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Summary 

The problem of two cracks emanating from the same origin and propagating asym- 
metrically at different velocities in an elastic and isotropic solid is treated in this paper. 
An unbounded and otherwise undisturbed medium and a constant anti-plane loading 
at infinity were assumed. Techniques of self-similar elastodynamics were utilized in con- 
junction with analytic-function theory. Since a closed-form solution of such a problem 
is impossible we relied in the last steps of the procedure upon namerical analysis. 

1. Introduction 

Dynamic  fracture is a subject  which continues to concentrate  the interest of 

workers of applied mechanics. I n  this realm also belongs the present  work. 
l~elevant references which review the most  basic theoretical  studies in this field 

were published by  Achenbach [1], [2], F reund  [3] and Sih and Chen [4]. However,  
since then  some impor tan t  contributions also appeared in the literature, e.g. 

[5], [6]. 
Of course, anti-plane elastodynamic crack problems are considerably simpler 

than  their counterpar t  in-plane, since the former  involve one wave equation 
instead of two wave equations for the lat ter  problems. I n  spite of the idealization 

of the  anti-plane case, this m a y  serve both  to examine certain quali tat ive features 

common to all types  of f racture  and to check the efficiency of several numerical  
methods  utilized in f racture  mechanics.  

Here, we have analyzed an anti-plane crack problem of the t ransient  elasto- 
dynamic  type .  This involves two rapidly  propagat ing cracks in an elastic, iso- 
t ropic and homogeneous body. Init ial ly,  this unbounded  b o d y  is under  a state of 
constant  shear stresses at  infinity. At  a certain ins tant  of t ime taken  as t ~ 0, two 
cruciform cracks emanate  f rom the same internal  point  taken  as the origin of a 

Cartesian coordinate system. The cracks propagate  along the x and y axes with 
constant  velocities. I n  part icular,  the two branches of the first crack on the 
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x-axis run at different speeds vl, v~ which also differ, from the common speed of 
the branches of the second crack on the y-axis v. Thus, symmet ry  prevails only 
about the x-axis. 

The present problem is an idealized case of a class of geodynamical fracture 
problems. Indeed, cruciform crack propagation at  different velocities of the 
several crack branches is common to the fracture of geophysical settings with 
preexisting rupture planes. I t  is noted that  anti-plane shear crack propagation in 
geophysical settings with preexisting fracture planes has more physical signifi- 
cance than fracture of engineering materials since in the first case the basic 
assumptions of the theory are very well fulfilled, viz. nearly infinite thickness of 
the layer, negligible bending, etc. Of course, the most  general case in cruciform 
crack propagation is the case of four different t ip velocities of the respective four 
crack branches. But  such a fully asymmetric problem with unequal crack branches 
both in x- and y-axis would result to an intractable mathematical  problem. In  
this paper, we have confined ourselves to study the effect of a symmet ry  only in 

one direction. 
Moreover, we have considered tha t  the external stresses at  infinity v~, and vu~ 

are equal for convenience in the computations. Actually, these stresses m a y  be 
not only different from each other but  also arbi trary functions of the spatial 
variables, without any  change in the procedure followed. 

The method of solution is based on Chaplygin's t ransformation and the 
analytic-function theory. After successive conformal mappings a mixed boundary- 
value problem in the half-plane was formulated and solved. 

2. Governing Equations  and Boundary  Conditions 

As depicted in Fig. 1, we consider a body occupying the whole space under 
anti-plane shear at infinity. Assume tha t  this body was disturbed by  cruciform 
cracks running at  different velocities along the x- and y-axes, respectively. The 
crack motion produces disturbances such that  

u~ = ~ = 0, u~ = w(z, y, t). (1) 

The w-displacement satisfies the two-dimensional wave equation [7] 

1 a2w 
V2w = - -  - -  (2) 

c 2 ~t ~ 

where c ~ (#/~)1/2 is the shear-wave velocity in the medium, # the shear modulus 
and ~ the mass density of the mate r ia l  

I t  is obvious that  the time-derivative of the displacement ~ ----- ~w/~t, i.e. the 
particle velocity, satisfies also the wave equation 

1 ~2~b 
V~ - (3) 

c ~ ~t 2 
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Fig. 1. Crack propagation in asymmetric cruciform paths 

which in polar (r, 0)-coordinates may  be written as 

a2,b 1 atb 1 a=~ 1 a%b 
Or 2 -i- r ~ r  + r 2 002 c2 at u .  (4) 

The only operative anti-plane shear stresses are given by  

( T ~ . = # T x  = # c o s O o r - -  r 

aw ( aw cos 0 aw / 
~ . ~ = ~ = ~  sinOa--; + r ~ /"  

(5) 

For convenience, instead of loading at  infinity, we consider the loading as 
applied to the crack surfaces. Then, the solution of the original problem was 
extracted by  a trivial superposition. Moreover, because of the symmet ry  in geom- 
etry and loading with respect to the plane y = 0, the problem in the whole 
space m a y  be reduced in the upper  semi-space. In  view of the above and :Fig. 1, 
the boundary conditions can then be written as 

vvz(x, 0) = v for - - v #  < x < v #  (6.1) 

~ x z ( O , y ) = - - 3  for 0 < y < v t  (6.2) 

w ( x , O ) = O  for - - c ~ < x < - - v ~ t ,  v # < x < o z  (6.3) 

Tvz = vxz = 0 for @2 + y2)1/2 __~ co.  (6.4) 

The displacement and the particle velocity vanish at  the wavefront r = ct 

since the externally applied stresses and their t ime-rates do not contain impulse 
or step functions of time. Therefore, the wavefront r = ct is not a shock (singular) 
wavefront but  w and ~ are continuous functions along it. 
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3. Dynamic Similarity and Conformal Mappings 

Fol lowing the  t echn ique  p resen ted  in  [8], [9] we in t roduce  a new var iab le  

o) = r/t  reducing  thus  the  i n d e p e n d e n t  var iables  f rom r, 0, t to co, 0. As a con- 

sequence,  Eq.  (4) becomes 

o~ 2 1 - - - ~  -~-~w~ -~ w 1 - -  c-~] ~-~ - ~ - ~ = O  (7) 

in the  new "ve loc i t y "  plane.  Accordingly ,  the  d is tances  in the  (x, y) -phys ica l  p lane  

m u s t  be  t r ans fo rmed  to the  pe r t i nen t  var iab le  in the  (x/t, y / t ) - " v e l o c i t y "  plane ,  

as  is shown in Fig.  2. 

I t  is advan tageous ,  as i t  will be seen la ter ,  to  express  the  b o u n d a r y  condi t ions 

in t e rms  of @ and  (~b/~0). I n  view of (5), Eqs.  (6) become 

~W T 

O0 tt 
r for 0 -~- 0, 7~, - - v l t  < r <v~t  

~W 
- -  r for  O = n / 2 ,  O < r < v t  (8) 

aO 

w = 0 for 0 = O, 7~, --v~t  > r and V2t < r .  

Di f fe ren t ia t ion  in Eqs.  (8) gives a u t o m a t i c a l l y  the  b o u n d a r y  condi t ions  in the  

" v e l o c i t y "  p lane  

- -  = - - c o  for O = O , ~ r ,  - - v ~ < c o < v ~  

. . . .  w for 0 ~ ~ / 2 ,  0 < co < v 
~0 # (9) 

z b = O  for O = O ,  zl, - - v ~ > o )  and  v 2 < o )  

v) = 0 for  ~ = c, = % 0 --< 0.  

F 

-C 

E 

-Ul < J  o 2 c 

\ .  
er P. 

:Fig. 2. The "velocity" plane 
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The next  step is the application of the Chaplygin transformation [8], [9]. 
According to this, the area inside the half-circle co ~- c with the branch cut along 

0 = z/2, 0 ~ o) ~ v (Fig. 2) is conformally mapped  onto the semi-infinite strip 
0 < s < co, 0 < 0 < u with a cut in the (s, 0)-plane (Fig. 3) by  means of 

~] = 8 n L- i0 ---~ cosh -1 (c/o)) "~- iO. (10) 

Under  (10), Eq. (7) becomes 

~s-- T ~- ~ = 0 (11) 

namely the Laplace equation in the (s, O)-plane. Methods of analytic-function 
theory are therefore applicable. 

I t  is interesting to observe that  (~b/~0) m a y  be transformed from the (x/t, 
y/t)-plane to (s, 0)-plane and vice versa, simply by  changing the variable co to s 
via (10). In  the (s, 0)-plane, (~b/a0) becomes the normal derivative of ~b(s, 0) along 
the boundaries 0 = 0, 0 ~- ~z/2 and 0 ~ ~z. The boundary c()nditions (9) are now 
expressed by  

~tb ~ c 
- -  along GH, AH, AB,  CB (12.1) 

~0 ,u cosh s 

~b = 0 along FG, DEF, CD. (12.2) 

The above boundary-value problem has quite unusual boundary conditions. 
Conditions (12) are not of the well-known types  of Dirichlet, Neumann,  or Robin- 
Cauchy. However, this problem will t reat  by  means of a new conformal mapping  
of the cut strip onto the upper  half-plane - -co  < ~ < e% ~ ~ 0 and then by  a con- 
venient formulation of a Keldysh-Sedov problem. 

We consider the following transformation already utilized in crack problems 
of elastic wave diffraction by  Achenbach [10] and others [11], [12] 

= I - t  I - 

1-s 'Y t a n h - l [ t  c2 fl J -]- {~" 

(13.1) 

(13.2) 
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Fig. 3. The semi-infinite strip with a cut in the (s, 0)-plane 
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Under the above relations the strip of Fig. 3 maps conformally onto the upper  
half-plane of :Fig. 4. The new positions of the points of interest are also shown in 
the latter figure. 

To transform the boundary conditions from the (s, 0)- to the (~, 7)-plane it 
must be considered that  

8d; dy &b [1 -- (v/c)2] 1/2 C 8~ 

@ dC 80 [(v/c) ~ -- C 2] (1 - -  C2) 1/2 80  

Then, the boundary values of the normal derivative (8@/87) are given as 

(14> 

8W Tc 

87 

8~ zc 

87 /z 

/z [$z  __ (v/c)211t~ (1 - -  ~2)1/2 

[ 1  - -  (v/c)U] 1/2 $ 
[(V/G)2 - -  ~2] i /2  ( 1  - -  $2)  

along GH, CB 

along BA,  AH.  

(15.1) 

(15.2} 

4. The Keldysh-Sedov Problem 

Since the @($, 7)-function satisfies Laplace's equation, we can write 

@($, 7) = g e  q~(C), (16) 

where qb is an analytic function of the complex variable ~ = $ -k iv. Consequently, 
it is valid that 

~(C) = r = a((Re r + i ~(Im r 
aS o$ 

(17) 
_ 8(Re r ~ 8 ( ~ e  r _ 8 ~  ~ 8__~ 

8~ @ 8S @ 

r = f  r dC q- A, (18) 

where the constant A may be omitted, since it contributes only a rigid-body 
motion to the system. 

E 
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Fig. 4. The upper ($, ~)-half plane 
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Because ~($) vanishes in the interval ~ > v~/c and ~ < --v~/c of the real 
S-axis, the derivative (atb/~) vanishes also in the same interval. Thus, the original 
crack problem is reduced to a mixed boundary-value problem where the real 
part,  ~ / ~ ,  of an analytic function q~(~) is prescribed on an interval of the real 
axis of a half-plane, whereas the imaginary part, ~v/Ort, is given on the remaining 
portion of the S-axis. 

One may recognize that  this problem is the Keldysh-Sedov mixed-boundary 
value problem [13], [14]. As regards the type  of solution of the problem, we choose 
a behaviour of the ~(~)-function so that  square root singularities of the time-rate 
of stress occur at v~/c and --v~/c. This corresponds to integrable singularities of 
r at  the points of division, i.e. at  v~/c and --v2/c 

where 

F (,gc) ] 

O(r (~-C d~§ 
L -(Jc) 

(19) 

(20) 

~v) 2vc (r for (vl/c) > (~ > (v/c) and 
g(~) = - 2 i  - @ ~ [(~lc)~ - ~]~I~ (1 - -  G 2 ) 1 [ 2  - - ( v / c )  > G > --(v21c ) 

(21.1) 

i2vc [1 -- (v/c)2] 1/2 a 
/~ [(v/c)z _ a~]t/2 (1 -- a ~) for (v/c) > a > - - (v /c ) .  

(21.2~ 

In relation (19) the constant B vanishes due to the obvious additional con- 
dition that  O(eo) ----- 0. The remaining constant C is a real one. 

5. The Stress Field 

From the view-point of fracture mechanics, the determination of the Vyz(X , O, t) 
and ~xz(O, y, t)-stress is of great importance since the stress intensity factors at the 
crack tips may  then easily be obtained as 

KIII = hm [27~(x ~- vlt)] 1/2 Tyz(x , O, t) 
X-+--vlt 

i ~ i i  I = lira [2z(x --  v2t)] 112 vyz(x , O, t) 
X-->v~I 

KH~ = lim [2~(y - -  vt)] ~/~ ~zz(O, y,  t). 
y->st 

(22.1) 

(22.2) 

(22.3) 
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Due to the symmetry of the original crack problem in respect to x-axis, the 
determination of the ~y~(x, 0, t)-stress ahead of the moving crack tips does not 
present a particular interest since it may  be obtained by a convenient super- 
position utilizing the work of Achenbach and Brock [15]. However, the deter- 
ruination of the ~.~(0, y, t)-stress is a novel subject and thus the present analysis 
is indispensable for the solution of the problem. 

In view of relations (5), (13) and (17) the r y, t) time rate of stress may be 
evaluated as 

-~ Im to(v) d~], v t < y < c t  (23.1) %z(O, y, t) ---- 
Y k a r l  

d~ [(v/c)2 __ $2] (1 -- ~2)112 
(23.2) d 7 [1 --  (v/c)2] 1/2 

and consequently the stress itself as 

t 
~ ( 0 ,  y, t) = f ,~(0,  y, t) at, (y/~) => t ~ (y / t )  (24) 

(y[t) 

Time rates of stress and stress itself are therefore obtained as long as ~(~7) is 
calculated. Moreover, stresses at any material point can be determined following 
the evaluation of the ~b(~)-function. 

I~estricting ourselves to the evaluation of the quantities of interest ahead of 
the tip moving along the y-axis, it suffices to calculate the following integrals 

(~,lc) 

f [((7 + (/2/(3)) (0" - -  (el/C)) 1" "d. 

(v/c) 

(25.1) 

(./c) 

i2= f[(.@(v2/C))(ff--(Vl/C))(i--(v/c)2)Jlle ada 
( v / c )  2 - -  ( ~  ((r  - -  i v )  ( 1  - -  a 2) 

- ( . I c )  

(25.2) 

- ( , , / c )  

f [(0"_-~ (v2/C))(0"--(Vl/6))1112 fluff 
~3 : L ((~c7- ~qir--;~ J . -  ~,  

--(v,/c) 

(25.3~ 

The 11- and/a-integrals have the same form which is as follows 

b 

f ql,2 (26) 
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whereas the I2-integral is of the form 

b 

= f / ( z )  [(z - (b --  2)] -x/2 d2. 
(x 

(27) 

Both I-  and/*-integrals are too complicated in our case for a closed-form evalua- 
tion. However, one may apply a numerical scheme for their evaluation in order 
to have useful results for the praxis. For instance, in Abramowitz and Stegun [16] 
the following numerical formulas are suggested for these integrals 

and 

I ~--~ (b -- o~) ~ W,](mj) 
j = l  

m j = a +  ( b - - a )  2i 

2 s = e ~  ~ 4 _  1 

(28) 

(29.1) 

(29.2) 

2 ~  
Wi = --------7 2~ (29.3) 

l -~--2Tb 

I* ~ ~ Wi](2~) (30) 
j = l  

b + ~  b--vr 
2j -- 2 + ~ me (31.1) 

{2 ] -  1 ~) 
m l  = c o s  ~ 2 u  (31.2) 

3~ 
Wj -- (31.3) 

In this way, one may obtain the time-rate of the w~z(0, y, t)-strress by the 
relation 

�9 (2~c l* -111  - -  i 2 T c # - l I ~  + 2zc#-lla)) -~- C] (32) 

�9 [ (v/c)  2 - ( i~)2] [1 - (/,j)~]1/2 [1 - (v/c)~] -~/~ ( i~)  - 1 ]  
J 

where 

(33) 
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The  cons tan t  C can be de t e rmined  b y  the  b o u n d a r y  condi t ion ~yz = 0 a t  the  

po in t s  B or  H ,  i.e. for  ~ = --(v/c)  or  ~ ----- v/c. 
A numer ica l  in t eg ra t ion  again  will  give the  s tress  via  (24). 

6. Conc lus ions  

I n  this  p a p e r  we have  ana lyzed  the  p rob lem of a r ap id ly  ex tend ing  cruciform 

sli t  under  an t i -p l ane  shear  b iax ia l  loading.  The  usual  a s sumpt ions  of l inear  

e las t i c i ty  were considered and the  me thod  of d y n a m i c  s imi la r i ty  was employed  in 

order  to  a p p l y  complex analysis .  

I t  was shown tha t  a closed form solut ion is imposs ib le  and  numer ica l  t r e a t m e n t  

is thus  indispensable .  However ,  the  p rocedure  is s t r a igh t fo rward  and  one m a y  

eas i ly  t ake  in fo rmat ion  abou t  the  field quant i t i es  of the  p rob lem b y  using the  

resul ts  of the  paper .  
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