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Abstract

A model based on axially moving material is developed to study transverse vibration in
roller chain drives. A unique feature of the work presented in this study is that impact,
polygonal action and external periodic load have been included through chain tension and
boundary conditions and periodic length change is also considered. The impact between
the engaging roller and sprocket surface is modeled as a single impact between two elastic
bodies and the modeling of the polygonal action is based on a four bar mechanism (rigid
four bar at low speeds, elastic four bar at moderate and high speeds). At low and medium
operating speeds, the system equation of motion for the chain span is expressed as a mixed
type partial differential equation with time-dependent coefficients and time-dependent
boundary conditions. At high operating speeds, the system equations of motion are two
partial differential equations for transverse and longitudinal vibrations respectively and they
are nonlinearly coupled. The effects on transverse vibration of center distance, the moment
of inertia for the driven sprocket system, static tension, and external periodic load are
presented and discussed. Solutions are obtained by a finite difference method and
Galerkin's method.



Nomenclature

¢ : chain span velocity

¢; : contact damping coefficient in impact

I : moment of inertia of driven sprocket

k; : contact stiffness coefficient in impact

L : chain span length

Ly : the shorter of the two possible span lengths

L : length of the common tangent

m; : effective mass in impact

my; : mass per unit length of chain

ny, ny : driving and driven sprocket tooth numbers

P.: chain pitch

11, Iy : Tadius of driving and driven sprockets

1; : radius of roller

Tex : magnitude of external periodic loading

T : static tension

Vil : relative velocity of a roller to sprocket surface

Xg : relative displacement of roller to sprocket tooth surface after contact
o phase shift between engagement and disengagement
1 : angle between relative velocity of roller and the sprocket surface
A : pulley support constant

0 : tensioner arm angle

0 : initial tensioner arm angle

®; : angular velocity of driving sprocket

o, : angular velocity of driven sprocket

Oy : frequency of external periodic loading



1. INTRODUCTION

Chain drives are characterized by the discrete nature of the chain links and sprocket
teeth. Compared to belt drives, this discrete nature makes the chain drive unique and gives
both advantages and disadvantages. The advantages include no-slip between the chain and
the sprocket and lower loads on the shaft bearings. The disadvantages include noise and
vibration [1]. These undesirable characteristics have motivated several researchers to
investigate the behavior of chain drives including their transverse vibration.

The transverse vibration of a chain strand can be excited by both internal and external
stimuli. Periodic torsional loading [2] and imbalance in the drive are external sources;
polygonal action and roller-tooth impacts are internal sources. Polygonal action occurs due
to the fact that the chain, lying on the sprocket, forms a polygon rather a circle. This
chordal nature leads to a fluctuating motion. Previous studies include the effects of center
distance and sprocket-tooth numbers on the fluctuation of the velocity ratio of two
sprockets [3-5] and the derivation of the dynamic load due to polygonal action [6, 7].
Another internal source corresponds to the impact between the engaging roller and the
driving sprocket and it is due to the velocity of the roller relative to the sprocket surface as
the roller seats. Research on the impact has been done on the effective mass [8-10], the
contact stiffness [11] , the elastic collision [12], and the intensity of impact interacting with
transverse vibration [13]. Also the impact force was measured experimentally in [14-16].

Studies of the transverse vibration of the chain have been based on both continuous and
discrete models. One type of discrete model encompasses a string loaded with lumped
masses [17-19]. An alternate discrete model is based on a series of links [10, 12, 20]. The
continuous model is typically based on a uniform string. Transverse vibration and stability
analysis of a uniform string was addressed in [21, 22]. Another continuous model that has
been applied to study chain drives is the axially moving string. A recent study investigated
the stability of an axially moving string subject to the dynamic load due to polygonal action
[23]. The discrete model is best suited for the investigation of the detailed dynamics of a
chain drive (like the contact mechanics), but it is less well suited for the study of the
vibration of a general chain drive (including more than two sprockets) due to the
complexity of modeling.

Thus a primary goal of this research is to extend the continuous model to include the
dynamic load due to polygonal action, the dynamic load due to impact, and the transverse
displacement excitations at the end points of the chain span. The new model will be used to



study the performance (including transverse vibration) of chain drives at low, medium, and

high operating speeds.
2. TRANSVERSE VIBRATION IN ROLLER CHAIN DRIVE

2.1 Dynamic Load

2.1.1 Speed Tensioning, Impact, and External Periodic Load

The dynamic loads in roller chain drives are due to speed tensioning, polygonal action,
impact and external loading. The dynamic load due to speed tensioning is expressed for a
general axially moving material as follows.

D,=Am,c? 21

The value of A represents the relative stiffness of an axially moving material compared
to that of the supporting structure. For a system with one chain span and two sprockets, A
can ranges from O to 1 [24]. When A is one, it means that the axially moving material is
very stiff compafed to the structure. In the case of roller chain drives, A is closer to one
than to zero for most cases because of the high stiffness of the chain span.

The dynamic load due to impact depends on the effective mass taking part in the impact,
the relative impact velocity, roller-tooth contact stiffness and contact damping. Based on
previous work [8 - 10], the effective mass is assumed to be the mass of two chain links in
the present study. The stiffness coefficient is calculated by linearizing the nonlinear
function developed by Dubowsky and Freudenstein [25]. The damping is assumed to be
viscous and the coefficient is taken as 0.1 for normally lubricated chain. The relative
velocity is calculated approximately as follows [17].

Vrel = 0‘)1 Pc (2'2)

The effective mass can be considered as a small mass m; moving with velocity Vi and
about to contact the surface of a sprocket tooth with an angle N between the surface and the
direction of V_ as shown in figure 1. The angle is determined by the contact point of the
engaging roller. The contact point of the engaging roller remains very close to the
transition point staying in the working curve close to the border between the seating curve
and the working curve [26, 27]. Thus the angle is derived using the theoretical pressure

angle.

rel



n=35+ 2—;1? + € (degrees) (2-3)

where € << 1.

A single impact between two elastic bodies is assumed to occur while the roller is in
contact with the sprocket tooth surface. The component of the contact force in the chain
span direction is the dynamic load due to the impact. The detailed derivation is in Appendix
1. From Appendix I, the dynamic load for one tooth period is

V__sin 21 .
Dinp =_L61§6)T_e-éw,.t[ (ki-cigmn)s1ncndt+ci(odcoscodt } (0<t<a)7‘—d) (2-4-2)
= g R i
Dimp 0 @ <t<alm) @4H

The shape of Dy is represented in figure 1.

Chains are often used in applications where the external loads are cyclic in nature, €.g.
camshaft drives and intermittent motion machinery. The frequency of the load can vary
from one cycle in a number of sprocket revolutions, to many cycles per revolution. In this
paper the external load is modeled as previously suggested by Ulsoy, Whitesell, and
Hooven [28]. The load comprises one cosine term.

D = Tex cos, t (2-5)

[

2.1.2 Polygonal Action

Two models were developed to compute dynamic load due to polygonal action. One is
based on a rigid four bar mechanism and is used for the analysis of chain drives at low
operating speeds. The other is based on an elastic four bar mechanism and is used for the
analysis of chain drives at medium and high operating speeds.

a) Dynamic load based on rigid four bar model (applicable to low speeds)

In order to calculate the dynamic load, the angular velocity of the driven sprocket is
needed. It is assumed that the angular velocity of the driving sprocket is constant. The
fractional pitch is necessary for the representation of the phase between engagement and
disengagement. The fractional pitch is defined as



- Lct - i*pc -
S @9

where iis any integer such that 0 < fp <1

The additional fractional pitch that is dependent on the operating speed [12] is not
considered in this study. The angular velocity relationship between the driving and driven
sprockets is given by the following equation (see figure 2) when chain velocity is assumed

not to be affected by span vibration.

o, 1, sin 8,= @, 1, sin 6, 2-7)

Feasible domains : g n, -~

=2T
where 0,=0,t+2 0,(0=21 -—2—+af, ocf——lgfp.

2 n1’

In order to solve equation (2-7) for wj, the value of 62 must be obtained first.

Equation (2-7) is integrated to get

0, = O (O2in 5% ﬁE‘) (2-8-2)
0, = Oine - 23721 (02in; > 121 + ﬁxz‘) (2-8-b)

I
= cos-1/11 )
where 0, , = cos ——(r2 cos 0, - cos 8;,) + cos B,),

With the obtained value of 8, @y can be computed using equation (2-7). The angular
acceleration of the driven sprocket (0i) is obtained by differentiating equation (2-7) and the
dynamic load is calculated considering the moment equilibrium about the driven sprocket

shaft.

= o siln 5, (r; ®% cos 0, - 1, ©% cos 6,) (2-9)

0y



=2aq, (2-10)

The angular velocity of the driven sprocket and the dynamic load due to polygonal
action are shown in figure 3 for three cases - (a) ny =ny, (b) n; > ny, and (c) n; <ny. The
magnitude of the dynamic load increases as the operating speed increases. The shape of the
load is determined by the inverse ratio of the sprocket tooth numbers (ny/n).

b) Dynamic load based on elastic four bar model

As the operating speed increases, the elasticity of chain span becomes important. The
following analysis of the dynamic load takes the elasticity into consideration. It is assumed
that the driving sprocket runs at a constant speed of ;. The reference axes, taken at Oy are

parallel and perpendicular to the common tangent to the pitch circles of the sprockets. The
change of slope of the chain is neglected. Since the quantity 1, sin 6, is a function of tooth

period T (= 27/(n10y)), it can be expressed as a Fourier series.

nr o 2nr
r, sin ) =—21—sin I+ ——L-1—sin - cos ipt (2-11)
m (1 -i%n2) 1 =17 (1-i’n?) 1

where p = n; ©1.

It is approximated up to second harmonic terms considering that the values of the
coefficients decrease rapidly as the order of the harmonic increases.

r, sin 8, = a, + a; cos pt + a, cos 2pt (2-12)
n, 1, . 2a, 2a,
where ay,=—L-LsinL-, a, = , Y=
I e T

The speed of A; is given by

X, = - 0, (& + 2, cos pt +a, cos 2pt)

and by integration



X,(t) = - 0, (ag t + % sin pt + % sin 2pt) + x,(0) (2-13)

In a similar manner it can be shown that

1, sin 0, = N a, + b, cos pt + ¢, sin pt + b, cos 2pt + ¢, sin 2pt (2-14)
2N
where b, = % COS N0, € =- % sin n,0, b, = % cos 2n,0,
1-n} 1-n} 1-4n3

n,r, .
_L_Z_ Sln('E-)

a, . n
Cp=- °s1n2na,N=—l=——————
27 2 nomn Lo

- sm( )

Equation (2-14) was derived based on the assumption that the speed of the driven
sprocket is constant. In fact the speed is subject to small fluctuations but it can be shown
that the error involved in equation (2-14) is negligible.

Let the speed of Aj be given by

Xy =- ——( N a; +1; cos pt + m, sin pt + 1, cos 2pt + m, sin 2pt) (2-15)

Integrating equation (2-15) and substituting boundary conditions, we get

0, 1 1,
X,(t) =- -+ ( Nayt +-§- sin pt - pl cos pt + E sin 2pt - 55 cos 2pt) (2-16)

-;10—1(m1+—)+x1(0)+L

Now the angular velocity of the driven sprocket is calculated noting that by, by, ¢; and
¢y are small quantities and the angular acceleration is obtained by differentiating the angular
velocity.

8,=- ):(2 ! (N ag +1, cos pt +m, sin pt + 1, cos 2pt + m, sin 2pt)

1,sin 6, N3 2
(Nag-b, cospt- c1 sin pt - b, cos 2pt - ¢, sin 2pt) (2-17)




g = éit-(e) (2-18)

For oscillations of the driven system about the axis of rotation, the equation of motion is

L8, +k(x,+L-x,)r,sin0,=0 (2-19)
where L, : moment of inertia of driven system about axis of rotation,

k= A—I:E—, AE = strength of chain span.

Substituting equations (2-13), é(2—14), (2-16), and (2-18) into equation (2-19) and
letting each term related with each harmonic be zero, a set of algebraic equations are

obtained.
AX=F (2-20)
where X is a 4x1 matrix whose elements are unknown variables (1}, m;, l,,m,).

The elements for the matrices are shown in Appendix IL
There are four unknowns and nine equations, resulting in an over-determined system.
Since there is no exact solution, an approximate solution is achieved using a least squares

method.

X = (ATA)!ATF (2-21)

Based on the values of 1y, my, 1, my obtained above, the dynamic load is calculated as

follows.

ko .
Dp01=k(x2-x1 -L)=—ﬁ—p—1{(Nal -1,) sin pt + m; cos pt +
0.5 (N a, - 1,) sin 2pt + 0.5 m, cos 2pt - m, - 0.5 m,} (2-22)

0, is obtained by integrating equation (2-17) symbolically.



t

0, =f éz dt=§(;ll7(q0t +q, sin pt + g, sin 2pt + g sin 3pt +q sin 4pt
0 a3

- Pyt - Py COS Pt - P, €OS 2Pt - P COS 3pt-pycosdpt+c,)  (2-23)

322

N~ a5 .
where cmt=T(af+%-%)+pl+p2+p3+P4-qud1nt(%) ’

dint(x) rounds the value of x to the nearest integer towards zero.

The coefficients including g;, and p; are shown in Appendix IIL.

In addition, there is an abrupt length change in chain span except when the length of the
common tangent is equal to an integral number of pitches. The length increases by one
pitch when the chain link disengages from the driven sprocket and the length decreases by
one pitch when the chain link engages with the driving sprocket. This length change
causes a change in the longitudinal stiffness of the span thus introducing a sudden change

in the dynamic load due to polygonal action.

L=L, » k=k =8B L=Lj+p, - k=k=42E
L1 L2

Therefore there are two system characteristic resonances in the dynamic load
corresponding to the two cases (k = k; and k = kp) in contrast with [6] where there was
only one. Furthermore, the magnitude of the dynamic load is limited around the
resonances while the magnitude was unlimited in [6]. The magnitude change of the
dynamic load along with the change of the operating speed and various shapes of the
dynamic loads are shown in figure 4. The two resonances (0c1 and W¢2) can cause
Mathieu type dynamic instabilities of chain drive system. The existence and the positions
of the peaks, if they exist, are determined by operating speed and system characteristics
including longitudinal stiffness of chain span, the inverse ratio of the sprocket tooth
numbers, and moment of inertia of the driven sprocket system.

2.2 Transverse Displacements of End Points and Periodic Length Change

There are two end points for a chain span, one associated with each sprocket. Each end
point is moving along an arc formed by one tooth angle (2m/ny or 2m/ny) and there is
generally a phase shift between the two periodic motions of the end points. The vertical
motions (uy, ug) of the end points are approximated as



u =1,(1- sin 0,) (2-24)

= T _T
where 91—m1t+ 2 n

uy=t, (1- sin8,) (2-25)

The value of 05 is determined by either equation (2-8) or (2-23). Both u, and ug are
shifted by - 0.5 r; (1 - cos (n/n2)) in order to consider the proper shapes of the
displacement excitations in the computer simulation. As mentioned in section 2.1.2.(b),
there is a length change in general chain drive operation. The length change occurs either at
the engagement of the chain link or the disengagement. When 0; goes beyond its limit 7/2
+7/n; (engagement), the free span length decreases by one pitch. When 6; goes beyond
its limit 7/2 + 7/n (disengagement), the span length increases by one pitch. This length
change affects not only the shape of the dynamic load due to polygonal action but also the
transverse vibration of chain drive.

2.3 Equations of Motion

It is proposed here that a chain dnvc system can be modeled as a moving uniform string
and that the discrete nature (polygonal action and impact phenomenon) can be incorporated
into the system equation of motion through the tension term and the boundary conditions.

2.3.1 General Equations of Motion

The general equations of motion for an axially moving chain span are derived in two-
dimensional space using Hamilton’s principle following the similar procedure in reference
[29]. Strain energy, gravitational potential energy and kinetic energy are formulated.
There is external work due to both the static tension and the dynamic tensions (speed
tensioning, polygonal action, impact and external periodic load) and the work is done to
the chain span through both ends.

Two equations of motion are derived for both longitudinal and transverse motions.

: {(P°+EA®g)a}g- (Pe+EA°e)x®a,-pA°gl
-{pA (u1[+cea1)] +[pA"c‘=(u1t+c‘=al)}s pA°cek®(uy, +C%3y)  (2-26)

{(P“=+EA“'.<5)a2}3+(P‘*+EA‘*e:)1<<"a1 pAcgl,
{pAe(uz’t+c"'a2)}’+{pA°c°(u2’[+c°a2)] +pAec°Ke(u1t+cea1) (2-27)



where S : arc length coordinate measured along the chain span,
uy, u2 : the displacement along and perpendicular to the chain span from the
equilibrium respectively

E=ug-K U, +—%— { (uy - ke uy)? + (uy s + k0 0;)2),

al = 1 + ul’s -x® U2, a2 =K® ul + uZ,su

m, g (P, - m; c*?)

(Py - m, c2)? + (m, g §%?

’

Pe=V{(Po-mlc62)2+(mlg§e)2} +myce?, ko=

Pe : tension of chain span at equilibrium configuration,

Py : tension of the lowest point of chain span at equilibrium configuration,
K® : curvature at equilibrium configuration.

S°: span length from the lowest point at equilibrium

There are two geometric boundary conditions (u2(0,t), uz(Le,t)) calculated through the
kinematic analysis of chain span and two natural boundary conditions related with
longitudinal motion.

uz(0,t), up(Le,t) : prescribed
-P°P+EA°g)a +P, =0 at $°=0
-P°+EA°g)a +P,=0 at §°=L°

2.3.2 Equation of Motion for Chain Drive at Low and Medium Speeds

In most applications of chain drives at low operating speeds, there exists a small sag! in
the chain span. The nonlinear equations of motion about the equilibrium configuration are
obtained from (2-26) and(2-27). The superscript e is dropped out from here forward.

u: {(EAe+ P+EAe)u - lcuz)},s -P+EAg) Kk (uyg+Kuy)

= [m, {ul,t +cC (ul,s -K u2)]]’T +[m, ¢ {ul’T +C (ul,s -K u2)}],s
-mcK {uz,t +cC (uz,s +xu))} (2-28)

1 The boundary between small and large sags is determined in terms of sag-span ratio (sag/
span length). As a rule of thumb, small sag theory holds when the sag-span ratio is less
than 1/8.



u: (P+EAe)(uyg+xu)}+Kk{EAe+(P+EAE) (u 5-Kuy}

=[my {u,, +c(uyg+xu)}l +[mcfu, +c(yg+rxull
+m, c x® [ul,t +c (ul’s -Kuy)} (2-29)

With the small sag assumption, the curvature and the tension at equilibrium are
approximated up to order of § (~ my g L/(Pg - m; ¢2)).

P={(Py-m )%+ (m gS)?)} +m c2=P, (2-30)
m, g (P, - m, c2 m
- lg(g 1)_2= 1t & (2-31)
(Py- myc?)*+(m gS)* Pp-mct L

where L = total curved span length.

Assume that the chain stretches in a quasi-static manner (E A >> P) and linearize the
equation of motion for u, component to get

EA€)g=0 (2-32)

Thus the dynamic component of chain tension becomes

ft)=EAe=EA (uLS - K u,) (2-33)
At both ends,
ft)=P, =EA (ul_s -Ku,) (2-34)

The tangential displacement is obtained by integrating equation (2-34) and removing the
rigid body mode.

S L,
u1=x(f w0 dn - f w0 dn) + 2L (S 1) (2:35)
0 0

Linearizing the equations of motion for u, component about the quasi-static solution
and including viscous damping in transverse direction gives



{(P+P)uysls-xP =0 (2:36)

where P =T, +Amc?, P; = Dy + Dipp + Dexe.

There are both parametric and external excitations in the system equation of motion.
“In the case of negligible sag, the equation of motion becomes

mu,, +2mcu,, +m c? Uy ax +CalUg +euy ) - {(P+P)uy ), =0 (237)

Equations (2-36) and (2-37) are not simple parabolic or hyperbolic partial differential
equations but mixed type partial differential equations with time dependent coefficients and
time dependent boundary conditions. In order to solve the equations of motion, a finite
difference method was adopted. Central finite differencing was done about time and mixed
finite differencing was done about the spatial coordinate. The mixed finite differencing
combines central differencing at low operating speeds and backward differencing at high
speeds [28]. Accordingly, the first derivative for the spatial coordinate is expressed as

du_1-s* s* oLt
35 ~2as "1i* a5 i 3 4s " >

where i = subscript for spatial coordinate,

j = subscript for time, s*=—S— .
] p 1F7_Ts m,

2.3.3 Equations of Motion for Chain Drive at High Operating Speeds

- As the operating speed approaches the first resonance of longitudinal motion, the quasi-
static assumption no longer holds and equations (2-28) and (2-29) should be solved
simultaneously. When a chain drive is operated at such high speeds, sag is usually not
allowed in practice. There are two cases where the simultaneous solution of the two
equations is required. The first case occurs when the tooth frequency dependent loads have
a significant effect on the coupling between the transverse and longitudinal equations of
motion and the tooth frequency is near the first longitudinal resonant frequency. The
second case occurs when the frequency of the external load is an integral multiple of the



frequency of rotation of the driving sprocket, this frequency is near the first longitudinal
resonance, and the amplitude of the external excitation is large enough to make the coupling
term significant. This case does not happen unless the operating speed of the chain drive is
very high.

The nonlinear equations of motion of a chain with an arbitrary sag are expressed about
the equilibrium configuration by equations (2-28) and (2-29). Several modifications are
required to obtain the equations of motion for the chain without sag, specifically

= = = = ~ 12
k=0, S=x, a,=1+u,, =1, e~u1,x+2u2’x (EA>>P)

With those modifications and: the addition of viscous damping in the transverse
direction, the equations of motion and boundary conditions can be obtained. The mode
shapes for an axially stationary string are taken as the comparison functions for the
transverse vibration. Suitable comparison functions for the longitudinal vibration are not
readily determined, so admissible functions defined by the longitudinal vibration modes of

a free-free rod are used.

6,0 sin “‘T" sleXg+Xhe (239

\|1j(t) cos =X u, =

M=z
M=z

i
. L’ :
i=1 j

u =

1

where  g(t) = u,(0,1), h(t) = u,(L,D).

Since the admissible functions are used in the discretization process, the discretization
from the variational form was done. The variational form for the chain drive without sag is
obtained from the original Hamilton’s formulation with several modifications including

viscous damping in the transverse direction.

ty L
u J; [J;) {(-my (u +2cuy,+ c? u ) +E Au, +E Ay, Uy ) du, dx
1

+(BA (u, + 1) -P) Bl o+ (EA(u,+ 14,

+P) Su,|_ Jdr=0 (2-40)



t, L
. _ 2 R
u,: ft .{0 [-m, (u2,tt +2¢c Uyt C uz’xx) +P Up xx - C4 (uz,t +cC uz'x)
1

+E A (U5 Upy + Uy, Up s + 150540 ,,}] U, dx =0 (2-41)

The final form of the discretized equations of motion was obtained by substituting
expressions (2-39) into equations (2-40) and (2-41). The discretized equations of motion
are a set of nonlinearly coupled second order ordinary differential equations and the Runge-
Kutta fourth order method was used as an integration scheme.

3. COMPUTER SIMULATION

3.1 Time Step Control and Simulation Strategy

A nonuniform time step scheme was developed to execute computation efficiently. The
basic objective of the scheme is to use smaller time steps near the instant of the impact
(between engaging roller and sprocket tooth) and larger time steps away from that instant
so that the effect of the impact is included while the total computation time is minimized
without causing numerical instabilities. To achieve this objective, an exponential function
was utilized.

The main objective of the simulation is to observe the change of the vibration amplitude
of the roller chain drive under different circumstances. In order to obtain the steady state
response at each operating speed, the transient region during some amount of time from the
beginning was ignored and the response after that was used to calculate the vibration
amplitude. The chain motion is complex. For purpose of the discussion, it is desirable to
characterize this complex motion by a single descriptor. Our experience indicates that a
good choice for this descriptor is the maximum amplitude from the chain span equilibrium
position. This variable can illustrate the vibration effectively over a wide range of operating

speeds.

3.2 Simulation Results and Discussion

A specific chain drive system was selected for detailed study. It included one number
40 chain and two 24 tooth sprockets. The center distance ranged from 19.7 pitches to 20.5
pitches. First simulation was done to investigate the effect of periodic length change and
the center distance on the vibration response. Figure 5 shows both effects. The solid line
represents the simulation results obtained considering a center distance as an average span
length and the dashed line represents the results obtained including periodic length change



in chain span. The difference becomes clearer as the operating speed approaches high
order resonances. When there is no consideration of the length change, one peak of the
vibration amplitude occurs at each order resonance for the center distance. In contrast,
when the periodic length change is considered, two peaks occur at each order resonance (
one for the short length and one for the long length) except in the case where the center
distance is an integral number of the pitches. Other peaks also exist near the two peaks.
The reason for the other peaks is the effect of the dynamic load due to the polygonal action
combined with the periodic length change. The effect of center distance becomes clear
when the system with 20 pitch center distance (system A) is compared with the system with
20.5 center distance (system B). The response of the system A was clearly amplified but
the one of the system B was not amplified around the first resonance. This result is in
agreement with the results of previous discrete approaches ([10], [12]). The reason is that
the transverse displacements at both ends of system A are in phase, thus exciting the first
mode properly. However, the displacements of system B are out of phase and can not
efficiently excite the first mode. As shown in the observation of vibration amplitudes at the
first resonance, center distance has a major influence on the positions of higher resonances
and the vibration amplitudes. Since the amplitude at a specific operating speed is affected
significantly by the center distance, the optimal center distance should be decided by the
speed at which the system is operated.

In addition to the transverse displacement excitations at both ends of the chain span,
there are other intrinsic excitations which correspond to dynamic loads due to polygonal
action and impact. The effect of polygonal action is dominant at low and medium speeds
while the effect of impact is dominant at high operating speed. The magnitude of the
tension variation due to the polygonal action depends on the moment of inertia of the driven
sprocket system and operating speed. The first effect of the parametric excitation due to the
tension variation is the increase of the amplitudes around the resonances as shown in figure
6a. The second effect is well represented in figure 6b and the other peaks besides the two
peaks for the short and the long length start to appear as the moment of inertia increases.
Figure 7 shows the effect of static tension. As the magnitude of the static tension
decreases, the possibility of the instabilities due to the dynamic load by the polygonal action
increases. In the first two cases (figure 7a and b), no instabilities were observed while in
the third and fourth cases, the instabilities occur. Thus low static tension can give lower
loads to the shaft bearing up to some point, but excessively low static tension can cause
instabilities due to the combined effect of both parametric and external excitations.

The external periodic loads were observed to change the excitation frequency and the
magnitude. The common effect for all cases considered here is that the addition of external



periodic loads reduces the vibration amplitude around resonances and increases the
amplitude away from resonances. The effect of different excitation frequencies is shown in
figure 8. The frequency changes from 4a; to @ and the effect of external load increases
as the frequency decreases. Also, the effects of external load increase as the amplitude of
the external load increases.

The motion of a chain drive at medium operating speeds is characterized by the dynamic
load due to polygonal action based on the elastic four bar mechanism. There are two
possible instabilities due to the dynamic load. The existence of the instabilities is limited by
the operating speed, the inverse ratio of the sprocket tooth numbers, and the moment of
inertia for the driven sprocket system. Figure 9 shows both the cases with and without the
instabilities. The possibility of the instabilities increases as the ratio becomes larger and the
moment of inertia becomes smaller.

The behavior of the chain drive near the first longitudinal resonance is observed in
figure 10 which was produced by solving both equations of motion for transverse and
longitudinal vibrations simultaneously. The vibration amplitudes near the first longitudinal
resonance and near the fifth transverse resonance (located a little above the longitudinal
resonance) were observed. The vibration amplitude is only weakly amplified near the first
resonance because the magnitude of the dynamic load due to polygonal action is very small
and the fundamental component of the dynamic load due to impact is not very large.
However, the coupling between the longitudinal vibration and the transverse vibration is
very clear near the transverse resonance. Accordingly it is suggested that operation near the
transverse resonance close to the first longitudinal resonance should be avoided.

4. SUMMARY AND CONCLUSION

The chain drive model presented here includes several important features such as impact
phenomenon, polygonal action, periodic length change, external periodic loads and
nonlinear coupling between transverse and longitudinal motions at high operating speeds.
At low operating speeds, the polygonal action and the external periodic loads govern the
vibration characteristics largely through the transverse displacement excitations and the
periodic tension variations. For a given center distance, there are two major peaks in the
vicinity of each linear resonance (one before and one after). These peaks correspond to the
short and long chain span lengths. There are also other peaks due to the combined effects
of both parametric and external excitation. The vibration responses are affected by center
distances over a wide range and the instabilities around the linear resonances can occur due
to the periodic tension variation. The external periodic load with a frequency of the rotating
speed of the driving sprocket can reduce the amplitudes around the resonances and increase



the amplitude away from the resonances. At medium operating speeds, there is a danger of
instabilities due to the two resonances of the dynamic load due to polygonal action. But the
instabilities do not always occur. The possibility of instabilities increases as the ratio of
ny/nj becomes larger and the moment of inertia for the driven sprocket system becomes
smaller. At high operating speeds, the coupling between transverse and longitudinal
vibrations is not significant around the first longitudinal vibration because of the small
magnitude of the excitation but the coupling between them is clear around the transverse
resonance slightly above the longitudinal resonance.

The suggested model still has its limitations and in order to investigate the vibration
characteristics of roller chain drives more exactly, refined models of impact and polygonal
action interacting with span vibration should be developed. Experimental work will be

necessary to augment the theoretical work.
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Appendix I
Derivation of Dynamic Load due to Impact

The component of contact force in the chain span direction is the dynamic load due to the
impact and it is calculated assuming that the sprocket is stationary during the impact since
the inertia of the sprocket is large comparing with m;. When the roller is in contact with the

tooth, its equation of motion is as follows [11].

mix0+cix0+kix0=0

Initial conditions : x¢(0) =0, X%o(0) = Vp sinm
Then the solution is given by

C'g“’nt . .
0= o, le sin 1 sin @ t




Ci ,0)n= _'i'_’o)d=mnV1‘C2 .
2Vm; k; m;j

where {=

And the solution applies until x, = 0 again.

; = =T
sin @ t. O,ti W,

Let the dynamic load due to the impact be Dimp-

. V__sin2n .
D,,, = (€% + kx cosn = '_I%E__e{m“t[(ki - ¢.Lo )sing it + 0,050 it}

d

where O<t<ti.

Appendix II

Elements of Matrices in Equation (2-20) :
. _ ko, . _ypko, b ko, a _Gko a ___aokml_bzkml,
U= Np ' 12 p 2Np’ 137 4Np’ "M 2p 4Np

a =02k(01_c212po)1 2 ____aoko)l+b1kcol_b2k(o1 +b212po31+12po)1
1"72Np agnNd 2 P Np 2Np 28N> g N

. =clk0)1+0112p0)1 2, =b1k0)1_b112pc01 2 =_clk031_0112p0)1
237 4Np o3 | 247 4Np  2a:nN3 0 ! 2Np 2 N3
2a5N ag N ag

. =_c1km1_cll2p(o1 ) =_b1k0)1+b2kcol_b112pco1
MTTTINp  ogNd % 2Np Npo 4N

bka, bko; bLpo ko, bko, 2Lpo,
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32 2Np Np a%N3 33 84 2p 2Np a0N2
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Appendix III
Coefficients in Equation (2-17) :

q0=-05(b, 1, +b,,, +¢; m; +c, my) + (ay N)2



ql =505 (b, 1, + by 1+ my + ¢ my) -9 (b - 1))
Q2 =2—1§{-0‘5 (by 1, - ¢; my) - 2y N (b - L)},

Q3= ﬁ{-O.S (b1 +b; L, -cymy - ¢y my)}, 4= ﬁ{'oj (by 1 - ¢, my)}
p1=1{-05 (e 1 - ¢; - bymy + by my) - 2o N (¢, - my))
D, =515{.0.5 (cy 1, +by my) - 3y N (c, - my)}

P; =§1§-{-0.5 (cyly + ¢y L, +bymy +b, my)}, pd= le—{-O.S (¢ 1, + by my))



QALI(T UTRYD) IS[[OY urf uouswouoayd 1oedwy | sm3rg

10edwy 1eou peorT otureuA(q Jo odeys (9)

(008 Q1) Puny, 1oeduy Jo 1ueISUT 9y 16 SO[Suy 108IUO)) PUR SISO JO UOnIsod (B)
) i K4 (4 ‘1 1 i 0
4 14 S'e 2 S ‘ s S0 001-
™,
E
e
&
a
Z
a3uey Swl], APIA Ul peor] orureuk( Jo odeys (q)
(995) sumy,
10° 10° 100 ’ "0 ¥00°0 ’ L
Y100 [459Y ) 8000 900 ( 200°0 ocoH- g =
(o18uPaangsaid [egreIooyt) ¢
~
- 0 ~—
: dor § o
5.
- Ho0z ¢
)
&
N 700€ 2
L Hoov yio0], 193o01dg
B[

00¢



re2

Figure 3 Angular Velocity of Driven Sprocket and Dynamic Load Due to Polygenal Action

Equivalent Four-Bar Mechanism for The Calculation of Angular Velocity of Driven Sprocket
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Figure 4 Dynamic Load Due to Polygonal Action for Elastic Chain Span



Vibration Amplitude (m) Vibration Amplitude (m)

Vibration Amplitude (m)

Vibration Amplitude (m)

5 x10-3
|
4
3+
2+
1+
0 2 N s N N " N L
50 100 150 200 250 300 350 400 450 500
Rotating Speed of Driving Sprocket (rpm)
(a) center distance = 19.7 pitches
5 x10-3
4 i
3
2k
1-
0 " N N L N " "
50 100 150 200 250 300 350 400 450 500
Rotating Speed of Driving Sprocket (rpm)
(b) center distance =20 pitches
10-3
5%
4k
3L
2
1+
0 " s s N " s
50 100 150 200 250 300 350 400 450 500
Rotating Speed of Driving Sprocket (rpm)
(c) center distance =20.3 pitches
5 x10-3
4 .
3+ i
2 -
1~
50 100 150 200 250 300 350 400 450 500

Rotating Speed of Driving Sprocket (rpm)
(d) center distance = 20.5 pitches

Figure 5 Effect of Periodic Length Change on Transverse Vibration
( Solid : without length change, Dashed : with length change)



Vibration Amplitude (m)

Vibration Amplitude (m)

x10-3

5 :
Dotted : I, = 0.0005 kg m?
Dashed : I, = 0.002 kg m?

41 Solid: I, =0.004 kg m? | -

O 1 ) 1 .
200 220 240 260 280 300
Rotating Speed of Driving Sprocket (rpm)

(a) Around Third Resonance

0.01 .
Dotted : I, = 0.0005 kg m?
Dashed : I, = 0.002 kg m?
0.008 + Solid: , =0.004 kg m? | _
0.006 |- .
0.004 i
0.002 i
A? -\ 2
0 . . . .
300 320 340 360 380 400

Rotating Speed of Driving Sprocket (rpm)

(b) Around Fourth Resonance

Figure 6 Effect of Moment of Inertia for Driven Sprocket System
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Figure 8 Effect of Frequency of External Load on Transverse Vibration
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