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Summary. The effect of heat transfer on the steady laminar compressible boundary layer flow past 
a horizontal circular cylinder has been studied. The resulting coupled nonlinear partial differential equations 
have been solved numerically using a very efficient finite-difference scheme. Specific results are given for the 
boundary layer separation parameter and the skin friction and heat transfer coefficients. 

1 Introduction 

The analysis of heat transfer through a laminar boundary layer in the flow of a viscous fluid over 
a body of arbitrary shape and arbitrary specified surface temperature constitutes a very 
important problem in the field of heat transfer. The prediction of heat transfer under such 
conditions encompasses a wide range of technological applications, such as the calculation of 
heat transfer at the front portions of a projectile, aircraft or other body moving through the 
atmosphere, cooling problems in turbine blades, etc. 

The problem of heat transfer from a horizontal circular cylinder placed in a laminar viscous 
and incompressible fluid has been the subject of many theoretical and experimental investiga- 
tions because of its numerous engineering applications. Although this problem has been 
successfully studied in the past, to our best knowledge only little work has been conducted to 
investigate the effect of heat transfer on forced convection boundary layer flow past a circular 
cylinder in a viscous compressible fluid. Brown [1] was the first to investigate the effect of heat 
transfer on the growth of the boundary layer in the impulsive motion of a cylinder in a viscous 
compressible fluid. 

An attempt is made in the present paper to investigate the effect of heat transfer on steady 
laminar boundary layer flow of a viscous compressible fluid past a horizontal circular cylinder. 
Owing to the external complexity of the fully compressible boundary layer equations 
a mathematical model is adopted which is possible to justify it to a certain extent of physical 
ground. In short, the assumptions are made that the effects of compressibility are confined in the 
boundary layer and the main stream remains incompressible. This could be realized in practice 
by releasing a stream of small Mach number past a very hot body. The fluid considered is a model 
fluid in that the viscosity (#) is proportional to the absolute temperature (T) and the Prandtl 
number (a) is unity. This is the simplest and in easy ways the most useful and revealing fluid (see 
Stewartson [21). 
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2 Basic equations 

The equations describing the steady flow in the compressible, laminar two-dimensional 

boundary  layer flow are (see Stewartson [2]) 

~ (Ou) + ~ (Ov) = O (1) 

(2) 

QC v u -~x + v ~y - u gx Oy -~y + # \ a y / #  (3) 

together with 

p = oRrand # = po(T/To) (4) 

where (x, y) are Cartesian coordinates with x- and y-axes along and normal to the surface of the 

cylinder, respectively, (u, v) are the velocity components  along x- and y-axes, p is the pressure, ~ is 
the density, k is the thermal conductivity, C~ is the specific heat at constant  pressure, R is the gas 

constant, and the suffix o refers to some standard state, say, x = 0. 

The boundary  conditions are 

u = v = 0, T =  rw at y = 0 (5) 

u= Ut, T= T1 at y = o o  

where Tw is the constant wall temperature and the suffix unity denotes conditions in the main 
stream. The main stream velocity U1 may be taken as the velocity in the irrotational mot ion of an 

incompressible fluid. Thus, if a is the radius of the cylinder, then 

U ~(x) = U~ sin (x/a) (6) 

where x measures the distance from the forward stagnation point of the cylinder and U~ is the 
constant  velocity in the incompressible flow. Equations (1)- (3)  are further reduced to an almost 

incompressible form by introducing Stewartson's t ransformation [2], [3] 

Y 

Y -  a ~  ~ ,  Ou = 0 o ~ o  ~-y (7) 
ao ~oo  Qo 

o 

where ~p is the streamfunction, and a~ and ao are the velocities of sound in the main stream and at 

some standard states, respectively. Thus, we have 

Du FLoP al 2 D2~P 

# ~y = po <,0 2 l/Go a t 2 '  

DT p al aT 
k ~y = #oCp 

Po ao ~ o  ~ Y 

~ (OU)  Q a13 ~33/p (8) 
~Y U ~  -eoao 3at  3 
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with 

P_=(alx) 
Po \ao/ 

(9) 

where 7 is the ratio of specific heats. 
Using the properties of Eulerian equations of motion of the inviscid outer flow, the 

momentum equation (2) becomes, after some manipulations, 

a~(a'- l) /( ' - l )(ap Oatp av?O2p'~ 83p (at~(5~-a)/'-~-)T dU1 
ao/ ~ OYSx ax 8Y~] = ~ 5  + - -  - -  U, - -  (10) \ ao / T1 dx 

Further, if Eq. (2) is multiplied by u and added to the energy equation (3) the latter becomes 

k (11) 

where the function S is related to the absolute temperature T by 

l + ~ M t  2 S=7.1 2 M12 1 -  - 1  (12) 

and M~ is the main stream Mach number. Under the transformation (8), Eq.  (11) reduces to 

( ao~(3~- D/('- 1) ( a ~  as g3~p 63S) a2S (13) 
a~/ ~ 63x ax ~ - a Y 2" 

Since the main purpose of this work is to investigate the effect of heat transfer on the boundary 
layer, it is sufficient to consider a flow in which the Mach number M~ is small (M~ ~ 1). 
Consideration of Bernoulli's equation gives 

2 
a l  - ~  = 1 + O(M,2), (14) 
ao 

and so it is sufficient to replace the factor ao/al in (10) and (13) by unity. Thus, the flow is one in 
which both viscous and compressibility effects are confined to the boundary layer. Also, relation 
(12) defining the temperature function S becomes 

T 
- -  = 1 + S (15) 
T1 

where T1 is now the constant temperature of the main stream. 
The equations describing the flow and heat transfer are therefore, from (10) and (13), 

&p a2tp ap a2tp a3~ + U1 dU1 
OY OYax 3x 8Y 2 - -  c oy  3 ~-x  (1 + S) (16) 

ap 8S 8~ aS 82S 
aY 8x 8x 8Y a Y  2 

(17) 

subject to the boundary conditions 

a~ r~ 
~p = 8-~- = 0, S =  T1 1 = Sw at Y = 0  
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0S 
- -  --, Ul(X), S --, 0 as Y =  oo .  (18)  
0Y 

To obtain the solution of Eqs. (16) and (t7), we follow Merkin [4] and introduce the 
nondimensional variables 

= - - ,  t / =  Y Re a/2, 

a (19) 

= ]/Voo R e  ~/2 ?-f(~, tl), S(x, Y) = S(~, tl) 

where Re ( = U~a/vo) is the Reynolds number of the incompressible flow. Equations (16) and (17) 

then become 

sin { c~ { (l + S) = ~ ( f ,  af' _ f , ,  aJ ) f,,, +ff,, _f'z + r " ~ (20) 

(f, os s, ~f) s"+fs '=~ ~ -  (21) 

subject to the boundary conditions 

' 0 J(r o) = f ( { , )  = o, s({, o) = sw 

f '(~, o0) = ~-* sin {, S({, oo) = 0 

(22) 

where primes denote differentiation with respect to t/. 
Once we know the solution for f(~, ~/) and S(~, t/), we can calculate the skin friction and the 

rate of heat transfer at the surface of the cylinder from the following relations: 

( t3~)y=o_ PoU~ Re1/2 ~c,,(~, 0) (23) % = P a 

q~=-(k~Ty ~ - ~~162 Re1: z S'(~, 0). (24) 
y=0 

Thus, the coefficients of the skin-friction Cf and the rate of heat transfer Ck are given by 

C: Re 1/2 = ~f'"(~, 0), Ch Re 1/2 = -S ' (~ ,  0) (25) 

where C: and Ch are defined as 

C: - % q'~ ~~ 2, Ch - . (26) OoCvT1U~ 

3 R e s u l t s  a n d  d i s c u s s i o n s  

Equations (20) and (21) along with the botmdary conditions (22) are solved numerically using the 
Keller-box method [5] for different values of the surface temperature parameter S,~ = L0, 5.0, 
10.0, 15.0 and 20.0 and of the curvature parameter ~ = 0.0, 0.4, 0.8, 1.2 and 1.6. Before we enter 
into the Kellei-box scheme the initial profiles of the functions f and S are obtained from the 



Effect of heat transfer on compressible boundary layer flow 

1,9 

271 

18 __ 
1.7 

1.6 
0.0 5.0 10,0 

S, 

i 

15.0 20.0 

6.0 

5.0 

4.0 

Cf  Re 1/2 
3.0 

2.0 

1.0 

0.0 
0.0 

Sw=1.0 - -  
5 . 0 - -  

. . , - "  , ,  10 .0  - - -  

15 .0  - - 
. I -  - - .. \ 20.0 - -  

o.-,* 
/ "  

/ *  . f  . - . .  . . . .  . o  ~ 

I f "  ." " \ \  ~ . ,  

1 /  . "  . . . t  ~ . . . .  ... ~ " ' , x ~ \  

� 9 1 7 6 1 7 6  

i i i J 

0.4 0.8 1,2 1.6 

20.0 

15,0 

C h Re 1/2 

10.0 

5.0 

Sw=1.0 - -  
. . . . . .  - "  " ~ - - . . .  5.0 - -  

" " ~ 10 .0  - - - 

" ' "  . 1 5 . 0 - -  

" ,  20.0 - - 

" - . o  

0.0  

0 .0  0 .4  0 ,8  1 .2  1 .6  

Fig. 1. Boundary layer separation para- 
meter ~ as a function of Sw 

Fig. 2. Variation of the skin friction 
coefficient with ~ for different values 
of S,~ 

Fig. 3. Variation of the rate of heat 
transfer coefficient with ~ for different 
values of Sw 

so lu t ion  of the fol lowing o rd ina ry  differential equa t ions  valid at the s t agna t ion  po in t  (4 = 0) of 

the cyl inder:  

f '"+ff"_f '2+S+l=O 
(27) 

S"+fS'=O 

with the b o u n d a r y  cond i t ions  

f(O) = f '(O) = O, S(O) = Sw (28) 

f ' (oo)  = 1, S(oo) = O. 
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Numerical solutions of Eqs. (27) and (28) are obtained using the Runge-Kutta-Butcher 

method together with Nachtsheim-Swigert iteration scheme for values of the parameter 

Sw mentioned above. 

Figure 1 shows the variation of the boundary layer separation parameter ~s with the surface 

temperature parameter Sw. We first notice that if Sw = 0.0, i.e. T,~ = T1, then ~s = 1.823 

(~  104.45~ which is exactly the value reported by Stewartson [2] in Table 4.2. Then, it is seen 

from Fig. 1 that as Sw increases the point of separation r decreases to an asymptotic value 

~, = 1.678 ( ~  96.15~ Therefore, the effect of the heat transfer parameter S~ is to move the 

position of ~, upstream to the forward stagnation point of the cylinder. 

The skin friction and rate of heat transfer coefficients given by (26) are shown in Figs. 2 and 3. 

It can easily be seen that these coefficients increase due to the increase of Sw. They are higher at 

the forward stagnation point (~, = 0.0) and, as expected, break down at the separation point 

~ for every value of S~. 
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