
Acta Mechanica 116, 235-238 (1996) 
ACTA M E C H A N I C A  
�9 Springer-Verlag 1996 

Note 

MHD flow over a moving flat plate 
with a step change in the magnetic field 
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Summary. The boundary layer flow over a moving continuous fiat plate in an electrically conducting ambient 
fluid with a step change in the applied magnetic field is considered. The governing equations are solved 
numerically using the Keller box method. It is shown that the skin friction decreases as the magnetic para- 
meter increases. 

1 Introduct ion  

Boundary layer behavior  over a moving continuous surface is an important  type of flow 
occurring in several engineering processes. For  example, many  metallurgical processes involve 
the cooling of continuous strips or filaments by drawing them through a quiescent fluid. How- 
ever, by drawing such strips in an electrically conducting fluid subject to a magnetic field, the rate 
of cooling can be controlled and a final product  of desired characteristics can be achieved. 
Another  interesting application of hydromagnetics to metallurgy lies in the purification of 
molten metals from non-metallic inclusions by the application of a magnetic field. 

Kumar i  et al. [1], Andersson [2], Vajravelu [3], and Watanabe and Pop  [4] have recently 
studied the laminar boundary  layer flow over a flat plate which issues from a slot at x = 0 and 
moves with a constant velocity in an electrically conducting fluid in the presence of a transverse 
magnetic field which acts over the whole flow region x > 0. However,  an important  practical 
situation is that of an external magnetic field of the form (see Chiam [5]) 

B = ~ 0, x =< xo (1) ( Bo, x > Xo 

where Bo is a constant. The physical problem is that of the entrance of a plane boundary  layer, 
which has already been formed over a moving flat plate, into a magnetic field, as shown in 
Fig. 1. 
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Fig. 1. Physical model and coordinate system 
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2 Basic equations 

Consider the boundary layer over a flat plate which moves with a constant velocity U in an 
electrically conducting fluid (with electric conductivity a) in the presence of a transverse magnetic 
field of the form given by (1). The boundary  layer equations, in the usual notation, are 

gu Ov 
0~ + ~yy = 0 (2) 

OU O/A 02U o'Bo 2 
U~x x + v ~ 7  = r O y  2 - - u ~  (3) 

subject to the boundary conditions 

v = 0 ,  u = 0  a t y = 0  

u = 0 as y ~  oo (4) 

u = Uo(y) at x = x0 

where uo(y) is the Sakiadis [6] velocity profile at x = Xo. Here u and v are the velocity components  
along x and y axes, respectively, v is the kinematic viscosity, and Q is the density of the fluid. 

If we introduce the variables 

( U ~  1/2 
tp = (vUx)l/2f(x, q), q = \ ~ f  (5) 

where ~ is the stream function, Eq. (3) becomes 

f , , ,  +12 f f , ,  _ mxf,  = x ( f ,  ~?f' f , ,  Of) 
~xx ~xx (6) 

with m = crBo2/(~U) being the magnetic parameter.  The boundary  conditions of Eq. (6) are 

f(x, O) = O, f ' (x ,  O) = l ,  f ' (x,  oo) = O. (7) 

It is worth mentioning that  for mx < mxo, Eq. (6) reduces to that of Sakiadis [6], namely, 

f , , ,  + I f f , ,  = 0 (8) Z 
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subject to the boundary  conditions 

f(0) = 0, f ' (0)  = 1, f ' ( ~ )  = 0. (9) 

The coefficient of the skin friction is defined by 

zw 2 
Cy~, - 1 - R e x ~  f " ( x ,  0) (10) 

~ U02 

where zw is given by 

Zw = # �9 (11) 
y=O 

From (10), we have 

Cfx Rex ~/2 
2 - f " ( x ,  0). (12) 

The quantity - C i x  Re~1/2/2, i.e., [ - f " ( x ,  0)], is calculated for m x >  mxo.  As in Chiam [5], we 
have taken xo = 1 and rn = 0.05, 0,15, 0,5 and 1.0, respectively. 

3 Results and discussion 

The partial differential equation (6) subject to the boundary  conditions (7) has been solved 
numerically using the Keller box method [7]. The details are essentially the same as those 
described in N a  [8], and N a  and Pop [9]. 

Figure 2 represents the variation of the skin friction coefficient given by (12) with the 
streamwise distance x and the magnetic parameter  m. F rom this figure it can be seen that  the 
effect of the magnetic field is to reduce the skin friction coefficient. Thus, the higher magnetic 
parameter  corresponds to the skin friction at a closer distance to x0 ( =  1.0). This appears 
reasonable in view of the thinner boundary  layer in the higher-magnetic fluid. 
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Fig. 2. Variation of local skin frictioxa coefficient 
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