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Abstract. The reconstruction number rn(G) of a graph G was introduced by Harary and Plantholt 
as the smallest number of vertex-deleted subgraphs G i = G - vi in the deck of G which do not all 
appear in the deck of any other graph. For any graph theoretic property ~, Harary defined the ~- 
reconstruction number of a graph G ~ ~ as the smallest number of the G i in the deck of G, which do 
not all appear in the deck of any other graph in ~. We now study the maximal planar graph 
reconstruction number J/lrn(G), proving that its value is either 1 or 2 and characterizing those with 
value 1. 

1. Preliminaries 

All graphs considered are finite, simple and undirected, that  is, graphs in the 
s tandard graph theoretic terminology of [3], except that here we shall use the terms 
vertex and edge instead of  point  arid line respectively. We require some definitions 
which are not  found in [3]. 

For  brevity, a k-vertex has degree k, and an ordinary vertex has degree at least 
4. The number  of k-vertices of a graph G is denoted by nk(G ) and, for a vertex v in 
G, the number  of  k-vertices adjacent to v in G is nk(v; G) or simply nk(v). 

A cycle Ck on k vertices is said to be a k-cycle. A face of a plane graph bounded 
by a k-cycle is a k-face. A representation in the plane of a planar  graph is a 
k-representation if all the faces except one are (bounded by) 3-cycles and the 
exceptional face is a k-cycle, for some k >_ 4. 

2. The Reconstruction of Maximal Planar Graphs 

Since we shall be making extensive use of  concepts and results obtained in [6], 
where the reconstructibility of maximal planar  graphs was demonstrated,  we pre- 
sent in this section a brief outline of how maximal planar graphs were reconstructed. 
In particular, we include here, for completeness sake, Theorems 2.2 and 2.3 of [6]. 
Full details of  the ideas involved can be found in [6]. 

As in [6] we follow [7] and say that two plane representations R and R'  of a 
planar graph G are equivalent if there exists an au tomorph ism ~b of G such that  C 
is a boundary  cycle of  a face in R iff~b(C) is a boundary  cycle of  a face in R'. 
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A maximal planar graph G is degenerate if, for every ordinary vertex v of G, the 
graph G - v has at least two nonequivalent deg(v)-representations. An example of 
a degenerate graph is given in Fig. 2.3 of [6]. 

Let v be an ordinary vertex of a maximal planar graph G and let R be that 
deg(v)-representation of G - v in which all the neighbours of v appear on the 
deg(v)-face in a cycle order Vo, v 1 . . . .  , Vd~g~v)+ 1 where v~ is adjacent to v~+l (modulo 
deg(v)). If v~ is adjacent to Vi+a and deg(v~+z) > 3 (that is, the 3-cycle T = v~v~+~ vi+2 v~ 
is a separating triangle in G), then the subgraph induced by G minus the vertices 
on the same side of T as v is called a span of G incident to v. We denote this span 
by S(vlvi+lvi+z), and we call the vertices vi, vi+l, vi+2 the primary vertices of S. The 
vertices v~ and v~+2 in particular are called the pivot vertices of the span and v~+~ 
the replaced vertex. In any plane representation of the span, the edge viv~+2 is 
incident to the faces bounded by the triangles viv~+~ v~+2v~ and viyv~+2v ~ for a unique 
ve~rtex y ¢ v~+~. This y is called the replacement vertex of the span. 

In 1-6] the following result was obtained. It  is illustrated in Fig. 1. 

Theorem A. Any other deg(v)-representation R' of G - v can be obtained from R by 
a sequence of transformations in which replacement vertices replace corresponding 
replaced vertices on the deg(v)-face. 

e v 1 e '  

Fig. 1 
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This result is very important for reconstruction purposes since, reconstructing 
a maximal planar graph from G - v amounts to taking a deg(v)-representation R 
of G, adding a new vertex, and joining it to all the vertices on the deg(v)-face of R. 
The uniqueness or otherwise of the reconstructibility of G hence depends on the 
uniqueness of the deg(v)-representation of G, and this in turn, by Theorem A, 
depends on the spans incident to v in G. These considerations motivate our next 
definition. 

Let S be a maximal planar graph having three vertices labelled a, b and c on a 
face. Let G be a maximal planar graph having an ordinary vertex v incident to a 
span S(abc) isomorphic to S, 'and let y be the replacement vertex of this span. Let 
R denote that deg(v)-representation ofG - v in which all the neighbours ofv appear 
on the deg(v)-face, and let R' be that deg(v)-representation of G - v obtained from 
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R by replacing the vertex b by the vertex y on the deg(v)-face. If there is some such 
G for which the embeddings R and R' are not equivalent, then we say that the span 
S(abc) is asymmetric. A span which is not asymmetric is said to be symmetric (on 
pivot vertices a and c). Thus, for example, the span S(abc)in Fig. 2(a)is symmetric, 
whereas the span S(pqr)in Fig. 2(b)is asymmetric. 

Note that if G is degenerate then every ordinary vertex of G is incident to at 
least one asymmetric span. If v is an ordinary vertex of G such that v is incident to 
exactly one asymmetric span S(abc), with replacement vertex y, and moreover 
deg(b) ~ deg(y) + 1, we then say that v is a good vertex of G. We now give Theorems 
B and C which are respectively Theorems 2.2 and 2.3 of [6]. In fact, Theorem B is 
an improved version of Theorem 2.2, since here only three types of graph have to 
be considered (these are Types I, II with k = 2, and V of Theorem B 2.2 in [6]). It 
can easily be seen that this version follows from Theorem 2.2 since if G contains an 
ordinary vertex incident to any of the other types of span given in Theorem 2.2, 
then it must contain an ordinary vertex incident to one of types of spans specified 
in Theorem B. 

Theorem B. Let G be a degenerate graph. Then there exists an ordinary vertex u in 
G such that u is incident to an asymmetric span S, with a, b, c as primary vertices, S 
bein9 one of the three types of graphs shown below. 

Theorem C. Every degenerate 9raph has a 9ood vertex. 

Proof. We outline the proof in [6]. In particular we list the possible types of good 
vertices which can arise, since these will be required later. 

Let G be a degenerate graph. Therefore by Theorem B there exists an ordinary 
vertex u incident to an asymmetric span S, this span being one of the three types of 
graph shown in Fig. 3. 

We have to consider these three cases, taking into consideration the different 
possibilities which arise depending on which two of a, b, c are the pivot vertices of 
S considered as an asymmetric span incident to u. 

In this way we obtain Table l which gives, in each case, the good vertex x, and 
the degrees of the replaced and replacement vertex of the asymmetric span incident 
to x. [] 
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Table 1 

Type Pivot Good Asymmetric 
of S vertices vertex span Sx 

of S x incident 
t o  x 

Degree Replacement 
in G of vertex of Sx 
replaced and its 
vertex degree in G 
of Sx 

I a n d  a c Vk ~Aov~-la) 
o r b & c  

4 u; deg(u) > 3 

II 
(i) a and b v 2 Sx(D 1 ab) 
(ii) b and c v2 Sx(v Iab) 

> 5 c; deg(c) = 4 
5 c; deg(c) > 4 

III 
(i) a and b v2 Sx(vlab) 
(ii) c and b v2 Sx(vlab) 
(iii) c and a v3 Sx(vlbv2) 

> 5 c; deg(c) = 4 
5 c; deg(c) > 4 
6 a; deg(a) > 5 

Using  Theorem C the fol lowing result  was then ob ta ined  in [6]. 

Theorem D. Every  max imal  planar graph is reconstructible.  

Proof .  The a rgument  briefly runs as follows. I t  was first shown, in [2], that  maximal  
p lanar  graphs  are recognizable,  that  is, if G is a maximal  p l ana r  graph,  then any 
o ther  g raph  which is reconst ruct ib le  from the dcck of ver tex-deleted subgraphs  of 
G must  also be m a x i m a l  planar .  I t  then follows that  we need only consider  max imal  
p l ana r  graphs  which are degenerate  because,  if G is not  degenerate,  then there is an 
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ordinary vertex v such that G - v has a unique (up to plane equivalence) deg(v)- 
representation. But then G is uniquely reconstructible from G - v by adding a new 
vertex and joining it to all the vertices on the deg(v)-face of the deg(v)-representation 
of G. 

Assuming therefore that G is degenerate it follows, by Theorem C, that G has 
a good vertex x, incident to a unique asymmetric span with replaced and replace- 
ment vertices r and r' respectively, say. Hence, in this case, there are two ways to 
reconstruct a maximal planar graph from G - x, either as G itself or as H = 
G - xr  + xr'. But from the definition of a good vertex it follows that the degree 
sequences of G and H are different. However, from the vertex-deck of G the degree 
sequence of G can be determined, and therefore G can be distinguished as the only 
possible reconstruction from G - x. []  

3. The Class Reconstruction Number 

Class reconstruction numbers were first introduced in [4]. We shall here study the 
class reconstruction number  J/grn(G) where ~ '  is the class of maximal planar 
graphs. The problem therefore is this. We are given the information that G is 
maximal planar and we are required to find dgrn(G), that is, the smallest number 
of vertex-deleted subgraphs in the deck of G which are not all in the deck of any 
other maximal planar graph. Therefore here, unlike the previous section, we do not 
have the degree sequence of G, and the above method of reconstructing from just 
one G - v, with v a good vertex, does not work. 

We first observe that ~#rn(G) = 1 if G is not degenerate, because in this case 
there is some G - v, v an ordinary vertex with a unique deg(v)-representation, so 
that knowing that G is maximal planar we can reconstruct it uniquely from this 
deg(v)-representation, as described above. In particular this means that if the 
minimum degree in G is at least 4, then JClrn(G)= 1, since a degenerate graph 
necessarily has minimum degree 3. (This last assertion follows from the following 
considerations. Every maximal planar graph is 3-connected and therefore, by a 
result in [1], a maximal planar graph G with minimum degree at least 4 has a vertex 
v such that G - v is 3-connected. But then, by a result in [8], G - v has a unique 
plane representation, showing that G cannot be degenerate.) 

As we have seen, the idea of a good vertex was of central importance in the 
reconstruction of maximal planar graphs. We now need to extend this idea some- 
what. An ordinary vertex v of G is said to be a useful vertex if v is incident to exactly 
one asymmetric span in G. Note that we do not make any restrictions on the degrees 
of the replaced and replacement vertices of the asymmetric span, and that any good 
vertex is a useful vertex. We now develop a sequence of four lemmas to prove the 
main result. 

Lemma 1. Let  G be a degenerate graph and x a useful vertex o f  G incident to 
the asymmetric span S(abc) with replacement vertex y. Let  H = G - xb + xy, I f  
Jgrn(G) > 2, then for  any z in V(G) there is some vertex z' in V(H) such that G - z 
is isomorphic to H -- z'. 

Proof. The only possible maximal planar reconstructions from G - x are G itself 
or H (that is, G and H are the only maximal planar graphs which can have in their 
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deck a subgraph isomorphic  to G - x). Now, since ~ r n ( G )  > 2, it follows that  for 
any z in V(G), z v~ x, either G - z is isomorphic to G - x, in which case the required 
result follows since G - x = H - x, or  else there must  be some maximal planar 
graph J, not  isomorphic to G, such that the vertex-deck of  J contains both  a graph 
isomorphic to G - x and one isomorphic to G - z. But since there are only two 
ways to reconstruct a maximal  planar  graph from G - x, that  is either as G itself 
or as H, then J is isomorphic to H, and therefore the vertex-deck of H contains a 
subgraph isomorphic  to G - z, as required. [ ]  

Lemma 2. Let x be a good vertex of a degenerate graph G incident to the asymmetric 
span S(abc) with replacement vertex y, and let x '  be a useful vertex of  G, incident to 
the asymmetric span S(a'b' c'), with replacement vertex y'. Let  H = G - xb + xy  and 
H' = G - x'b' + x' y'. I f  deg(b) v a deg(b'), then the degree sequence of  H is different 
from that of  H'. 

Proof. Since x is a good  vertex then deg(b) ¢ deg(y) + 1. It therefore follows that, 
if s = deg(b), then n~(H) < ns(G), and n~_l(H) > n~_l(G). Now, let s' = deg(b') and 
t ' = deg(y').  We observe first that  if s' = t '  + 1, then the degree sequence of H '  is 
the same as that  of G, and therefore different from that  of H. We may  therefore 
assume that s '  v ~ t '  + 1, that  is, x '  is a good  vertex. Now, the only degrees in the 
degree sequences of G and H '  which differ are s', s' - 1, t', t' + 1. In fact, since 
s' ~ t '  + 1, then 

ns,_l(U ) > n~,_l(G ) and ns,(U) < n~,(G) 

and nt,(H') < nt,(G') and n,,+x(H' ) > nt,+,.(G' ). But ns_l(H ) > ns_l(G ) and n~(H) < 
ns(G), and therefore the only way that  the degree sequence of H and H'  can be the 
same is if s = s'. [ ]  

Lemma 3. Let G be a degenerate graph and assume that x is a good vertex of  G and 
x' a useful vertex of  G. Let  x and x' be incident to the asymmetric spans S and S' 
respectively, and let  the degrees of the replaced vertices of  S and S' be s and s' 
respectively. I f  s ~ s', then dgrn(G) = 2. 

Proof. Let S = S(abc) and let y be the replacement vertex of S. Therefore s 
deg(y) + 1. Let H = G - xb + xy. Also, let S ~ = S'(a'b'c') and let y '  be the replace- 
ment vertex of S' and H' = G - x'b ' + x' y'. 

If  s :~ s', then by Lemma 2 thedegree  sequences of H and H' are different, and 
therefore H and H'  are not  isomorphic. 

But by Lemma 1, if Jgrn(G) > 2, then the graph G - x '  must  be isomorphic to 
some graph in the deck of H. However,  the only possible maximal planar recon- 
structions from G - x '  are G or H '  (that is, G and H'  are the  only maximal planar 
graphs which can have in their deck a subgraph isomorphic to G - x'). This is 
however impossible since H is not  isomorphic  to G (because x is a good  vertex of 
G), and H is not  isomorphic to H '  (since s ¢ s'). [ ]  

Lemma 4. Let G and H be two graphs such that for s >_ 2, n~_~(G) < ns_l(H) and 
nk(G) = nk(H ) for all 0 <<_ k < s - 1. Assume that the vertices z in V(G) and z' in V(H) 
are such that deg(z) = deg(z') and nk(G -- z) = nk(H -- Z') for all 0 <_ k <_ s -- 1. 
Then nk(z; G) = nk(z'; H) for all 0 <_ k < s - l and n~(z; G) > n~(z'; H). 
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Proof. (Note that we shall henceforth write nk(z ) instead of rig(Z; G) etc., dropping 
the references to G and H.) Let p = deg(z) = deg(z'), and let 6i2 be the Kronecker  
delta. We now observe that, for any k _> 0, 

nk(G -- z) = rig(G) + nk+l(Z ) -- rig(Z)- 6~v 

and 

,~ (H - z') : ,~(H) + n ~ + l ( z ' ) -  n~(z') - G "  

Therefore for 0 < k _< s - 1, 

rig(G) + nk+I(Z)-  rig(Z)= rig(H) + nk_I(Z' ) -- nk(z'). (1) 

Since no(z) = no(z') = 0, then for k = 0, (1) gives, 

no(G) + nl(z)  = no(H) + nl(z ') .  

But no(G ) = no(H), therefore hi(Z) = nx(Z' ). Using (1)successively for k = 1, 2 . . . .  , 
s - 2 then gives, 

na(z ) = nk(z' ) for a l l 0 _ < k _ < s - 1 .  

7hen,  for k = s - 1, (1) gives, 

n~_ , (~ )  + ~s(z) - ns_~(z)  = n~_~(H) + ns(z ')  - ~-~(~') 

Therefore G(z) > G(z ' )  (since G-~(z)  = G_~(z')).  [] 

Theorem 1. l f  G is a degenerate 9raph, then ~ r n ( G )  = 2. 

Proof.  By Theorem C, G has a good vertex x in one of the configurations listed in 
Table 1. We shall consider all these cases and we shall show that for most  of them 
we can find a useful vertex x '  such that x and x '  satisfy the conditions of Lemma 
3. This is done in Table 2 below. The remaining cases (II(ii) and III(iii)) are then 
treated separately using Lemma 4. 

Table 2 

Type Pivot Useful Asymmetric Degree Degree 
of S vertices vertex span S~, in G of in G of 

of S x' incident replaced replaced 
to x' vertex vertex 

of Sx, of Sx 

I a and c v 1 S~,,(acb) >4 4 
o r b & c  

II 
(i) a and b v~ S~,(acb) 4 > 5 

lII 
(i) a and b v a Sx,(bca) 4 >_ 6 
(ii) c and b v 3 Sx,(v2bVl) >_7 5 
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In Table II, for each of the cases considered, we give the useful vertex x', the 
asymmetric span S x, incident to x', and the degree of the replaced vertex of Sx,. For 
comparison we also give (from Table I) the degree of the replaced vertex of the 
asymmetric span Sx incident to x. In all the cases, the two degrees are different, 
showing by Lemma 3 that Jgrn(G) = 2 in these cases. 

We are therefore left with cases II(ii) and III(iii). Let us consider first case II(ii), 
that is when the span S of Theorem B is of type II and the pivot vertices of S are b 
and c (see Fig. 4), when the vertex v 2 is a good vertex incident to the asymmetric 
span S(v 1 ab) with replacement vertex c, when the degree of a in G is 5, and when 
the degree of c in G is at least 5 (see Fig. 4). Therefore letting H = G - v2a + VzC 
we find that n4(H ) > ng(G ) and nk(H ) = nk(G ) for all 0 _< k < 4. 

We may assume that, in G, c is not a 4-vertex or a 5-vertex adjacent to a 3-vertex. 
Therefore there is a one-one correspondence between the 3-vertices of G and those 
of H such that the corresponding 3-vertices have the same number of neighbours 
with degree 5 (since a is not adjacent to any 3-vertex and a and c are the only vertices 
which change degree). We therefore let z be a 3-vertex of G such that z is adjacent 
to a minimal number of 5-vertices in G. Therefore, by the previous remarks, for any 

Fig. 5 
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3-vertex z '  in H, ns(z ) <_ ns(z' ). Hence, by L e m m a  4, there can be no 3-vertex z '  such 
that  G - z and  H - z '  are i somorphic ,  so by L e m m a  1, Jgrn(G) = 2. 

We can now deal  s imilar ly with case III(iii), that  is, when S is of type I I I  with a 
and  c as p ivots  (Fig. 5), 

The  vertex v 3 is a good  vertex incident  to the asymmet r i c  span S(v2bvx) with 
rep lacement  vertex a. The degree of b is 6, while that  of  a is at  least  6. Let  
H = G - v3b 4- v3a. Therefore  ns(H) > ns(G ) and  nk(H ) = nk(G ) for all 0 _< k < 5. 

Again,  we m a y  assume that,  in G, a is not  a 5-vertex or  a 6-vertex adjacent  to 
a 3-vertex. 

Hence, by consider ing a 3-vertex of  G adjacent  to a m in imum number  of 
6-vertices, we ob ta in  as above  that  ~{rn(G) = 2. [ ]  
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