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METRIC DENSITY AND QUASIMÖBIUS MAPPINGS

Z. Ibragimov UDC 517.54

Abstract: We study the notion of µ-density of metric spaces which was introduced by V. Aseev
and D. Trotsenko. Interrelation between µ-density and homogeneous density is established. We also
characterize µ-dense spaces as “arcwise” connected metric spaces in which “arcs” are the quasimöbius
images of the middle-third Cantor set. Finally, we characterize quasiconformal self-mappings of Ṙn in
terms of µ-density.
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1. Introduction

The theory of quasimöbius mappings, originating with the articles by Aseev, Tukia, and Väisälä,
includes the theory of quasiconformal mappings as locally quasimöbius embeddings of domains in Ṙn; see
[1, 2.6] and [2, 2.6]. The notion of metric density of [1] plays a special role in the theory of quasimöbius
mappings. Namely, the distortion function of each quasimöbius mapping given on such a set can be
approximated by a power function [1, Theorem 3.2]. Moreover, it was shown in [3, Theorem 4] that every
space possessing the above property has to be µ-dense. See also [4, 3.8] and [5, 2.6] for related concepts.

In this paper we study some properties of µ-dense sets in connection with quasiconformal and
quasimöbius mappings as well as homogeneously dense sets. Interrelation between µ-density and ho-
mogeneous density is established in Lemma 3.1. We give the exact coefficient of metric density of the
middle-third Cantor set in Example 3.9. Theorem 4.4 characterizes µ-dense sets as “arcwise” connected
metric spaces in which “arcs” are the quasimöbius images of the middle-third Cantor set. Finally, in
Theorem 5.4 we characterize quasiconformality in terms of the coefficient of metric density.

2. Notation and Basic Concepts

2.1. Most of the notations are adopted from [6]. All spaces in this paper are metric and contain no
isolated points. They are usually denoted by X or Y . The distance between two points a, b is written
as |a− b|. The one-point extension of a space X is the union Ẋ = X ∪ {∞} where ∞ /∈ X. If E ⊂ X is
closed and bounded, then Ẋ \ E is said to be a neighborhood of ∞. This defines a Hausdorff topology
on Ẋ. If every closed bounded set in X is compact, then Ẋ is the one-point compactification of X. If
A ⊂ X, then A is the closure of A, C A is the complement X \A, ∂A is the boundary of A, and Ȧ is the
subspace A ∪ {∞} of Ẋ. We let d(A,B) denote the distance between two sets A and B, and let d(A)
denote the diameter of A. The open ball {x : |x − x0| < r} is written as B(x0, r). Rn stands for the
euclidean space and |a| stands for the euclidean norm of a point a ∈ Rn.

2.2. Let a, b, c, d be distinct points in Ẋ. If the points are in X, their cross ratio τ = |a, b, c, d| is
defined as

τ = |a, b, c, d| = |a− b||c− d|
|a− c||b− d|

. (2.3)

Otherwise we omit the factor containing ∞. For example,

|a, b, c,∞| = |a− b|
|a− c|

.
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2.4. Suppose that f : A → Ẏ , A ⊂ Ẋ, is an embedding and τ = |a, b, c, d| is a cross ratio of points
in A. We let τ ′ denote the image cross ratio |f(a), f(b), f(c), f(d)|. We say that f is quasimöbius or
QM if there is a homeomorphism η : [0,∞) → [0,∞) such that τ ′ ≤ η(τ) whenever τ = |a, b, c, d| is a
cross ratio of a quadruple of distinct points in A. We also say that f is η-QM. Recall that f is called
η-quasisymmetric or η-QS if

|f(a)− f(b)|
|f(a)− f(c)|

≤ η

(
|a− b|
|a− c|

)
(2.5)

for every triple a, b, c ∈ A with a 6= c; see [4].
Following [1], consider a homeomorphism

ηα(t) =
{

tα, t ≥ 1,

t
1
α , 0 ≤ t < 1,

(2.6)

where α ≥ 1. Then every ω-QM (ω-QS) embedding with ω(t) = Mηα(t) is called (M,α)-QM ((M,α)-QS),
where M > 0.

2.7. Let A ⊂ X. Given a triple of distinct points x, a, b ∈ A with |a − x| < |b − x| we let Gx(a, b)
denote the set {y ∈ X : |a − x| < |y − x| < |b − x|} and call it an annulus. Let H (A) be the collection
of all Gx(a, b) with Gx(a, b) ∩A = ∅. We define the modulus of Gx(a, b) to be

Λ(Gx(a, b)) = log
|b− x|
|a− x|

. (2.8)

Given A ⊂ X, let
Λ0(A) = sup

G∈H (A)
Λ(G). (2.9)

If H (A) = ∅, we put Λ0(A) = 0. We say that Gx(a, b) separates the subsets C and D of X if
|c− x| ≤ |a− x| and |b− x| ≤ |d− x| for all c ∈ C and d ∈ D, respectively.

3. µ-Dense Sets and Homogeneously Dense Sets

In this section we establish a relation between the concepts of µ-density and homogeneous density.
The latter was introduced by P. Tukia and J. Väisälä [4]. Using this relation we then characterize µ-density
of a set A in terms of an annulus with largest modulus separating the components of A (Corollaries 3.4
and 3.5).

Definition [4, 3.8]. A space X is said to be homogeneously dense (or HD) if there are numbers
λ1, λ2 such that 0 < λ1 ≤ λ2 < 1 and for each pair of points a, b in X there is a point x ∈ X satisfying
the condition λ1|b− a| ≤ |x− a| ≤ λ2|b− a|. This X is also said to be (λ1, λ2)-HD.

Following [1], a sequence {xi, i ∈ Z} of points of X, distinct from a, b ∈ Ẋ, is called a chain joining
the points a and b in X if xi → a as i → −∞ and xi → b as i → +∞. If there exists a real number
µ, 1 < µ < ∞, such that | log(|a, xi, xi+1, b|)| ≤ log µ for all i ∈ Z, then the chain {xi} is said to be
a µ-chain.

Definition [1, 3.1]. A space X is called µ-dense (µ > 1) if for each pair of points a, b in X there
is a µ-chain {xi} joining the points a and b in X.

We next prove that there is a close connection between the concepts of homogeneous density and
µ-density.

Lemma 3.1. Let X be a metric space. If X is (λ1, λ2)-HD then X is µ-dense with

µ =
(

1 + λ2

λ1(1− λ2)

)2

.
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Conversely, if X is µ-dense then X is
(

1
6µ , 1

4

)
-HD.

Proof. Suppose that X is (λ1, λ2)-HD and let a, b ∈ X. Then by assumption there exists x1 ∈ X
such that

λ1|a− b| ≤ |a− x1| ≤ λ2|a− b|.

Similarly, for each n = 2, 3, . . . , there exists xn ∈ X such that

λ1|a− xn−1| ≤ |a− xn| ≤ λ2|a− xn−1|.

Then
|a− xn| ≤ λ2|a− xn−1| ≤ · · · ≤ λn

2 |a− b|

and since λ2 < 1, it follows that xn → a as n → +∞. We now have

|a, xn, xn+1, b| =
|a− xn|
|a− xn+1|

· |xn+1 − b|
|xn − b|

≤ 1
λ1

· |a− b|+ |xn+1 − a|
|a− b| − |xn − a|

≤ 1
λ1

· (1 + λn+1
2 )|a− b|

(1− λn
2 )|a− b|

≤ 1 + λ2

λ1(1− λ2)

and

|a, xn, xn+1, b| ≥
1
λ2

· |a− b| − |xn+1 − a|
|a− b|+ |xn − a|

≥ 1
λ2

· (1− λn+1
2 )|a− b|

(1 + λn
2 )|a− b|

≥ 1− λ2

λ2
.

Hence,

| log(|a, xn, xn+1, b|)| ≤ max
{

log
1 + λ2

λ1(1− λ2)
, log

λ2

1− λ2

}
= log

1 + λ2

λ1(1− λ2)
< log

(
1 + λ2

λ1(1− λ2)

)2

.

Similarly, for each n = 0, 1, 2, . . . , there exists yn ∈ X such that yn → b as n → +∞ and

| log(|a, yn, yn+1, b|)| ≤ log
(

1 + λ2

λ1(1− λ2)

)2

.

Also

|a, x1, y0, b| ≥
|a− x1|

|a− b|(1 + λ2)
· |y0 − b|
|a− b|(1 + λ2)

≥
(

λ1

1 + λ2

)2

and

|a, x1, y0, b| ≤
|a− x1|

|a− b|(1− λ2)
· |y0 − b|
|a− b|(1− λ2)

≤
(

λ2

1− λ2

)2

.

Hence, the chain {zk, k ∈ Z},

zk =
{

x−k for k = −1,−2, . . . ,

yk for k = 0, 1, 2, . . . ,

is a µ-chain joining a and b in X with

µ =
(

1 + λ2

λ1(1− λ2)

)2

.

This proves the first assertion.
Suppose next that X is µ-dense. Let a, b ∈ X and let {xi} be a µ-chain joining a and b in X. Then

for each i ∈ Z
1
µ
≤ |a− xi| |xi+1 − b|
|a− xi+1| |xi − b|

≤ µ.
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Put
G =

{
x ∈ X :

1
6µ
|a− b| ≤ |a− x| ≤ 1

4
|a− b|

}
.

Clearly any x ∈ G would complete the proof. So it is enough to show that G 6= ∅. Assume that G = ∅.
Then there exists i0 ∈ Z such that

|a− xi0 | <
|a− b|

6µ
and |a− xi0+1| >

|a− b|
4

.

However, we also have

1
µ
≤ |a− xi0 |
|b− xi0 |

· |xi0+1 − b|
|xi0+1 − a|

<

1
6µ |a− b|

(1− 1
6µ)|a− b|

· |a− b|+ |a− xi0+1|
|a− xi0+1|

which implies
|a− b|+ |a− xi0+1|

|a− xi0+1|
>

6µ− 1
µ

> 5.

This yields |a− xi0+1| < |a−b|
4 and thus gives us the sought contradiction. �

In the following two lemmas we establish a connection between the homogeneous density of a set A
and the quantity Λ0(A) in (2.9).

Lemma 3.2. If A ⊂ X is (λ1, λ2)-HD then Λ0(A) ≤ log 1
λ1

.

Proof. There is nothing to prove if H (A) = ∅. Otherwise let G be an arbitrary annulus in H (A).
Then

G = {x ∈ X : |c− a| < |c− x| < |c− b|}

for some a, b, c ∈ A. By assumption, there exists d ∈ A such that

λ1|c− b| ≤ |c− d| ≤ λ2|c− b|.

Since G ∩A = ∅, we have |c− a| ≥ |c− d| ≥ λ1|c− b|. Hence,

Λ(G) = log
|c− b|
|c− a|

≤ log
|c− b|

λ1|c− b|
= log

1
λ1

which implies Λ0(A) ≤ log 1
λ1

. �

Lemma 3.3. Let A ⊂ X. If Λ0(A) ≤ k then A is
(

1
2e2k , 1

2

)
-HD.

Proof. Take c, b ∈ A. Put

G =
{

x ∈ X :
|c− b|
2e2k

< |c− x| < |c− b|
2

}
.

Note that Λ(G) = 2k and hence G ∩A 6= ∅. Then for every x ∈ G ∩A

1
2e2k

|c− b| ≤ |c− x| ≤ 1
2
|c− b|. �

The above two lemmas together with Lemma 3.1 give us the following two corollaries that connect
µ-density of a set A with the quantity Λ0(A).

Corollary 3.4. If A ⊂ X is µ-dense then Λ0(A) ≤ log 6µ. �
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Corollary 3.5. Let A ⊂ X. If Λ0(A) ≤ k, then A is µ-dense with µ ≤ 36e4k. �

Next in Corollary 3.7 we establish a connection between the modulus of an annulus separating two
points and the connectibility of these points by a µ-chain. But first we need the following

Lemma 3.6. Suppose that the points x, y ∈ A ⊂ X cannot be joined in A by any µ-chain. Then

supΛ(Gx(a, b)) = +∞ or supΛ(Gy(a, b)) = +∞,

where Gx(a, b) and Gy(a, b) are in H (A) and supremum is taken over all a, b ∈ A such that both Gx(a, b)
and Gy(a, b) separate the sets {x} and {y}.

Proof. Suppose that supΛ(Gx(a, b)) ≤ p and sup Λ(Gy(a, b)) ≤ p for some p < ∞. Then the sets

G i
x =

{
z ∈ X :

1
2e2pi

|x− y| < |x− z| < 1
2e2p(i−1)

|x− y|
}

and

G i
y =

{
z ∈ X :

1
2e2pi

|x− y| < |y − z| < 1
2e2p(i−1)

|x− y|
}

with Λ(G i
x) = Λ(G i

y) = 2p have nonempty intersections with A for each i = 1, 2, . . . . Then any sequence

{zk, k ∈ Z}, where zk ∈ G
(−k+1)
x ∩ A for k = 0,−1,−2, . . . and zk ∈ Gk

y ∩ A for k = 1, 2, . . . , will be
a µ-chain joining x and y in A with µ ≤ 9e4p. This gives us the sought contradiction. �

Corollary 3.7. Let µ > 9. If x, y ∈ A ⊂ X cannot be joined in A by a µ-chain then there exists
Gz(a, b) ∈ H (A) such that Gz(a, b) separates the sets {x} and {y} and Λ(Gz(a, b)) > 1

4 log(µ/9), where
z = x or z = y. �

Next we define a measure of density for metric spaces.

Definition 3.8. For a metric space X, the quantity

µd(X) = inf{µ : X is µ-dense}

is called the coefficient of metric density of X.
We end this section with an example that gives the coefficient of metric density of the middle-third

Cantor set F on the unit interval [0, 1].

Example 3.9. If F is the middle-third Cantor set, then µd(F ) = 12.25.

Proof. According to [7], F is constructed as follows. Let

h1(x) =
1
3
x and h2(x) =

1
3
x +

2
3

be similarity transformations of R1. For I = [0, 1] we put I1 = h1(I), I2 = h2(I), and F1 = ∂I1 ∪ ∂I2.
Similarly, we put F2 = ∂I11 ∪ ∂I12 ∪ ∂I21 ∪ ∂I22, where I11 = h1(h1(I)), I12 = h1(h2(I)), I21 = h2(h1(I)),
and I22 = h2(h2(I)). Continuing in this fashion we obtain a sequence of compact sets

Fk =
⋃

i1,i2,...,ik∈{1,2}

∂Ii1i1...ik where Ii1i1...ik = hi1 ◦ hi2 ◦ · · · ◦ hik(I).

Then F1 ⊂ F2 ⊂ · · · ⊂ Fk ⊂ Fk+1 ⊂ . . . and F = F
′ where F ′ =

⋃∞
k=1 Fk. Note that

d(Ii1i2...ik) = (1/3)k and d(Ii1i2...ik1, Ii1i2...ik2) = (1/3)k+1.

Next we observe the following, omitting details.
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Claim 1. For any distinct points a, b ∈ F ′ there exists a sequence {xk, k = 0, 1, 2, . . . } of points of
F ′ with x0 = b such that xk → a as k →∞ and |a− xk+1| < |a− xk| ≤ 3|a− xk+1| for all k = 0, 1, 2, . . . .

Claim 2. For any a ∈ I1 ∩ F ′ and b ∈ I2 ∩ F ′ there exist x ∈ I1 ∩ F ′ and y ∈ I2 ∩ F ′ such that
| log(|a, x, y, b|)| ≤ log(12.25).

Moreover, if a = 2/9 and b = 7/9, then | log(|a, x, y, b|)| ≥ log 12.25 for all x ∈ I1 and y ∈ I2, with
equality only for x = 0 and y = 1.

Now using Claims 1 and 2 we easily obtain µd(F ′) = 12.25.

Finally, using the fact that µd(X) ≤ µ implies µd(X) ≤ µ for any set X ∈ Ṙn we find µd(F ) = 12.25.
We omit details. �

4. Quasimöbius Mappings and µ-Dense Sets

In this section we study some relations between QM-mappings and µ-dense sets. It was first noticed
by P. Tukia and J. Väisälä (see [4]) that every QS-mapping given on a HD-set is (C,α)-QS. Then similar
results for QM-mappings, proved by V. Aseev and D. Trotsenko, led to the introduction of µ-dense sets.

Theorem 4.1 [1, 3.2]. Every ω-QM mapping given on a µ-dense set is (M,α)-QM where M and α
depend only on ω and µ.

The fact that the condition of µ-density in Theorem 4.1 is also necessary was partly shown in [1, 4.1].
The complete solution, given in [3, Theorem 3], has led to another characterization of µ-dense sets:

Theorem 4.2 [3, Theorem 4]. Let X ⊂ Ṙn be a set containing no isolated points. Then X is µ-dense

if and only if every ω-QM-mapping f : X → Ṙn is (M,α)-QM, where M,α and µ, ω depend only on each
other.

Theorem 4.2 should be compared to the following theorem of Trotsenko and Väisälä.

Theorem 4.3 [8, Theorem 6.21]. The following conditions are quantitatively equivalent for a metric
space A:

(1) A is M -relatively connected;
(2) Every η-quasisymmetric mapping of A is (C,α)-quasisymmetric with (C,α) depending only on η.

M -relatively connected sets include uniformly perfect sets and they can contain isolated points. See
[8] for more discussion on these sets.

Now, suppose that for each pair of distinct points a, b of a set X there is an ω-QM mapping f : F → X
such that f(0) = a and f(1) = b where F is the Cantor set (see Example 3.9 above). Then we can easily
see that X is µ-dense with µ depending only on ω. Next we prove the converse of this statement.

Theorem 4.4. Let X be a complete metric space and let F be the Cantor set. If X is µ-dense,
then for all b1, b2 ∈ X with b1 6= b2 there exists a (M,n0)-QM mapping g : F → X with g(0) = b1 and
g(1) = b2 where n0 and M depend only on µ. Here n0 is the smallest integer greater than max{µ+1, 4}.

Proof. Put ω(t) = 5 · 3n0ηn0(t) (see 2.6) and E0 = {b1, b2}. Then by Lemma 3.1 there exist
b12, b21 ∈ X such that

|b1 − b2|
6µ

≤ |b1 − b12| ≤
|b1 − b2|

4

and
|b1 − b2|

6µ
≤ |b21 − b2| ≤

|b1 − b2|
4

.

Put E1 = {b11, b12, b21, b22} where b11 = b1 and b22 = b2. Next apply Lemma 3.1 to the pairs (b11, b12)
and (b21, b22) to get

E2 = {b111, b112, b121, b122, b211, b212, b221, b222}
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where b111 = b11, b122 = b12, b211 = b21, and b222 = b22. Observe that

|b1 − b2|
(6µ)2

≤ |bi1i21 − bi1i22| ≤
|b1 − b2|

42

for all 2-tuples i1i2. Continuing in this fashion we obtain a sequence {Ek}, Ek = {bi1i2...ikik+1
, ij ∈ {1, 2}},

of subsets of X. Moreover,
E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Ek ⊂ Ek+1 ⊂ . . .

and
|b1 − b2|
(6µ)k

≤ |bi1i2...ik1 − bi1i2...ik2| ≤
|b1 − b2|

4k
(4.5)

for all k-tuples i1i2 . . . ik. Put E′ =
⋃∞

k=1 Ek. We say that Ek is the kth iteration subset of X generated
by the pair {b1, b2}.

Now recall from the proof of Example 3.9 that we have F ′ =
⋃∞

k=1 Fk and F = F
′. For simplicity we

adopt the following notation which is self-explanatory:

F1 = {a11, a12, a21, a22}, F2 = {a111, a112, a121, a122, a211, a212, a221, a222}, . . . ,
Fk = {ai1i2...ikik+1

, ij ∈ {1, 2}}.

Here a11 = 0, a12 = 1/3, a21 = 2/3, and a22 = 1. Also a111 = a11 = 0, a112 = 1/9, a121 = 2/9, a122 =
a12 = 1/3, a211 = a21 = 2/3, a212 = 7/9, a221 = 8/9, a222 = a22 = 1. Now for every k = 1, 2, . . . define
a mapping fk : Fk → Ek by fk(ai1i2...ik+1

) = bi1i2...ik+1
. This obviously yields a mapping f : F ′ → E′.

We will first show that f is ω-QS. Clearly, it suffices to prove that fk is ω-QS for every k = 1, 2, . . . .
We prove this by induction on k. If k = 1, we can easily verify that f1 is ω-QS. Assume that fk−1 is
ω-QS. Observe that the assumption implies that fk−1 is an ω-QS embedding from Fk−1 into the kth
iteration subset of X generated by any pair of points in X. Let h1(x) = x

3 and h2(x) = x+2
3 be similarity

transformations of R1. Then
Fk = h1(Fk−1) ∪ h2(Fk−1),

Ek = fk(Fk) = (fk ◦ h1)(Fk−1) ∪ (fk ◦ h2)(Fk−1).

Let x, y, z be a triple of distinct points in Fk. Then by the construction of fk and the induction hypothesis,
fk |h1(Fk−1) and fk |h2(Fk−1) are ω-QS. Hence it is enough to consider the following two cases:

Case 1: x ∈ h1(Fk−1) and y, z ∈ h2(Fk−1). Since

1
4

+
1
42

+
1
43

+ · · · = 1
3
,

we have
b1i1i2...in ∈ B(b1, (1/3)|b1 − b2|) and b2i1i2...in ∈ B(b2, (1/3)|b1 − b2|)

for all n-tuples i1i2 . . . in, and all n = 1, 2, . . . . Hence,

fk(x) ∈ B
(
b1,

1
3
|b1 − b2|

)
and fk(y), fk(z) ∈ B

(
b2,

1
3
|b1 − b2|

)
whence we easily see

1
3
≤ |x− y|
|x− z|

≤ 3 and
1
5
≤ |fk(x)− fk(y)|
|fk(x)− fk(z)|

≤ 5.

Hence, fk is (5 · 3n0 , n0)-QS.
Case 2: x, y ∈ h1(Fk−1) and z ∈ h2(Fk−1). Then x = ai1i2...ik+1

and y = aj1j2...jk+1
for some

(k + 1)-tuples i1i2 . . . ik+1 and j1j2 . . . jk+1, respectively, and i1 = j1 = 1. Let p be the smallest integer,
2 ≤ p ≤ k + 1, for which ip 6= jp. Then

1
3p
≤ |x− y| ≤ 1

3p−1
,
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where x = ai1i2...i(p−1)ip...i(k+1)
and y = ai1i2...i(p−1)jp...j(k+1)

. Hence,

x, y ∈ [ai1i2...i(p−1)1, ai1i2...i(p−1)2].

Moreover, x and y lie in two different subsegments

[ai1i2...i(p−1)11, ai1i2...i(p−1)12] and [ai1i2...i(p−1)21, ai1i2...i(p−1)22]

of the segment [ai1i2...i(p−1)1, ai1i2...i(p−1)2]. By symmetry we can assume that

x ∈ [ai1i2...i(p−1)11, ai1i2...i(p−1)12] and y ∈ [ai1i2...i(p−1)21, ai1i2...i(p−1)22].

Then we have
fk(x) ∈ B

(
b1i2...i(p−1)1,

1
3
|b1i2...i(p−1)1 − b1i2...i(p−1)2|

)
and

fk(y) ∈ B
(
b1i2...i(p−1)2,

1
3
|b1i2...i(p−1)1 − b1i2...i(p−1)2|

)
.

Therefore,
|fk(x)− fk(y)|
|fk(x)− fk(z)|

≤
5
3(1

4)p−1|b1 − b2|
1
3 |b1 − b2|

≤ 5(1/3)p−1 = 15(1/3)p

and
|fk(x)− fk(y)|
|fk(x)− fk(z)|

≥
1
3( 1

6µ)p−1|b1 − b2|
5
3 |b1 − b2|

≥
( 1
3n0 )p−1

5
=

( 1
3n0 )p−2

5 · 3n0
≥ 1

5 · 3n0
(

1
3p−2

)n0 .

Since
1
3p
≤ |x− y|
|x− z|

≤ 1
3p−2

,

it follows that
1

5 · 3n0
(
|x− y|
|x− z|

)n0 ≤ |fk(x)− fk(y)|
|fk(x)− fk(z)|

≤ 15 · |x− y|
|x− z|

.

Thus, fk is (5 · 3n0 , n0)-QS.
Combining Cases 1 and 2, we show that fk : Fk → Ek is (5 · 3n0 , n0)-QS, implying that so is

f : F ′ → E′. Since X is complete, by [4, 2.25] f can be extended to an (5 · 3n0 , n0)-QS embedding
g : F → X. Then by [1, 2.9] g is (M,n0)-QM, where M depends only on n0. �

5. Characterization of Quasiconformality in Terms of Metric Density

In this section we (qualitatively) characterize quasiconformal self-mappings of Ṙn in terms of the
coefficients of metric density of subsets of Ṙn. For notations and basic concepts of this section, see [9–11].
Let Γ be a curve family in Ṙn and let F (Γ) be the set of all nonnegative Borel functions ρ : Rn → Ṙ1

such that ∫
γ

ρ ds ≥ 1

for every locally rectifiable curve γ ∈ Γ. Then the conformal modulus of Γ is defined as

M(Γ) = inf
ρ∈F (Γ)

∫
Rn

ρn dm.

A ring is a domain A ⊂ Ṙn whose complement is the union of two disjoint connected compact sets C0

and C1. We denote such a ring by R(C0,C1). We say that a ring R(C0,C1) is degenerate if either C0 or
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C1 consists of a single point. Let A = R(C0,C1) and let ΓA be the family of all curves joining C0 and C1

in A. The conformal modulus of the ring A is then

modA = modR(C0,C1) =
(

ωn−1

M(ΓA)

) 1
n−1

(5.1)

where ωn−1 is the surface area of the unit sphere in Ṙn.
According to J. Väisälä [9], a homeomorphism f : D → D′, where D and D′ are domains in Ṙn, is

called K-QC (1 ≤ ∞) in D iff
1
K

M(Γ) ≤ M(Γ′) ≤ KM(Γ)

for every path family Γ in D. However, it was later shown that quasiconformality can be characterized
by requiring that (5.1) be satisfied for certain classes of path families; in particular, for a family of paths
joining the boundary components of rings in D. In Theorem 5.3 below we characterize quasiconformality
in terms of the coefficient of metric density of sets in D.

The following lemma will be used in the proof of Theorem 5.3.

Lemma 5.2. Let D ⊂ Ṙn be a domain and let {Am} be a sequence of disjoint, nondegenerate rings
with Am ⊂ D. Then supm modAm = ∞ iff µd(D0) = ∞ where D0 = D \

⋃∞
m=1 Am.

Proof. Suppose that supm modAm = ∞ and Am = R(Cm
0 , Cm

1 ). We first observe that since the
Am’s are nondegenerate, the set D0 contains no isolated points.

Next, we show that for each µ > 1 there exist points a, b ∈ D0 which cannot be joined in D0 by any
µ-chain. Indeed, we choose m such that

modAm > log λn(µ + 1)

where λn is a positive constant depending only on n; see [12, p. 225]. Let now a ∈ D0 ∩ Cm
0 and

b ∈ D0 ∩ Cm
1 be arbitrary points and let {xi} be any µ1-chain joining a and b in Ṙn \ Am. Then there

exists i ∈ Z such that xi ∈ Cm
0 and xi+1 ∈ Cm

1 . Using [12, Corollary 1], we hence have

log λn(µ + 1) < modAm < modRT (|a, xi, xi+1, b|) ≤ log λn(|a, xi, xi+1, b|+ 1)

which implies
µ < |a, xi, xi+1, b| ≤ µ1.

Here RT (t) is the Teichmüller ring; see [12, p. 225]. Hence, we infer that {xi} is not a µ-chain. In
particular, the points a and b cannot be joined in Ṙn\Am and so in D0 by any µ-chain. Thus, µd(D0) = ∞.

Conversely, let µd(D0) = ∞. In view of Möbius invariance we can assume that ∞ ∈ A1. By
Corollary 3.5 we have supG∈H (D0) Λ(G) = ∞. We will show that for each G ∈ H (D0) there exists k

such that ΓAk
is minorized by ΓG. So we let G be any element of H (D0). Then G = {x ∈ Rn : |b− a| <

|x− a| < |c− a|} for some a, b, c ∈ D0 and G ∩D0 = ∅ which implies that G ⊂ (
⋃∞

m=1 Am) ∪ (Ṙn \D).
But since (

⋃∞
m=1 Am) ∩ (Ṙn \D) = ∅ and since G is connected, we have G ⊂

⋃∞
m=1 Am. By assumption

the Am’s are disjoint, so we have G ⊂ Ak for some k. And finally since a ∈ D0, we have ΓAk
minorized

by ΓG. Then by [9, Theorem 6.4] we have M(ΓAk
) < M(ΓG) and hence modAk > modG. Thus,

∞ = sup
G∈H (D0)

Λ(G) ≤ sup
m

modAm

which completes the proof. �
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Theorem 5.3. Let D,D′ ⊂ Ṙn be domains and suppose that f : D → D′ is a homeomorphism such
that µd(Σ) < ∞ if and only if µd(fΣ) < ∞ for every subset Σ of D. Then f is QC.

Proof. Assume that f is not QC. Then by [13, Lemma 1] there exists a sequence {Am} of disjoint
rings Am with Am ⊂ D such that

modAm <
κ

m2
and modA′

m > m2 for all m = 1, 2, . . .

where A′
m = A′(xm, rm) = {x′ : l(xm, rm) ≤ |x′ − f(x)| ≤ L(xm, rm)} is a spherical ring as in [13, The-

orem 1], κ = κ(n) < ∞ is a constant from Väisälä’s lemma [14, Theorem 3.10], and Am = f−1(A′
m). In

particular, the Am’s are nondegenerate by [9, Theorem 11.10]. Let D0 = D \
⋃∞

m=1 Am. Then

f(D0) = f(D) \
∞⋃

m=1

f(Am) = D′ \
∞⋃

m=1

A′
m.

Hence, by Lemma 5.2, µd(D0) < ∞ while µd(fD0) = ∞ which is a contradiction. Thus, f is QC. �

Theorem 5.4. A necessary and sufficient condition for a homeomorphism f : Ṙn → Ṙn to be QC
is that µd(fΣ) < ∞ (µd(fΣ) = ∞) iff µd(Σ) < ∞ (µd(Σ) = ∞) for every subset Σ of Rn.

Proof. Necessity follows from the fact that f is QM (see, for example, [6, 5.3]) and that finiteness
of a metric density of a set is preserved under QM-mappings.

Sufficiency follows from Theorem 5.3. �

Remark. 1. The necessity part in the above proof follows also from [5, Corollary 4.6].
2. The proof of Theorem 5.3 was suggested by V. V. Aseev; see also [15, Theorem 9].

I wish to thank Vladislav Aseev for introducing me to this subject and for many useful discussions.
His ideas gave inspirations to many of the results of this paper. I also wish to acknowledge Juha Heinonen
and Jeremy Tyson for informative discussion on the topics of this paper. I am deeply grateful to Fred
Gehring for his numerous suggestions.

Finally, I would like to thank the referee for his/her valuable remarks and suggestions which I have
delightedly incorporated.
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