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Abstract

The no-aging property and the ¢;-isotropic model it implies have been
introduced to overcome certain shortcomings of the exponential model.
However, its definition is abstract and not very useful for practitioners.
This paper presents several additional characterizations of the no-aging
property. Included are (1) characterizations that appropriately gener-
alize the memoryless property and the constant-failure-rate property of
the exponential, (2) behavioral characterizations based on fair bets, and
(3) geometric characterizations of the survival and density function and
differential-geometric characterizations based on tensor methods.

1 Introduction

In this paper, we characterize the no-aging property and the joint probability
models it implies. The no-aging property was proposed by Barlow and Mendel
in [2]. They consider a finite, exchangeable population of lifetimes and argue
that the correct probabilistic model for aging is-given by a Schur-concave joiﬁt.
survival function (for the theory of Schur concavity, see e.g. Marshall and Olkin
[12]). No-aging is described by a Schur-constant survival function and these
functions are also called ¢-isotropic Their definition of no-aging is particularly
appealing for a Bayesian who wishes to use the unconditional distribution of

the lifetimes, rather than a distribution conditional on some parameter.
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The problem with the no-aging property is that its definition in terms of
Schur-constancy can be far removed from the type of assessments a practitioner
1s comfortable in making.

This paper compiles eight characterizations, five of them new, of the no-
aging property and the £;-isotropic model in an attempt to make these concepts
more useful to practitioners. The characterizations are compiled in the theorem
in Section 2.

We have opted for characterizations that have a direct behavioral interpre-
tation or an appealing geometric interpretation. The behavioral characteriza-
tions are particularly relevant to a Bayesian decision maker. They are stated
in terms of fair bets. The geometric characterizations concern symmetries and
invariances of the survival function and the density function. We also give sev-
eral differential-geometric characterizations. The use of differential geometry is
not very common in probability (see, however, Santalo [13]). However, these
characterizations are very compact and provide perhaps the best pictures.

Two of the characterizations that in the spirit of the classical constant-
failure-rate and memoryless properties of the exponential. These two properties
have played a central role in characterizing the exponential model; see, e.g.,
[4-10,15]. These are useful for seeing how the no-aging property and the ¢;-

isotropic model departs from the classical no-aging and the exponential model.

2 Characterizations

We state the varions characterizations in the form of a theorem. An item-by-
item discussion precedes the proof. We first introduce the main notation and
we define the empirical failure frequency.

Consider a population

of lifetimes, L.e., a sequence of non-negative real-valued random variables. Let
AN > 7 mean that X, > &, for2 = 1.. .. N Write the joint survival function
I :J: — [0.1] as

F(F) = Prob(X > 7), (1)



and the density function f : R{‘Y — R as

. (=DNONE(F)
)= e e

when it exists. It will be convenient, though, to use the notation F and f also
for the marginal survival and density functions of any subsequence of . This
will be indicated by the arguments. Finally, let V denote the gradient operator

and call

-ViegF

the hazard gradient (see also Marshall [11])

For the differential-geometric characterizations, let 8/0z; be the infinitesimal
vector in the i-th coordinate. The exterior derivative is denoted by d, the Lie
derivative by £(), the anti-symmetric product for tensors is denoted A, and

tensor saturation is denoted by 1. (See e.g. Burke [3]).

Definition: For a population X = (X1,...,Xn) of lifetimes, the failure fre-

quency 1s:

= N
/\N(,\’) = =N <

iz Xi

We use the following definition of the no-aging property originally proposed

by Barlow and Mendel [2].

Definition: A population X = (Xy.... Xn) has the no-aging property of F
15 a function of the farlure frequency Ay alone.

The following theorem shows the equivalence of eight characterizations of
the no-aging property. The definition appears as Char. 3. The equivalence of
Char. 3 and Char. 4 is elementary. and the equivalence of Char. 3 and Char. 5
is due to Barlow and Mendel [2]. The other characterizations are new. Char. 1
can be viewed as a specialization of Spizzichino’s characterization of the Schur-

concave class [14].



Theorem: The following are equivalent:
1 F(zi+h| X >%) =F(zj+h|X >7) for all £, and all h > 0.
2. The components of —V log F(Z) are identically-equal functions of Ay alone.

9. F 1s a function of Ay alone (definition of the no-aging property).

4. f is a function of Ay alone.
5. F(Z) 15 an € -isotropic survival function, i.¢, for alln, 0 <n < N.
n N-1
. AN
Floy, . u,) = 11— — £ P(dAn).
N i=1

Let Wi = 0/0x; — 0/dx; and W the wedge product of any (N — 1) hnearly
idependent W, . Let p be a probability N-form field on [R’f, and piy, the

7

conditronal probability (N — 1)-form field on the simplex {An(X) = An}.
0. —(llogp = —g(An)dAn, withg Ry —R,.
7. £w, (p) =0 for allz,j.

S P JW is a function of An alone.

Remarks:

C'har.1 is the appropriate generalization of the memoryless property. From Char.
1 it follows that the lifetimes are exchangeable. However, Char. 1 does
not imply that the X,’s are independent. If we assume independence n

addition to Char. 1. we find that
F(r, + h|X > F) = F(h), Vi,

which is the memoryless property that characterizes the exponential.

Char. 1 has a behavioral interpretation: *Given two similar components
which have not yet failed, one would bet the same amount for the same
return on the event that either component fails during an additional in-

crement. of usage, regardless of their ages.’



Char.2

Char.3

(‘har 4

(har.h

is the appropriate generalization of the constant-failure-rate property. If
we assume independence in addition to Char. 2, we find that:

d

log F(z,-) = constant, Vi,
d.’l.','

which characterizes i.i.d. exponential lifetimes (see Marshall [11]).

Char. 6 addresses several problems with the the use of the failure gradient

(see remarks below).

is the definition of the no-aging property and the ¢;-isotropic model. This
is Schur-constancy of F: F can be moved anywhere along a simplex

{MAN(X) = Ay} without changing its value. (See further Barlow and
Mendel [2]).

Cliar. 3 is physically covariant under changes in the scales or units in which
lifetime 1s measured. These are here the admissible coordinate trans-
formations Mathematically. a scale change is represented by a smooth

monotone ncreasing function ¥ of lifetime:
(N1 N — (Y(XY), L Y (X))

The new y values can simply be substituted in the expression for F.

—

states that the density is uniform on simplexes {An(X) = An}. This
uniformity, however, depends on the scale used for X. f is not physically
covariant, as changes in scale involve a Jacobian factor. See Char. 7 for a

physically covariant version of Char. 4.

gives a de Finetti-type representation for the family of ¢;-1sotropic survival
functions. For any N, this family strictly includes the i.i.d. exponentials,
although the intergrand represents dependent variables. When N — oo,
it converges to a mixture of i 1.d. exponentials with rate A, the limiting

failure frequency:

Flry. r,)= /Hf’*"“r‘ P(dA.).
) =]

(See also Barlow and Mendel [2] )



Char .6

Char.7

('har.8

improves upon Char. 2 in two important ways. (see Figure 1.)

First, Char. 6 is physically covariant. There are no explicit references to
X.

Second, the gradient operator is replaced with the exterior-derivative op-
erator d, representing the differential or total derivative of log F'. Unlike
the gradient operator, the exterior derivative does not depend on a metric
or inner product. This dependence on a metric is a not-so-well-known
defect of Marshall’s [11] hazard gradient: a gradient give the direction of
greatest increase, but without a natural metric there is no natural notion
of direction. Our definition makes —d log F' a 1-form rather than a vector,
s0 a name such as “hazard 1-form” or “hazard differential” would be more

appropriate.!

states that the joint density is uniform on simplexes as in Char. 4, but
now using differential N-forms, thereby eliminating the references to X.
The W;;’s are the vectors that leave Ay invariant. By requiring that the
Lie derivative of p vanishes, we obtain the invariant density. (See Figure

2)

states that the conditional density on a simplex is uniform with respect
to the natural notion of hyper-area on the simplex. W gives a unit of
hyper-area on the simplex. pjy. - W is a scalar function that gives the
(infinitesimal) amount of probability per unit of hyper-area. If this 1s
constant on the simplex. the conditional density is uniform. This 1s shown
i Figure 3. '

This characterization also has an mterpretation in terms of fair bets:
‘Giiven the failure frequency. one would bet the same amount for the same

return on any outcome for X\~

Proofs:

We show how Chars. 1 through 5 are equivalent to the definition in Char. 3.

Chars. 6 and 7 are shown to be equivalent to their respective coordinate-based

'Force is a 1-form, so “force of mortality™ is appropriate from this perspective.



X, A {An(X) = A}

g F)
dh\k \\\ dlog F(&

N
Ay (.r”)\>\\‘

> X

Figure 1: The hazard differentials at & and #'; they are pictured by two
infinitesimally-spaced level lines of the hazard function —log F' with the ar-
rowhead flagging the positive direction (see also Burke [3]). Also pictured are
the differentials of Ay at & and 7"/, —g is the factor with which dAy 1s multi-

plied to obtain the hazard differential and this factor is constant on the simplex.

Figure 2: The probability N-form (. = 2) at two locations pictured by infinites-
imal squares containing an infinitesimal umit of probability. Pulling p(z”) back

via Wy 1 and subtracting it from p(F) shows that the Lie derivative vanishes.



Wia AW,y =W <3Y\/ Wy = _(?_ -
P, \i >
Py JW =3 - 3

X2

Figure 3: Here N = 3. The simplex contains the bivector W and the conditional
probability 2-forms py, on the simplex. pa, J W is the number of times the
2-form fits into the bivector (in the figure this is approximately 3 times) and

this number is constant over the simplex as required.



characterizations.

1.&3.

2.£3.

4.&3.

6.<2.

Assume 3, F = g(An) for some g. Then Prob(X; > z; + h, X >7) =
Prob(X; > ; +h, X > 7) = g(N/(h+ 0L, X,)). 1 follows after dividing
both sides of the first equality by F(Z).

Assume 1, multiply both sides by F(Z), collect terms, and substitute & —
he; for . Thus Prob(X > #—he;+he;) = Prob(X > &) forall 0 < h < z;.
Both F and Ay are the same at  — he; + he; and ¥. One can similarly
shift. lifetime between any pairs 7, j while still conserving F and Ay. As a

consequence, F'is a function of Ay alone.

Assume 2. Then (3/8z;—0/9z;)F =0, or Vw, ,(log F) = 0. This implies
that log F and hence F is a function of Ay alone. If not, there would be

point where V, log F # 0.
Assume 3. This implies log F is a function of Ay alone. Then

dF (0AN  OAN
dAy \ Oz; Ox;
0.

Vw, (log F)

Because the Lie brackets of the coordinate vectors in the X system all
vanish, we lhave

(NN

(-1 B
R ) = V)

-Tw, (F)=Vw,, (

If Fis a function of Ay alone. then VWH(F) = (. From the above equality

1t follows that Ty (f) = 0. which implies 4. To prove 4 — 3 revert. this

argument.

. Assume 3. Then F(-|Ay) is constant on the simplex. Integrate out

Ipt1...on. This is a Dirichlet integral and gives the result in 5 (see
also, e.g., Barlow and Mendel [2]). That 5 implies 3 can be read off di-

rectly from the expression.

Assume 6. Use the & operator for the Euclidean metric tensor (See e.g.
Abraham and Marsden [1]). In N coordinates:

dlog F 0 Olog F 0
oef £k = —g(An)H(dAN).

i(~dlog F) = - =
H=dlog F) day  day Jxny Oxn




7.4,

8.<7.

But the components of (dAx) depend only on Ay and 2 follows.

Assume 2. Use the b operator of the Euclidean metric tensor.

log F 2
Olog dX1—~-~—aIOgF

(V(~log F)) =~ .

dXn.

This is —dlog F' in X coordinates. If the a'; ‘F ’s depend only on Ay, 6

T

follows.

Write the density N-form in X coordinates: p = fd}z. The Leibniz

property of the Lie derivative gives:
Lw, (fdX) = Lw, (£)dX + fLw, (dX).

But L'WII,((UE) = 0 and so we have £, (p) = 0if and only if Lw, (f) =
0, or le_v,(f) = (), since for functions the Lie derivative is the directional

der1vative.

Because £y, (h(An)) = 0 for any function h, 8 implies: £w, ;(P|ay JwW) =
0 for all 7, 7. We have:

Lw, (Pan W)= £w, (W) Ippy + W Lw, (Pay)-

But £y, (W) =0 and so we have 8 if and only if £w, ,(pjs,) = 0 for all
i,7. Now write p = pay A Pjay; Pay 18 @ marginal probability 1-form for

An. We have

Lw, (Pax ADpw) = £w,, (Pan) APpan + Pan A Lw, ;(Pay)-

But £w, (pay) =0 and so we have 7 also if and only if £w, ,(pjay) =0
for all i.j. Now the I, , have mtegral manifolds which are the level sets

of larnbdan and the equivalence follows.
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