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Summary. The inplane elastic properties of perfectly circular and elliptic cell honeycombs are derived 
through an analytical method and validated numerically. In the case of perfectly circular cell hexagonally 
packed honeycomb, the inplane elastic properties are shown to be isotropic. However, a departure from 
circularity of the cells leading to cell ellipticity results in the inplane properties becoming orthotropic. The 
orthotropic elastic constants are also derived analytically and validated numerically. 

1 Introduction 

Solids with cellular microstructure are finding increased applications in the design of light 

weight structures. Cellular solids range from hexagonal celled bee's honeycombs to disordered 
three-dimensional skeletal networks of foams and sponges. Gibson and Ashby [1] is an excel- 

lent introduction to the subject of contemporary cellular solids. Because of their usage as 
structural load bearing components, there is a strong need to understand the mechanisms of 

deformation and failure of cellular solids. In particular, there is a need to obtain macroscopic 1 

structural properties of a cellular solid in terms of the properties of the smallest repeating unit 

of the solid, which we term a perfect unit representative cell (PURC). In reality, such PURC 

may not exist, since all of the cells (or clusters of cells) in a cellular solid may not be identical. 

Previous work aimed at studying the mechanical properties of honeycombs and foam is 
amply summarized in the text of Gibson and Ashby [1]. These researchers and other groups 

elsewhere, Warren and Kraynik [2], Kyriakides and Papka [3], [4], Klintworth and Stronge 

[5], Triantafyllidis and Schraad [6], Gibson et al. [7], [8] have all investigated several aspects of 
the deformation and failure of particular classes of cellular solids. 

I~ the present paper, we are concerned with obtaining closed form solutions to the elastic 
properties of a class of  circular cell and elliptical cell space filling honeycombs. Figure 1 
shows a circular cell honeycomb with a set of rectangular cartesian axes X - Y - Z  depicted to 

identify the different planes of the honeycomb. When all the cells in the X - Y  plane are identi- 
cal, then such a hexagonally packed circular cell honeycomb displays isotropic behavior in the 

X - Y  plane. I f  the cells are identical but elliptic, then the X - Y  plane is orthotropic. In the for- 
mer case (circular cells), the entire solid is termed transversely isotropic and one needs five 
independent elastic constants to fully characterize its 3D macroscopic stress-strain relation. In 
the latter case (elliptic cells), the macroscopic solid is orthotropic and one needs nine indepen- 
dent elastic constants to fully characterize its 3D stress-strain response. 

1 By macroscopic, we mean a volume of solid that occupy several tens of cells. 
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Z 
Fig. 1. A hexagonally packed circular cell 
honeycomb in three-dimensional view 

The paper is organized as follows. We first treat the perfectly circular cell case and derive 
expressions for the inplane (the X - Y  plane) Young's moduli, the major Poisson's ratio 2 and 
the shear modulus. We next show that the derived shear modulus satisfies the well known for- 
mula for an isotropic solid 

E 
Gxy - 2(1 + lJxy) " 

Next, we observe that a rotation of the X - Y  coordinates by 7c/3 results in an identical 

microstructure of the honeycomb and hence we conclude that the X - Y  plane is a plane of iso- 

tropy. Next, we derive the four elastic constants of a honeycomb with perfectly elliptical cells. 
Finally, we identify a small parameter (e) associated with slight ellipticity of the cells and 

obtain closed form expressions for elastic properties of such a honeycomb in terms of this 

small parameter. We also show that the results for elliptical cell honeycombs reduce to the 
closed form expressions obtained for the circular cell honeycombs in the limit of vanishing r 

2 Inplane properties of perfect circular cell hexagonally packed honeycombs 

Figure 2 shows a PURC of the circular cell honeycomb. Consider the response of the honey- 
combs to three different inplane loading programs taken separately, one at a time. Then, by 
modeling the celt walls within the context of  classical thin walled Euler-Bernoulli beam theory 
and using Castigliano's theorem [9], it is possible to arrive at an expression for the different 
elastic moduli corresponding to the particular loading program. Kyriakides and Papka [4] 

2 In an orthotropic solid, one can define, per plane, 2 Poisson's ratios, 2 Young's moduli and a shear 
modulus. Of these, only four quantities are independent since the poisson's ratios satisfy the reciprocity 
relation ( E~%x = Eyux~). 
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Fig. 2. A PURC of the circular cell honey- 
comb 

used this approach to obtain the Young's modulus of a circular cell hexagonally packed 

honeycomb with the initial assumption of macroscopic isotropy. 
The two Young's moduli Ex* and Ev*, the shear modulus G~ and the inplane Poisson's 

ratio u,y are calculated as illustrated in Fig. 3. 
In Fig. 3 a, we show the free body diagram of a PURC when subjected to a macroscopic 

stress; ~ in the X-direction. Symmetry with respect to loading and geometry was used in 
arriv:{ng at the free body diagram indicated. Note that P1 and P2 are externally applied forces 
and not the internal resultants. Within the context of classical beam bending theory (neglect- 
ing any membrane deformation of the cell walls), the elastic strain energy of the PURC is 

IS ] ~ : :  +2 [M1(0~)]2~ Ra01 + Ra02 , (1) 
2D 

0 

where, MI(01) and _M2(02) are the moment intensity distributions in sector klk2 and k3k2, 
respectively. 01 and 02 are coordinates as indicated in the figure. 

Ut a 
12 ' 

where 

E 
E t - -  - ~ - 7  

In the above equation, E and u indicate the Young's modulus and the Poisson's ratio of 

the honeycomb material, respectively. 
In order to calculate the honeycomb macroscopic elastic modulus Ez* in the X-direction, 

we invoke Castigliano's theorem to arrive at 

OU OU OU 
- o ,  = ~ ,  = ~ .  ( 2 )  

O Ma O P1 O P2 
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Fig. 3. a Free body diagram of circular PURC used to calculate the elastic modulus in the X-direction; 
h Free body diagram of circular PURC used to calculate the elastic modulus in the Y-direction; c Free 
body diagram of circular PURC used to calculate the shear modulus in the X-Y plane; d Free body dia- 
gram of circular PURC used to calculate the Poisson's ratio in the X-Y plane 

In evaluat ing U, overall  equil ibr ium is first satisfied so that  Me can be expressed in terms of  

Ma, P1 and P2. Next,  general expressions for M1 (01) and M2(02) in terms of  Ma, P1 and P'2 are 

obtained and substi tuted in the expression for U. Using (2), we are able to compute  P1 and P2 

as a l inear function of  6. 

The Young 's  modulus  parallel  to the X axis is E~* = (c%/cx), giving 

(~--~) 
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Note that an * is used to indicate macroscopic honeycomb properties. Using a relative 

density (the density, 0", of the honeycomb structure divided by the density, t), of the material 
the honeycomb structure is made of), the above equation becomes 

E ~ (1 - ~ 

Loading in the Y-direction and the corresponding PURC is shown in Fig. 3 b. In Fig. 3 b, 
P is the externally applied force and not the internal resultant. This case is similar to that 

reported in Papka and Kyriakides [4]. The strain energy is 

U = 2 [M1(01)]2~ f~d01 -}- [M2(02)]2= l~dO 2 . (3) 
2D 2D 

0 

Invoking Castigliano's theorem, the following equations are obtained. 

OU OU OU 
- 0 ,  - 0 ,  - -  = ~ .  ( 4 )  

OMa OH OP 

The above equations in conjunction with overall force and moment equilibrium of the cor- 

responding PURC results in 

"~d* ,~ 
E (i - ~) 

In terms of the relative density, the above equation becomes 

E y *  f.~ 

E (1 - ~2) 

To calculate the inplane shear modulus G'y, we use a pure shear loading, whence the cor- 
responding free body diagram of the PURC is as shown in Fig. 3 c. In Fig. 3 c, note that 
P~,/:~ and H are externally applied forces and not the internal resultants. The expression for 

strain energy U is given by 

u: 2 [ [  2D / Rdo, + Rd< (5) 
0 

With respect to Fig. 3c, noting that M1(01) = P2R sin01, M2(02) = HJR sin02 - P1R 
•  and invoking overall moment equilibrium, with the latter resulting in 
H = (P1 + P2)/x/-3, U as given in (5) is evaluated. Then, Castigliano's theorem delivers the 
following two conditions: 

OU OU 
= • and - A.  (~) 

OP~ OP2 

The above condition (6) in conjunction with the definition (5), provides the following 
result for G* v, which is defined as 

r P I+P2  
xy  7r 

3' 2A sin - 
3 
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Thus, 

In terms of the relative density, the above equation reduces to 

G~Y~E (1~)0"386 ( ~ ) 3 .  

In order to calculate the macroscopic Poisson's ratio u~y, we use a circular PURC sub- 
jected to a macroscopic stress cr x in the X-direction and a virtual macroscopic stress cry in the 
Y-direction caused by a virtual force H. The corresponding free body diagram is shown in 
Fig. 3 d. Note that P1 and P2 are externally applied real forces and H is the externally applied 
virtual force and they are not the internal resultants. The expressions for the internal moments 
MI(01) and M2(02) are 

M1(01) = -M~ - P2R(1 - cos 01), 

and 

M2(02) = Mc + PIR sin02 + HR(1 - cos 02). 

Overall equilibrium supplies 

( ) M c = - M ~ + P 2 R  s i n ~ - - 1  - P 1 R s i n ~ -  2 

With U defined as 

U = 2  [! -/ l 6 [ M I ( 0 1 ) ]  2 t7~d01 + [ M 2 ( 0 2 ) ] 2  Rd02 
2D 2D 

0 

and invoking Castigliano's theorem, we obtain 

OU OU 
- 0  - - - -  - A ,  

OM~ OH 

OU OU 
= 6  = 5 .  

OP1 OP2 

(7) 

After a lengthy manipulation of (7), taking the limit H -~ 0, and with the definition of 

u*~y = - e J s x  = - [ 1 / ( 2  s in3 ) ]  (A/5), we obtain 

y ~ 0.806. 

With respect to the Cartesian X - Y  system, the macroscopic stress-strain relation of the 
honeycomb is 

E *  x 

1 * * -- Y x y Y y x  E"I O-y = ~yx F~x 

O'xy 1 * * 
- -  I / x y . ~ x  

0 

l/* 1~ * 
x y ~ Y  

l * * - -  l . ' xy l ly  x 

Ey* 
1 - v~yv;z 

0 

0 

G;y 

~y �9 

%v 
(8) 
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Table 1. Comparison of material constants between analytical solution and numerical simulation of 
PURC 

Aspect ratio Analytical solution Numerical Simulations Difference between 
of PURC of PURC of PURC Column (1) and Column (2) 
a/b Ez*, Ev*, G;u (KPa) Ex*, Ev*, G*~u (KPa) AEx* AE.u*, AG;y (KPa) 

.;~ % .6% 

1 751,751,208 752, 752, 208 l, 1, 0 
(circie) 0.806 0.807 0.001 

0.9596 701,817, 206 702, 817, 206 1, 0, 0 
(rain. ellipticity) 0.745 0.746 0.001 

1.0427 805, 690, 210 805, 690, 210 0, 0, 0 
(average ellipticity) 0.873 0.873 0 

1.1129 894, 602, 212 896, 604, 213 2, 2, 1 
(max. ellipticity) 0.987 0.987 0 

I f  we transfer (8) to a system of axes J(-I ) that is inclined at H/3 to the X-Y system, then 

the honeycomb stress-strain relation corresponding to (8), in this new coordinate frame is 

idenl:ical to (8) provided that 

E~* = Ev* and G;y - 2(1 + u;v ) 

These equalities are clearly satisfied by the expressions we derived earlier. Thus, the per- 

fectly circular cell honeycomb is macroscopically transversely isotropic, with the X-Y plane 

being the plane of  isotropy. 
The analytically derived results were checked numerically for the possibility of  evaluating 

through the thickness shear deformation effects and axial membrane effects that were 

neglected in the use o f  thin wall Euler-Bernoulli beam bending kinematics. For  this purpose, 

the Abaqus commercial finite element code was used and the P U R C  was modeled with 

Timoshenko beam theory based B22 elements. These beam elements are three noded quadra- 

tic beam elements and include transverse shear deformation and axial membrane deforma- 

tion. The transverse shear deformation in these elements are treated as if the response were 

linear elastic, independent of  the axial and bending responses. The circular P U R C  is modeled 

with 6 curved beam elements and the contact region is assumed to be a point. 

The elastic moduli were numerically computed and the results so obtained are compared 

with our analytical predictions in Table 1. This table also includes the results o f  the elliptical 

cell honeycombs that will be discussed in Sect. 3. 

In Table 1, we used measured material data a to calculate the inplane elastic properties. 
The :tata are obtained through measurements related to real polycarbonate honeycomb celt 

specimens as reported in [10]. The agreement between the analytical prediction (column 2 of  

Table 1) and the numerical evaluation (column 3 of  Table 1) is very strong. 

3 The Young's modulus of the polycarbonate material E - 2.4 GPa, the Poisson's ratio of the poly- 
carbonate material u = 0.3, average thickness t = 0.0660 ram, average radius R = 2.039 4 mm, mini- 
mum ellipticity a/b = 1.997 8 mm/2.0819 m m =  0.959 6, average ellipticity a/b = 2.082 5 mm/1.997 2 mm 
= 1.042 7 and maximum ellipticity a/b = 2.151 5 mm/1.933 2 m m =  1.112 9 where, a and b are the major 
and minor radii of the ellipse in the X direction and Y direction, respectively (see Fig. 4). 
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3 Inplane properties of perfect elliptical cell hexagonally packed honeycombs 

We now turn to the derivation of the inplane macroscopic elastic properties of a hexagonally 
packed elliptical cell honeycomb. Figure 4 describes a perfect PURC of the elliptic cell honey- 
comb and dimensions of the PURC. We leave the formulation quite general by considering 
perfect elliptical cells of major axis 2a and minor axis 2b. 

First, we consider the evaluation of E~*. A free body diagram of the honeycomb for this 
case is shown in Fig. 5 a, where the nomenclature needed for the subsequent development is 
also indicated. The honeycomb is subjected to a macroscopic stress cr~ in the X-direction. 
Since the cells are elliptic, an incremental arc length ds along a cell segment is given in general 

by dsl = i ( a  cos 01) 2 + (bsin01) 2 dO1 and ds2 = i ( a s i n  02) ~ +(bcos  02) 2 dO2. Now, M1(01) 

: - M ~  - P2b(1 - cos 01) and M2(02) = M~ + Plb sin02. Next, overall inplane moment equi- 
librium supplies 

/Fie = 1 {-2M~ + P2b(x/3 - 2) - , /~P~b}.  
z 

The strain energy U is given by 

[! ; 1 u = 2 d 8 1 +  [M2(02)]2  d82 . (9) 
2D 2D 

0 

Invoking Castigliano's theorem provides the set of equations given in (2). Now, in this 
case, 

Ua 

In general, this expression needs to be evaluated numerically in conjunction with the pro- 
cedure that was described in conjunction with the circular cell honeycombs since the integrals 
associated with U are not amenable to a closed form evaluation in view of the expressions for 
d81 and ds2. However, in what follows, we show that for slight ellipticity as defined below, we 
can obtain closed form expressions for the macroscopic honeycomb properties. Thus, define a 
small parameter ~ for slight ellipticity in the following manner. Let a = b(1 +~),  where 

--J "'-.,, 

�9 )o;- ,  

Fig. 4. A PURC of the elliptic ceil honeycomb 



The inplane elastic properties of circular cell and elliptical cell honeycombs 37 

K~ 

a 

P2 

Yt_. 
~ '~o  X 

M~ 

i K 3 

P 

K~ 
Ma 

X 

H 
B 

MoO, 

J Ma 

i K 3  

K2 p ~ ~  K2 

X P'~.~ X 
| 
| 
I 
H 

e d 

Fig. 5, a Free body diagram of elliptic PURC used to calculate the elastic modulus in the X-direction; 
b Free body diagram of elliptic PURC used to calculate the elastic modulus in the Y-direction; c Free 
body diagram of elliptic PURC used to calculate the shear modulus in the X-Y plane; d Free body dia- 
gram of elliptic PURC used to calculate the Poisson's ratio in the X-Y plane 

11 e I I'-~ 1. Then, 

ds1 =: ~(ctcos 01)2-~-(bsinO1)2dOl~..~b(l@~/~cos201) dO1, 

and 

ds2=~(ctsinO2)2+(bcosO2);dO2,-~b(l+~/3sin202)d02, 

where/3 = 2e + e 2. 
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With these new approximations to dsl and ds2, and performing the integrals associated 

with U and using (2), the following closed form expression for E~* is obtained in terms of 
e = (a/b)  - 1: 

E (/-- ' 
where Cl(e)  = 8.329 + 1.502e - 4.366e 2 + O(e3). 

In terms of the relative density, the above equation becomes 

(1  )C11(c) (@3 

where Cl l (e )  = 1.396 + 2.345e - 1.401c 2 + O(e3). 

From the above two equations, it can be seen that when c -~ 0, we recover the correspond- 
ing results for the perfect circular cell case derived earlier. 

To evaluate the macroscopic Young's modulus in the Y-direction, the honeycomb is sub- 

jected to a macroscopic stress (ry in the Y-direction and the corresponding free body diagram 
is as shown in Fig. 5 b. From overall inplane moment equilibrium, 

1 
Mc = ~ P a  - ( v ~  - 1) Hb - M a .  

The internal moments M I ( O J  and M2(Oe) are given by 

Ml(01)  = Ma - Hb(1 - cos 01) and M2(02) = - M e  - Hb  sin02 + Pa(1  - cos02). 

(10) 

The strain energy U is given as before by expression (9). Substituting for Ml(0x) and 
M2(02) from (10) into (9) and invoking Castigliano's theorem provides the set of equations as 
given by (4). After a lengthy algebraic manipulation, and neglecting terms of O(c 3) and 
higher, the following expression for Ey* is obtained. 

E (i=)) ' 

where C2(s) : 8.329 - 4.421s + 0.607s 2 + O(e3). 

Using the relative density, the above equation becomes 

where C21(z) = 1.396 - 2.835e + 2.260s 2 + O(ea). 
Again, from the above two equations, it can be seen that when e --+ 0, we recover the cor- 

responding results for the perfect circular cell case derived earlier. 
The inplane shear modulus G~v was calculated by subjecting an elliptical PURC to a pure 

shear loading as was done for the circular cell case. The free body diagram corresponding to 
this case is shown in Fig. 5 c. Overall inplane moment equilibrium yields 

a 

The internal moments M1 (01) and M2 (02) are given by 

Mt(O1) = P2a sinO1 
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and 

M2(,92) = H b  sin02 - Pla(1 - cos02). 

Using Eq. (6) in conjunction with U defined by (9) allows us to obtain P1 and P2 as linear 
functions of A. Next, using the definition of macroscopic shear modulus 

a (AD1 -~- -]92) 
GxY v ~ b  A ' 

we obtain: 

E ' 

where C3(s = 2.306 + 3.9065 + 0.808r 2 + 0@3). 
In terms of the relative density, the above equation reduces to 

G*y E ~ ~ l'j~ ) C31(C)(~)3 

where Ca(e)  = 0.386 + 0.075e - 0.557e 2 + O(e3). 

] 'he above two equations, in the limit e ~ 0, lead to the corresponding results for the cor- 
responding perfect circular cell case derived earlier. 

Calculation of the macroscopic major Poisson's ratio ~;y is similar to that of the circular 
cell case, whence an elliptic PURC is subjected to a macroscopic stress cr~ in the X-direction 

and a virtual macroscopic stress cry in the Y-direction. The corresponding free body diagram 

is as shown in Fig. 5 d, where the virtual force H due to cry is indicated. Again, overall inplane 

moment equilibrium supplies 

Me =: - M a  - 0.134Pyb - 0.866Plb - 0 . 5 H a .  

The internal moments are given by 

M1(61) = - M a  -- P2b(1 - cos 01) 

and 

M2(02) = Me + H a ( 1  - cos 02) + Plb sin02. 

The above quantities are substituted into (9) to evaluate U, after which Eq. (7) is used to 

solve for P1, P2 and H. Then, taking the limit H ~ 0 and using the definition L,~y = -ey/e~ 

= - ( a / ( v ~ b ) )  ( A / 5 )  yields 

yyy = 0.806 + 1.530e + 0.654e 2 + O(e3). 

Once again, it can be seen that when c ~ 0, the corresponding result for the corresponding 
perfect circular cell case derived earlier is recovered. 

4 Discussion 

The results from a combined experimental and numerical study on the crushing response of 
honeycombs are reported by the authors in [10], [11]. In those studies, polycarbonate circular 
cell honeycombs were subjected to uniaxial compressive inplane loads and biaxial compressive 
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Fig. 6. Comparison of the inplane elastic properties for the honeycomb between the tSnite element simu- 
lation and the asymptotic analytical solution developed in the present paper, as a function of r 

inplane loads. Material properties and geometry of the cells in the honeycomb were measured 
via a high magnification optical microscope in conjunction with a digital data acquisition 

system. The authors found bounds for the cell ellipticity in terms of the ellipse aspect ratio 
(a/b). These data were used in conjunction with the present analytical derivation to construct 
Table 1 which shows the range of linear elastic properties to be expected of these honeycombs 
for typical extremal and average values of a/b. As stated earlier, we also verified our analytical 
derivation numerically via the finite element method in which the honeycomb walls were 
modeled using Timoshenko beam theory based elements which include an approximate cor- 
rection for the shear deformation through the thickness, and also include axial membrane 
deformation that was not included in our analytical derivation. These numerical results are 
also indicated in Table 1. As can be seen, the agreement between the analytical and numerical 
results are strong. 

It must be noted that the analytical treatment pertaining to the elliptical cell case is quite 
general and is valid for any a/b ratio. The boxed expressions we derived in closed form are 
clearly valid only for slight ellipticity when t1 r [[= (a/b) - 1 << 1. For those situations when 
Ite II <~ 1, the evaluation of the elastic properties must be carried out numerically, where the 
integrals associated with the strain energy can he evaluated via numerical integration, for 
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example, using the trapezoidal rule or the simpson's rule [12]. Alternatively, as was done in 

the present paper, a finite element based numerical simulation can be carried out for this pur- 
pose. Figure 6 shows a comparison between the finite element simulation based results and 
the analytically derived results for finite values of e. From this figure, one can determine the 
range of validity (in terms of e) of the asymptotic analytical predictions for the honeycomb 
inplane mechanical properties. 

The expressions we have derived are for perfectly periodic circular cell or elliptical cell 
honeycombs. At present, we are investigating possible extensions of such derivations for the 
more practical case of non-periodicity [13], [14]. However, in these instances, if the number of 
cells in a macroscopic volume is large, we expect the above results to hold with sufficient accu- 
racy for engineering applications. On the other hand, accurate calculations of the near con- 
stant plateau load when compressive inplane crushing leads to cell buckling is quite a challen- 
ging task [3]. Gibson and Ashby [1] have indicated an approximate procedure for calculating 
the inplane compressive plateau load for hexagonal cell honeycombs based on Euler strut 
buckling with a suitable end constraint factor to account for rotational stiffness at cell wall 
joints. They report good agreement of their calculations checked against experiments con- 
ducted with relatively thick walled rubber honeycombs [15], [16]. This aspect of the problem 
as it relates to the present investigation is a subject of a separate study [10], [1 l]. 

5 Concluding remarks 

The ~tudy of inplane properties of honeycombs is important because they exhibit and high- 
light the mechanisms by which such solids deform and fail when subjected to inplane loads. In 
this paper, the authors have presented a derivation of the inplane elastic properties of a class 
of circular cell and elliptical cell hexagonally packed honeycombs. The derived analytical 
expressions have been checked against a finite element analytical model that included trans- 
verse shear deformation and axial membrane deformation. For elliptical cell honeycombs, 
closed form expressions for the macroscopic inplane elastic constants in terms of the material 
properties, cell wall thickness and a small parameter c signifying slight ellipticity of the cells 
has been derived. The corresponding general expressions for any value of e are also shown 
and these need to be evaluated numerically. The elliptic cell results are shown to reduce to the 
corresponding circular cell case when e --+ 0. 
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