# METRIC DENSITY AND QUASIMÖBIUS MAPPINGS 

## Z. Ibragimov

UDC 517.54


#### Abstract

We study the notion of $\mu$-density of metric spaces which was introduced by V. Aseev and D . Trotsenko. Interrelation between $\mu$-density and homogeneous density is established. We also characterize $\mu$-dense spaces as "arcwise" connected metric spaces in which "arcs" are the quasimöbius images of the middle-third Cantor set. Finally, we characterize quasiconformal self-mappings of $\mathbb{R}^{n}$ in terms of $\mu$-density.


Keywords: metric density, quasiconformal mapping, quasimöbius mapping

## 1. Introduction

The theory of quasimöbius mappings, originating with the articles by Aseev, Tukia, and Väisälä, includes the theory of quasiconformal mappings as locally quasimöbius embeddings of domains in $\dot{\mathbb{R}}^{n}$; see [1, 2.6] and [2, 2.6]. The notion of metric density of [1] plays a special role in the theory of quasimöbius mappings. Namely, the distortion function of each quasimöbius mapping given on such a set can be approximated by a power function [1, Theorem 3.2]. Moreover, it was shown in [3, Theorem 4] that every space possessing the above property has to be $\mu$-dense. See also [4, 3.8] and [5, 2.6] for related concepts.

In this paper we study some properties of $\mu$-dense sets in connection with quasiconformal and quasimöbius mappings as well as homogeneously dense sets. Interrelation between $\mu$-density and homogeneous density is established in Lemma 3.1. We give the exact coefficient of metric density of the middle-third Cantor set in Example 3.9. Theorem 4.4 characterizes $\mu$-dense sets as "arcwise" connected metric spaces in which "arcs" are the quasimöbius images of the middle-third Cantor set. Finally, in Theorem 5.4 we characterize quasiconformality in terms of the coefficient of metric density.

## 2. Notation and Basic Concepts

2.1. Most of the notations are adopted from [6]. All spaces in this paper are metric and contain no isolated points. They are usually denoted by $X$ or $Y$. The distance between two points $a, b$ is written as $|a-b|$. The one-point extension of a space $X$ is the union $\dot{X}=X \cup\{\infty\}$ where $\infty \notin X$. If $E \subset X$ is closed and bounded, then $\dot{X} \backslash E$ is said to be a neighborhood of $\infty$. This defines a Hausdorff topology on $\dot{X}$. If every closed bounded set in $X$ is compact, then $\dot{X}$ is the one-point compactification of $X$. If $A \subset X$, then $\bar{A}$ is the closure of $A, \mathscr{C} A$ is the complement $X \backslash A, \partial A$ is the boundary of $A$, and $\dot{A}$ is the subspace $A \cup\{\infty\}$ of $\dot{X}$. We let $d(A, B)$ denote the distance between two sets $A$ and $B$, and let $d(A)$ denote the diameter of $A$. The open ball $\left\{x:\left|x-x_{0}\right|<r\right\}$ is written as $B\left(x_{0}, r\right)$. $\mathbb{R}^{n}$ stands for the euclidean space and $|a|$ stands for the euclidean norm of a point $a \in \mathbb{R}^{n}$.
2.2. Let $a, b, c, d$ be distinct points in $\dot{X}$. If the points are in $X$, their cross ratio $\tau=|a, b, c, d|$ is defined as

$$
\begin{equation*}
\tau=|a, b, c, d|=\frac{|a-b||c-d|}{|a-c||b-d|} \tag{2.3}
\end{equation*}
$$

Otherwise we omit the factor containing $\infty$. For example,

$$
|a, b, c, \infty|=\frac{|a-b|}{|a-c|}
$$

[^0]2.4. Suppose that $f: A \rightarrow \dot{Y}, A \subset \dot{X}$, is an embedding and $\tau=|a, b, c, d|$ is a cross ratio of points in $A$. We let $\tau^{\prime}$ denote the image cross ratio $|f(a), f(b), f(c), f(d)|$. We say that $f$ is quasimöbius or QM if there is a homeomorphism $\eta:[0, \infty) \rightarrow[0, \infty)$ such that $\tau^{\prime} \leq \eta(\tau)$ whenever $\tau=|a, b, c, d|$ is a cross ratio of a quadruple of distinct points in $A$. We also say that $f$ is $\eta$-QM. Recall that $f$ is called $\eta$-quasisymmetric or $\eta$-QS if
\[

$$
\begin{equation*}
\frac{|f(a)-f(b)|}{|f(a)-f(c)|} \leq \eta\left(\frac{|a-b|}{|a-c|}\right) \tag{2.5}
\end{equation*}
$$

\]

for every triple $a, b, c \in A$ with $a \neq c$; see [4].
Following [1], consider a homeomorphism

$$
\eta_{\alpha}(t)= \begin{cases}t^{\alpha}, & t \geq 1  \tag{2.6}\\ t^{\frac{1}{\alpha}}, & 0 \leq t<1\end{cases}
$$

where $\alpha \geq 1$. Then every $\omega$-QM ( $\omega$-QS) embedding with $\omega(t)=M \eta_{\alpha}(t)$ is called $(M, \alpha)$-QM ( $\left.M, \alpha\right)$-QS $)$, where $M>0$.
2.7. Let $A \subset X$. Given a triple of distinct points $x, a, b \in \bar{A}$ with $|a-x|<|b-x|$ we let $G_{x}(a, b)$ denote the set $\{y \in X:|a-x|<|y-x|<|b-x|\}$ and call it an annulus. Let $\mathscr{H}(A)$ be the collection of all $G_{x}(a, b)$ with $G_{x}(a, b) \cap A=\varnothing$. We define the modulus of $G_{x}(a, b)$ to be

$$
\begin{equation*}
\Lambda\left(G_{x}(a, b)\right)=\log \frac{|b-x|}{|a-x|} \tag{2.8}
\end{equation*}
$$

Given $A \subset X$, let

$$
\begin{equation*}
\Lambda_{0}(A)=\sup _{G \in \mathscr{H}(A)} \Lambda(G) \tag{2.9}
\end{equation*}
$$

If $\mathscr{H}(A)=\varnothing$, we put $\Lambda_{0}(A)=0$. We say that $G_{x}(a, b)$ separates the subsets $C$ and $D$ of $X$ if $|c-x| \leq|a-x|$ and $|b-x| \leq|d-x|$ for all $c \in C$ and $d \in D$, respectively.

## 3. $\mu$-Dense Sets and Homogeneously Dense Sets

In this section we establish a relation between the concepts of $\mu$-density and homogeneous density. The latter was introduced by P. Tukia and J. Väisälä [4]. Using this relation we then characterize $\mu$-density of a set $A$ in terms of an annulus with largest modulus separating the components of $A$ (Corollaries 3.4 and 3.5).

Definition [4, 3.8]. A space $X$ is said to be homogeneously dense (or HD) if there are numbers $\lambda_{1}, \lambda_{2}$ such that $0<\lambda_{1} \leq \lambda_{2}<1$ and for each pair of points $a, b$ in $X$ there is a point $x \in X$ satisfying the condition $\lambda_{1}|b-a| \leq|x-a| \leq \lambda_{2}|b-a|$. This $X$ is also said to be $\left(\lambda_{1}, \lambda_{2}\right)$-HD.

Following [1], a sequence $\left\{x_{i}, i \in \mathbb{Z}\right\}$ of points of $X$, distinct from $a, b \in \dot{X}$, is called a chain joining the points $a$ and $b$ in $X$ if $x_{i} \rightarrow a$ as $i \rightarrow-\infty$ and $x_{i} \rightarrow b$ as $i \rightarrow+\infty$. If there exists a real number $\mu, 1<\mu<\infty$, such that $\left|\log \left(\left|a, x_{i}, x_{i+1}, b\right|\right)\right| \leq \log \mu$ for all $i \in \mathbb{Z}$, then the chain $\left\{x_{i}\right\}$ is said to be a $\mu$-chain.

Definition [1, 3.1]. A space $X$ is called $\mu$-dense $(\mu>1)$ if for each pair of points $a, b$ in $X$ there is a $\mu$-chain $\left\{x_{i}\right\}$ joining the points $a$ and $b$ in $X$.

We next prove that there is a close connection between the concepts of homogeneous density and $\mu$-density.

Lemma 3.1. Let $X$ be a metric space. If $X$ is $\left(\lambda_{1}, \lambda_{2}\right)$-HD then $X$ is $\mu$-dense with

$$
\mu=\left(\frac{1+\lambda_{2}}{\lambda_{1}\left(1-\lambda_{2}\right)}\right)^{2}
$$

Conversely, if $X$ is $\mu$-dense then $X$ is $\left(\frac{1}{6 \mu}, \frac{1}{4}\right)-H D$.
Proof. Suppose that $X$ is $\left(\lambda_{1}, \lambda_{2}\right)$-HD and let $a, b \in X$. Then by assumption there exists $x_{1} \in X$ such that

$$
\lambda_{1}|a-b| \leq\left|a-x_{1}\right| \leq \lambda_{2}|a-b| .
$$

Similarly, for each $n=2,3, \ldots$, there exists $x_{n} \in X$ such that

$$
\lambda_{1}\left|a-x_{n-1}\right| \leq\left|a-x_{n}\right| \leq \lambda_{2}\left|a-x_{n-1}\right| .
$$

Then

$$
\left|a-x_{n}\right| \leq \lambda_{2}\left|a-x_{n-1}\right| \leq \cdots \leq \lambda_{2}^{n}|a-b|
$$

and since $\lambda_{2}<1$, it follows that $x_{n} \rightarrow a$ as $n \rightarrow+\infty$. We now have

$$
\begin{aligned}
\left|a, x_{n}, x_{n+1}, b\right| & =\frac{\left|a-x_{n}\right|}{\left|a-x_{n+1}\right|} \cdot \frac{\left|x_{n+1}-b\right|}{\left|x_{n}-b\right|} \leq \frac{1}{\lambda_{1}} \cdot \frac{|a-b|+\left|x_{n+1}-a\right|}{|a-b|-\left|x_{n}-a\right|} \\
& \leq \frac{1}{\lambda_{1}} \cdot \frac{\left(1+\lambda_{2}^{n+1}\right)|a-b|}{\left(1-\lambda_{2}^{n}\right)|a-b|} \leq \frac{1+\lambda_{2}}{\lambda_{1}\left(1-\lambda_{2}\right)}
\end{aligned}
$$

and

$$
\left|a, x_{n}, x_{n+1}, b\right| \geq \frac{1}{\lambda_{2}} \cdot \frac{|a-b|-\left|x_{n+1}-a\right|}{|a-b|+\left|x_{n}-a\right|} \geq \frac{1}{\lambda_{2}} \cdot \frac{\left(1-\lambda_{2}^{n+1}\right)|a-b|}{\left(1+\lambda_{2}^{n}\right)|a-b|} \geq \frac{1-\lambda_{2}}{\lambda_{2}} .
$$

Hence,

$$
\left|\log \left(\left|a, x_{n}, x_{n+1}, b\right|\right)\right| \leq \max \left\{\log \frac{1+\lambda_{2}}{\lambda_{1}\left(1-\lambda_{2}\right)}, \log \frac{\lambda_{2}}{1-\lambda_{2}}\right\}=\log \frac{1+\lambda_{2}}{\lambda_{1}\left(1-\lambda_{2}\right)}<\log \left(\frac{1+\lambda_{2}}{\lambda_{1}\left(1-\lambda_{2}\right)}\right)^{2}
$$

Similarly, for each $n=0,1,2, \ldots$, there exists $y_{n} \in X$ such that $y_{n} \rightarrow b$ as $n \rightarrow+\infty$ and

$$
\left|\log \left(\left|a, y_{n}, y_{n+1}, b\right|\right)\right| \leq \log \left(\frac{1+\lambda_{2}}{\lambda_{1}\left(1-\lambda_{2}\right)}\right)^{2}
$$

Also

$$
\left|a, x_{1}, y_{0}, b\right| \geq \frac{\left|a-x_{1}\right|}{|a-b|\left(1+\lambda_{2}\right)} \cdot \frac{\left|y_{0}-b\right|}{|a-b|\left(1+\lambda_{2}\right)} \geq\left(\frac{\lambda_{1}}{1+\lambda_{2}}\right)^{2}
$$

and

$$
\left|a, x_{1}, y_{0}, b\right| \leq \frac{\left|a-x_{1}\right|}{|a-b|\left(1-\lambda_{2}\right)} \cdot \frac{\left|y_{0}-b\right|}{|a-b|\left(1-\lambda_{2}\right)} \leq\left(\frac{\lambda_{2}}{1-\lambda_{2}}\right)^{2} .
$$

Hence, the chain $\left\{z_{k}, k \in \mathbb{Z}\right\}$,

$$
z_{k}= \begin{cases}x_{-k} & \text { for } k=-1,-2, \ldots \\ y_{k} & \text { for } k=0,1,2, \ldots\end{cases}
$$

is a $\mu$-chain joining $a$ and $b$ in $X$ with

$$
\mu=\left(\frac{1+\lambda_{2}}{\lambda_{1}\left(1-\lambda_{2}\right)}\right)^{2} .
$$

This proves the first assertion.
Suppose next that $X$ is $\mu$-dense. Let $a, b \in X$ and let $\left\{x_{i}\right\}$ be a $\mu$-chain joining $a$ and $b$ in $X$. Then for each $i \in \mathbb{Z}$

$$
\frac{1}{\mu} \leq \frac{\left|a-x_{i}\right|\left|x_{i+1}-b\right|}{\left|a-x_{i+1}\right|\left|x_{i}-b\right|} \leq \mu .
$$

Put

$$
G=\left\{x \in X: \frac{1}{6 \mu}|a-b| \leq|a-x| \leq \frac{1}{4}|a-b|\right\} .
$$

Clearly any $x \in G$ would complete the proof. So it is enough to show that $G \neq \varnothing$. Assume that $G=\varnothing$. Then there exists $i_{0} \in \mathbb{Z}$ such that

$$
\left|a-x_{i_{0}}\right|<\frac{|a-b|}{6 \mu} \text { and }\left|a-x_{i_{0}+1}\right|>\frac{|a-b|}{4} \text {. }
$$

However, we also have

$$
\frac{1}{\mu} \leq \frac{\left|a-x_{i_{0}}\right|}{\left|b-x_{i_{0}}\right|} \cdot \frac{\left|x_{i_{0}+1}-b\right|}{\left|x_{i_{0}+1}-a\right|}<\frac{\frac{1}{6 \mu}|a-b|}{\left(1-\frac{1}{6 \mu}\right)|a-b|} \cdot \frac{|a-b|+\left|a-x_{i_{0}+1}\right|}{\left|a-x_{i_{0}+1}\right|}
$$

which implies

$$
\frac{|a-b|+\left|a-x_{i_{0}+1}\right|}{\left|a-x_{i_{0}+1}\right|}>\frac{6 \mu-1}{\mu}>5 .
$$

This yields $\left|a-x_{i_{0}+1}\right|<\frac{|a-b|}{4}$ and thus gives us the sought contradiction.
In the following two lemmas we establish a connection between the homogeneous density of a set $A$ and the quantity $\Lambda_{0}(A)$ in (2.9).

Lemma 3.2. If $A \subset X$ is $\left(\lambda_{1}, \lambda_{2}\right)$-HD then $\Lambda_{0}(A) \leq \log \frac{1}{\lambda_{1}}$.
Proof. There is nothing to prove if $\mathscr{H}(A)=\varnothing$. Otherwise let $G$ be an arbitrary annulus in $\mathscr{H}(A)$. Then

$$
G=\{x \in X:|c-a|<|c-x|<|c-b|\}
$$

for some $a, b, c \in \bar{A}$. By assumption, there exists $d \in A$ such that

$$
\lambda_{1}|c-b| \leq|c-d| \leq \lambda_{2}|c-b| .
$$

Since $G \cap A=\varnothing$, we have $|c-a| \geq|c-d| \geq \lambda_{1}|c-b|$. Hence,

$$
\Lambda(G)=\log \frac{|c-b|}{|c-a|} \leq \log \frac{|c-b|}{\lambda_{1}|c-b|}=\log \frac{1}{\lambda_{1}}
$$

which implies $\Lambda_{0}(A) \leq \log \frac{1}{\lambda_{1}}$.
Lemma 3.3. Let $A \subset X$. If $\Lambda_{0}(A) \leq k$ then $A$ is $\left(\frac{1}{2 e^{2 k}}, \frac{1}{2}\right)$-HD.
Proof. Take $c, b \in A$. Put

$$
G=\left\{x \in X: \frac{|c-b|}{2 e^{2 k}}<|c-x|<\frac{|c-b|}{2}\right\} .
$$

Note that $\Lambda(G)=2 k$ and hence $G \cap A \neq \varnothing$. Then for every $x \in G \cap A$

$$
\frac{1}{2 e^{2 k}}|c-b| \leq|c-x| \leq \frac{1}{2}|c-b| .
$$

The above two lemmas together with Lemma 3.1 give us the following two corollaries that connect $\mu$-density of a set $A$ with the quantity $\Lambda_{0}(A)$.

Corollary 3.4. If $A \subset X$ is $\mu$-dense then $\Lambda_{0}(A) \leq \log 6 \mu$.

Corollary 3.5. Let $A \subset X$. If $\Lambda_{0}(A) \leq k$, then $A$ is $\mu$-dense with $\mu \leq 36 e^{4 k}$.
Next in Corollary 3.7 we establish a connection between the modulus of an annulus separating two points and the connectibility of these points by a $\mu$-chain. But first we need the following

Lemma 3.6. Suppose that the points $x, y \in A \subset X$ cannot be joined in $A$ by any $\mu$-chain. Then

$$
\sup \Lambda\left(G_{x}(a, b)\right)=+\infty \quad \text { or } \quad \sup \Lambda\left(G_{y}(a, b)\right)=+\infty
$$

where $G_{x}(a, b)$ and $G_{y}(a, b)$ are in $\mathscr{H}(A)$ and supremum is taken over all $a, b \in \bar{A}$ such that both $G_{x}(a, b)$ and $G_{y}(a, b)$ separate the sets $\{x\}$ and $\{y\}$.

Proof. Suppose that $\sup \Lambda\left(G_{x}(a, b)\right) \leq p$ and $\sup \Lambda\left(G_{y}(a, b)\right) \leq p$ for some $p<\infty$. Then the sets

$$
G_{x}^{i}=\left\{z \in X: \frac{1}{2 e^{2 p i}}|x-y|<|x-z|<\frac{1}{2 e^{2 p(i-1)}}|x-y|\right\}
$$

and

$$
G_{y}^{i}=\left\{z \in X: \frac{1}{2 e^{2 p i}}|x-y|<|y-z|<\frac{1}{2 e^{2 p(i-1)}}|x-y|\right\}
$$

with $\Lambda\left(G_{x}^{i}\right)=\Lambda\left(G_{y}^{i}\right)=2 p$ have nonempty intersections with $A$ for each $i=1,2, \ldots$ Then any sequence $\left\{z_{k}, k \in \mathbb{Z}\right\}$, where $z_{k} \in G_{x}^{(-k+1)} \cap A$ for $k=0,-1,-2, \ldots$ and $z_{k} \in G_{y}^{k} \cap A$ for $k=1,2, \ldots$, will be a $\mu$-chain joining $x$ and $y$ in $A$ with $\mu \leq 9 e^{4 p}$. This gives us the sought contradiction.

Corollary 3.7. Let $\mu>9$. If $x, y \in A \subset X$ cannot be joined in $A$ by a $\mu$-chain then there exists $G_{z}(a, b) \in \mathscr{H}(A)$ such that $G_{z}(a, b)$ separates the sets $\{x\}$ and $\{y\}$ and $\Lambda\left(G_{z}(a, b)\right)>\frac{1}{4} \log (\mu / 9)$, where $z=x$ or $z=y$.

Next we define a measure of density for metric spaces.
Definition 3.8. For a metric space $X$, the quantity

$$
\mu_{d}(X)=\inf \{\mu: X \text { is } \mu \text {-dense }\}
$$

is called the coefficient of metric density of $X$.
We end this section with an example that gives the coefficient of metric density of the middle-third Cantor set $F$ on the unit interval $[0,1]$.

Example 3.9. If $F$ is the middle-third Cantor set, then $\mu_{d}(F)=12.25$.
Proof. According to [7], $F$ is constructed as follows. Let

$$
h_{1}(x)=\frac{1}{3} x \quad \text { and } \quad h_{2}(x)=\frac{1}{3} x+\frac{2}{3}
$$

be similarity transformations of $\mathbb{R}^{1}$. For $I=[0,1]$ we put $I_{1}=h_{1}(I), I_{2}=h_{2}(I)$, and $F_{1}=\partial I_{1} \cup \partial I_{2}$. Similarly, we put $F_{2}=\partial I_{11} \cup \partial I_{12} \cup \partial I_{21} \cup \partial I_{22}$, where $I_{11}=h_{1}\left(h_{1}(I)\right), I_{12}=h_{1}\left(h_{2}(I)\right), I_{21}=h_{2}\left(h_{1}(I)\right)$, and $I_{22}=h_{2}\left(h_{2}(I)\right)$. Continuing in this fashion we obtain a sequence of compact sets

$$
F_{k}=\bigcup_{i_{1}, i_{2}, \ldots, i_{k} \in\{1,2\}} \partial I_{i_{1} i_{1} \ldots i_{k}} \quad \text { where } \quad I_{i_{1} i_{1} \ldots i_{k}}=h_{i_{1}} \circ h_{i_{2}} \circ \cdots \circ h_{i_{k}}(I)
$$

Then $F_{1} \subset F_{2} \subset \cdots \subset F_{k} \subset F_{k+1} \subset \ldots$ and $F=\bar{F}^{\prime}$ where $F^{\prime}=\bigcup_{k=1}^{\infty} F_{k}$. Note that

$$
d\left(I_{i_{1} i_{2} \ldots i_{k}}\right)=(1 / 3)^{k} \text { and } d\left(I_{i_{1} i_{2} \ldots i_{k} 1}, I_{i_{1} i_{2} \ldots i_{k} 2}\right)=(1 / 3)^{k+1}
$$

Next we observe the following, omitting details.

Claim 1. For any distinct points $a, b \in F^{\prime}$ there exists a sequence $\left\{x_{k}, k=0,1,2, \ldots\right\}$ of points of $F^{\prime}$ with $x_{0}=b$ such that $x_{k} \rightarrow a$ as $k \rightarrow \infty$ and $\left|a-x_{k+1}\right|<\left|a-x_{k}\right| \leq 3\left|a-x_{k+1}\right|$ for all $k=0,1,2, \ldots$

Claim 2. For any $a \in I_{1} \cap F^{\prime}$ and $b \in I_{2} \cap F^{\prime}$ there exist $x \in I_{1} \cap F^{\prime}$ and $y \in I_{2} \cap F^{\prime}$ such that $|\log (|a, x, y, b|)| \leq \log (12.25)$.

Moreover, if $a=2 / 9$ and $b=7 / 9$, then $|\log (|a, x, y, b|)| \geq \log 12.25$ for all $x \in I_{1}$ and $y \in I_{2}$, with equality only for $x=0$ and $y=1$.

Now using Claims 1 and 2 we easily obtain $\mu_{d}\left(F^{\prime}\right)=12.25$.
Finally, using the fact that $\mu_{d}(X) \leq \mu$ implies $\mu_{d}(\bar{X}) \leq \mu$ for any set $X \in \dot{\mathbb{R}}^{n}$ we find $\mu_{d}(F)=12.25$. We omit details.

## 4. Quasimöbius Mappings and $\mu$-Dense Sets

In this section we study some relations between QM-mappings and $\mu$-dense sets. It was first noticed by P. Tukia and J. Väisälä (see [4]) that every QS-mapping given on a HD-set is ( $C, \alpha$ )-QS. Then similar results for QM-mappings, proved by V. Aseev and D. Trotsenko, led to the introduction of $\mu$-dense sets.

Theorem 4.1 [1, 3.2]. Every $\omega$-QM mapping given on a $\mu$-dense set is $(M, \alpha)-Q M$ where $M$ and $\alpha$ depend only on $\omega$ and $\mu$.

The fact that the condition of $\mu$-density in Theorem 4.1 is also necessary was partly shown in $[1,4.1]$. The complete solution, given in [3, Theorem 3], has led to another characterization of $\mu$-dense sets:

Theorem 4.2 [3, Theorem 4]. Let $X \subset \dot{\mathbb{R}}^{n}$ be a set containing no isolated points. Then $X$ is $\mu$-dense if and only if every $\omega$-QM-mapping $f: X \rightarrow \dot{\mathbb{R}}^{n}$ is $(M, \alpha)-Q M$, where $M, \alpha$ and $\mu$, $\omega$ depend only on each other.

Theorem 4.2 should be compared to the following theorem of Trotsenko and Väisälä.
Theorem 4.3 [8, Theorem 6.21]. The following conditions are quantitatively equivalent for a metric space $A$ :
(1) $A$ is $M$-relatively connected;
(2) Every $\eta$-quasisymmetric mapping of $A$ is $(C, \alpha)$-quasisymmetric with ( $C, \alpha$ ) depending only on $\eta$.
$M$-relatively connected sets include uniformly perfect sets and they can contain isolated points. See [8] for more discussion on these sets.

Now, suppose that for each pair of distinct points $a, b$ of a set $X$ there is an $\omega$-QM mapping $f: F \rightarrow X$ such that $f(0)=a$ and $f(1)=b$ where $F$ is the Cantor set (see Example 3.9 above). Then we can easily see that $X$ is $\mu$-dense with $\mu$ depending only on $\omega$. Next we prove the converse of this statement.

Theorem 4.4. Let $X$ be a complete metric space and let $F$ be the Cantor set. If $X$ is $\mu$-dense, then for all $b_{1}, b_{2} \in X$ with $b_{1} \neq b_{2}$ there exists a $\left(M, n_{0}\right)$-QM mapping $g: F \rightarrow X$ with $g(0)=b_{1}$ and $g(1)=b_{2}$ where $n_{0}$ and $M$ depend only on $\mu$. Here $n_{0}$ is the smallest integer greater than max $\{\mu+1,4\}$.

Proof. Put $\omega(t)=5 \cdot 3{ }^{n_{0}} \eta_{n_{0}}(t)$ (see 2.6) and $E_{0}=\left\{b_{1}, b_{2}\right\}$. Then by Lemma 3.1 there exist $b_{12}, b_{21} \in X$ such that

$$
\frac{\left|b_{1}-b_{2}\right|}{6 \mu} \leq\left|b_{1}-b_{12}\right| \leq \frac{\left|b_{1}-b_{2}\right|}{4}
$$

and

$$
\frac{\left|b_{1}-b_{2}\right|}{6 \mu} \leq\left|b_{21}-b_{2}\right| \leq \frac{\left|b_{1}-b_{2}\right|}{4}
$$

Put $E_{1}=\left\{b_{11}, b_{12}, b_{21}, b_{22}\right\}$ where $b_{11}=b_{1}$ and $b_{22}=b_{2}$. Next apply Lemma 3.1 to the pairs $\left(b_{11}, b_{12}\right)$ and $\left(b_{21}, b_{22}\right)$ to get

$$
E_{2}=\left\{b_{111}, b_{112}, b_{121}, b_{122}, b_{211}, b_{212}, b_{221}, b_{222}\right\}
$$

where $b_{111}=b_{11}, b_{122}=b_{12}, b_{211}=b_{21}$, and $b_{222}=b_{22}$. Observe that

$$
\frac{\left|b_{1}-b_{2}\right|}{(6 \mu)^{2}} \leq\left|b_{i_{1} i_{2} 1}-b_{i_{1} i_{2} 2}\right| \leq \frac{\left|b_{1}-b_{2}\right|}{4^{2}}
$$

for all 2-tuples $i_{1} i_{2}$. Continuing in this fashion we obtain a sequence $\left\{E_{k}\right\}, E_{k}=\left\{b_{i_{1} i_{2} \ldots i_{k} i_{k+1}}, i_{j} \in\{1,2\}\right\}$, of subsets of $X$. Moreover,

$$
E_{0} \subset E_{1} \subset E_{2} \subset \cdots \subset E_{k} \subset E_{k+1} \subset \ldots
$$

and

$$
\begin{equation*}
\frac{\left|b_{1}-b_{2}\right|}{(6 \mu)^{k}} \leq\left|b_{i_{1} i_{2} \ldots i_{k} 1}-b_{i_{1} i_{2} \ldots i_{k} 2}\right| \leq \frac{\left|b_{1}-b_{2}\right|}{4^{k}} \tag{4.5}
\end{equation*}
$$

for all $k$-tuples $i_{1} i_{2} \ldots i_{k}$. Put $E^{\prime}=\bigcup_{k=1}^{\infty} E_{k}$. We say that $E_{k}$ is the $k$ th iteration subset of $X$ generated by the pair $\left\{b_{1}, b_{2}\right\}$.

Now recall from the proof of Example 3.9 that we have $F^{\prime}=\bigcup_{k=1}^{\infty} F_{k}$ and $F=\bar{F}^{\prime}$. For simplicity we adopt the following notation which is self-explanatory:

$$
\begin{gathered}
F_{1}=\left\{a_{11}, a_{12}, a_{21}, a_{22}\right\}, \quad F_{2}=\left\{a_{111}, a_{112}, a_{121}, a_{122}, a_{211}, a_{212}, a_{221}, a_{222}\right\}, \ldots, \\
F_{k}=\left\{a_{i_{1} i_{2} \ldots i_{k} i_{k+1}}, i_{j} \in\{1,2\}\right\} .
\end{gathered}
$$

Here $a_{11}=0, a_{12}=1 / 3, a_{21}=2 / 3$, and $a_{22}=1$. Also $a_{111}=a_{11}=0, a_{112}=1 / 9, a_{121}=2 / 9, a_{122}=$ $a_{12}=1 / 3, a_{211}=a_{21}=2 / 3, a_{212}=7 / 9, a_{221}=8 / 9, a_{222}=a_{22}=1$. Now for every $k=1,2, \ldots$ define a mapping $f_{k}: F_{k} \rightarrow E_{k}$ by $f_{k}\left(a_{i_{1} i_{2} \ldots i_{k+1}}\right)=b_{i_{1} i_{2} \ldots i_{k+1}}$. This obviously yields a mapping $f: F^{\prime} \rightarrow E^{\prime}$.

We will first show that $f$ is $\omega$-QS. Clearly, it suffices to prove that $f_{k}$ is $\omega$-QS for every $k=1,2, \ldots$. We prove this by induction on $k$. If $k=1$, we can easily verify that $f_{1}$ is $\omega$-QS. Assume that $f_{k-1}$ is $\omega$-QS. Observe that the assumption implies that $f_{k-1}$ is an $\omega$-QS embedding from $F_{k-1}$ into the $k$ th iteration subset of $X$ generated by any pair of points in $X$. Let $h_{1}(x)=\frac{x}{3}$ and $h_{2}(x)=\frac{x+2}{3}$ be similarity transformations of $\mathbb{R}^{1}$. Then

$$
\begin{gathered}
F_{k}=h_{1}\left(F_{k-1}\right) \cup h_{2}\left(F_{k-1}\right), \\
E_{k}=f_{k}\left(F_{k}\right)=\left(f_{k} \circ h_{1}\right)\left(F_{k-1}\right) \cup\left(f_{k} \circ h_{2}\right)\left(F_{k-1}\right) .
\end{gathered}
$$

Let $x, y, z$ be a triple of distinct points in $F_{k}$. Then by the construction of $f_{k}$ and the induction hypothesis, $f_{k \mid h_{1}\left(F_{k-1}\right)}$ and $f_{k \mid h_{2}\left(F_{k-1}\right)}$ are $\omega$-QS. Hence it is enough to consider the following two cases:

CASE 1: $x \in h_{1}\left(F_{k-1}\right)$ and $y, z \in h_{2}\left(F_{k-1}\right)$. Since

$$
\frac{1}{4}+\frac{1}{4^{2}}+\frac{1}{4^{3}}+\cdots=\frac{1}{3},
$$

we have

$$
b_{1 i_{1} i_{2} \ldots i_{n}} \in B\left(b_{1},(1 / 3)\left|b_{1}-b_{2}\right|\right) \quad \text { and } \quad b_{2 i_{1} i_{2} \ldots i_{n}} \in B\left(b_{2},(1 / 3)\left|b_{1}-b_{2}\right|\right)
$$

for all $n$-tuples $i_{1} i_{2} \ldots i_{n}$, and all $n=1,2, \ldots$. Hence,

$$
f_{k}(x) \in B\left(b_{1}, \frac{1}{3}\left|b_{1}-b_{2}\right|\right) \quad \text { and } \quad f_{k}(y), f_{k}(z) \in B\left(b_{2}, \frac{1}{3}\left|b_{1}-b_{2}\right|\right)
$$

whence we easily see

$$
\frac{1}{3} \leq \frac{|x-y|}{|x-z|} \leq 3 \quad \text { and } \quad \frac{1}{5} \leq \frac{\left|f_{k}(x)-f_{k}(y)\right|}{\left|f_{k}(x)-f_{k}(z)\right|} \leq 5 .
$$

Hence, $f_{k}$ is $\left(5 \cdot 3^{n_{0}}, n_{0}\right)$-QS.
CASE 2: $x, y \in h_{1}\left(F_{k-1}\right)$ and $z \in h_{2}\left(F_{k-1}\right)$. Then $x=a_{i_{1} i_{2} \ldots i_{k+1}}$ and $y=a_{j_{1} j_{2} \ldots j_{k+1}}$ for some $(k+1)$-tuples $i_{1} i_{2} \ldots i_{k+1}$ and $j_{1} j_{2} \ldots j_{k+1}$, respectively, and $i_{1}=j_{1}=1$. Let $p$ be the smallest integer, $2 \leq p \leq k+1$, for which $i_{p} \neq j_{p}$. Then

$$
\frac{1}{3^{p}} \leq|x-y| \leq \frac{1}{3^{p-1}},
$$

where $x=a_{i_{1} i_{2} \ldots i_{(p-1)} i_{p} \ldots i_{(k+1)}}$ and $y=a_{i_{1} i_{2} \ldots i_{(p-1)} j_{p} \ldots j_{(k+1)}}$. Hence,

$$
x, y \in\left[a_{i_{1} i_{2} \ldots i_{(p-1)} 1}, a_{i_{1} i_{2} \ldots i_{(p-1)}}\right] .
$$

Moreover, $x$ and $y$ lie in two different subsegments

$$
\left[a_{i_{1} i_{2} \ldots i_{(p-1)} 11}, a_{i_{1} i_{2} \ldots i_{(p-1)}} 12\right] \quad \text { and } \quad\left[a_{i_{1} i_{2} \ldots i_{(p-1)} 21}, a_{i_{1} i_{2} \ldots i_{(p-1)} 22}\right]
$$

of the segment $\left[a_{i_{1} i_{2} \ldots i_{(p-1)}}, a_{i_{1} i_{2} \ldots i_{(p-1)}}\right]$. By symmetry we can assume that

$$
x \in\left[a_{i_{11} i_{2} \ldots i_{(p-1)} 11}, a_{i_{1} i_{2} \ldots i_{(p-1)}} 12\right] \quad \text { and } \quad y \in\left[a_{i_{1} i_{2} \ldots i_{(p-1)} 21}, a_{i_{1} i_{2} \ldots i_{(p-1)} 22}\right] .
$$

Then we have

$$
f_{k}(x) \in B\left(b_{1 i_{2} \ldots i_{(p-1)}}, \frac{1}{3}\left|b_{1 i_{2} \ldots i_{(p-1)} 1}-b_{1 i_{2} \ldots i_{(p-1)}}\right|\right)
$$

and

$$
f_{k}(y) \in B\left(b_{1 i_{2} \ldots i_{(p-1)} 2}, \frac{1}{3}\left|b_{1 i_{2} \ldots i_{(p-1)} 1}-b_{1 i_{2} \ldots i_{(p-1)}}\right|\right) .
$$

Therefore,

$$
\frac{\left|f_{k}(x)-f_{k}(y)\right|}{\left|f_{k}(x)-f_{k}(z)\right|} \leq \frac{\frac{5}{3}\left(\frac{1}{4}\right)^{p-1}\left|b_{1}-b_{2}\right|}{\frac{1}{3}\left|b_{1}-b_{2}\right|} \leq 5(1 / 3)^{p-1}=15(1 / 3)^{p}
$$

and

$$
\frac{\left|f_{k}(x)-f_{k}(y)\right|}{\left|f_{k}(x)-f_{k}(z)\right|} \geq \frac{\frac{1}{3}\left(\frac{1}{6 \mu}\right)^{p-1}\left|b_{1}-b_{2}\right|}{\frac{5}{3}\left|b_{1}-b_{2}\right|} \geq \frac{\left(\frac{1}{3^{n_{0}}}\right)^{p-1}}{5}=\frac{\left(\frac{1}{3^{n_{n}}}\right)^{p-2}}{5 \cdot 3^{n_{0}}} \geq \frac{1}{5 \cdot 3^{n_{0}}}\left(\frac{1}{3^{p-2}}\right)^{n_{0}} .
$$

Since

$$
\frac{1}{3^{p}} \leq \frac{|x-y|}{|x-z|} \leq \frac{1}{3^{p-2}}
$$

it follows that

$$
\frac{1}{5 \cdot 3^{n_{0}}}\left(\frac{|x-y|}{|x-z|}\right)^{n_{0}} \leq \frac{\left|f_{k}(x)-f_{k}(y)\right|}{\left|f_{k}(x)-f_{k}(z)\right|} \leq 15 \cdot \frac{|x-y|}{|x-z|} .
$$

Thus, $f_{k}$ is $\left(5 \cdot 3^{n_{0}}, n_{0}\right)$-QS.
Combining Cases 1 and 2, we show that $f_{k}: F_{k} \rightarrow E_{k}$ is $\left(5 \cdot 3^{n_{0}}, n_{0}\right)$-QS, implying that so is $f: F^{\prime} \rightarrow E^{\prime}$. Since $X$ is complete, by [4, 2.25] $f$ can be extended to an ( $5 \cdot 3^{n_{0}}, n_{0}$ )-QS embedding $g: F \rightarrow X$. Then by $[1,2.9] g$ is $\left(M, n_{0}\right)$-QM, where $M$ depends only on $n_{0}$.

## 5. Characterization of Quasiconformality in Terms of Metric Density

In this section we (qualitatively) characterize quasiconformal self-mappings of $\dot{\mathbb{R}}^{n}$ in terms of the coefficients of metric density of subsets of $\mathbb{R}^{n}$. For notations and basic concepts of this section, see [9-11]. Let $\Gamma$ be a curve family in $\mathbb{R}^{n}$ and let $F(\Gamma)$ be the set of all nonnegative Borel functions $\rho: \mathbb{R}^{n} \rightarrow \dot{\mathbb{R}}^{1}$ such that

$$
\int_{\gamma} \rho d s \geq 1
$$

for every locally rectifiable curve $\gamma \in \Gamma$. Then the conformal modulus of $\Gamma$ is defined as

$$
M(\Gamma)=\inf _{\rho \in F(\Gamma)} \int_{\mathbb{R}^{n}} \rho^{n} d m
$$

A ring is a domain $A \subset \dot{\mathbb{R}}^{n}$ whose complement is the union of two disjoint connected compact sets $\mathscr{C}_{0}$ and $\mathscr{C}_{1}$. We denote such a ring by $R\left(\mathscr{C}_{0}, \mathscr{C}_{1}\right)$. We say that a ring $R\left(\mathscr{C}_{0}, \mathscr{C}_{1}\right)$ is degenerate if either $\mathscr{C}_{0}$ or
$\mathscr{C}_{1}$ consists of a single point. Let $A=R\left(\mathscr{C}_{0}, \mathscr{C}_{1}\right)$ and let $\Gamma_{A}$ be the family of all curves joining $\mathscr{C}_{0}$ and $\mathscr{C}_{1}$ in $A$. The conformal modulus of the ring $A$ is then

$$
\begin{equation*}
\bmod A=\bmod R\left(\mathscr{C}_{0}, \mathscr{C}_{1}\right)=\left(\frac{\omega_{n-1}}{M\left(\Gamma_{A}\right)}\right)^{\frac{1}{n-1}} \tag{5.1}
\end{equation*}
$$

where $\omega_{n-1}$ is the surface area of the unit sphere in $\dot{\mathbb{R}}^{n}$.
According to J. Väisälä [9], a homeomorphism $f: D \rightarrow D^{\prime}$, where $D$ and $D^{\prime}$ are domains in $\dot{\mathbb{R}}^{n}$, is called $K$-QC $(1 \leq \infty)$ in $D$ iff

$$
\frac{1}{K} M(\Gamma) \leq M\left(\Gamma^{\prime}\right) \leq K M(\Gamma)
$$

for every path family $\Gamma$ in $D$. However, it was later shown that quasiconformality can be characterized by requiring that (5.1) be satisfied for certain classes of path families; in particular, for a family of paths joining the boundary components of rings in $D$. In Theorem 5.3 below we characterize quasiconformality in terms of the coefficient of metric density of sets in $D$.

The following lemma will be used in the proof of Theorem 5.3.
Lemma 5.2. Let $D \subset \dot{\mathbb{R}}^{n}$ be a domain and let $\left\{A_{m}\right\}$ be a sequence of disjoint, nondegenerate rings with $\bar{A}_{m} \subset D$. Then $\sup _{m} \bmod A_{m}=\infty$ iff $\mu_{d}\left(D_{0}\right)=\infty$ where $D_{0}=D \backslash \bigcup_{m=1}^{\infty} A_{m}$.

Proof. Suppose that $\sup _{m} \bmod A_{m}=\infty$ and $A_{m}=R\left(C_{0}^{m}, C_{1}^{m}\right)$. We first observe that since the $A_{m}$ 's are nondegenerate, the set $D_{0}$ contains no isolated points.

Next, we show that for each $\mu>1$ there exist points $a, b \in D_{0}$ which cannot be joined in $D_{0}$ by any $\mu$-chain. Indeed, we choose $m$ such that

$$
\bmod A_{m}>\log \lambda_{n}(\mu+1)
$$

where $\lambda_{n}$ is a positive constant depending only on $n$; see [12, p. 225]. Let now $a \in D_{0} \cap C_{0}^{m}$ and $b \in D_{0} \cap C_{1}^{m}$ be arbitrary points and let $\left\{x_{i}\right\}$ be any $\mu_{1}$-chain joining $a$ and $b$ in $\dot{\mathbb{R}}^{n} \backslash A_{m}$. Then there exists $i \in \mathbb{Z}$ such that $x_{i} \in C_{0}^{m}$ and $x_{i+1} \in C_{1}^{m}$. Using [12, Corollary 1], we hence have

$$
\log \lambda_{n}(\mu+1)<\bmod A_{m}<\bmod R_{T}\left(\left|a, x_{i}, x_{i+1}, b\right|\right) \leq \log \lambda_{n}\left(\left|a, x_{i}, x_{i+1}, b\right|+1\right)
$$

which implies

$$
\mu<\left|a, x_{i}, x_{i+1}, b\right| \leq \mu_{1}
$$

Here $R_{T}(t)$ is the Teichmüller ring; see [12, p. 225]. Hence, we infer that $\left\{x_{i}\right\}$ is not a $\mu$-chain. In particular, the points $a$ and $b$ cannot be joined in $\dot{\mathbb{R}}^{n} \backslash A_{m}$ and so in $D_{0}$ by any $\mu$-chain. Thus, $\mu_{d}\left(D_{0}\right)=\infty$.

Conversely, let $\mu_{d}\left(D_{0}\right)=\infty$. In view of Möbius invariance we can assume that $\infty \in A_{1}$. By Corollary 3.5 we have $\sup _{G \in \mathscr{H}\left(D_{0}\right)} \Lambda(G)=\infty$. We will show that for each $G \in \mathscr{H}\left(D_{0}\right)$ there exists $k$ such that $\Gamma_{A_{k}}$ is minorized by $\Gamma_{G}$. So we let $G$ be any element of $\mathscr{H}\left(D_{0}\right)$. Then $G=\left\{x \in \mathbb{R}^{n}:|b-a|<\right.$ $|x-a|<|c-a|\}$ for some $a, b, c \in \bar{D}_{0}$ and $G \cap D_{0}=\varnothing$ which implies that $G \subset\left(\bigcup_{m=1}^{\infty} A_{m}\right) \cup\left(\dot{\mathbb{R}}^{n} \backslash D\right)$. But since $\left(\bigcup_{m=1}^{\infty} A_{m}\right) \cap\left(\dot{\mathbb{R}}^{n} \backslash D\right)=\varnothing$ and since $G$ is connected, we have $G \subset \bigcup_{m=1}^{\infty} A_{m}$. By assumption the $A_{m}$ 's are disjoint, so we have $G \subset A_{k}$ for some $k$. And finally since $a \in \bar{D}_{0}$, we have $\Gamma_{A_{k}}$ minorized by $\Gamma_{G}$. Then by $\left[9\right.$, Theorem 6.4] we have $M\left(\Gamma_{A_{k}}\right)<M\left(\Gamma_{G}\right)$ and hence $\bmod A_{k}>\bmod G$. Thus,

$$
\infty=\sup _{G \in \mathscr{H}\left(D_{0}\right)} \Lambda(G) \leq \sup _{m} \bmod A_{m}
$$

which completes the proof.

Theorem 5.3. Let $D, D^{\prime} \subset \mathbb{R}^{n}$ be domains and suppose that $f: D \rightarrow D^{\prime}$ is a homeomorphism such that $\mu_{d}(\Sigma)<\infty$ if and only if $\mu_{d}(f \Sigma)<\infty$ for every subset $\Sigma$ of $D$. Then $f$ is $Q C$.

Proof. Assume that $f$ is not QC. Then by [13, Lemma 1] there exists a sequence $\left\{A_{m}\right\}$ of disjoint rings $A_{m}$ with $\bar{A}_{m} \subset D$ such that

$$
\bmod A_{m}<\frac{\kappa}{m^{2}} \quad \text { and } \quad \bmod A_{m}^{\prime}>m^{2} \text { for all } m=1,2, \ldots
$$

where $A_{m}^{\prime}=A^{\prime}\left(x_{m}, r_{m}\right)=\left\{x^{\prime}: l\left(x_{m}, r_{m}\right) \leq\left|x^{\prime}-f(x)\right| \leq L\left(x_{m}, r_{m}\right)\right\}$ is a spherical ring as in [13, Theorem 1], $\kappa=\kappa(n)<\infty$ is a constant from Väisälä's lemma [14, Theorem 3.10], and $A_{m}=f^{-1}\left(A_{m}^{\prime}\right)$. In particular, the $A_{m}$ 's are nondegenerate by [ 9 , Theorem 11.10]. Let $D_{0}=D \backslash \bigcup_{m=1}^{\infty} A_{m}$. Then

$$
f\left(D_{0}\right)=f(D) \backslash \bigcup_{m=1}^{\infty} f\left(A_{m}\right)=D^{\prime} \backslash \bigcup_{m=1}^{\infty} A_{m}^{\prime} .
$$

Hence, by Lemma 5.2, $\mu_{d}\left(D_{0}\right)<\infty$ while $\mu_{d}\left(f D_{0}\right)=\infty$ which is a contradiction. Thus, $f$ is QC.
Theorem 5.4. A necessary and sufficient condition for a homeomorphism $f: \dot{\mathbb{R}}^{n} \rightarrow \dot{\mathbb{R}}^{n}$ to be $Q C$ is that $\mu_{d}(f \Sigma)<\infty\left(\mu_{d}(f \Sigma)=\infty\right)$ iff $\mu_{d}(\Sigma)<\infty\left(\mu_{d}(\Sigma)=\infty\right)$ for every subset $\Sigma$ of $\mathbb{R}^{n}$.

Proof. Necessity follows from the fact that $f$ is QM (see, for example, $[6,5.3]$ ) and that finiteness of a metric density of a set is preserved under QM-mappings.

Sufficiency follows from Theorem 5.3.
Remark. 1. The necessity part in the above proof follows also from [5, Corollary 4.6].
2. The proof of Theorem 5.3 was suggested by V. V. Aseev; see also [15, Theorem 9].

I wish to thank Vladislav Aseev for introducing me to this subject and for many useful discussions. His ideas gave inspirations to many of the results of this paper. I also wish to acknowledge Juha Heinonen and Jeremy Tyson for informative discussion on the topics of this paper. I am deeply grateful to Fred Gehring for his numerous suggestions.

Finally, I would like to thank the referee for his/her valuable remarks and suggestions which I have delightedly incorporated.

## References

1. Aseev V. V. and Trotsenko D. A., "Quasisymmetric embeddings, quadruples of points, and distortions of moduli," Sibirsk. Mat. Zh., 28, No. 4, 32-38 (1987).
2. Väisälä J., "Quasi-symmetric embeddings in Euclidean spaces," Trans. Amer. Math. Soc., 264, 191-204 (1981).
3. Ibragimov Z., "Quasimöbius embeddings on $\mu$-dense sets," in: Mathematical Analysis and Differential Equations, Novosibirsk Univ. Press, Novosibirsk, 1991, pp. 44-52.
4. Tukia P. and Väisälä J., "Quasisymmetric embeddings of metric spaces," Ann. Acad. Sci. Fenn. Ser. AI Math., 5, 97-114 (1980).
5. Järvi P. and Vourinen M., "Uniformly perfect sets and quasiregular mappings," J. London Math. Soc. (2), 54, 515-529 (1996).
6. Väisälä J., "Quasimöbius maps," J. Anal. Math., 44, 218-234 (1984/85).
7. Hutchinson J., "Fractals and self-similarity," Indiana Univ. Math. J., 30, 713-747 (1981).
8. Trotsenko D. and Väisälä J., "Upper sets and quasisymmetric maps," Ann. Acad. Sci. Fenn. Math., 24, No. 2, 465-488 (1999).
9. Väisälä J., Lectures on $n$-Dimensional Quasiconformal Mappings, Lecture Notes in Math., Springer-Verlag, New York (1971).
10. Gehring F. W., "Symmetrization of rings in space," Trans. Amer. Math. Soc., 101, No. 3, 499-519 (1961).
11. Gehring F. W., "Rings and quasiconformal mappings in space," Trans. Amer. Math. Soc., 103, No. 3, 353-393 (1962).
12. Gehring F. W., "Quasiconformal mappings," in: Complex Analysis and Its Applications. II, International Atomic Energy Agency, Vienna, 1976, pp. 213-268.
13. Caraman P., "Characterization of the quasiconformality by arc families of extremal length zero," Ann. Acad. Sci. Fenn. Ser. A I, 528, 1-10 (1973).
14. Väisälä J., "On quasiconformal mappings in space," Ann. Acad. Sci. Fenn. Ser. A I, 298, 1-35 (1961).
15. Aseev V. V., "Continuity of conformal capacity for condensers with uniformly perfect plates," Sibirsk. Mat. Zh., 40, No. 2, 243-253 (1999).

[^0]:    Ann Arbor (USA). Translated from Sibirskǐ Matematicheskǐ Zhurnal, Vol. 43, No. 5, pp. 1007-1019, September-October, 2002. Original article submitted October 9, 2000.

