )
PROCESS:
1) IF v, has no children THEN RETURN Lnb[vr]=Lbn[vr]=®;
ELSE
2) FOR each vertex vj€ch(vr) DO:
2.1) CALL Search—3(vj) to obtain Lnb[vj] and
Lbn[vj];
2.2) Lylv. ] =Ly lv.]u {vj} v
{vylvyeplvy] s.t. LOW(v,)<DF-NO(v ) };
2.3) FOR each vmeLnb[vj] DO:

2.2.1) IF w. o+ w. <B and LOW(vm)SDF—NO(vr)
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THEN

V.= V.
S r'

PATH-WEIGHT = Vit Wi

WHILE there is no co-tree arc between
vs and Vi DO:

vg = parent(vs);
PATH-WEIGHT = PATH-WEIGHT + w_:
END;
2.3.2) IF PATH-WEIGHT < B THEN
Lbn{vr] = Lbn[vr] v {Vm};
END;
END;
I) CALL RESTRUCTURE-2(G,vV);
II) CALL Search-3(v);
III) RETURN T with the two llsts,bLnb[vr] and Lbn[vr], that
are associated with each vertex v_;

. r
END.

Proposition 4.3: The time complexity of RESTRUCTURE-3 is

2

0(n®+d(T)) where d(T) is the maximum depth of the

constructed T.

Proof: Step I) takes O(max(m,n)) time from Proposition 4.2;

II1) takes O(n2

« d(T)) time; III) takes O(n) time. Q.E.D.
Given T, Lnb[vr] and Lbn[vr]’ the clustering process

can be sequenced in the m+n stages just like ODC 1 (see

toto_
Figure 4-2). The INSERT, PUT, and conditional CONNECT
operations are defined exactly the same way as that defined

in section 2.1.1. But at each new arc stage, in addition to
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the PUT and conditional CONNECT operations,

a new
conditional COMBINE operation forms a set of feasible
clusterings (denoted by PK’[vr,i+l]) for each pair of
feasible clusterings K[vr,i] in PKf[vr,i] and K[vk] in
PKf[vj,od(vj)], for each Vi which is a bounded nonchild
neighbor of v_.. Thus, the set of feasible clusterings

r
formed at each new arc stage now is:

f _ £ _ f e f f .
PK,,; = PK, - PK[v ,i] - PK [vj,od(vj)] v PR [v,i+1]
where

PKf[vr,i+l] = PK°[vr,i+1]uPK1[vr,i+1]uPK2[vr,i+l].

PK°[vr,i+1] and PK‘[vr,i+l] are the same as those defined

in section 2.1.1.

PK’[vr,i+1] = {K’[vr,i+1]|K’[vr,i+1] is formed using

COMBINE operation for each pair of K[vr,i] and

K[vk,od(vk)] and for each vaLbn[vr]}.

For each bounded nonchild neighbor Vi of -~ i.e.,

vkELnb[vr], the COMBINE operation forms

feasible clusterings for each pair of

set of

feasible

clusterings: K[vr,i] in PKf[vr,i] and K[vk] in

PKf[vj,od(vj)]. However, there 1is a consideration

which depends on whether there is an arc between v,

and v, or not:

Case 1:

If there is a co-tree arc between v_ and Vir then

r

the new clustering 1is formed in exactly the same

way as that formed by the conditional CONNECT

operation defined above using K[vr,i] and K[vk].
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Case 2:
If there is no co-tree arc between V. and Vi then
the new clustering is formed by merging the cluster

Cl with the cluster Cl' into one new cluster C."

1
with no arc connecting them. 1Include this new
cluster with all the other clusters 1in both
clusterings to form a new clustering. This new
clustering contains:

1) all clusters except Cy in K[vr,i];

2) all clusters except C,y' in K[vk]; and

3) Cl".
Note that Cl" contains two disconnected subgraphs of G.
(This 1is different from the cluster formed by PUT and
CONNECT which contains one connected subgraph.) The
reason Cl" is formed in this way is that in a future
stage, these two disconnected subgraphs <can Dbe
connected together through a co-tree arc which relates

n i .
an ancestor Vo of V. with Vi

4.1,2 onC_ -1 Algorithm

Let a feasible clustering be represented by a triplet
with three components. The value component of a triplet is
defined in the same way as that defined in section 2.1.2.
The weight component now is a list of s entries enclosed in
() if there are s induced clusters. Each entry stores the
cluster weight of the corresponding cluster. This is
necessary because at each stage the triplets are formed not

only from those of the child but also bounded nonchild
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neighbors. Since the latter can be in any cluster induced
by K[vj,od(vj)], it creates a need to keep track of all
cluster weights. We will use the notation W(C[vr,ij) and
W(C[vr,i+l]) to denote the cluster weight of the induced
cluster containing V. in K[vr,i] and K[vr,i+1]
respectively. W(C[vk]) will denote the cluster weight of the
induced cluster containing nonneighbor " in K[vj,od(vj)].
The configuration component is also modified to indicate not
only vertices in each cluster but also the arcs in the
cluster. 'This is necessary because the cluster is no longer
an out-tree and therefore a set of vertices cannot uniquely
represent the cluster. For example, in Figure 4-1, suppose
B=4 and vertices 1,2,3, and 4 form a cluster. The notation

<1,2,3,4> does not tell which of the following 4 acyclic

digraphs the cluster represents:

v=1{1,23,4 E-={(2,1)(2,4)(3,4)(1,3)}
v=1{1,2,3,4} E-={(2,1)(2,4)(3,4)}
v=1{,2,3,4} E-={(2,4)(3,4)(1,3)}
v=1{1,2,3,4} E = {(2,1)(3,4)(1,3)}

Let the configuration component CF(K) that 1is wused in
Chapter 2 now be CF°(K) and the newly added representation
of the arcs be CF!(K). Thus, CF(K) = CF°(K) u CF*(K).
In terms of triplet formation, the four operations can
now be defined as:
INSERT: same as that defined in section 2.1.2,
PUT: same as that defined in section 2.1.2,

conditional CONNECT:
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IF W(C[v_,i]) + w(c[vj,od(vj)]) < B THEN

form K*[v_,i+1]
with
F(K’[vr,i+l]) = F(K[vr,i]) +F(K[vj,od(vj)]) + frj'
wclv_,i+1]) = w(Clv,,i]) + w(c[vj,od(vj)]),
CF(K‘[vr,i+l]) = CF”(Kz[vr,i+1]) U CF*(K’[vr,i+1])

where

CFe(K*[v_,i+1]) = {cz,c3,...,cp,c2',c3',...,cp'}
v {c; vyl

CF!(K*[v_,i+1]) = CF*(K[v_,i]) v CF‘(K[vj,od(vj)])
v {(vr,vj) or (vj,vr)}.

conditional COMBINE:

IF there exists a co-tree arc between V. and vk THEN:

form a K’[vr,i+1] using conditional CONNECT;
ELSE

form a K’[vr,i+l] with

F(K[vr,1+1)]) = F(K[v_,i]) + F(K[v, 1),

w(Clv,,i+1]) = w(C[v_,i]) + W(C[v,]), and

CF(K[vr,i+1]) = CF°(K[vr,i]) v CFl(K[vk]) where

CF°(K[Vr,1+l]) = {C2,C3,...,Cp,C2',C3',...,Cq'}

U {Cl u Cl'},

CF‘(K[vr,i+l]) CF‘(K[vr,i])UCF‘(K[Vk]).

END.

For example, 1in Figure 4-2, 1let {{(0,(1,1,1),<3><4><5>)
(6,(2,1),<3,4><5>(3,4)) (4,(2,1),<4,5><3>(4,5))
(10,(3),<3,4,5>(3,4)(4,5)} {<2>}} be the set of feasible

triplets formed at stage 6. At stage 7, the set of feasible
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triplets formed using the respective operations are:

PUT: (0,(1,1,1,1),<2><3><4><5>)
(6,(1,2,1),<2><3,4><5>(3,4))
(4,(1,2,1),<2><4,5><3>(4,5))
(0,(1,3),<2><3,4,5>(3,4)(4,5))

CONNECT: (1,(2,1,1),<2,4><3><5>(2,4))
(7,(3,1),<2,3,4><5>(2,3)(3,4))
(5,(3,1),<2,4,5><3>(2,4)(4,5))

COMBINE (vertex 3 is a bounded nonchild neighbor of 2):
(0,(2,1,1),<2,3><4><5>)
(4,(2,2),<4,5><2,3>(4,5))

A dominance relation can still be defined over the set

of triplets formed at each new arc stage even though it is
now more restricted (or not as powerful as the one defined

in Chapter 2).

Let v, be the parent of vertex vj in the tree induced

by V and E°. Suppose Kl[vj] and K2[vj] are any two feasible

triplets formed in a new arc stage. A cluster Cl induced by

Kl[vj] is cluster-similar to a cluster C, induced by K2[vj]

if both clusters contain the same set of neigbhors in

Lnb[Vr]' KZ[Vj] is triplet-similar to Kl[vj] if for every
cluster C, induced by K2[vj], which contains one or more
neighbors in Lnb[vr]' there is a C; induced by Kl[vj] which
is cluster-similar to c, and vice versa.
Define Kl[vj] dominates K2[vj] if
1) Kz[vj] is triplet-similar to Kl[vj];

2) for every pair of C, and C, induced by Kl[vj] and
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Kz[vj] respectively, if C; is cluster-similar to Cyy
then W(C,) 2 W(C,);

3) F(Kl[vj]) > F(Kz[vj]).

Proposition 4.4: The dominated triplet Kz[vj] defined above
cannot be extended to the optimal clustering of the acyclic
digraph.
Proof: Let the n vertices visited in postorder sequence be
- denoted by ViiVoreeo Voo A triplet formed in visiting Vi
denoted by K[vj], can be represented by a sequence of pairs
(Lukes '75):

K[vj] = [Vl’< >1, [v2,C2], ey [vj,Cj]
where the first entry of each pair represents the vertex
visited and t?e second entry represents the cluster to which
the vertex is added on.

Let K[Vr] and K[vn] be two feasible triplets formed in
the ith and nth stages respectively. We define a derivation
of a feasible triplet K[vn] from K[Vr] (vn is the root of
the tree induced by V and E°) as the sequence:

1, Iv

Let K[v, _;]' be triplet-similar to Klv,_,1" and both are

[v c C..~1, «oey [vn,cn].

r+l’ r+l r+2’' r+2

formed in the same new arc stage. Let K[vk_l]’ have equal to
or higher value than K[vk_l]". Assume that there exists a
triplet K[v ]" derived from K[vk_l]" that has a higher value
than any feasible triplet derived from K[vk_ll' for root
n. We now show this is impossible.

Let a derivation of K[Vn]" from K[v be

k-l ] 1]
[vk,Ck"],[vk+l,Ck+l"],...,[vn,Cn"]. Since K[vk_ll‘ is
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triplet-similar to K[vk_ll", a triplet K[vn]' can be formed
from K[vk_l]' with the derivation
[vk,Ck‘],[vk+l,ck+l'],...,[vn,Cn'] such that for all
m=k,k+1l,...,n, Cm' is cluster-similar to Cm". This triplet
t[vn]' is a feasible triplet because every cluster Cm' in it
contains the same neighbors as Cm" and has equal to or lower
cluster weight than Cm". Since there are no co-tree arcs
between the set of nonneighbors and the set of vertices that
are ancestors of Vi1 the wvalues of triplets formed at
VirVigpreerV, are independent of all the nonneighbors that
appear in a cluster together with neighbors. Thus, the
difference in cluster values between each pair of Cm"and
C," is the sum of the values of those (tree or co-tree) arcs
that exist among the nonneighbors in Cm' and Cm". Since
K[vk_l]' has equal to or higher value then K[vk_ll", for m =
k,k+l,...,n, the wvalue of Cm' is equal to or higher than
C,"- Thus, K[vn]' has equal to or higher value than K[vn]".
This is a contradiction to the assumption made above.
Q.E.D.

Given the definition of the four operations and the
dominace relation, an algorithm for ODCaa can be outlined as

follows:

ALGORITHM: ODCaa-l

INPUT: an acyclic digraph G;

OUTPUT: an optimal acyclic digraph clustering of G and its
value;

PROCESS:
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1) choose an arbitrary vertex v as root and CALL
RESTRUCTURE-3(G,v) to build a T of G with lists
Lnb[vr] and Lbn[vr] for each vertex v ;

II) FOR each V. visited in postorder traversal sequence
DO:

1) FOR i=0 to od(vr) DO:

1.1) IF i=0 THEN form a new PK}f{+l from PKi using

INSERT operation; ELSE DO:

f f .

1.2) form a new PR, 1 from PK,  using PUT,
conditional CONNECT, and conditional COMBINE;
eliminate all dominated triplets;

END;

f

4N that has the maximum value

I1I) find the triplet in PK
and RETURN the solution;

END.

Proposition 4.5: Let vp be the parent of Vi Each new arc

stage forms no more than Bn[p,r] . Bn[r'J]

+ n[p,r]! .
n[r,j]! + (n[r,j] + 1) new feasible triplets where

nlp,r] = ILnb[vp] n V[vr,i]I and

nlr,jl = anb[Vr] n V[vj,od(vj)]l.
Proof: See Appendix B. Q.E.D.
Note: when the given digraph is an out-tree, n[p,r]=1 and
nir,jl=1 1in the onc,_-1. Each new arc stage forms no more

than 2-B2 new feasible triplets and have only B triplets

remaining after elimination.
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Example: Applying the oDC_ . algorithm to the acyclic

digraph shown in Figure 4-1 will yield the following result:

triplet triplet triplet
triplet formed by elim. by elim, by
formed 1/C0/P/COM. CO/P/COM. domi.
(stage#) (stage#) (stage#)

(0,(1),<5>) 1
(0,(1),<3>) 2
(0,(1),<4>) 3
(0,(1,1),<4><5>) 4
(4,(2),<4,5>(4,5)) 4
(0,(1,1,1),<3><4><5>) 5
(6,(2,1),<3,4><5>(3,4)) 5
(4,(2,1),<4,5><3>(4,5)) 5
(10,(3),<3,4,5>(3,4)(4,5)) 5
(0,(1),<2>) 6
(0,(1,1,1,1),<2><3><4><5>) 7
(1,(2,1,1),<2,4><3><5>(2,4)) 7
0, (2 1,1),<2,3><4><5>) 7
1,2,1), <2><3 4><5>(3,4)) 7
3, 1) <2 3, 4><5>(2 4)(3 4)) 7
1,2, 1) <2><4 5><3>(4 5)) 7
1) <2 4, 5><3>(2 4)(4 5)) 7
7
7
8
9
9
9
9
9
9
9
9
9
S
9
9
9

N9

2),<4,5><2,3>(4,5))
,3),<2><3,4,5>(3,4)(4,5))

VWWOWWOVWWOVWVWWVWWWWIIIJJO10E O

,2,1),<1><2><3,4><5>(3
,1),<1,2><3, 4><5>(2 1
), <1, 3 4><2><5>(1 3)
), <1><2 3,4><5>(2,4)

1

1

2

1),<1,2><4, 5><3>(2 1)
2), <2><4 5><1 3>(1,3)
1),<1><2,4, 5><3>(2 4)
,<l 3><2,4,5>(1, 3)(2 4 ))
2),<1><4, 5><2 3>(4 5))
),<1,2,3><4,5>(2,l)(1,3)(4,5))
,3),<1><2><3,4,5>(3,4)(4,5))
),<1,2><3,4,5>(2,1)(3,4)(4,5))

4))
) (3,
(3,4
(3,4
,1) <1><2><4 5><3>( 4,5))
(4,5))
(4,5))
(4,5))
)(4,5

NNHWS ~ = 5 ~ = ~ =~ NS ~—KF~ ~
WO W W WLWLWWLWWWW

The optimal clustering solution is

(15,(2,3),<1,2>,<3,4,5>(2,1)(3,4)(4,5)).

4.2 Optimal General Digraph Clustering of a General Digraph

Probl OoDC
roblem ( gg)

The ODCgg problem is to find a set of bounded general
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digraph clusters, or its subclass clusters, from a general
digraph such that the total value of this set is optimized.
ODCaa—l can be used to solve ODCgg with one modification.
The need for the modification comes from the observation

that if two vertices V. and v. form a cycle (i.e., both

]
(Vr’vj) and (Vj'vr) are in E), then in T, not only is there
a tree arc (e.g., (Vr,Vj)) between v_ and Vj’ but there is
also a co-tree arc (e.g., (Vj'vr)) between them. In

ODCaa—i, this co-tree arc does not exist and has not been
taken into consideration in forming a set of feasible
triplets for each subtree root v_. To 1include this
situation, there are four cases to consider based on the

assignments to these two arcs:

1) er=0 and =0, This has been handled by the PUT

Xjr
operation in step 1.2 of ODCaa—l.l.
‘2) er=l and Xjr=0‘ This has been handled by the CONNECT
operation in step 1.2 of ODCaa—l.l.
3) er=0 and X, _=1. This needs to be considered.
4) er=l and Xjr=l' This needs to be considered.

Since the three triplets formed for cases 2, 3 and 4
will always have the same weight and the same set of
neighbors, using Proposition 4.4, the two triplets formed
from cases 2 and 3 will always be dominated triplets because
the one formed for case 4 will have the highest value.
Thus, only cases 1 and -4 need to be taken into

consideration. The modification that needs to be done so

that ODCaa—l can be applied to ODCgg is to modify the value
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and configuration calculation of the CONNECT operation in

step 1.2 of ODCaa—l to:
F(K[vr,i+l])=F(K[vr,i])+F(K[vj,od(vj)])+frj+fjr,
CF‘(K[vr,i+1]) = CF‘(K[vr,i]) v CF‘(K[vj,od(vj)]

v {(r,j)} v {(3,r)}.

4.3 Optimal Acyclic Digraph Clustering of a General Digraph
Problem (ODCag)

The ODCag problem is to find a set of bounded acyclic
digraph clusters, or 1its subclass clusters, from a given
general digraph such that the total value of the set is
optimized. To solve this problem, an algorithm ODCag—l can
be devised that is similar to the ODCaa—l algorithm except
for two modifications.

The first modification is to consider the possibility
of two vertices V. and vj forming a cycle. Unlike ODCgg
whefe only cases 1 and 4 are taken into consideration, cases
1, 2 and 3 are needed here. Case 4 is never allowed because
it introduces cycles into the resulting cluster. Thus, one
more conditional CONNECT operation must be added to step 1.2
of ODCaa-l so that cases 2 and 3 are both covered.

The second modification is to add one more elimination
rule before the dominance eliminations (step 1.2) of
ODCaa—l. The added rule is that for any cluster in a newly
formed triplet, if the cluster is not acyclic then eliminate
the triplet. The algorithm for testing whether a cluster
(digraph) is acyclic is a simple procedure (Aho et al '83).

It is obvious that the optimal solution will then contain
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only acyclic digraph clusters.



CHAPTER 5

EXTENSIONS

In the previous three chapters, the solutions to the
fourteen ODC problems that are related to the classes of
general digraph, acyclic digraph, out-necklace, out-tree and
out?star have been presented. This chapter considers three

extensions to those solutions. They are:

1) extensions  of classes of graphs (directed or
undirected);
2) monotonic objective function and additional

constraints for all problems; and
3) divide-and-conquer technique for oDC . obc and

g9

ODCag.
Each extension will be discussed in the following three

sections in their respective order.

5.1 Extensions of Classes of Graphs
In some application areas, the converse digraphs of

out-necklace, out-tree, and out-star, which are in-necklace

Gn*’ in-tree Gtl and in-star Gsl respectively (see Figure

5-la), are more appropriate problem representations. Using

the principle of directional duality (Harary '69), which

states that "for each theorem about digraphs there is a

76
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corresponding theorem obtained replacing every concept by
its converse", the solution given in Chapters 2 and 3 can be
modified to solve all ODC problems that are related to in-
tree, in-star and in-necklace (i.e., change all "indegree"
to "outdegree" and "m-indegree vertices" to "m-outdegree
vertices"). The modifications are trivial and need not be

discussed.

Undirected graphs, 1i.e., general undirected graph Gu’

necklace Gn’ tree G, and star Gs (see Figure 5-1b), can also

t
be solved 1in practically the same way. That is, the

solutions given in Chapters 2,3 and 4 can be used to solve
them with slight or no modification at all. Obviously,

ODCaa—l can be used to solve OUCuu' To solve OUC ouc

tn’

f OUCst and OUCSS, the direction can be imposed

uniquely on the given necklace, tree and star. These

nn’

oucC oucC

sn’

problems can then be solved by using ODC 1, ODC 1,

tono—
1, The

n°n°

ODC 1, ODC 1, ODCgy o1 and ODCgoqe-

and ouc,,, can be solved using a

tote
solutions to OUCnu' ouc

Sono"

tu
similar algorithm to ODCag—l by changing the acyclic test to

necklace, tree and star tests. These three tests can be
computed in constant time at each stage.

Another extension is to allow the given graph (directed
or undirected graph) to be a disconnected graph. The optimal
clustering of each connected graph in the disconnected graph
is found independently. The final solution is the wunion of
the optimal solution obtained from clustering each connected

graph.
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Figure 5-la In-necklace, in-tree and in-star.
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Figure 5-1b General undirected graph,
necklace, tree and star.
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In a case where the given graph contains parallel arcs
or loops, our approach is still applicable if the graph can
first be reduced to one without these parallel arcs and
loops. For example, in many practical situation, the loop
can simply be eliminated and each group of parallel arcs can
be replaced by one arc with value equal to the sum of the

arc values in the group (Chiang & Teorey '82).

5.2 Extensions of Objective Function and Constraint

So far, a simple objective function and two constraints
(defined  in Chapter 2) have been used for presenting the
solutions of all the OGC subproblems. This section
considers extensions to the class of objective function and
constraints such that all previous algorithms will still be
applicable and have the same time complexity.

A basic approach common to all the solutions'of the OGC
subproblems discussed so far is that they all use onC, -1

(or its special case ODC 1) without modifications in

tete
their computing of objective function value. Thus, any
objective function applicable to ODCaa—l is also applicable
to the rest of the OGC subproblems. This class of objective

function is the class of monotonic objective functions which

can be defined using the notation that is used in the proof
for Proposition 4.4.

Let the n vertices in the out-tree visited in postorder
traversal sequence be denoted by VirVoreea Voo A triplet
formed for K[vj] can be represented by a sequence of pairs:

K[Vj] = [Vlr< >]1[V27C2]r"°r[vjrcj]'
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Let Kl[vj] = (F(Kl[vj]),W(Kl[vj]),CF(Kl[vj])) and
Kz[vj] = (F(Kz[vj]),W(Kz[vj]),CF(Kz[vj])) be two triplets
formed in the same stage.

Let a derivation of a triplet Kl[vn] from a triplet
Kl[vj] be the sequence of pairs: [Vj+l’ j+l']'
[Vj+2’cj+2']’ ceos [vn,Cn']. An induced derivation of a

C

triplet KZ[Vn] from Kzlvj] can be defined as the sequence
n n " \J :

[Vj+l’cj+l 1, [Vj+2'cj+2 1, ..., [vn,Cn ] such that C; is

cluster-similar to Ci" for j+l<i<n. An objective function

is monotonic if the following is true:

IA

1) F(Kl[vj]) F(Kl[vn]).

v

2) F(Kl[vj]) z'F(Kz[vj]) ==> F(K,[v 1) 2 F(R,[v 1).

¥
Three example monotonic objective functions are as follows:

(K) = >_ a'X..of.. + DeX..+F..
1 (T;5)eg 13 13 13713

1) F

where a and b are nonnegative real constants.

2) Fz(K) = > a-f(v).p(v)
VEV

where a is a positive real constant and f is any
nonnegative real constant function which assigns a
nonnegative real number to each vertex in V, i.,e.,
f:v-->R* v {0}. Let ViiVoreeasV be a path from root
v, to a vertex v. The integer function p assigns an
integer number to each vertex in V as follows:

p(vl) =1,

plv_. ) = p(vr) + X

r+l r,r+l°
3) F3(K) = a-Fl(K) + b-Fz(K).

To show that a monotonic objective function is applicable to
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ODCaa—l, we only need to prove it 1is applicable to

Proposition 4.4.

Proposition 5.1: Proposition 4.4 is still true when the
objective function is a monotonic objective function,
Proof: Suppose Kl[vj] and Kz[vj] are feasible triplets
formed in the same new arc stage and Kl[vj] dominates
Kz[vj], i.e.,

1) Kz[vj] is triplet-similar to Kl[vj];

2) for every pair of C; and C, induced by Kl[vj] and

Kz[vj] respectively, W(C,) 2 W(Cy);

3) F(Kl[vj]) > F(Kzlvj]). ,
Let Kz[vn] be a feasible triplet derived from Kz[vj]. Then
by 1), KlLvn] can be derived from Kl[vj] with the 1induced
derivation sequence. By 2), for each pair of ClEKl[vj] and
C2€K2[vj], W(CZ)ZW(CI). Thus, Kl[vn] is a feasible
triplet. Further more, by 3) and the definition of a
monotonic funtion,

F(Kz[vj]) < F(Kl[vj]) implies F<K2[Vn]) SF(Kl[vn]).

Hence, K2[vj] can be eliminated. Q.E.D.

Proposition 5.2: Proposition 2.1 is still true when the
objective function is a monotonic objective function.
Proof: Immediate from Proposition 5.1. Q.E.D.

To extend the set of constraints applicable to ODCaa—l
and others, observe that the two simple constraints used in
previous chapters are mandatory. This 1is because the

cluster graph class constraint is used in the problem
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classification (see section 1.1) while the integer cluster
weight constraint is wused 1in all algorithms to bound the
computation time (e.g., in section 2.1.2, only 2-B2 new
triplets are formed in each new arc stage).

But the <class of formula for calculating the cluster
weight and additional constraints can be imposed on all OGC

subproblem solutions without increasing the time complexity

if they are constant time computable constraints. A

constraint 1is constant time computable if it can be defined
in recursive formula such that it can be enforced in each
stage of the clustering process in constant time and is
independent of the calculation of the objective function
value, Some“ examples of such constant time computable
constraints are:

1) Let d(vl,vz) be the number of arcs on the unique path

from a vertex vy in a cluster C.toa descendant Vol

Cy ¢ Max(d(vr,vz)) <Y

v2€Cr
where v. is the root of C, and Y is any integer.
2) C, ¢ > w. <B
2 viGC .

where W is the weight of vertex V.o
3) Let C[vi] be an out-tree cluster rooted at Vi The

léngth L(C[vi]) is defined as

L(C[vi]) =s, + > ')I'nj/ni . L(C[vj])T

R
V](Xij—l

where n, and nj are two integers associated with

vertices \2 and vj respectively, s, is the length of

vertex v, and L(C[vj]) is the length of the complete
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subgraph in cluster C[vi] rooted at Vs
All these three types of constraints can obviously be
defined 1in recursive formula, which can be computed in
constant time at each stage, and have nothing to do with the

calculationn of the objective function value.

5.3 Divide-and-Conquer Technique for oDC, ., ODCgg and ODCag

This section applies Lukes' divide-and-conquer idea
(Lukes '75) to 1lessen the high time complexity of ODCaa’
ODCgg and ODCag with the simple objective function and
constraints. For each of these problems, we divide the
given digraph into a set of covers (nonvoid and nondisjoint
subgraphs) , find a solution to each of these covers
independently and then recombine their clustering solutions
into an optimal clustering solution. Before we present the

algorithm in sections 5.3.2 and 5.3.3, some terminology is

first defined in section 5.3.1.

5.3.1 Cutpoint and Cover

A cutpoint of a digraph G=(V,E) is defined as a vertex
in V such that removing the vertex from V results in two or
more subgraphs of G (e.g., vertices 5,6,8,10 and in Figure
5-2a). A digraph which has a cutpoint is called separable,

and one which has none is called nonseparable. Let V'cV and

E'cE. The induced subgraph G'(V',E') is called a (maximum

biconnected) cover if G' is nonseparable and if for every

larger V", V'cV"cV, the induced subgraph G"(V",E") is
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Figure 5-2 A general digraph and its cover graph.
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separable (e.g., G to G in Figure 5-2b).

CV1 CV7
A cover (undirected) graph CG = (V,E) (e.g., Figure

5-2c) can be constructed from the set of covers and
cutpoints of G. The vertex set V of CG is a set of vertices
where each vertex represents either a cover (called cover

vertex CVj) or a cutpoint ( called cutpoint vertex cpi),

i.e.,

V = { Cpl, Cp2, oo o g Cpr, Cvl’ CVZ' o0 o g Cvt }0
The arc set E of CG is a set of wundirected arcs (cpi,CVj)
where the cutpoint cpy is a vertex in the cover which CVj

represents, i.e.,

E = { (cpi,CVj) | cp; is a vertex in the cover GCVj}.
Proposition 5.3: The cover (undirected) graph CG=(V,E)
constructéd from G have the following properties:

a) Each cover represented by a cover vertex in CG is

nonseparable.

b) For any two covers represented by two cover vertices

in CG, their intersection contains at most one vertex.

c) cp is a cutpoint in CG 1if and only if cp is the

intersection of some two covers in G.

d) CG is a tree.

Proof: a), b) and c) are immediate from Aho et al ('74). 4d)
is immediate from b). Q.E.D.

If a digraph G has more than one cover, the following
proposition shows that it 1is wvalid 'to find the optimal
solution of G by clustering each cover independently and

then combine these clusterings to generate an optimal
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solution of G.

Proposition 5.4: Let a digraph G have s covers, where s>1,
and K be an optimal clustering of G and induces t clusters,
K= { Cir Cyr vves Cf }. The optimal solution K of G can
always be decomposed into s subsets of clusters where each
subset is a feasible clustering of one cover and the sum of
the value of these s subsets 1is equal to the optimal
clustering value.

Proof: The set of clusters induced by K can be divided into
two sets. One set (KN) contains those clusters that have no
cutpoints, while the other set (KC) does. Thus, F(K) = F(KN)
+ F(KC).

Let in-the-8ame-cover be a relation defined on the set

of clusters induced by K. Any two clusters Cl and C,
induced by K are in-the-same-cover if they contain only
vertices of the same cover.

Since the set KN is a set of clusters that contain no
cutpoints, each cluster in KN contains vertices in one cover
only. This is because if a cluster contains vertices that
belong to more than one cover, the cluster must also contain
the cutpoints connecting these covers. Thus, the set KN can

easily be partitioned into s disjoint subsets, KN,, RN,,

ceey KNs’ by using the in-the-same-cover equivalent relation
while the total value remains the same, i.e.,

S_

> F(KN,) = F(RN).

- i

1=1

Since the set KC is a set of clusters that contain
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cutpoints, each cluster in KC could contain vertices of one
or more covers. For each cluster C in KC that contains
vertices that belong to m of the s covers, C can be
partitioned into m smaller disjoint clusters {Cl,Cz,...,Cm}
such that

1) ¢QuCyu ... vC =¢C, and

2) for each cutpoint cp in C, cp is assigned to only one

cover.,

The partition of each C into m smaller clusters obviously do

not increase the total value of the cluster, i.e.,

-IVIE

F(C.) = F(C).
1 3

[}
LI}

Since the intention is to decompose K into s subsets
of clusters. where each subset is a feasible clustering of
one cover, each cutpoint, which 1is assigned to only one
cover, should also be included as a single vertex cluster in
all covers that contain it. This newly formed set of
clusters does not increase the value of the set KC because
only the single vertex clusters, which each has no value,
are added to other clusters. Each cluster now contains
vertices belonging to only one cover. It can now easily be
divided into s subsets, KCl, KCZ’ ooy KCS, and satisifies

%: F(KC,) = F(KC).

i=1 !
Thus, the original optimal clustering K can be transformed
into s subsets of clusters without changing the total value:

{{KNl v KCl},{KN2 u KCZ},..., {KNS v KCS}}

and each {KNi v Kci} is a feasible clustering of cover: i.
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Q.E.D.

From the proof of Proposition 5.3, the optihal solution
of a digraph G can be obtained by the reverse process.
Thus, the divide-and-conquer process consists of two steps:

1) Divide G into a set of covers.
2) Find and combine the clusterings of each cover to form

the optimal solution.

5.3.2 Divide G into a Set of Covers
The process of finding a set of covers for a digraph is

similar to the process of finding a set of biconnected

components of an undirected graph. A biconnected component
of an undirected graph G is a (maximum) subgraph of G which
has no cutpoints. an efficient algorithm for finding
biconnected components has been presented in Aho et al
('74). We modifiy it to solve the cover finding problem
here.

The basic idea of the cover finding algorithm is to use
the property that the removal of a nonleaf vertex of a tree
splits a tree into two or more subgraphs. Thus, the
algorithm first constructs a (depth-first) tree-like
structure from the given digraph and then decides which
vertices are cutpoints. The decision rules are based on the

following proposition:

Proposition 5.5: Let G=(V,E) be a given digraph. Let
T=(V,E°uvE!) be a tree-like structure for G. Vertex v. is a

cutpoint of G if either of the following is true for V.
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1) V. is the root and has more than one child.
2) V. is not a root nor a leaf vertex, and for some child

v. of v

3 r there 1is no co-tree arc between any

descendant of vy (including vy itself) and a proper
ancestor of V..
Proof: Immediate from Aho et al ('74). Q.E.D.
Using DF—NO(vr) and LOW(v_) that have been presented in
Chapter 4, a vertex v, is a cutpoint if
1) v. is. not a leaf vertex;
2) either one of the following is true:
2.1) v, is not a root and LOW(vj) 2 DF—NO(vr) where v,

]
is a child of v

r’

2.2) V. is a root and has more than one child.
The following COVER-FINDING algorithm uses the concept of
DF-NO(vr) and LOW(vr) to find all covers. The algorithm is

similar to Aho et al's ('74) finding biconnected components

algorithm,

ALGORITHM: COVER-FINDING-1
INPUT: an acyclic/general digraph G=(V,E);
OUTPUT: a list of the arcs for each cover of G and a set of
cutpoints;
PROCESS:
ALGORITHM: Cover—search(vr)
PROCESS:
1) mark v. as "visited";
DF-NO(vr) = df-count;

LOW(vr) = DF—NO(Vr);
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2) FOR each vertex vj which is-related-to V. DO:

]
into STACK if it is not already there;

2.1) PUSH the tree arc (i.e.,(v.,vr) or (vr,vj))

2.2) IF vy is not visited DO:
2.2.1) parent(vj) = v.i
2.2.2) Cover—search(vj);

2.2.3) IF LOW(vj) > DF-NO(v_.) DO:
cutpoint-set = cutpoint-set v {vr};
POP from STACK all arcs up to and
including the arc containing vy (i.e.,
(vj,vr) or (vr,vj));
include the arcs in cover(cover-count);
" cover-count = cover-count + 1;
LOW(v ) = MIN(LOW(vr),LOW(Vj));
2.3) ELSE IF vy is not parent(vr) THEN
LOW(v_) = MIN(LOW(v ), DF—NO(vj));
END;
1) Df-count = 1;
cover-count = 1;
I1) choose an arbitrary vertex v as root of T to be built
and CALL Cover-search(v);

III) RETURN the 1list of arcs of each cover and the set of

cutpoints;

END.

Proposition 5.6: The run time of algorithm COVER-FINDING-1
is 0(m) where m is the number of arcs in G.

Proof: Immediate from Aho et al's finding biconnected
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5.3.3 Find and Combine the Clusterings of Each Cover to Form
the Optimal Solution

Using the list of arcs of each cover and the set of
cutpoints, a cover graph with a cover vertex as root can be
easily constructed. The cover graph which is a tree can be
used to order a sequential sequence of clusterings and

combinations of covers similar to ODC 1.

tote
The vertices of the constructed tree is still visited in

postorder traversal sequence. But for each vertex v the

r’
od(vr)+1 stages induced by visiting G[vr,O], G[vr,l], cenr

G[vr,od(vr)] in ODC -1 is now aggregated into one stage.

tot®
Thus, the sequential clustering sequence of the cover graph
consisté of n stages. Figure 5-3 shows the eleven stages of
the cover graph that is in Figure 5-2,

The n stages can be classified into two types by

whether the vertex considered is a cutpoint or cover vertex.

The two types are cutpoint stage and cover stage. If the

vertex considered at a certain stage is a cutpoint vertex
cpj, then that stage is a cutpoint stage. All the children
of the cutpoint vertex cpj are cover vertices. The
operation needed at this type of stage is simply to collect
all the feasible clusterings formed so far by each subtree

of the tree rooted at these cover vertices. The set of

feasible clustering collected is called a cutpoint 1list of

CPy denoted by CL[cpj].

If the vertex considered at a stage is a cover vertex



stage

S,

Figure 5-3 Eleven stages of the clustering
process of cover graph given in Figure 5-2,
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(CV), then it is a cover stage. The only parent vertex of
CV is a cutpoint vertex (cpi) and all the children of CV are
cutpoint vertices (cpj). The operation needed at this type
of stage is to form a set of feasible clusterings from the
corresponding cover GCV which CV represents and from all the
children cutpoint lists CL(cpj). Depending on whether it is
an ODCaa’ ODCgg or ODCag problem, a corresponding algorithm
ovaDCaa—l, ODng—l or ODCag-l can be modified to suit this
purpose. The modifications are as follows:

1) Since the set of feasible clusterings formed for the
cover vertex CV will be combined with its ancestor
cover vertex, which shares the same cutpoint vertex
cp; with CV in the cover graph, only the set of all
feasible clusterings with respect to this cutpoint

needs to be formed. Step I) of onC_ ., ODC,. and ODC_

g9 g
can be modified to select cp; as the root of the tree-
like structure T to be constructed. The set of
feasible clusterings produced at the end 1is the set
desired.

2) Suppose V. is a vertex in the cover G., and v. is a

Ccv
cutpoint cpj in CG. To obtain a set of all feasible
clusterings for vertex V. in CV, the vertex should be
composed with the corresponding cutpoint 1list of
CL[cpj] at the end of the stage that considers v_.
The operation is called a COMPOSE operation which is

defined as:

COMPOSE operation:
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FOR each pair of feasible triplets K[Vr] and K[cpj]

from PKf[vr] and CL[cpj] respectively, form a

triplet with

F(K[v])

F(K[vr]) + F(K[cpj]),

W(K[v])

W(K[v 1) + W(k[cpy]) - w.,

CF(K[v]) = CF°(K[v]) v CF*(K[v]) where

CF°(K[v]) = {C2,C3,...,CP,C2',C3',...,Cq'}
U {Cl U Cl' - {Vr}}r

CF*(K[v]) = CF‘(K[vr]) v CF‘(K[cpj]).

The second step of the divide-and-conquer process

for

finding and combining clusterings of each cover to form the

optimal solution can now be described in an algorithm:

ALGORITHM: FIND-GLOBAL-SOLUTION
INPUT: a list of arcs for each cover and a set
cutpoints;
OUTPUT: an optimal solution and its value;
PROCESS:
1) choose an arbitrary cover vertex CV  as root
construct a cover graph CG using the list of arcs

each cover and the set of cutpoints;

of

and

for

II) FOR each vertex 1in the cover graph traversed in

postorder sequence DO:

IF the vertex is a cover vertex CV THEN

1) let cpy; be the parent vetex of CV in the cover

graph; choose cp; as the root and CALL

RESTRUCTURE—3(GCV,cpi) to build a tree-like

structure T with lists Lnb[Vr] and Lbn[vr]

for
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each vertex;

2) FOR each v, in the cover G, traversed in
postorder sequence DO:
2.1) FOR j=0 to od(vr) DO:
2,1.1) same as 1.1 of onC, . ODCgg or ODCag;
2.1.2) same as 1.2 of oDC_ . ODCgg or ODCag;
END;
2.2) IF V. is a cutpoint in the cover graph THEN
2.2.1) COMPOSE PKf[vr,od(vr)] produced in 2.1
with the cutpoint list CL[vr] to form a
new set of PKf[vr,od(vr)];
2.2.2) eliminate all dominated triplets in
PKf[vr,od(vr)] formed in 2.2.1;
ENb;
ELSE IF the vertex is a cutpiont cp, THEN DO:
FOR each child vj of cp; DO:
CL[cpi] = CL[cpi] v PKf[vj];
END;
END;
I1I) find the triplet in PKf[CV,od(CV)] that has the

maximun value and RETURN it;

END.

This algorithm reduces the number of feasible triplets
formed at each stage of ODCaa—l, ODng—l or ODCag—l to a
number directly proportional to the number of feasible

triplets formed if each cover were clustered independently.

oucC

This algorithm can also be applied to OUCuu' OUCnu’ tu
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and OUCsu as well with the simple objective function and two

constraints given in section 2.1,



CHAPTER 6

SOME INFORMATION SYSTEM DESIGN APPLICATIONS

This chapter considers three information system design
problems that can be formalized and solved as OGC problems.
To show that an information system design problem can be
solved by' using an OGC solution algorithm, it is necessary
to define the objective function and constraints, decide
which ODC problem it 1is and prove the constraints and
objective function to be applicable. The objective function
of a design Qproblem can usually be formulated in many
ways. Only one way is shown here to illustrate the solution
approach. The three information system design problems to be
discussed are:

1) B-tree secondary storage allocation problem (section
6.1);

2) translation of integrated schema to IMS schema problem
(section 6.2); and

3) database record clustering problem (section 6.3).

6.1 B-Tree Secondary Storage Allocation
Computer based information systems are critical to the
management of large public or private organizations. Such

systems typically operate on databases containing billions

98
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of characters and serves varying user communities'
information needs (March '83). 1In these systems, indexes
(or directories) are built upon the data files (which are
stored on secondary storage) to facilitate random or
sequential accesses. Because of the large amount of data
files, the indexes (or directories) are large files in their
own right and are stored in secondary storage. In the
present practice of Data Base Management Systems (DBMS) and
Information Retrival systems, B-tree 1is one of the most
popular techniques for organizing index files (Comer '79).
The idea of B-tree is related to binary search tree and

m-ary search tree. A binary search tree is a tree which

contains either no vertices at all, or every vertex in the
tree contains a"key and two children where
1) all keys in the left subtree are less (alphabetically
or numerically) than the key in the root;
2) all keys in the right subtree are greater than the key
in the root; and
3) the left and right subtrees are also binary search

trees (Horowitz & Sahni '76).

A m-ary search tree is a generalization of a binary
search tree in which each vertex in it has at most m-1 keys
and m children., If ty and t, are two child;en of some
vertex, and tl is to the left of t2, then the keys in the
subtree rooted at t, are all 1less than the keys 1in the

subtree rooted at t2.

A B-tree of order m is a special type of balanced m-ary
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tree with the following properties:
1) The root is either a leaf or has at least two
children,
2) Each vertex, except for the root and the leaf
vertices, has between [m/2] and m children.
3) Each path from the root to a leaf vertex has the same
length (Aho et al '83).
Figure 6-1 shows a B-tree of order 5.

To retrieve a record in the data file with a given key
value, the B-tree 1is used instead of searching all record
sequentially in the data file. The process always starts by
searching from the root to the leaf vertex which contains
the key value and a pointer to the record with that key
value in the data file. If each vertex in the B-tree of
order m 1is stored in a separate (physical) block and there
are a total of n different records (or keys) in the data
file, each such retrieval needs no more than long/2] n+l/2
physical block accesses (PBAs) to the index file. Since very
often the length of a vertex in the B-tree is much less than
the secondary storage block length (which is typically 2000
to 4000 bytes), many vertices can be stored in one block.
This gives a chance of lowering the l°g[m/2] n+l/2 PBAs by
storing more than one vertex in a block. ‘But observe that
only storing a vertex with its parent in the same block can
réduce the number of PBAs. Thus, for each vertex there is
only one decision to be made, 1i.e, whether to store the

vertex with 1its parent 1in the same block or not. This is
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equivalent to assigning a 0 or 1 on each arc and thus an OGC
problem. The decision can be based on the usage pattern Aof
the environment which is the access frequencies to each key
in the B-tree. The higher the frequency a key 1is accessed
the more ancestors this key should be stored in the same
block with., Since a B-tree can be represented as an out-
tree, the problem then is to find a set of out-tree clusters
or its subclass clusters such that the total expected number
of PBAs for accessing every key by the environment are
minimized.
‘The B-tree secondary storage allocation problem can be
formally defined as an ODCt°t° problem:
Given:
1) an out—iree G=(V,E) which represents the B-tree of
order m;
2) two constraints: one requires each cluster be an out-
tree or its subclass; another limits the length L(Ci)
of each cluster C, induced by a clustering K to a
block length B, i.e.,

¥C.€K L(C.) = > s(v) £ B where
i i —
v€Ci

s 1s a constant function which assigns to each vertex
an intger value equal to the size of the vertex, which
is: m + size of pointer + (m-1) - size of key;

3) an objective function which is defined as

F(K) = f(v) - PBA(v)

>
vE

<

where f(v) is the frequency of accesses to v; PBA(v)
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is the number of physical block accesses needed to
access v from the root. Let F=Vy,Voree s, V=V be a
path for root r to a vertex v. The PBA function can

be defined recursively as

PBA(Vl) = 1;
PBA(V,. ,) = PBA(v,) + X ;
~ i+l 1 vi,vi+1’
(X is the inverse of the assignment on the arc
V., V.
17 71+1
(Vi'vi+l))'

Find: A feasible clustering K such that F(K) Iis

minimized.

Proposition 6.1: The objective function defined above is
monotonic and the second constraint 1is constant time
computable.

Proof: Immediate from F2 and C2 of section 5.2. Q.E.D.

6.2 Translation of Integrated Schema to IMS Schema
Database design 1is the process of synthesizing

conceptual and target DBMS schema (logical or physical) that
satisfies the information manipulation needs of a community
of users. A stepwise database design process which consists
of the following stages has widely been accepted (Teorey &
Fry '82):

Stage 1) Requirements formulation and analysis.

Stage 2) Conceptual design.

Stage 3) Implementation design.

Stage 4) Physical design.

This section considers a principal issue in an
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implementation design, which is how to map an integrated
schema produced by the conceptual design stage to an IMS
schema.

Many design tools as surveyed by Chen et al ('80) have
been developed to aid each stage of the design process.
Recently, a new database design system called View
Integration System (VIS) (Chiang et al '83) has been built
to support the first three stages of a database design
process. The VIS integrates many related tools to support a
bottom-up logical database methodology. One of the tools is
for translation of an integrated schema to an IMS schema
which can be based on several solutions given in this
dissertation and will be discussed in this section.

An integfated schema synthesized from user views by VIS
consists of a set of 3NF record types (or groups)
interrelated by relationships which are essentially of type
l:m (1:1 is a special case of 1it). Depending on the
structure of the integrated schema, it can be represented as
a general digraph , acyclic digraph, out-necklace, out-tree,
or out-star with each vertex representing a record type and
each arc representing a relationship.

The primary task of translating the integrated schema
to the IMS schema is to transform the integrated schema into
a schema that satisfies the rules of IMS. An IMS schema is
made up of one or more physical databases and logical
database descriptions.

A physical database description is made up of
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descriptions for a set of segments interrelated by a set of
relationships in a hierarchical tree structure. The concept
of segments is equivalent to the concept of record types and
each hierarchical parent to child relationship is also of
type l:m. Thus, each physical database description can be
represnted as an out-tree with each vertex representing a
segment and each arc representing a l:m relationship., But a
set of out-trees cannot represent those additional arcs that
form m-indegree vertices or cycles that could exist in a
general digraph, acyclic digraph or out-necklace. The
logical database descriptions are used to supplement these
missing information.

A logical database description is composed of ;
descriptions of ségments from one or more physical data
bases interrelated by 1l:m relationships in a hierarchical
tree structure. The idea of forming a 1logical database
description is to establish a relationship between any point
in a physical database and a target segment of another or
the same physical database. The target segment is called
the 1logical parent segment. This relationship is provided
by establishing a link field as a new data field created as
part of an existing segment or part of a newly created

virtual segment which contains the 1link field (Cardenas

'79).
The 1links 1in the 1logical or physical database are
unidirectional, proceeding from parent to child and not vice

versa. But each child can be specified to have a pointer to
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its parent. In the following discussion, it is assumed .that
this is the case. This allows a link to be bidirectional and
makes for a simpler representation for m-indegree vertices
and cycles.

Figure 6-2a shows two alternatives of translating an
integrated schema into 1its corresponding IMS physical
databases and logical database descriptions in pictorial
form, The solid boxes, solid arcs and dash boxes represent
segments, relationships and virtual segments respectively in
physical database descriptions. The dash line represents a
relationship in logical database descriptions. Figure 6-2b
is another example.

Several restrictions are imposed on the hierarchial
tree structure of logical or physical database descriptions.
The relevant one is that a maximum of 255 segments types may5
be included and up to 15 segment types are allowed in ahy
one hierarchical path.

Again, to decide which alternative is better, the usage
pattern of the environment must be estimated or collected.
The usage pattern used in Figure 6-2a is the frequency‘of
transitions between two vertices in the integrated schema.

Obviously, if the frequencies of transitions from
segment STUDENT to GRADE (i.e., 300 times/day), as well as
COURSE and GRADE (i.e., 100 times/day) shown in the
integrated schema in Figure 6-2a are specified, the first
translation shown in Figure 6-2a is a better choice. _This

is because if the occurrences of each segment type are
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STUDENT ' COURSE
GRADE
STUDENT COURSE
|- - _..NL._....'
GRADE 4‘-ﬂ GRADE i
b o e e an e (]
STUDENT COURSE
i“l“‘,
{ GRADE Ju- - -9[ GRADE

Figure 6-2a Translating an integrated schema into its
corresponding IMS physical and logical databases: example 1.
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Figure 6-2b Translating an integrated schema into its
corresponding IMS physical and logical databases: example 2.
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stored in different physical blocks, the total number of
PBAs of the schema for accessing GRADE from STUDENT and
accessing GRADE from COURSE together is less than that of
the second translation:
Total block access of first translation in Figure 6-2a:
300-1+100-2=500.
Total block access of second translation in Figure 6-2a:
300-2+100-1=700,
This translation problem can be formalized clearly as
- oDnC

oDC ODC OoDC

tﬁgl tonol toal tOtOI
the class of digraph the integrated schema belongs to. The

or ODC, depending on

oy
translation problem can be formalized as follows:
Given:
1) a digraph G;(V,E) which represents the integrated
schema;
2) three constraints: one requires each cluster be an
out-tree or its subclass; one limits the size S(Ci) of
each cluster C. of a clustering K to 255, i.e.,
VC, €K S(Ci) = number of vertices in C, < 255;
one limits the depth D(C;) of each cluster C, of a
clustering K to 15, i.e.,

vciex D(Ci) = Max (d(v)) < 15
v€Ci

where d(v) assigns an integer that is equal to the
length of the unique path from root of C, tov;
3) an objective function which is defined as
F(K) => f..+2+> f..

=11 =01



110
= 5T (20K, .4K..) ¢ £
(T,j)ee 3 13 1]
where fij is the transition frequency between vertices
vy and Vj'
Find: A feasible clustering K such that F(K) is

minimized.

Proposition 6.2: The objective function defined above is
monotonic and the second and third constraints are constant
time computable.

Proof: This is immediate from Fy and C, and Cq in section

5-2- QOE.D.

6.3 Database Record Clustering

An important cost factor of a physical database design
depends on the secondary storage search time that is
required by the typical operational workload. The major
component of that search time 1is the expected number of
physical Dblock accesses (PBAs). Thus, one important
consideration in the initial physical database design, or a
later reorganization of the database, is to map the logical
database structure into a secondary storage in such a way so
as to minimize PBAs (Chiang ,& Teoréy '82). One way to
minimize the expected PBAs is to make use of the database
usage pattern to group occurrences of those record types
that are 1logically related and are frequently accessed
together as clusters and store them into the same block so
that inter-block accesses can be minimized.

Many DBMS' (e.g., IDMS, IMS, SYSTEM R) allow users to
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specify such a request using a statement like CLUSTERED VIA
SET NEAR OWNER. For example, in Figure 6-3a, X is the
parent record type of child record type Y. The occurrences
of X and Y are physically linked together like Figure 6-3b.
Assume occurrences of X and Y are frequently accessed
together. A user can specify CLUSTERED Y VIA X-Y NEAR OWNER
X which will result in the placement of occurrences of X and
Y by the DBMS as shown in Figure 6-3c. This placement has
the advantage that any time Xy is read into memory, Yi1r Yio
and Y;3 are also in memory. This reduces PBAs.

There are several restrictions to the way a database
designer can specify the grouping of occurrences statement.
They are:

1) each specif{cation must be via a set tYpe;

2) each record type can only be clustered with one of its
parent;

3) a record type may\not be CLUSTERED VIA a SET type of
which it is both member and owner type; and

4) the specification cannot form a cycle.

The first restriction implies that the database record
clustering problem is a clustering problen. The second,
third and fourth restrictions imply that each cluster must
be an out-tree or its subclass. Thus, the database record
clustering problem is an ODC onC

,ODC OoDC

tOtD toal tonOI
or ODCtog problem if the given 1logical database can be

sosol

represented as an out-star, out-tree, out-necklace, acyclic

digraph or general digraph respectively.
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A rectangle represents a record type.
A square represents a page.

A circle represents an occurrence.

Figure 6-3 Placements of record occurrences
using CLUSTERED VIA SET NEAR OWNER.,
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The database record <clustering problem can be
formalized as follows:

Given:

1) a digraph G=(V,E) which represents the database
schema;

2) two constraints: one requires each cluster to be an
out-tree or 1its subclass; one 1limits the length
L(C[vi]) of each cluster C[vi] rooted at v, to the
block length B:

L(C[Vi]) = si + Z Tn'/ni * L(C[V-])T < B
vj(X;.=1) 3 J
1]
where n, and nj are the expected number of occurrences
of vertices vy and Vj' S: is the length of vertices v
and L(C[vj]) is the length of the complete subgraph in
C[vi] rooted at vj;
3) an objective function which is defined as

F(K) = > £y

X.. o £ {, ¢
ij '{'/LMs/'/'M 79,_%1 Lﬁ,u,,,_ vt U aa
where f.. is the same—%uns;&ea—ée£+ned~+n~see%&eﬁ—6~€F
1]
Find: A feasible clustering K such that F(K) is

minimized.

Proposition 6.3: The objective function defined above Iis
monotonic and the second constraint 1is constant time
computable.

Proof: Immediate from Fl and C3 of section 5.2, Q.E.D.

Example: Let the database schema given by Teorey and Fry

('80) be represented by an acyclic digraph shown in Figure
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JOB_TYPE EMPLOYEE

. f
WORK_TASK ~ EMP_DATA

| ——

b)

"PLANT \

JOB_?YPB EMPLOYEE
\
. p f -
_ WORK_TASK EMP'_DATA
e

JOB_TYPE ~| EMPLOYEE

\

WORK_TASK EMP_DATA

Figure 6-4 A database schema and its two
maximal out-tree clusterings.
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6-4a. The record length (si) and the expected number of

occurrences (ni) of each record type v, is shown in the

following table:

record type record length expected no. of occurences
PLANT 60 50

JOB_TYPE 26 1K

WORK_TASK 13 200K

EMPLOYEE 80 100K

EMP_DATA 36 100K

The usage information which 1is characterized by the
-frequency and the number of logical record accesses (LRAS)
to the database schema by each application is defined in

the following table:

applica-
tion frequency’ LRAs
T1 100/day 1 PLANT+1 EMPLOYEE+1 EMP_DATA
T2 _ 100/day 1 PLANT+1 EMPLOYEE+1 EMP_DATA
T3 200k/day 1 EMPLOYEE+ 1 WORK_TASK+ 1 JOB_TYPE
T4 120k/year 1 EMPLOYEE ) ‘
Rl Quarterly 100k EMPLOYEE +100k EMP_DATA
R2 Annually 50 PLANT + 100k EMPLOYEE
R3 Monthly 50 PLANT
R4 Monthly 50 PLANT + 50+20 JOB_TYPE
R5 Daily 50 PLANT + 100k EMPLOYEE
+ 200k WORK_TASK + 200k JOB_TYPE
R6 Monthly 50 PLANT+100k EMPLOYEE+100k EMP_DATA
R7 1000/day 1 EMPLOYEE

Let fij be the transition frequency between vy and vj.
A table showing fij can be constructed using the frequency
and LRA of each application as follows: \
(We assume: 1 year=240 working days, 1 quarter=60 working

days, 1 month= 20 working days.)

(vi,vj) fij from
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PLANT, EMPLOYEE 0

EMPLOYEE, EMP_DATA 100+100+100k/60
+100k/20=6.86k Tl’TZ'Rl’RG

PLANT, JOB_TYPE 1k/20=0.05k R4

JOB_TYPE, WORK_TASK 200k+200k=400k T3, R5

EMPLOYEE, WORK_TASK 200k+200k=400k T3, R5

Let the block size B be 2,000, Since the given
database schema can be represented as an acyclic digraph and
the desired clusters are out-tree or 1its subclass, the
ODCtoa presented in Chapter 3 1is applied here. The

following traces the results produced by each major steps:

step action performed
1 Obtain the first maximal out-tree clustering
(sée Figure 6-4b).

1.1 Apply ODC -1 to obtain 3 clusters:

tot?®
cluster 1 contains: PLANT, JOB_TYPE
cluster 2 contains: WORK_TASK

cluster 3 contains: EMPLOYEE, EMP_DATA

with value F(K)= 0 + 400k + 400k = 800k.

1.2 Keep the solution (because this is the first
result).

1 Obtain the second maximal out-tree clustering
(see Figure 6-4c).

1.1 Apply ODC -1 to obtain 2 clusters:

tet®
cluster 1 contains: PLANT, JOB_TYPE
cluster 2 contains: EMPLOYEE, WORK_TASK

EMP_DATA
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with value F(K)= 0 + 400k = 400k.
1.2 Keep the solution (because 400k is less than 800k).
2 RETURN the kept solution with an F(K)=400k. Q.E.D.
Note: Without clustering, the number of PBAs is 0 + 6.86k +
0.05k + 400k + 400k = 806.91k, while with clustering, it is
400k. This is a savings of (806.91-400)/806.91 = 50%.



CHAPTER 7

SUMMARY AND FUTURE RESEARCH

7.1 Summary of Results

In this dissertation, we have investigated the problem
of cutting a graph into clusters such that a set of
constraints on the clusters is satisfied while an objective
function is optimized.

In Chapter 1, eight classes of digraphs and‘four
classes of undirected graphs are considered and used to
divide the Opt%mal Graph Clustering (OGC) problem into a set
of thirty-five subproblems.

Chapter 2 describes a sequential approach which

obtains optimal solutions for ODC
2)

ODC and ODC

teter Ysote s°s°®
in 0(n*z“), 0(n*z) and O(n*Z) time respectively. The set of
constraints considered are: a) every cluster must be an out-
tree/out-star or its subclass; b) every cluster must have
cluster weight less than or equal to B. The objective

function is to maximize the sum of all cluster values.

In Chapter 3, the maximal out-tree/out-star clustering

concept and the ODCt,to—l/ODCSDto—l are used to find
solutions to ODCtoto, ODCt“a' ODCt°n°' ODCsog, ODCsoa and
ODCsono. The solution to ODC, o4 and ODCtono are then used

to solve ODCnono, which in turn is used to solve ODCncg.

118
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Only ODCtono ODCsono and ODCnono have pseudopolynomial time

2*K), 0(n*Z*K) and O(n*zz*K). Others

solutions, 1i.e., O(n*Z
are exponential with respect to the number of m-indegree
vertices. Thus, if the given digraph is a sparse graph its
ODC solution is still computable. The objective function
and the set of constraints used are the same as that in
Chapter 2.

Chapter 4 describes a generalized sequential approach

of Chapter 2 to solve ODCaa, ODCgg and ODCa The same set

g*
of constraints and the objective function of Chapter 2 are
used, The time complexity is totally dependent on the
number of neighbors of each vertex. An upper bound on the
number of new triplets formed by each stage is:

B P Tl g e BPUEI) w npe 510 % (alr,3040).

In Chapter 5, the solutions of Chapters 2 to 4 are used
to solve the rest of the OGC subproblems. A solution
approach for disconnected graph or graph with parallel arcs
or loops are also discussed. Next, the class of objective
functions and constraints are extended to the class of
monotonic objective function and constant time computable
constraints for all solutions presented in the dissertation
without changing the time complexity. A divide-and-conquer
technique is then presented to lessen the high complexity of
the ODCaa-l, ODng-l and ODCag—l algorithms. The technique
reduces the number of feasible triplets formed at each stage
to a number directly proportional to the number of feasible

triplets formed if each cover were clustered independently.



120

Chapter 6 illustrates the usefulness of the solutions
by applying them to three information system design

problems.

7.2 Future Research

An immediate future research should be to extend the
applicable objective functions and constraints with respect
to the divide-and-conquer technique discussed in section
5.3. This  technique can substantially cut down the
computational steps of all strong NP-complete problems.

Since only eight classes of digraphs and four classes
of undirected graphs have been considered in this
dissertation, a natural extention 1is to consider other
classes of g?aphs such as planar graph, etc. For example,
the solution to planar graph 1is wuseful for solving the
schema or program structure layout problems.

Instead of the problem of finding a set of (disjoint,
nonvoid) clusters, another extension to the Optimal Graph
Clustering problem is the finding of a set of (nondisjoint,
nonvoid) covers which satisfies a set of constraints while
an objective function is optimized. The solution of this
class of problem can be used to decompose database schema,

programs, and queries for distributed processing.
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APPENDIX A

THE BREAKUP OF THE FOURTEEN ODC PROBLEMS AS AN ODC PROBLEM

The writing of a dissertation is also a design problem.

It is to present the research results in a structured way
for easy comprehension. A structured presentation typically
includes a sequence of chapters roughly of equal length and
covers the following topics:

1) Introduction to the problem.

2) Solutions to the problem.

3) Extensions to the solution.

4) Applications of the solution.

5) Conclusion and future direction.
This dissertation follows such a structure closely; however,
the solutions to the ODC problems are exceptionally long.
To maintain approximately equal 1length chapters, it is
necessary to break up the solutions 1into three separate
chapters. This breakup can be formalized as an Optimal
Digraph Clustering problem. Using this problem as an
example, the purpose and general content of this
dissertation can be illustrated.

Figure A-1 shows a digraph which represents the breakup

problem. The digraph is an out-tree which has 14 vertices,

each representing an ODC problem solution. Each arc on the
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digraph represents one of the following two cases:

1) The head of the arc uses a modified version of the
tail in 1its solution. This applies to arcs ODCtoto
-=> ODCS°t° and ODCtoto -=> ODng.

2) The head of the arc uses an exact version of the tail
in its solution. This applies to the rest of the
arcs.

The values associated with the arcs in the first case
indicate how similar the two vertices on the arc are, while
the values 1in the second case indicate how importantly the
tail vertex is used in the head vertex. The value rating is
from 1 to 5 which gives a sense of how two vertices on an
arc are related to each other. The weight appearing at the
upper right corne} of each vertex represents the number of
pages that is planned for each solution.

Let us suppose each cluster size should not exceed 20
pages. And let the optimization function be defined as the
finding of a set of hierarchical related problems such that
their closeness is maximized. Thus, this division problem
is an instance of ODCt°t°‘

A solution to this problem is given by the circles in
Figure A-1 indicating 7 clusters. Clusters 1 and 7 both
have weights 20, so each will be presented in one chapter.
The rest of the five clusters weights' do not add up to 20,
therefore, they will be presented together in one chapter.

As to the lineup of the three chapers, it is discovered

that the solution of ODC is fundamental to the rest of

tot?
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17

cluster 1

0DC o0 o
nn
4
0ncC_o
ng
3
1
oDC o
S8
cluster 2 cluster 3 cluster 4 cluster 5 cluster 6 .cluster 7

Figure A-1 A digraph representing the ODC breakup problem.
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the fourteen problems, therefore, the solutions to the
problems of «cluster 1 in Figure A-1 are presented first
(Chapter 2). The solutions to clusters 2 to 6 are then
presented in the next chapter (Chapter 3) because they are
problems that wuse directly the results of cluster 1.
Problems in cluster 7 are more difficult and are therefore

left to the last chapter (Chapter 4).
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APPENDEX B

PROOF OF PROPOSITION 4.7

The number of steps taken by each type 2 stage is
directly proportional to the number of triplets formed by
step 1.2, which can be estimated by deciding:

1) the number of feasible triplets in PKf[vj,od(vj)];

2) the number of feasible triplets in PKf[vr,i]; and

3) the number of triplets formed by PUT, conditional
CONNECT and conditinal COMBINE.

Let Vo be the parent of v.. Let n{r,j] be the number of
neighbors of v_ in V[vj,od(vj)], i.e., n[r,jl = ILnb[vr] n
V[vj,od(vj)]], and n[p,r] be the number of neighbors of vp
in G[vr,i], i.e., nlp,r] = |Lnb[vp] n V[vr,i]I.

The set of feasible triplets in PKf[vj,od(vj)] can be
partitioned into disjoint blocks by using the triplet-
similar relation. Let PK, be one of the blocks induced by
the equivalence relation. Since there are n[r,j] neighbors,
these neighbors can be distributed into no more than n[r,j]
distinct clusters. Any given cluster can assume a weight
that varies from 1 to B because of the nonneighbors. Thus,
the number of clusterings in PK, is no greater than Bn[r,j]

nlr,jl

or Z if the vertex weight is greater than 1.

The upper bound on the number of blocks induced by the
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triplet-similar relation is the number of ways in which
nlr,j] distinct objects can be distributed in i nondistinct
cells, where i varies from 1 to nl[r,j]l. Lukes ('75) showed
this number to be smaller than n[r,jl!. Thus, the upper

bound of the number of feasible triplets in PKf[vj,od(vj)]

is pniredl . nlr,jl!.
Similarly, the upper bound of the number of feasible

clusterings in PKf[vr,i] is Bn[p,r] + nlp,rl!'. An upper

bound on the number of triplets formed by PUT is:

Bn[p,r] + n[p,r]! - Bn[r,j]

« n[r,jl!.
An  upper bound on the number of triplets formed by
conditional CONNECT and COMBINE is:

Pt L npp,rlr - (-1 - B3 Lnpe 51 - oalr, 5.
An upper bound on"the number of triplets ’formed by PUT,
conditional CONNECT and conditional COMBINE is:

Bn[p,r] nlr,jl

« nlp,r]t B « nlr,j1t + (nlr,jl+1).
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