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ABSTRACT

The point visibility and the edge visibility of a simple polygon are computed. The
portion of a simple polygon circularly visible from a given point is obtained in O(n) time,
where n is the number of vertices. This requires the construction of a circular visibility
diagram (CVD) - a classification of arcs emanating from a given point to the edges they
hit. This is done in linear time. The portion of a simple polygon circularly visible from
a given edge is obtained in O(kn) time, where k is the number of CVDs computed. In
the worst case, k equals n.

1. Introduction

As visibility can be characterized by lines of sight, a point is (linearly) visible
from another point if there exists a line segment connecting them without crossing
any obstacle. Using lines to represent the trajectories of visibility facilitates the
computation of linear visibility, which subsequently enables the computation of
notions such reachability, assemblability, and separability.

One of the fundamental linear visibility problems is the computation of a point
visibility polygon, the portion of a polygon that is visible from an internal point.
ElGindy and Avis” and Lee!? develop linear time algorithms for constructing a
linear visibility polygon inside a simple polygon. O’Rourke!* shows that O(nlogn)
time is required to compute a visibility polygon for a non-simple polygon.

Another fundamental linear visibility problem is the computation of an edge
visibility polygon, the portion of a polygon that is visible from an edge, internally.
Avis and Toussaint® define three levels — complete, strong, and weak - of edge
visibility. Lee and Preparata!! give an algorithm that determines whether a simple
polygon is completely or strongly visible from a given edge. Avis and Toussaint3
present a linear time algorithm for determining whether a polygon is weakly visible.
Chazelle and Guibas® show that an edge visibility polygon inside a triangulated
simple polygon can be constructed in linear time. Suri and O’Rourke!” develop
an algorithm for constructing a weak edge visibility polygon inside a non-simple
polygon in Q(n*) time.



Figure 1: The linear visibility polygon and the circular visibility region of s.

These fundamental algorithms have many extensions. In the art gallery problem®*,
a minimum number of points inside a polygon is to be positioned such that the
union of the point-visibility polygons equals the simple polygon. In the mintmum
link path problem, a path which connects two points inside a polygon and which
consist a minimum number of line segments is sought; Suri!® gives a linear time
algorithm which compute such a path by constructing a sequence of visibility poly-
gons. Guibas et al.® show that the shortest path inside a simple polygon can also
be solved in linear time by utilizing the notion of visibility. Not all paths have to
be linear. In engineering applications, devices such as machine tools and robots are
equipped with circular interpolators, giving rise to the notion of circular visibility.

A point ¢ is said to be circularly visible from a distinct point p if a circular
arc can be drawn from p to ¢ without hitting an obstacle. The set of directed
circular arc — clockwise or counterclockwise — drawn from' p are called visibility
arcs emanating from p and can be uniquely defined by their centers, endpoints,
and directions. The difference between linear and circular visibility is illustrated in
Figure 1. The shaded portions are not visible. Since arcs are involved in circular
visibility, the term “region” is used (instead of “polygon”). And since straight lines
can be considered as degenerate arcs, the linear visibility polygon is a subset of the
circular visibility region.

Research on circular visibility is relatively sparse. Agarwal and Sharir! present
an O(nlogn) algorithm for computing the circular visibility region of a given point
inside a simple polygon. Agarwal and Sharir? also show that by preprocessing
a simple polygon, with O(nlog®n) time, the query to the first intersection point
between a circular arc emanating from a given point and the simple polygon can
be answered in O(log* n) time. A linear time algorithm is developed by Chou and
Woo® for classifying the visibility arcs emanating from a given point with respect
to the edges of a simple polygon that they hit; such a classification is called the
circular vistbility diagram (or CVD) of a fixed point. In this paper, two types of
circular visibility regions are computed by utilizing the CVD: that of a given point
and that of a given edge.

The rest of the paper is organized as follows. The structure of the CVD is first
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Figure 2: Centers of the CCW visibility arcs that hit the left of 4.

reviewed; the correspondence between a particular class of circular visibility arcs
and their counterparts in the CVD is then established. In Section 3, a linear time
algorithm for computing a circular visibility region of a point is described. Finally,
in Section 4, an O(kn) time algorithm for computing a circular visibility region of
an edge is developed, where 7 is the total number of vertices in the simple polygon
and k is the number of different pairs of supports of the circular arcs that contribute
to the boundary of the visibility region.

2. Preliminaries

The representation for a collection of visibility arcs is first established. Whereas
there is only one line segment connecting two given points, there are. an infinite
number of circular arcs connecting them. Additionally, due to the non-linearity, the
collection of visibility arcs from a point to an edge can no longer be represented
by a one-dimensional direction wedge”. The pattern of these visibility arcs is very
difficult to visualize as they cross each other along their paths.

It is noted that circles passing through a given point can be uniquely represented
by their corresponding centers. Each point in the plane corresponds to the center
of exactly two circular arcs - CW or CCW along the same circle - emanating from
the given point. By considering CW and CCW arcs separately, there is a one-to-one
correspondence between a point in the plane and either a CW or a CCW visibility
arc. The visibility arcs from the given point to an edge can therefore be uniquely
represented by the collection of the centers of the visibility arcs.

Let the edges of a simple polygon be ordered in the CCW direction. Since p
is inside the polygon, all the the visibility arcs that hit an edge ub of the polygon
will hit the left side of the edge. Thus, only the intersections from the left of the
edges are of interest. Figure 2 illustrates the four possible configurations of p and
ub. The loci of the centers of the CCW visibility arcs emanating from p and hitting
the left side of uv are shaded. Figure 2 (a) depicts the case where p is to the left
of uv, whereas Figure 2 (b) depicts the case where p is to the right of ub. Figure 2
(¢) and (d) shows the limiting cases, where p is collinear with ub and b is directed
towards and away from p, respectively. It is noted that if 4b is directed away from
p, no CCW arc emanating from p will hit the left side of uv.

The classification of visibility arcs with respect to the edges of the polygon that
they hit can now be obtained. Such a classification results in two partitions of the



Figure 3: The CCW CVD of a simple polygon Q.

plane, for the centers of CW and CCW arcs, and are called the CW CVD and the
CCW CVD, respectively. An example of a CCW CVD is shown in Figure 3, where
p is the emanating point, @ in dotted lines the simple polygon of interest, and the
CCW CVD of p in solid lines. A CVD can have up to n + 1 regions. Points in the
same region correspond to the centers of all the CCW visibility arcs which emanate
from p and hit a particular edge of Q. (The region F, OQ contains all the points about
which CCW visibility arcs emanating from p and missing all the edges of ).) The
boundaries of the regions of the CVD consist of: line segments or half-lines, each of
which is a portion of the perpendicular bisector between p and a vertex of @), and
parabolic curves, each of which is a portion of the parabola® defined by p and an
edge of Q.

The data structure of the CVD is similar to the dual space data structure used
by Chazelle and Guibas® for solving a variety of linear visibility problems, in which
aline az +by+1 = 0 in the primal space is represented by a point (a,b) in the dual
space’!3. Points in the dual space are then grouped into regions according to the
edges that their corresponding visibility rays hit in the primal, which results in a
planar partition in the dual space. :

Prior to the development of the algorithms, some terminologies are introduced
to aid the presentation of the ideas. Given an arc pq, as shown in Figure 4, let the
region bounded by arc pg and line segment 7 be called the segment of pg. The
convez side of a circular arc can subsequently be defined as the side of the arc that

@A parabola can be defined as the locus of all the equi-distant points between a point and a
line. Every portion of the line corresponds to a portion of such a parabola.
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Figure 4: Sides and supports with respect to an arc pq.

is the inside of the segment, whereas the concave side of a circular arc is the side
that is to the outside. Let a point in contact with an arc be called a support of the
arc. A vertex of a polygon is therefore said to be a convez support of a circular arc,
if it is in contact with the arc on the convex side. Likewise, a vertex or a non-vertex
point® on an edge of a polygon in contact with an arc on its concave side is called a
concave support of this arc. In Figure 4, vertex v; is a convex support of pq, whereas
vertex v; and point v are concave supports of pg.

The closure of the circular visibility region is first computed. This means that
a visibility arc which passes through a vertex of the polygon and stays inside the
polygon is not blocked by the vertex. Likewise, a visibility arc tangent to an edge
of the polygon is not blocked by the edge. The circular visibility region computed
accordingly is a closed region. By taking the open set of this closed region, the
desired circular visibility region is obtained. Since the open set of a dangling curve
in the plane is empty, the dangling arcs identified are ignored.

3. Circular Visibility Region of a Given Point

In this section, an efficient algorithm that computes the solution to the following
visibility problem is developed.

Problem CVR(p,Q): Circular visibility region of a given point
Given: a simple polygon @ = {e;, 3, ...,es}, and a point p contained in Q.
Find: the portion of @ that is circularly visible from p.

To construct such a visibility region, the constituents of its boundary are first
examined. By establishing the properties for the visibility arcs that contribute to
the boundary of the visibility region, and subsequently establishing the correspon-
dence between these visibility arcs and their counterparts in the CVD, the circular
visibility region of a point can then be constructed.

Since lines are degenerate circular arcs, and consequently the linear visibility
polygon of p is a subset of the circular visibility region of p, only regions not in the
linear visibility polygon of p need to be examined. These disjoint regions are called
pockets, and can be obtained by taking the boolean difference between Q and the

bIt is noted that if an edge is in contact with an arc on its convex side, the contact must be
with the endpoint(s) of the edge.
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Figure 5: Convex and concave caps of p.

linear visibility polygon of p. Since visibility arcs which do not hit any edge of @
can only travel within the linear visibility polygon of p, visibility arcs entering a
pocket always hit the boundary of the pocket. The identification of the boundary
of the circular visibility region from p can therefore be reduced to the examination
of the visibility arcs hitting the boundary of the pockets.

The boundary of the circular visibility region in a pocket consists of portions of
the boundary of @ and portions of visibility arcs. The latter can be classified into
two groups. Let v;q be a portion of a visibility arc emanating from p such that there
does not exist any visibility arc that can reach the region to the convex side of v?q,
as shown in Figure 5. Arc v’j\q is a portion of the boundary of the circular visibility
region of p, and is called a convez cap of p; the region to the convex side of v;q is
called a convez deficiency of p. Similarly, concave caps and concave deficiencies of
p can be defined. Visibility arcs which are supersets of a cap are said to contain the
cap. To construct the circular visibility regions inside the pockets, all the visibility
arcs that contain a convex or a concave cap of p need to be identified.

Whether or not a visibility arc contains a cap can be determined by the con-
figuration of the support(s) on the arc. Suppose that a visibility arc pq hits the
boundary of @ at g and does not have any support. Since circular arcs passing
through p and ¢ and lying entirely on either side of pg can be obtained, arc pg
can not be on the boundary of the circular visibility region of p, and thus does not
contain a cap. By a similar argument, visibility arcs that have only one support
cannot contain a cap either. The following lemma establishes the properties for a
CCW visibility arc having two supports and containing a cap.

Lemma 1 (1) Let g be a point on the boundary of Q, and let pg be a CCW visibility
arc with a concave support, v;, and a convez support, v;, ordered as p, v;, vj, and
q. Then, arc v?q 1S a convez cap of p.

(2) Let r be a point on the boundary of Q, and let pr be a CCW wisibility arc with
a convez supporl, v;, and a concave supporl, vy, ordered as p, v, vg, and r. Then,
arc vgr is a concave cap of p.

Proof. (1) Suppose, to the contrary, that there exists a visibility arc which em-



anates from p and crosses v_,A-q at ¢’ (¢’ # q), as shown in Figure 5. Because both of
the supports v; and v; are on @, which is a simple polygon, this visibility arc has
to cross v;?)j. This means that this arc and pq intersect at three points, p, ¢, and
q¢'. As two distinct circles have at most two intersections, an arc emanating from p
and crossing v;q at a point other than v; cannot exist. As the region that is not
circularly visible from p is to the convex side of v?q, arc v?q is a convex cap of p.
(2) An illustration of such an arc is also given in Figure 5. As the proof for (2) is
similar to that of (1), it is omitted. O

It is easy to verify that without the confinement of a concave support on p?), (as
~ shown in Flgure 5), no matter how many more convex and concave supports there
are, arc v,q can not be a convex cap. On the other hand, when pq has support(s)
besides v; and v;, as established in Lemma 1, the region to the convex side of v_,q is
still not circularly visible from p. Arc v,q therefore remains to be a convex cap and
a portion of the boundary of the circular visibility region of p. Likewise, without
a convex support on puy, arc ver would not be a concave cap, whereas even if
visibility arc vgr is in contact with supports besides v; and v, arc vpr will still
be a concave cap of p. Additionally, a CW visibility arc contains a convex or a
concave cap if its supports satisfy the same configurations as described in Lemma
1 for the supports of a CCW visibility arc. By identifying all the caps of p, and
subsequently discarding its corresponding deficiencies, the circular visibility region
of p is obtained. In the following, points in the CVD corresponding to visibility arcs
that contain caps are identified.

The correspondence between points on the partitioning curves of the CVD and
their corresponding visibility arcs is now established. Recall that each partitioning
curve in the CVD may be composed of a line segment (or a half-line), a piece of a
parabolic curve, or both of them®. A partitioning line segment (or a partitioning
half-line) is a portion of the perpendicular bisector between p and a vertex of Q,
which means that the visibility arc centered at a point on this line segment will
hit this vertex of Q. On the other hand, a partitioning parabolic curve, which is
a portion of the parabola defined by p and an edge of Q, represents the locus of
the centers of the visibility arcs that are tangent to this edge of Q. Let the points
Joining two or more partitioning curves be called the nodes of the CVD.

A node that is joined by exactly two partitioning curves corresponds to the center
of a visibility arc in one of the following three configurations: passing through two
vertices of @, passing through a vertex and tangent to an edge of @, or tangent to
two edges of Q. These vertices and/or edges of Q are the supports of this visibility
arc. An illustration of the correspondence between a node of the CVD and its
corresponding visibility arc is shown in Figure 6. Since this node v, is at the point
where f;, a portion of the perpendicular bisector of p and v;, is joined by B;, a
portion of the perpendicular bisector of p and v;, it corresponds to a visibility arc
which has two supports v; and v;. Since the visibility arcs containing the convex
and concave caps of p are visibility arcs with supports satisfying Lemma 1, they
can be identified by examining the nodes of the CVD.

In the degenerate case, a visibility arc may have more than two supports, which



Figure 6: Correspondence between a cap of p and a node in the CVD.

corresponds to a node joined by more than two partitioning curves. In this case,
there is still only one cap that needs to be identified. Suppose the sequence of the
supports on a visibility arc pg begins with a concave support v;, as shown in Figure 7
(a), the region to the convex side of the arc between the first convex support v; and
the end of this visibility arc is not circularly visible from p. Arc v’;q is therefore
a convex cap of p. On the other hand, suppose the sequence of the supports on a
visibility arc pr begins with a convex support v;, as shown in Figure 7 (b), the region
to the concave side of the arc between the first concave support v and the end of
this visibility arc is not circularly visible from p. Arc vir is therefore a concave cap
of p. Furthermore, if there exists a concave support v, on v;q, as shown in Figufe

2
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Figure 7: Visibility arcs that have more than two supports.



7 (¢). Then, arc v,q is a dangling arc. As indicated earlier, the open set of the
dangling arc 1,9 is empty, arc v,q can therefore be ignored, and arc vﬁ;, (rather
than arc v?q) becomes the convex cap contained by pq. Similarly, if there exists a
convex support v; on vgr, as shown in Figure 7 (d). Then, arc ver is a dangling arc,
and is therefore ignored. Arc vpv, (rather than arc v;r) becomes the concave cap
contained by pr.

By construction, the number of nodes and the number of partitioning curves of
the CVD are of the same order as the vertices of @, which is O(n). The identification
of the caps, which requires the examination of all the nodes of the CVD and the
partitioning curves passing through each of the nodes, can therefore be completed
in O(n) time. With all the caps of p identified, the boundary of @ is then traversed
to sew the caps to the boundary of @ contributing to the boundary of the circular
visibility region, which can be achieved trivially in linear time. The total time
required for this algorithm to construct the circular visibility region of a given
point inside a simple polygon is thus O(n).

Figure 6 illustrates the correspondence between a concave cap of p and its cor-
responding node in the CVD. The shaded region is the concave deficiency of p
associating with the concave cap. Since this cap is the only cap of p, the unshaded
portion of @ is thus the circular visibility region of p.

4. Circular Visibility Region of a Given Edge

It is established in this section that the boundary of such a circular visibility
region consists of portions of the boundary of the simple polygon and the convex
and concave caps computed with respect to the emanating edge. These caps are
obtained by sweeping the region of the polygon with various sets of visibility arcs
from the emanating edge. The CVDs of some of the vertices of the simple polygon
are computed to determine the transition between two sets of sweeping arcs. Due
to the lack of amortized behavior in sezrching of the transitions for the sweeping
arcs, the time complexity for constructing the circular visibility region of an edge
is substantially higher than that for computing for a point.

Let the emanating edge be denoted by uw, directed from u to v, and let the
rays emanating from u and v and coincident with @o hit ¢ at points u’ and ¢/,
as shown in Figure 8. It is noted that CCW visibility arcs emanating from the
left side of uv (except at v) do not cross vo’. By duplicating @ and v/, a new
polygon which consists of not only all the edges of Q but also edges v'v, 7%, wv, and
vv’ is obtained. The emanating edge o becomes an edge on the boundary of this
new polygon. Similarly, a new polygon consisting of all the edges of @ and edge
u'u, uv, 74, and uu’ can be constructed, in which CCW arcs emanating from the
left of vu will not hit uw’ and u'u. The circular visibility region of ws with CCW
visibility arcs can be obtained by merging the circular visibility regions computed
individually for the two polygons above. The CW circular visibility region can be
established similarly. For simplicity of discussion, it is assumed that the emanating
edge is an edge on the boundary of the simple polygon, as defined in the following.



Figure 8: Decomposition of @ into two sub-polygons.

Problem CVR(u7,Q): circular visibility region of an edge
Given: a simple polygon @ with edges uv, e, €3, ..., and ey,.
Find: the portion of @ that is circularly visible from 7v.

Let a cap computed with respect to v be called a cap of uv. No other visibility
arc emanating from %o will cross a cap of wv. The region separated from the circular
visibility region of @v by a cap of v is thus called a deficiency of uv. As adopted
in Section 3, the deficiency that is to the convex (concave) side of a cap is called
a convex (concave) deficiency, and the cap separating it from the circular visibility
region is called a convex (concave) cap. In the following lemma, sufficient conditions
for a point on U to contribute a CCW visibility arc that contains a cap of uv are
established.

Lemma 2 Let p (p # u and p # v) be a point on T and pq be a CCW visibility
arc which emanates from p and hits Q at q.

(1) Let v?q be a convez cap of p, where v; is a convez support of pg. Then, v’;q is
also a convez cap of W if p is the point on UG which is circularly visible from v;
and the closest to u, or if pq is tangent {o UV al p.

(2) Let vig be a concave cap of to p, where v; is a concave support of pg. Then, ig
is also a concave cap of v if p is the point on UV which is circularly visible from v;
and the closest to v.

Proof. As visibility arcs only emanate from the left of @ and pq is a CCW visibility
arc, pv must lie on the concave side of pg. The two cases in the first part of the
lemma are first discussed.

(1) Suppose p is the point on wv which is circularly visible from v; and the closest
to u, as shown in Figure 9 (a); points on @y which are circularly visible from v;
must lie on pu. Since Q is a sxmple polygon, for an arc emanating from pv to reach
qu, the arc must first cross viv vj from 1ts convex side, where v; denotes the concave
support that conﬁnes pq and makes qu a convex cap of p_ Since pu lies on the
concave side of pg, for an arc emanating from pv to reach vt vj, the arc must first
Cross pv. from its concave side. However, as two distinct arcs can have at most two
mtersectlons an arc which emanates from pv \ pU and crosses pv; and v;v v; cannot cross
v,q at a point other than v;. Therefore, v,q is a convex cap of uv.

10



Figure 9: Convex and concave caps of uv.

On the other hand, suppose p is the tangent point between pq and @, which means
that except for p, the rest of W% lies to the concave side of pg. For the same reason
as established in the previous case, no other visibility arcs emanating from uv will
cross v;q at a point other than v;. Consequently, in this case, v?q is also a convex
cap of uv.

(2) The concave cap v;q of p is shown in Figure 9 (b). Since the proof for showing
that this cap is also the concave cap of v is analogous to that for showing the
convex cap of @v in (1), further analysis is omitted. O

By the above lemma, it follows directly that some caps of an endpoint of @ are
also the caps of uw.

Corollary 1 (1) A CCW convez cap of u is also a conver cap of uv.
(2) A CCW concave cap of v is also a concave cap of uv.

Note that since v is on the boundary of @, a visibility arc of u computed in the
presence of () is always a visibility arc of 7v. Edge 70 may be considered as a concave
support of a visibility arc emanating from u if this arc is tangent to ww. While
Lemma 2 establishes sufficient conditions for a point on U to emanate visibility arcs
that contribute to caps of @, the following lemma establishes necessary conditions
on the supports for such visibility arcs.

Lemma 3 Let p (p # u and p # v) be a point on T and pq be a CCW visthility
arc which emanates from p and hits Q al q.

(1) Let v;q be a convez cap of p, where v; is a convez support of pg and v; is the
only concave support on pvJ Suppose p ts the point on Tv which is circularly vzszble
from v; and the closest to u. Then, there exists a convez support, vj4y, on pu;,
such that P”;+1 is a convez cap of vj.

(2) Let vig be a concave cap of p, where v; is a concave support of pg and vj s the
only convez support on pv;. Suppose p is the poini on W0 which is circularly mszble
from v; and the closest to v. Then, there erisls a concave support, viy,, on pv_,,
such that pv,+l 1s a concave cap of v;.

Proof. The proofs are straightforward. In (1), if there does not exist such a
convex support Vi1, | there must exist a visibility arc from v; to up with a radius
smaller than that of pq as up lies to the convex side of pg. This contradicts the fact

11



that p is the point on @w which is circularly visible from v; and the closest to u.
Since the order of supports on ﬁj, emanating from vj, follows the order described
in Lemma 1 (1), ﬁ’j+1 is a convex cap of vj. Similarly, in (2), if there does not
exist such a concave support v;4+;, p can not be the point on uw which is circularly
visible from v; and the closest to v. The order of supports on v;p follows the order
given in Lemma 1 (2), arc pv; +1 1s therefore a concave cap of v;. O

With the properties of the caps of % identified, the details of the algorithm that
computes the circular visibility region of o are now described. First, terminologies
and the hierarchy of the algorithm are given. It is clear that the portion of the
polygon which is linearly visible from %o is also circularly visible from @o. By
subtracting this linear visibility polygon from @), a set of pockets with respect to uw,
are obtained. Only circular visibility region inside the pockets need to be computed.
A pocket is said to be a CW pocket if only CW arcs emanating from % can reach the
interior of the pocket, and a CCW pocket if only CCW arcs can enter it. (Since only
CCW arcs are used for the illustration of the algorithm, CW pockets are ignored for
the further consideration.) A line segment that separates a pocket from the linear
visibility polygon is called the lid of the pocket. Every visibility arc which emanates
from uv and enters a pocket must cross the lid of the pocket. Let the extension of
the lid of a CCW pocket intersect v at a point p, where p # v. It is noted that only
the arcs emanating from points on up may reach the inside of this CCW pocket.
This means that p can replace v as the emanating edge, and therefore only the
case where the extension of the lid intersects an endpoint of the emanating edge is
analyzed.

The domain in which caps of uo need to be identified can be further reduced.
In each CCW pocket, the convex and concave caps of v are first computed. This
can be achieved by utilizing the CCW CVD of v, as discussed in Section 3. The
region in a pocket that is circularly visible from v is also circularly visible from .
Furthermore, by Corollary 1, the concave caps of v are also the concave caps of
uv. Consequently, only the convex deficiencies of v may contain regions which are
not circular visible from v but are circularly visible from @5, and requires further
examination.

The process for constructing caps of uo in the convex deficiencies of v is now
described by using the example shown in Figure 10, in which v,-Asl is a convex cap
of v, the region to the convex side of v;sl 1s a convex deficiency of v and is denoted
as D,,(vfs‘l), and v; is a convex support of vs,. To start, three possible emanating
points on v which contribute visibility arcs that pass through v; and contain convex
caps of uv are identified. The distinction among these three emanating points and
the approach to construct them are given in the following.

Case 1. Suppose that arc p;ij, a CW convex cap of v; as shown in Figure 11
(a), is identified, where p; (ps # u) is a point on uv and v; 4, is a convex support on
p;;)j. Since arc p;ij is a convex cap of vj, there must exist a concave support v;,
on v; v, 41, that makes p;vJ+1 a convex cap of v;. Suppose that the CCW extension

of vaz 1ntersects the boundary of D, (v;s;) at a point $2. This concave support v;
also makes v, s a convex cap of p;. Again, since arc pgv_H_l is a convex cap of v,

12
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Figure 11: Three emanating points that contribute convex caps of .

p2 must be the point on o which is circularly visible from v; and the closest to u.
By Lemma 2, arc vfsz is a convex cap of uv.

Case 2. Suppose a CW visibility arc of v; having a concave support v; and tangent
to U at p, is identified, as shown i in Figure 11 (b). Due to the configuration of
supports v; and v; on pysy, arc v;sy is a convex cap of ps, and by Lemma 2, a
convex cap of uv.

Case 3. Suppose that u is circularly visible from v;, as shown in Figure 11 (c). By
Corollary 1, the convex cap vﬁsz of u is also a convex cap of uv.

As visibility arcs of a point having supports in a certain configuration can be
identified in the CVD of that point, which one of these three cases that is encoun-
tered can be determined by utilizing the CW CVD of v;. Flrst; assume that Case
1 is encountered. Let v;4; denote the convex support on pav;.

Then, only the region bounded between v,sl and v, s2 (the region in @ that is
to the convex side of vj’.;l and to the concave side of v;s-z), as shown in Figure 10,
remains to be decomposed by additional caps. Since whether or not a visibility
arc contains a cap can be determined by the configuration of the supports that
confine the arc, the pairs of supports that may create a cap of uv are identified.
By propagating such supports and sweeping with visibility arcs passing through
these supports, the caps of uv in the region bounded between v;sl and v;sz can be
constructed efficiently.

13
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Figure 12: The transition of hinges of the sweeping arc.

The process of sweeping for the identification of the convex caps of wv is now
described. Imagine that psy, as shown in Figure 12, is a physical entity with
elasticity which retains circularity when bent. Suppose that this physical arc is
bent against its two supports at v;4; and v; by gradually pulling the center of the
arc at ¢y away from p;s2, along the perpendicular bisector between v; and v;4;.
This process can also be viewed as sweeping with visibility arcs which emanate
from v and pass through two fixed points (provided that these arcs can reach uv).
Vertices vj4+1 and v; are called the hinges of this sweep, and the arc that is bent is
referred to as a sweeping arc.

When the concave support is an edge rather than a vertex, the hinge point
moves along the edge as the arc is swept. It is therefore the edge, rather than a
fixed point on the edge, that is the hinge. Also, as the sweep proceeds, the center
of the sweeping arc will move along a parabolic curve, rather than a straight line,
defined by the edge and the other hinge which is a vertex of Q. Suppose instead of
Case 1 it is Case 2 that is encountered, the emanating point p; and v; will be used
as the hinges, whereas if Case 3 is encountered, u and and v; will be used as the
hinges. '

The sweep from pss; with hinges at vj+1 and v; continues until the sweeping arc
intersects the boundary of Dy(v;s) (not including v;s;) at 51, or comes in contact
with either a convex support between v; and vj4; or a concave support between
v; and the intersection of the sweeping arc with the boundary of D.,(v;sl). The
part of the sweeping arc between v;4; and its intersection with uv cannot come in
contact with any concave support during the sweep because it always lies in the
region to the convex side of v?,- and to the concave side of p;bj. This region does
not contain any portion of the boundary of Q because v’ﬁj is confined by a concave
support and p;vj by a convex support. Therefore, this part of the sweeping arc
cannot encounter any support. When the sweeping arc reaches s;, the sweep is
discontinued as the entire region bounded by v;sl and v,-Asz is swept. On the other
hand, if the sweeping arc comes in contact with one of the two types of supports
before reaching sy, the sweep is stopped for changing the hinge(s).
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Figure 13: A convex deficiency in the region bounded between v:so and v;ss.

The case that the sweeping arc comes in contact with a concave support v;4+i
between v; and the intersection of the sweeping arc with the boundary of Dy (v;s;)
is presented. Let the sweeping arc at this moment intersect pav at p3 and intersect
the boundary of D,,(v;s‘l) at s3. All the convex caps in the region bounded between
v;s2 and v;s3 can be identified during the sweep from p;Sg to p;s;; with hinges at
vj+1 and v;. Suppose that a convex support, such as v; shown in Figure 13, lying
in D.,(v;sl) and between v; and s4, the intersection of the sweeping arc with the
boundary of D, (v;s1), is encountered during the sweep. Since the sweeping arc is
hinged at v; and v;4,, arc p;vj +1, Where pq is the intersection of the sweeping arc
at this instance with u®, is a convex cap of vx. By Lemma 2, arc vgsq is a convex
cap of uv.

While conceptually the immediate successive hinge v;41 and the convex caps of
v in the region swept before changing the hinge(s) are identified via the sweeping
of visibility arcs, all of them can be identified directly from the CCW CVD of v; ;.
Since the sweeping arc is hinged at v; and v, the centers of the visibility arcs em-
anating from uv which are generated during the sweep must lie on the perpendicular
bisector between v 41 and v;. Recall that a portion of this perpendicular bisector is
a partitioning curve to the CVD of v;4;, and the nodes on this partitioning curve
correspond to the centers of all the visibility arcs having v; 41, v; and other vertices
or edges as supports. It is therefore sufficient to examine these nodes only. Since
the sweeping arc is bent outwards, the radius of the sweeping arc must be getting
larger accordingly. The search of the centers of the convex caps of uv starts from
the node (on this partitioning curve) that defines p';s-_;, and moves away from vj4;
for visibility arcs with larger radii.

After the engagement of a new concave support at v;4;, as shown in Figure 12,
the sweeping arc hinged at supports v; and vj4; can no longer reach the region
bounded by v;:sl and vﬁsz. To avoid the obstruction, the hinge v; is replaced by the
new concave support v;i1. With the hinges vj4; and vi41, the process of sweeping
the region for identifying convex caps of uv and updating the pair of hinges is
repeated, until the sweeping arc intersects the boundary of D,,(vjAsl) at s;.

In the degenerate case the sweeping arc may come in contact with more than
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Figure 14: A concave deficiency in the region bounded between v;sl and vﬁsg.

one support at the same time. Since the sweeping arc is bent outwards, it can be
verified easily that when the sweeping arc comes in contact with multiple convex
supports between v; and vj 41, the support that is the closest to v; should be selected.
On the other hand, if the sweeping arc comes in contact with multiple concave
supports between v; and the intersection of the arc with the boundary of D, (vfsl),
the support that is the farthest from v; should selected. When there are multiple
supports come In contact with the sweeping arc simultaneously between v; and
vj+1 and between v; and the intersection of the sweeping arc with the boundary of
D, (vjs1), individual rules are applied and both of the hinges are changed.

After the above sweeping procedure, all the convex caps of v in Dv(vﬁl) are
identified. Similarly, concave caps in the same region can be identified by bending
vs; inwards against supports v; and v;, as shown in Figure 14. The main difference
between the identification of convex caps and that of concave caps is in the transition
of hinges. When vs; is bent inwards, it is the portion of the sweeping arc between
v; and v; that may come in contact with another concave support and the portion
of the sweeping arc between v; and its intersection with the boundary of D,,(v;sl)
that may become in contact with another convex support. Alternating with the
changing of the hinges of the sweeping arc, the concave caps of wv can be identified
by utilizing the CVDs of one of the two current hinges. By this procedure, all the
concave caps of @v and in D,,(v;sl) can be identified.

The convex and concave caps of uv in all the convex deficiencies of v can be iden-
tified by using the above procedure. With the caps of v identified, the boundary of
the circular visibility region of uv is then completed by connecting these caps with
the boundary of @ contributing to the boundary of the circular visibility region.

The time required for constructing the circular visibility region from uv is now
analyzed. The (linear) edge visibility polygon from v can be computed in linear
time with an algorithm developed by Guibas, et al.®. The convex and concave
caps of v which are computed in the beginning of the algorithm can be achieved in
linear time, as illustrated in Section 3. Since the concave deficiencies of v are also
the concave deficiencies of uo and the region in Q circularly visible from v is also
circularly visible from uw, only the convex deficiencies of v are further examined.
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For each convex deficiency of v, the caps of U¥ inside is are computed, which
invokes two processes: computing the successive hinges and computing caps of a9
while sweeping arcs against the two hinges. Since both processes can be achieved in
linear time with the aid of the CCW CVD of a hinge, the total time required for the
identification of all the caps of U7 in the convex deficiencies of v is proportional to
the number of CVDs computed. A new CVD needs to be constructed only when the
hinge with respect to which the CVD is computed is replaced by another support.
Let the total number of CVDs computed be denoted as k. As each of the CVDs
can be computed in linear time, the total time required for the identification of all
the caps inside convex deficiencies of v is O(kn), where n is the total number of
vertices in Q.

The connection of the caps of @0 with the boundary of @ contributing to the
boundary of the circular visibility region from %o can be achieved in linear time.
The total time complexity for constructing the circular visibility region of uv is
dominated by the identification of the caps of U inside convex deficiencies of v,
which is O(kn). It is noted that in the worst case, the number of the hinges
with respect to which the CVDs are computed is O(n); the worst-case total time
complexity of this algorithm is therefore O(n?).

5. Conclusion

This paper utilized the structure of circular visibility diagrams in developing
algorithms for computing circular visibility regions inside a simple polygon. It is
shown that the circular visibility region of a point inside a simple polygon can be
constructed in linear time. It is also shown that the circular visibility region of an
edge inside a simple polygon can be constructed in O(nk) time, where n is the total
number of vertices in  and k is the total number of different sets of hinges for the
caps.

The increase in the time required for computing a circular visibility region from
a given edge versus that for computing a linear visibility polygon of a given edge is
also observed in the computing of the width of a polygon. It has been shown that
the minimum distance of a pair of parallel lines which contain a simple polygon can
be computed in linear time®, whereas the minimum distance of a pair of concentric
circles which contain the same simple polygon can be computed in O(nlogn + m)
time!®, where m is the number of intersections of the farthest point Voronoi diagram
and the medial axis. In the worst case, m is equal to O(n?).
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