A Bayesian Account of Uncertainty For Discrete-Event
Dynamic Simulation:
Selection of Input Distributions

Stephen E. Chick
Department of Industrial & Operations Engineering
University of Michigan
Ann Arbor, MI 48109
Technical Report 96-14

October 1996






UM IOE TR-96-14

A Bayesian Account of Uncertainty For Discrete-Event
Dynamic Simulation:

Selection of Input Distributions

Stephen E. Chick*

October 23, 1996

Abstract

The main thrust of this paper is to address problematic issues in the area of select-
ing statistical inputs to discrete-event dynamic simulation. A Bayesian framework is
proposed which formalizes a link between the subjectivist and parametric frequentist
techniques currently used in practice, and resolves known difficulties with each of those
techniques. This paper discusses the determination of the probability that a distribu-
tion best represents the data; an algorithm to select input distributions and parameters
for simulation replications which fully accounts for both parameter and distribution un-
certainty; a mechanism that accounts for mixture distributions; and extensions of Latin
hypercube sampling for variance reduction and sensitivity analysis when distributions
and parameters are unknown. An extensive list of references to related literature is
given, and approximation methods to aid implementation are presented.

Keywords:  Discrete-event dynamic simulation, simulation input modeling, Bayesian
methods, Bayesian statistics, mixture models, decision analysis, sensitivity analysis, vari-
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1 Introduction

The simulation of discrete-event dynamic systems is a widely-used operations research tool
with applications to manufacturing, service, and production systems [2,34,49]. A major
attraction of simulation is its ability to provide insights into system operation in the face
of complex stochastic behavior.

A central problem in the design of stochastic dynamic simulations is the selection of ap-
propriate input distributions to characterize the stochastic behavior of the modeled sys-
tem [58,59]. Failure to select appropriate input distributions can lead to misleading simu-
lation output, and therefore to poor system design decisions.

This paper addresses the issue of selecting input distributions and parameters for input
to dynamic simulations. There are two widely-used techniques found in the literature and
industrial practice: subjective specification of an input distribution, and classical statistical
techniques based on parameter estimation and goodness-of-fit. Sec. 1.2 describes these
techniques and argues that they can lead to unjustified conclusions. Another approach
based on Bayesian statistics is presented in Sec. 2 which addresses known problems with



the existing techniques.

The Bayesian formulation leads directly to an algorithm for selecting input distributions
and parameters for simulation replications, as described in Sec. 3. A key insight is that
input distributions and parameters should be selected randomly (with an appropriate dis-
tribution) from replication to replication in order to account for both distribution and
parameter uncertainty. For simulation, then, input distributions and parameters are chosen
by sampling, rather than by the more common approach of selecting according to a point
estimation rule (such as maximum likelihood, or Bayesian scoring rules).. One benefit of
this sampling is that simulation output for multiple replications will quantitatively incor-
porate the uncertainty in input distributions and parameters. At present, this uncertainty
is typically ignored or qualitatively incorporated at best.

Modeling issues for input distributions are addressed in Sec. 5, with particular attention to
the problem of mixture distributions. Implementation issues are addressed in Sec. 4, where
it is noted that although there are no widely available user-friendly software packages which
automate Bayesian distribution and parameter selection for simulation practitioners, there
are a number of techniques and approximations available for custom applications. New
results for variance reduction and sensitivity analysis issues are found in Sec. 7. The focus
is on extending Latin hypercube sampling to account for distribution uncertainty and on
sensitivity to initial (prior) probability assumptions. A comparison of Bayesian technique
proposed here with existing approaches to input distribution selection is presented in Sec. 8.
Sec. 9 summarizes the conclusions and indicates directions for further research.

1.1 Related literature for Bayesian techniques

Bayesian techniques have been used in a number of disciplines for statistical distribution
selection, including statistics, econometrics, artificial intelligence, sociology and medicine
(see e.g. [21,26,27,29,38,44,57] and references therein). Emphasis is often placed on
improving the efficiencies of Monte-Carlo (or static) simulation for calculating the expected
values of functions of the unknown parameters, as well as the efficient computer generation
of random variables with a given posterior distribution [10,19,22,53]. Those techniques will
prove useful for inplementing the discrete-event simulation replication algorithm presented
in Sec. 3.

Bayesian techniques have not yet been formally employed nor developed in the field of
discrete-event dynamic simulations, with the notable exception of [1], where the emphasis
was on the Bayesian analysis of simulation output, rather than on modeling input distribu-
tions for simulation.

1.2 Critique of existing methodology

There are two widely espoused methodologies for selecting statistical input distributions in
the discrete-event dynamic simulation community. They are (1) classical and (2) subjectivist
statistics (see, e.g. [2,34,49]).

When data is available, classical techniques are generally employed, including parameter



estimation (MLE, Method of Moments, least-squares,...) in combination with goodness-
of-fit tests (x?, Kolmogorov-Smirnov, Anderson-Darling,...). Indeed, many widely used
simulation support software packages implement classical techniques [25,41,56]. In spite of
this widely accepted literature and broadly implemented technology, statistical distribution
selection remains a contested topic. Some problematic issues include:

1. Goodness-of-fit and P-value criteria are difficult to interpret and inconclusive at best,
and misleading at worst [6,7].

2. The use of a single distribution and single parameter value under-estimates the un-
certainty in the both parameter values and the distribution model [21].

3. In practice, both human and automated processes are too complex to be described by
a single likelihood distribution and a fixed parameter value.

4. The lack of engineering motivation for most specific distributions.

Among the idiosyncrasies of classical goodness of fit and/or P-value type hypothesis tests
are: with few data points, few distributions are rejected; with many data points, all dis-
tributions are rejected [44]; there is no coherent method for selecting among non-rejected
distributions; and classical techniques can actually reject the (a posteriori) most probable
distribution [6,36].

A subjectivist approach is often advocated in the discrete-event simulation literature, par-
ticularly (but not exclusively) when little or no data is available [2, 34,49, 58]. Equipment
specifications, expert opinion, physical limitations, and the nature of the process are used
to specify means, medians, modes, quantiles, or other relevant quantities, and a single dis-
tribution is postulated, such as the triangular, exponential, truncated normal, or Bézier.
Alternatively, histograms are ‘smoothed’ to resemble a data set, with the resulting non-
parametric density used as input to the simulation. One problem with this particular
subjective approach is that a single, specific statistical distribution is chosen. As with
the classical approach, this tends to underestimate the uncertainty in the random process
generating the data. Extensive sensitivity analysis has been suggested as a means of com-
pensating for this problem [2]. At the same time, there has been little research describing
the best way to do this sensitivity analysis.

Two other approaches for selecting inputs to a discrete-event dynamic simulation are (1)
the use of raw historical data and (2) empirical distributions. Law and Kelton [34] argue
that for characterizing the stochastic behavior of a system, those approaches have several
disadvantages. They are therefore not considered in this paper.

2 Bayesian Problem Formulation

This section presents a Bayesian formulation for evaluating statistical distributions which
explicitly addresses the first three of the above criticisms of classical techniques. The formu-
lation is also sufficiently general for selecting from specific distributions that are suggested



by engineering knowledge, although the current work does not discuss how to determine
engineering-based statistical distributions.! The formulation generalizes existing approaches
for specifying distributions subjectively by permitting distribution and parameter uncer-
tainty and allowing an automatic ‘updating’ mechanism, should additional data become
available.

Suppose that a statistical distribution and parameter for a sequence of random quantities
X1,Xo,...1s needed for input to a discrete-event simulation of a dynamic system. Also
suppose that Y is a relevant figure of merit (e.g. throughput, cycle time, work-in-process)
for the decision-making process. Since Y depends the random inputs X;, ¥ is a random
variable which is a function of the X; as well as the distribution and parameters that describe
the X;.

One Bayesian approach to the problem of distribution selection supposes that random vari-
ables X; are exchangeable, or conditionally independent, given the distribution and pa-
rameter. A collection of M distributions are chosen as candidates for describing the data,
where distribution j has parameter ;. M is assumed finite and 6; either continuous or a
combination of discrete and continuous (although these assumptions can be weakened).

Under these conditions, the marginal probability distribution for Z,, = (z1,...,2,) can be
written using a deFinetti-type theorem (see e.g. [18]).

- M . . .
pE) = 3 [, 150705 | r et

M n
= () [ 76;19) [Io(ai 15,6, (1
j=1 9, i=1

where 7 (j) is the probability assigned to the j-th distribution, 7 (6; | 7) is the probability
assigned to 6; given distribution j, and p(2; | 7,6;) is the probability distribution of z; given
7, 0;.

In accordance with Bayesian tradition, we name 7 (j) the prior probability that distribution
J is the correct distribution, and use 7 (6; | j) to model the prior probability that the
parameter ©; = 6;, given that j is the correct distribution, j = 1,..., M. A discussion of
the specification of these prior probabilities is found in Sec. 4.1.

It is useful to define some conditional distributions: the probability p(Z, | j) of &, given
the distribution j; the probability p(j | &,) of a model j given Z,; the posterior probability
p(0; | j, Z,) of parameters 6;, given j and Z,; and the ‘predictive’ distribution p (Y | £,) of
a figure of merit Y, given 7,,.

p(En i) = /@ p(&n | 1,6;)7 (6; | 7)d6; )
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!For the case of component time-to-failure, the interested reader is referred to the growing operational
Bayes and probabilistic physics-of-failure literature [3,14, 15,40, 50, 55].
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The final equation is known as a Bayesian model average.

Suppose that Z, represents observed data from the sequence X1,.... Eq. 2-Eq. 5 can then
be used to update prior beliefs about uncertainty in distributions and parameters. Further,
the concerns raised in Sec. 1.2 are addressed in the following ways.

1. The belief that a given distribution and parameter is correct is directly interpretable
in terms of the probabilities in Eq. 3 and Eq. 4 [6,7,36,44].

2. The effect of both distribution and parameter uncertainty on the system output are
described by the formalism of Eq. 5 [21].

3. There is a capability to determine whether ‘mixtures’ of distributions and/or param-
eters best describe the data. (See Sec. 5).

4. Explicit use of judgment from an engineer or factory floor worker is available in the
form specifying which distributions are possible, as well as 7 (5) and 7 (6; | 7).

3 Simulation Replication Algorithm

Turn now to the problem of determining a statistical distribution and parameters for a
input to a simulation used for estimating a figure of merit Y. For simplicity, focus on the
distribution and parameter selection process for a single random effect (say, time to failure
of polishing machine 5). Suppose that historical data D = &, has been collected, and that
R simulation replications are run, with each simulation replication requiring S samples. We
are therefore required to generate random variables z ;, representing the :-th sample for
the k-th simulation replication, k = 1,...,R;i=1,...,5.

Discrete-event simulation accounts for randomness by sampling from distributions, and
the case of selecting an input distribution and parameters should be no different. Eq. 5
quantifies the uncertainty in input distribution and parameter, and therefore suggests that

the distribution j and parameter 6; for replication j should be independently sampled from
Eq. 3 and Eq. 4.

Fig. 1 summarizes an algorithm which implements this methodology for selecting input
distributions and parameters. The net effect of the algorithm is to account for the full
extent of the uncertainty in the input parameters, while fully accounting for the data D.
Although this idea of sampling distributions and models has recently appeared in the Monte-
Carlo Markov chain literature, the idea seems to be completely new in the discrete-event
simulation literature.

The output Y} of simulation run k is an exchangeable sample from the marginal distribution
p(Y | D), conditional exclusively on the data. In other words, the algorithm accounts for



for k = 1,..., R replications
sample the k-th distribution ji from p(j | D)
sample the k-th parameter 8;, from p(6; | jx, D)
fori=1,...,5 service times
sample service times zj; from p(z | jk,6;,)
end loop
report figure of merit Y} from replication &
end loop
generate output (e.g., estimate Eyp[Y | D] as Y=YR Yi/R)

Figure 1: Algorithm for running simulation replications by randomly sampling the input
distribution and parameters.

the information provided by the historical data D, and averages over the uncertainty in the
distribution and parameter for input X.

This differs significantly from common practice in discrete-event simulation. First, com-
mon practice uses the same input distribution and parameter for every replication (except
for sensitivity analysis), rather than sampling those inputs. Second, the output has dis-

tribution p (Y | j*,Gj), where the distribution j* and parameter 07 in the condition are
determined by parameter estimation and goodness-of-fit tests, and the probability that the

right distribution and parameter was selected, p (j*, o7 | D) is unknown.

The algorithm in Fig. 1 is a naive approach to selecting parameters for replications to
estimate functions of Y, and does not provide for variance reduction. Sec. 7.1 discusses an
alternate way to select parameters which reduces variance. Further differences between the
Bayesian and classical approaches are explored in Sec. 8.1.

4 Implementation of Bayesian Approach

Two difficulties with the Bayesian framework are the specification of suitable prior distri-
butions, and numerical integration. This section is devoted to discussing these issues.

4.1 Evaluation of Prior Distributions

One of the primary areas of contention with Bayesian problem formulations in general is in
the specification of prior distributions.

Subjectivism [48] is currently the dominant philosophical foundation for Bayesian statistics
(in writing if not in practice). That is, a decision-maker’s knowledge is used to specify the M
structural models for input distributions and corresponding prior distributions. At least two
problems arise in practice with this formulation. One is the potential non-interpretability
of the distribution’s parameters. (How can one operationally measure the shape parameter
of a tool with Weibull-distributed time-to-failure?)



Even if this first problem is solved, a second problem arises. The introspective assessment of
the prior probabilities may be extremely difficult. Methods of simplifying this difficulty have
been addressed extensively, with focus on the search for a ‘default’, ‘objective’, or ‘reference’
prior. Some of these methods include Jeffrey’s invariant prior, maximum entropy techniques
proposed due to Jaynes, and optimization techniques for information maximization due to
Zellner. Kass and Wasserman [32] present a comprehensive review of these and other
techniques for automating the selection of a prior. One conclusion is. that all approaches
to automating prior selection have at least some pitfalls. For instance, many techniques
give rise to an improper prior or require an arbitrary selection of compact subset of the
parameter space in order to obtain a proper prior. (A proper prior integrates to 1.) While
an improper prior can give rise to point estimates for parameters for a given distribution,
a proper prior is required to take advantage of the full inferential power of Eq. 2-Eq. 5.

This paper uses the subjective approach, and compares results to the analagous classical
results whenever possible. (Some results are not obtainable with classical techniques.)

For the case of mixture distributions (see Sec. 5), the paper follows the current practice [5,20]
of evaluating priors for each of the components and mixing proportions separately, and
multiplying as if they were statistically independent.

4.2 Practicalities of Calculation

The calculation and approximation of the marginal distributions p(j | D) and p(6j | j, D)
has been analyzed extensively in the literature. A recent survey paper of Evans and
Swartz [22] indicates that significant progress has been made using five general techniques:
asymptotic methods, importance sampling, adaptive importance sampling, multiple quadra-
ture, and Markov chain methods [12]. At present, however, there does not appear to be
a widely available software package to automate the calculation of Eq. 2-Eq. 5 that also
meets the level of user-friendliness of packages currently used in the discrete-event simula-
tion community (see, e.g. [25,41,56]).

Still, some software is available as add-ons to existing statistical packages to support
Bayesian inference. Raftery [45] has developed S software code for a number of applications
(e.g. linear regression) which is available on the Internet (at http://1lib.stat.cmu.edu/).
Clyde [16] describes a computer tool for Bayesian design of experiments, which has been
described as powerful but has a non-trivial learning curve [11]. A public-domain tool de-
scribed by Wagner and Wilson [58] aids users in subjectively specifying bivariate input
distributions, as well as finding classically best-fit Bézier distributions. The tool does not
support Bayesian inference.

Markov chain Monte Carlo (MCMC) methods [10,22,23,53] have been used not only for
approximating the required integrals, but also for generating random variables p(j,6; | D).
Thus, samples from MCMC simulations can generate statistical distributions and param-
eters for use in driving discrete-event simulations. Until a widely-available user-friendly
software package is available for assisting the discrete-event simulation modeler, custom
programming will generally be required.

The following approximation techniques may simplify calculations. A comparison of various



techniques for approximating Eq. 3 and Eq. 4 are presented in [19]

4.2.1 Laplace Approximation and Schwartz Criterion

Assuming the posterior distribution p(6j | j, D) is proper and unimodal, the Laplace ap-
proximation [33] can be employed:

1/2

(2r)%/2. ]E]I -p(D Ij,5j> o (éj |j)

ZHip(i| D)
. ~ -1

where the dimension of §; is d;, ¥; = (—D2 logp <0j | 7, D)) is the inverse of the Hessian
of the log-posterior evaluated at the maximum a posteriori (MAP) estimate 5j of 6; given
7, and n is the number of data points. The Laplace approximation is based on a normality
assumption [28], and improves when the third derivatives of the log-posterior approach
0 [30].

A variation of this approximation is to use the MLE éj and observed information matrix
$; = (-D%¢;(8;; D)™ lé, in place of the Bayesian analog 0;,%; and ignore the prior

+0(n7h) (6)

p(j| D)=

distributions. A further variation is to use the expected information matrix. This use of v j
differs in character from its typical application in simulation—that of estimating confidence
intervals for parameters [35]. Here, éj and 3] are used to estimate the probability that the
distribution is correct, as well as estimating the probability that a particular parameter is
the correct parameter, via approximation of Eq. 4 by a normal distribution.

The Schwartz criterion (or BIC within a factor of 2) [33] is a simpler but less accurate
approximation to the relative likelihood of two distributions.

p(DIj)) i j dj — di -1/2

lo <— ~logp (D |6;,5) —logp (D |6k, k) - ——=1logn +O(n~"/ 7)
where large positive values provide relative support for distribution j over distribution k [44].
The Schwartz criterion ignores prior information. The factor (d; — dx)2logn can be thought

of as a penalty for models with a large number of parameters.

Another potential problem with calculating Eq. 3 is that M may be extremely large for some
applications. Although this is not the case in the current paper, Madigan and Raftery [37]
propose a technique called Occam’s window to include only the most likely and simple
distributions in the analysis.

A primary advantage of the Laplace and Schwartz criteria approximations is that the pos-
terior distributions of the #; need not be computed. This significantly reduces the com-
putational burden imposed by high-dimensional numerical integration. The calculation of
Hessians and point estimates (MAP) is still required.

4.2.2 Selection for a single replication

Suppose that only a single replication may be selected due to cost considerations. The
replication algorithm in Fig. 1 may select an ‘unlikely’ distribution and parameter. For a



single replication, it may be advantageous to select a ‘typical’ distribution and parameter
rather than to randomly sample.

The use of scoring rules which choose (j*,67) to maximize the posterior density p(j.6; | D)
is inconclusive, because the densities are coordinate-dependent (by changing the parame-
terization of the 6;, one could make any distribution with continuous parameters have the
maximal posterior density, assuming the prior density was not 0). This problem is avoided
in part by breaking the problem into two parts: selecting the distribution first, then the
parameter. :

Using the log scoring rule (see, e.g. [8]) for the distribution, the best choice j* maximizes

logp(j, D) = log 7 (5) +logp(D | ) (8)

This formulation does not depend on the coordinate systems used to describe the parameters
6;, since the parameter is integrated out of p(D | j) via Eq. 2. Heckerman and Chickering
[26] called this procedure for distribution selection the scientific criterion.

For a given distribution j*, Berger [4] suggests two potential choices for 8. One is the MAP
estimate §;, when the maximum is unique. The other is the posterior mean E[f; | 5, D],
when the expectation exists. The latter has the advantage of minimizing posterior variance,
but suffers in that parameter averaging may be meaningless for a given problem. Both
estimators have been used in practice. Either choice of estimator gives asymptotically
correct results as the number of data points in D becomes infinite, conditioned on the
assumptions that the correct distribution is within the hypothesized set, that the prior
probability density of the correct parameter is non-zero, and regularity conditions for the
MLE to be strongly consistent are satisfied.

5 Mixtures Models and Nested Models

One common statistical assumption is that there is a single ‘true’ likelihood distribution j
and parameter 6;, as in interpretation L.1.

I.1.- Data are described by a unique likelihood model and unique parameter.

For many applications, this assumption is not appropriate. For instance, service times,
inter-arrival times, equipment time-to-failure and repair times may have several influencing
factors, each of which has a differing underlying statistical distributions. For this reason,
the following alternate interpretations are given.

I.2. Data are described by a mixture of likelihood models, but each likelihood model has a
unique parameter.

I.3. Data are described by a unique likelihood model, with a mixture of parameters.

I.4. Data are described by a mixture of likelihood models, each with a mixture of parame-
ters.

10



Interpretations 1.2.-1.4. can be incorporated into the framework developed above by modi-
fying what is meant by choosing the M distributions to represent not only likelihood models
but also mixtures of likelihood models [21]. A distribution is not restricted to being a single
likelihood model, but can be a mixture of likelihood models to reflect a theory of how the
data were generated. Each candidate structure for a mixture distribution is counted as one
of the M competing alternatives. Titterington et al. [54] present a review of the field of
mixtures. Richardson and Green [46] present a recent Bayesian treatment of mixtures of
normal distributions.

Although mixture distributions can provide better ‘fit’ to data because they have additional
parameters, it is not the case that a mixture will always be more likely than one of its
components, given the data. The asymptotic approximations in Sec. 4.2.1 give a rough
idea of how more complex distributions are penalized (in some sense) relative to simple
distributions. Model parsimony is therefore preserved.

A common formulation for a finite mixture distribution of ¢ components is to assume that

Cc
p(zi15,6;) = pifi(zi| 6j1)dz; (9)
=1
where p;; is the proportion of samples from the [-th component of the mixture, with
Soi—1pji = 1, and the densities f; have a specified parametric form with parameter 6;;.
The parameter for the entire mixture distribution is therefore 6; = (p;i,0;1)j=;-

Mixture distributions with a differing or unknown number of components have been rep-
resented either as competing distribution alternatives, or as a single model structure (with
the number of components represented as an additional discrete parameter). Models with
¢ — 1 components are nested in models with ¢ components (set p;; = 0 for some /). If a
(¢ — 1)-component model is believed to be a possible theory for explaining the randomness
in the data, it must be given non-zero probability (not just a non-zero density) to enable
the selection of the (¢ — 1)-component model by the Bayesian formalism described above.

Similarly, non-mixture distributions which are nested should be considered separate distri-
butions (e.g. the exponential distribution nested inside the Weibull). The exclusion of the
nested distribution (e.g. not including the exponential because the Weibull is included, even
if memorylessness is considered possible) leads to the exclusion of the nested distribution
as a possibility, as well as strange theories about how things work. Take an example from
physics to clarify: ‘Is the potential energy in a spring kz¢ (fit two parameters, as in Weibull),
or is it kz? (fit one parameter, as in exponential)?” The one-parameter model is nested in
the two-parameter model. Excluding the one-parameter model from consideration would
lead to laws of physics such as E = kz!9%% with updates for the exponent each time new
data is collected. Including both models for comparison would enable the determination of
whether a one-parameter or two-parameter model is best supported by the data.

6 A Mixture-Model Example

The time-to-failure for a manufacturing process is to be modeled. For the purposes of this
paper, the time to failure is initially anticipated to be on the order of four hours. There are
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M = 3 distributions under consideration, one of which has a mixture of parameters. There
is nesting.

Model 1 The X; are distributed exponentially. We parameterize with the mean, ©; = m,
s0

- i -z/m
filz|m)= me )

Model 2 The X; have a gamma distribution. The parameter ©, = (o, m) is two dimen-

sional, with
xoz—l

meI(a)

-z/m

fo(z | aym) =

Model 3 The X; are a mixture of two gamma distributions with an unknown mixing ratio.
The parameter O3 is five dimensional, and can be parametrized by (p, a1, m;, az, ms),
where p is the unknown mixing proportion.

f3($ | p, aq, mlaa%mZ) = pr(x | al,ml) + (1 - P)fz(l' l a29m2)-

We assume that 0 < m,a;p € (0,1). The selection of coordinates for the gamma was made
so that when a = 1, the parameterization is consistent with the parametrization for the
exponential.

The priors probabilities chosen to reflect initial beliefs are:

500dm
T(m|1) = 24500/m’ (10)
500dm da
m(a,m|2) = —3500/m 30" (11)
: 3 8pl/2(1 - p)/2%dp 55dmy day 945dmg day
™ (p o1, mas00,ms | 3) = T m%e55/m1 20 m%e945/m2 20’ (12)
(1) = 7(2)=7(3)=1/3 (13)

~ where the range of the parameters is again assumed to satisfy 0 < a; < 20,0 < m;,.

The priors have been chosen to be relatively diffuse. For the exponential, the prior takes
a maximum at 6; = 250 (using this value gives rise to an exponential with mean 250).
The expected value of the parameter, does not exist due to the diffuseness of the prior.
For the gamma, the scale parameter was assigned the same distribution, and the shape
parameter is chosen to be an independent uniform[0,20]. For the mixture of gammas, the
mixing proportion was chosen to have a (mildly) non-uniform density to favor mixtures
(p € (0,1)) over non-mixtures (p = 0 or p = 1). The first of the gammas in the mixture was
chosen to represent a failure mechanism which is believed to give short times-to-failure (m,
maximized at 55). The second gamma represents another mechanism which is believed to
permit longer operation times (m; maximized at 945).

The data D of Fig. 2, which is typical for machine times-to-failure in a manufacturing
environment, was then used to update the distributions for these competing distributions.
Results are summarized in Fig. 3. Calculations were implemented with Mathematica [60] on
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Downtime Data Data D (rounded, in minutes)

0.25 0.55 0.67 1.75 2.20 3.00
3.17 3.23 4.40 5.15 8.33 9.23
10.37  10.55 11.25  13.83 23.03 27.20
33.22  35.28 36.02 50.33 69.08 78.15
81.78  89.92 96.95 97.83 103.25 111.80
135.85 187.90 198.91 224.70 262.23 271.18
381.70 962.38 3435.23

Figure 2: Sorted data D resemble the time-to-failure for a manufacturing process.

Time-To-Failure Inference

Model j=1 j=2 j=3

9]- m (a?m) (p7 a19ml’a2’m2)

6; (MAP) 185 (.367,464) | (.776,.576,92.3,.478,1039)
E[8; | j, D] 194 (.364,551) | (.876,.557,138,1.72,1637)
p(j | D) (quad./MCMC) | 1.41 x 10~° 164 .836

p(j | D) (Laplace) 2.39 x 107° 0.267 733

p(j | D) (Schwartz) 8.87 x 10710 .605 .395

9, (MLE) 182 (.357,509) | (.946,.524,140,1.96,1065)
x?-statistic (8 bins) 37.1 7.15 5.51

a for X%—d,—l 1.68 x 106 .209 .064

o for x3_, 4.49 x 1076 413 598

Figure 3: Model comparisons for exponential (j = 1), gamma (j = 2), and mixture of two
gammas (j = 3), given the downtime data D of Fig. 2.

a Pentium-based PC-clone. MAP and MLE estimates are based on numerical maximization
~techniques, and Laplace and Schwartz estimates were by direct calculation. For E[f; |
J,D] and p(j | D) (quad./MCMC), quadrature was used for the exponential and gamma
distributions, and Monte Carlo simulation was used for the mixture of two gammas. The
estimate of 0.836 for p(3 | D) has a 95% confidence interval of (.813,.853). The y2-test
statistic was calculated using 8 equiprobable bins, as well as the probability that y2_; and
Xg—d]—l random variables exceed the test statistic.

The posterior distribution indicates that the mixture is the more likely distribution, given
the data. The Laplace approximation gives a reasonably good estimate. The Schwartz
approximation, while right within an order of magnitude, incorrectly concludes that the
gamma is more likely than the mixture of gammas.

The x2-test is inconclusive. When parameters are ﬁt with MLE, and the ‘null hypothesis’ is
assumed, it is known [13] that the distribution of x? satistfies x2_ 4, L Sx2 < x3_,, where
< is a stochastic ordering. One bound seems to suggest the gamma better represents the
data, the other bound seems to suggest the mixture is better. A further inconclusivity of
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this y2-test is that no discussion is given as to what the x?-statistic should be when the
null hypothesis does not hold. It can therefore not determine the probability that a given
model is correct, given the data D.

All tests and approximations ruled out the exponential distribution.

Model validation is an important step in simulation development, and a cursory validation
of these conclusions was undertaken. The suppliers of the data in Fig. 2 were asked if there
were two distinct failure processes were known to have accounted for the data, as suggested
by the higher probability for the mixture model. The answer was affirmative, in that short
times-to-failure associated with a simple equipment malfunction (jamming) caused some
downtimes, and long times-to-failure were associated with an absense of jamming, but a
presence of other mechanical failures.

7 Sensitivity Analysis and Variance Reduction

In manufacturing practice, the calculation of specific quantities such as the expected per-
formance given the data in Eq. 5 is secondary to the insights gained from observing the
sensitivity of system behavior to changes in simulation inputs [2]. A high sensitivity may
indicate that alternate system designs should be considered, that additional data collection
may be necessary to better characterize input distributions, or that the system behavior
may have a wide range of uncertainty.

Because of the cost of running multiple simulation replications, it is desirable to reduce the
number of simulation runs required for sensitivity analysis by selecting input distributions
strategically to reduce the variance of the output.

This section makes several practical and theoretical comments regarding sensitivity anal-
ysis and variance reduction as they relate to input distribution selection. Topics treated
are extensions for Latin hypercube, antithetic variates, and sensitivity to prior probability
distributions. For reasons of scope, this paper does not consider aspects of sensitivity anal-
ysis requiring significant output analysis and modeling or continuous time analysis of the
simulated state (e.g. perturbation analysis [47], response-surface methods, and Bayesian
design of experiments [11]). Common random number variance reduction techniques are
completely compatible with the current presentation in a straightforward way, and are
therefore not discussed.

7.1 Extensions For Latin Hypercube Sampling

Latin hypercube sampling [39] for selecting parameters of a given input distribution has
been used for both variance reduction [52] and sensitivity analysis [17]. In this section, two
Latin hypercube techniques are extended to account for input distribution uncertainty. The
first is simpler to implement, and provides variance reduction asymptotically. The second
is more difficult to implement, but provides variance reduction even for a finite number of
replications.

First, we describe the procedure for generating a Latin hypercube sample of size R as
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originally presented by McKay et al. [39]. Each of the R samples is for use in one of
R simulation replications. Suppose that there are K statistically independent real-valued
parameters ¢ to be input to a simulation. Let Fi(#x) be the cumulative distribution
function of ¢, and let ¢;x be the k—th input parameter for sample i. Define M = (my;) to
be an R X K matrix, where each column of M is an independent random permutation of
{1....,R}. Let (;; be a collection of uniform[0, 1] random variables which are independent
of each other and of M. Then set ¢;x to be

i = F! (M) (14)

R

The general effect of this sampling scheme is to ‘prevent bunching’ of samples by insuring
that the marginal empirical distributions of the ¢ roughly match the Fj.

Direct application of this Latin hypercube technique is not straightforward for the Bayesian
framework presented here. This is because one doesn’t know what the parameters are, or
even how many there are, because of distribution uncertainty.

A simple variation of the Latin hypercube sampling scheme to account for distribution
uncertainty is to first sample the distribution, and then sample the parameter given the
distribution. In other words, for simulation replication ¢, select distribution j; with discrete
Latin hypercube sampling according to p(j | D). That is, choose j; with K = 1 so that

mi — 14+ (i

R (15)

ji=minp({L,...,3}[ D)2
where (;; are uniform[0, 1]. This determines the number of times R; distribution j is chosen
for replications, R; = Y1, I¢;,1{s}, where the indicator function I, {b} is 1if b € 4,
and 0 otherwise. For the R; replications with distribution j, use Latin hypercube again
(now with K = d;) to sample parameters §; using the distribution p(6; | j, D). In general,
the parameters 6; will not be statistically independent. Stein [52] provides the necessary
extension for Latin hypercube to approximate sampling of dependent variables. Further,
by analogy with the proof in the appendix of Stein, this sampling scheme provides variance
reduction as R — oo.

It is desirable to guarantee variance reduction for finite R.

A second extension to Latin hypercube sampling is therefore proposed which provides this
variance reduction on the condition that the performance measure Y is a monotonic function
of the expected value of the random input X. The idea is to sample an expected value
for E[X | j,6;], then to select a distribution j and parameter §; with that mean. More
specifically, let ¢(j,6;) = E[X | j,6;] be the conditional mean of X, given (j,6;). Eq. 5
determines the posterior marginal density p(g | D) of the random mean G given the data D.
Set K = 1in the Latin hypercube scheme, define Fg(g) to be the cumulative distribution
for G given D, and sample g;, j;, 0}, as follows:

g = Fg'(Ca) (16)
ji ~ p(j|D,E[X|D]=g) (17)
0;; ~ p(8;1D,ji, E[X|D]=g) (18)
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where ~ indicates that the left hand side is to be drawn from a sample whose distribution is
on the right hand side. Again, j;,0;, can be sampled by MCMC methods or approximation
techniques.

Variance reduction for E[G] using this second variation on Latin hypercube, even for finite
R, can be proved by first noting that

Var(G) s (R - 1)Cov(g1,92)

Var(G’) = R R ’

where G = YR | g;/R is an estimate of E[G] = E[E[X | j,6;]], the outer expectation taken
with respect to p(j,8; | D). As long as g is monotonic in its arguments, Cov(gi,gs) is
negative [39]. Although ¢ is not monotonic in 7,6;, it is monotonic in (;;, which in turn
is a function of j7,6;. The original argument of McKay et al. [39] is easily modified to
show variance reduction for G based on the monotonicity of g in (;;. Similarly, if a figure
of merit Y for the system is a monotonic function of g, variance reduction for Y will be
achieved as well. (This covers a wide variety of interesting figures of merit, such as mean
work-in-process, mean utilization, and mean throughput capacity.)

The key is that variance reduction for finite R does not require monotonicity of all arguments
of g, only that g be monotonic in some parameter ( = Fg, which is a function of the
simulation inputs.

7.2 Antithetic Variates

This section discusses the use of antithetic variates (AV) for the selection of distributions
and parameters for use as simulation inputs to simulation replications. AV is a variance
reduction technique which pairs simulation runs, where one run takes random variables
which have the inverse cumulative distribution of the other. That is, if Xy is a service
time in the one simulation, then the corresponding service time X7 in the paired simulation
satisfies X| = Fgl(l — F(X,)), where Fy is the cumulative distribution of X. Although
variance reduction is not guaranteed with AV, good results are often obtained when there
is a monotonic system resporse to the input random variable [34].

If a figure of merit is monotonic in the expected value of random inputs, ¢(j,6;) = E[X |
J»8;), AV can be implemented with some hope of variance reduction even if the distribu-
tion is uncertain. (This monotonicity was already used in the second extension of Latin
hypercube in Sec. 7.1). Suppose that (j;, 6;,) is selected as the input distribution/parameter
input using Eq. 16-Eq. 18. The AV input (j;,8; ) for the paired replication can then be
sampled as

g = F5'(1- Fo(EX | jin0;)) (19)
ji ~ p(j|D,E[X|D]=g) (20)
6; ~ p(8; |D,j,EX|D]=g) (21)

Note that the use of AV for selecting distributions and parameters for simulation can be
used with or without AV for random samples for paired discrete-event simulations for a
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fixed input distribution and parameter. That is, two levels of pairing may take place: one
for selecting input distributions and parameters for a paired replication (Eq. 20-Eq. 21) and
one for corresponding samples from a particular distribution (e.g. AV for the individual
service times, given a specific input distribution and parameter).

7.3 Sensitivity To Prior Distribution

The simulation output distribution p(Y | D) has a distribution which depends on the prior
distributions. A number of authors have explored the effect of modifying the prior distri-
bution on the posterior distribution or on functions of the posterior distribution (such as
E[Y | D)) [4,9,27,31,42,51]. This section discusses conditions when sensitivity analysis is
particularly easy to implement.

Let 7(j),7(6; | j) be the initially chosen priors, and 7 (j),7; (6; | ) be K competing
priors for testing sensitivity, k = 1,...K. Also, let y;,...,yr be the output from the R
using 7 (5),7(; | j). Let Y/ be the output measure estimate, assuming the use of 7} (7).
A formula used in importance sampling [24] gives

1= 1 yl | D)
where p(y; | D), p} (yi | D) are the posterior densities using the initial and k-th competing
priors, respectively, and the dependence on the data D is noted explicitly.

The calculation of pj (y; | D) potentially requires a complete recalculation with Eq. 5 for
each k. Each recalculation requires two numerical integrations (in Eq. 2 and Eq. 5), both
possibly high-dimensional. This section explores two special cases of sensitivity analysis
which permits each of the integrations to be calculated once, rather than K + 1 times.

First, suppose that a sensitivity analysis with respect to the prior 7 (j) is desired, but the
prior for the parameters remains the same (7 (j) # 7} (j) for some j,k; but 7(6; | j) =
T, (6; | j) for all j,k). Recalculation of pj (y; | D) in terms of p(y; | D) in this case only
requires a few extra additions and multiplications, and does not incur additional expense
in numerical integration—the integral of Eq. 5 does not change, only the p} (j | D) need
recalculation. Similarly, the calculation of p) (j | D) can be calculated by substituting 7}, (5)
for 7(j) in Eq. 3. The calculation of the integral for p(D | j) was already completed in
order to run the initial batch of R simulations.

Alternately, suppose that the posterior distributions p(Y | j, D),p (Y | j, D) are heavily
data dominated, and that 7 (6; | j), 7 (6; | 7) are relatively constant near ;. In this case,
the integral for p; (Y | 7, D) in Eq. 5 can be approximated as

o e Dim (814)
(Y |5, D)~ w(éju)

The approximation should not be used if the priors are not roughly constant in the chosen
coordinate system for 6;, or if the posteriors are not highly unimodal.

(23)
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Sensitivity analysis for priors has a computational cost which is a linear function of the
number of alternatives K, whether either of the two special cases holds or not. The relative
costs between simple multiplication and high-dimensional integration, however, proves to
be of practical advantage for situations where either or both of these special cases hold.

8 Discussion

8.1 Comparison to Estimator/Goodness-of-fit Approach

We now compare the above Bayesian formulation with the standard classical approach [2,34,
49)] to selecting an input probability distribution. The standard approach was summarized
in Sec. 1.2 as (1) determine a set of eligible distributions, (2) establish point estimates for
parameters for those distributions, and (3) evaluate the goodness-of-fit for each distribution.

The first step of the classical approach is similar to the present approach-a set of M dis-
tributions are selected as possible candidates. Although the classical approach, in theory,
allows for mixture distributions, in practice it does not (subjective smoothing of histograms
is generally employed). The inclusion of mixture distributions here is included as an initial
assumption in response to an explicit need to account for multiple sources of randomness
in industrial and other applications.

The second and third steps differ drastically from the present approach. The posterior
marginal probability p(j | D) for distribution j gives distinct ‘weights’ for comparing the
descriptive value of each distribution. These weights have a probability interpretation.
Although the classical goodness-of-fit tests give ‘scores’, these scores do not indicate the
probability that a given distribution is correct (conditional on the correct distribution being
among the M distributions proposed). The best one might hope for is to ‘reject’ as many
distributions as possible and leave only a few good ‘candidates’. The Bayesian approach
does not suffer from either of these extremes.

Another difference between the approach presented here and the use of a point estimate of
a parameter (such as MLE) for all simulation runs is that the uncertainty in the parameter
is not accounted for until the sensitivity analysis stage. Similarly, the y2-test is often used
to determine a unique ‘best’ distribution, without describing how much uncertainty there
is as to which distribution is ‘best’. One would be much more likely to believe simulation
results when distributions were updated using 10,000 data points versus 100 points, if the
standard approach were used. The point-estimate/goodness-of-fit approach to simulation
input and output distributions do not formally capture this effect. The algorithm in Fig. 1
generates simulation output, however, which fully-accounts for distribution and parameter
uncertainty.

Some authors suggest evaluating the statistical independence of the data, in addition to
the three modeling steps above [34]. This evaluation frequently takes the form of visual
inspection of scatter diagrams or nonparametric tests. Independence versus correlation can
equally well be analyzed as two competing model assumptions, and a Bayesian analysis
can be carried through to test the relative probability of independence and correlation.
(Technically, the exchangeability assumption may need to be dropped, but the use of Bayes
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rule for probability calculation remains.)

8.2 System Stability

Because of the uncertainty in system input distributions, it is quite possible that the system
is unstable with probability p > 0. By unstable, it is meant that the mean service time is
at least as large as the mean inter-arrival time.

This effect should be considered an advantage, rather than a defect, of the current approach.
Admittedly, an unstable system causes problems for steady state statistical analysis because
queue lengths become unbounded. On the other hand, unstable systems do not pose such
analytical difficulties in a practical production sense, as measured by money (or utility). It
merely requires that the production process be modified (e.g. purchase additional equipment
or schedule some overtime). Changes in production processes have costs, but they are not
infinite. The calculation of these costs generally involves terminating simulations rather
than steady-state simulations.

9 Conclusions

‘Let the data speak for themselves’ is an often heard call. This presentation attempts to
formalize this statement in the Bayesian framework within the domain of determining input
probability distributions for discrete-event simulation of dynamic systems.

Contributions of this paper to achieve that goal include:

¢ A presentation of a Bayesian formula for statistical distribution and parameter selec-
tion for application to the field of dynamic simulations.

e An algorithm for selecting statistical distributions and parameters as inputs to simu-
lation models which fully accounts for both distribution and parameter uncertainty.

o Argumentation that mixture distributions arise as a matter of course in real systems,
and that mixture distributions can naturally be included in the Bayesian framework.

¢ An extension to Latin hypercube sampling for input distribution and parameter selec-
tion for use when there is uncertainty in both distribution and parameter. Variance
reduction is guaranteed for applications where the figure of merit is a monotonic
function of the expected value of the input.

¢ Approximations for efficiently evaluating the sensitivity of the output to prior distri-
butions.

e An application of MCMC simulation results to the field of discrete-event dynamic
simulation.
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The Bayesian framework has also been argued to generalize the current use of subjective
‘density-drawing’ techniques, and extends the classical framework to account for input dis-
tribution uncertainty (among other things). In this sense, the framework presented here
generalizes the two seemingly different techniques used in current simulation practice.

An additional benefit of mixture modeling as presented here can be reaped in sensitivity
analysis. Suppose that downtimes (or arrival times) are represented by mixtures, and that
the cost of changing the mixing proportions are known. Additional replications can be made
which determine the cost-benefit of changing the mix proportions and its effect on system
performance.

Some potential criticisms of this Bayesian formulation for input distribution selection, to-
gether with responses, include:

e A Bayesian framework is computationally intensive. Response: A number of ap-
proximations have been given which make the approach more tractable. Computing
speed has sufficiently increased to implement many calculations that were recently
too expensive for a desktop computer.

o Classical techniques can handle mixture distributions, too. Response: Agreed. Their
treatment, however, with goodness-of-fit and other standard tools suffers the same
problems outlined in Sec. 1.2 for the non-mixture treatment.

¢ Classical techniques provide similar answers to Bayesian analysis when the posterior
is data dominated. Response: Classical techniques can and have been used to provide
useful approximations for some Bayesian calculations [43]. They have not provided,
however, provided the formalism required for Eq. 5 and the replication algorithm in
Fig. 1.

o The single distribution j* and parameter 6} selected in Sec. 4.2.2 will be different in
general than that selected by the Latin hypercube technique of Sec. 7.1, when the
number of replications R is 1. Response: The motivation for these two selections is
vastly different. Sec. 4.2.2 is motivated by a distribution and parameter choice that
‘best’ gives rise to typical system behavior. It does so by maximizing probability or
minimizing a certain loss. Sec. 7.1 is motivated by sensitivity analysis and variance
reduction, neither of which is well served when R = 1.

o The prior distributions used are coordinate dependent and ad hoc. Response: All
prior distributions are subjective, and coordinate dependency of a density function
is a less important criterion than the easy specification of a prior for a practicing
engineer, at least in the present context.

Much work remains to be done in a number of areas. Theoretical and computational results
for general and specific mixture distributions needs further exploration. A comprehensive
Bayesian accounting of output data is needed to extend the ideas initially proposed by
Andrews et al. [1]. Additional sensitivity analysis techniques, also, remain to be framed
in a Bayesian modeling framework. The implementation of user-friendly software tools is
also an important step for the widespread use of these techniques. Added work is needed
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on methodologies for simple specification of generic prior distributions with emphasis on
embedding engineering meaning, rather than abstract statistical meaning. Finally, even
more work is required to determine which classes of statistical likelihood models are com-
patible with the engineering processes they purport to model. It is surprising that more
work has been focused on prior distributions than on likelihood distributions in this respect,
particularly given the fact that data dominates priors for a wide variety of applications.
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