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1. Introduction

Let X be a compact 2n-dimensional almost Kdhler manifold, with symplectic
form w and almost complex structure J. Almost Kdhler means that @ and J are
compatible in the sense that

wo(Ju,Jv) =w(,v) and w(, J-)> 0.

The combination thus defines an associated Riemannian metric (-, -) = w(-, J-).
Any symplectic manifold possesses such a structure. We will assume further that
w is ‘integral’ in the cohomological sense. This means we can find a complex
Hermitian line bundle L — X with Hermitian connection V whose curvature is
—iw.

Recently, beginning with Donaldson’s seminal paper [5], the notion of ‘nearly
holomorphic’ or ‘asymptotically holomorphic’ sections of L®* has attracted a fair
amount of attention. Let us recall that one natural way to define spaces of such
sections is by means of an analogue of the d-Laplacian [2, 3].

The Hermitian structure and connection on L induce corresponding structures
on L® In combination with B this defines a Laplace operator A; acting on
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C*>®(X; L®). (Our convention is that the Laplacian is positive.) Then the sequence
of operators

i)k:Ak—nk

has the same principal and subprincipal symbols as the d-Laplacian in the inte-
grable case; in fact in the Kihler case Dy is the d-Laplacian. (By Kihler case we
mean not only that J is integrable but also that L is Hermitian holomorphic with V
the induced connection.) The large k behavior of the spectrum of A; was studied
(in somewhat greater generality) by Guillemin and Uribe [6]. For our purposes, the
main results can be summarized as follows:

THEOREM 1.1 ([6]). There exist constants a > 0 and M (independent of k), such
that for large k the spectrum of Dy lies in (ak, 00) except for a finite number of
eigenvalues contained in (—M, M). The number n;. of eigenvalues in (—M, M) is
a polynomial in k with asymptotic behavior n; ~ k"vol(X). This polynomial can
be computed exactly by a symplectic Riemann—Roch formula.

Furthermore, if the eigenvalues in (—M, M) are labeled kg.k), then there exists
a spectral density function g € C*(X) such that for any f € C(R),

1 1 "

1 NCNEER _f @

nkJZ_;f( D= i L e0
as k — oo.

The proof of Theorem 1.1 is based on the analysis of generalized Toeplitz structures
developed in [4].

By the remarks above, in the Kéhler case all )\Sk) = 0, corresponding to eigen-
functions which are holomorphic sections of L®. Hence g = 0 for a true Kihler
structure. In general, it is therefore natural to consider sections of L®* spanned by
the eigenvalues of Dy in (—M, M) as being analogous to holomorphic sections.

The goal of the present paper is to derive a simple geometric formula for the
spectral density function g. Our main result is:

THEOREM 1.2. The spectral density function is given by
qg=—Z|VJP.

COROLLARY 1.3. The spectral density function is identically zero iff (X, J, w)
is Kdhler.

It is natural to ask if one can choose J so that g is very small, i.e. if the symplectic
invariant

j(X,w) :=inf { || |VJ? ||oo ; J a compatible almost complex structure}
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is always zero. We have learned from Abreu that for Thurston’s manifold j = 0; it
would be very interesting to find (X, w) with j > 0.

The proof of Theorem 1.2 starts with the standard and very useful observation
that sections of L®* are equivalent to equivariant functions on an associated prin-
ciple bundle 7: Z — X. We endow Z with a ‘Kaluza—Klein’ metric such that the
fibers are geodesic. Then the main idea exploited in the proof is the construction
of approximate eigenfunctions (quasimodes) of the Laplacian A concentrated on
these closed geodesics. Such quasimodes are equivariant and thus naturally associ-
ated to sections of L® . Moreover, the value of the spectral density function g (x) is
encoded in the eigenvalue of the quasimode concentrated on the fiber 7 ~!(x) C Z.

2. Preliminaries

The associated principle bundle to L is easily obtained as the unit circle bundle
Z C L*. There is a 1-1 correspondence between sections of L®* and functions on
Z which are k-equivariant with respect to the S'-action, i.e. f(z.e"?) = e/*? f(z).
The connection V on L induces a connection 1-form o on Z. The curvature
condition on V translates to do = 7*w, where 7: Z — X. Together with the
Riemannian metric on X and the standard metric on S! = R/27Z, this defines a
‘Kaluza—Klein’ metric g on Z such that the projection Z — X is a Riemannian
submersion with totally geodesic fibers. With these choices the correspondence
between equivariant functions and sections extends to an isomorphism between

L*(X, L®) ~ L*(Z), 2.1)

where L?(Z); denotes the kth isotype of L?(Z) under the S' action.

Let Az be the (positive) Laplacian on Z. By construction it commutes with
the generator dy of the circle action, and so it also commutes with the ‘horizontal
Laplacian’:

Ap=Az+ 37 (2.2)

The action of A, on L?(Z); is equivalent under (2.1) to the action of Ay on
L*(X, L®).

For sufficiently large k, we let €, C L*(Z); denote the span of the eigenvectors
with eigenvalues in the bounded range (—M, M). The corresponding orthogonal
projection is denoted IT: L?(Z) — #. The following fact appears in the course
of the proof of Theorem 1.1:

LEMMA 2.1 ([6]). There is a sequence of functions q; € C*(X) such that

N
i | Ay —nk =) k-t | T || = Ok~ *D).
j=0

Moreover, the spectral density function q in Theorem 1.1 is equal to qy.
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3. Quasimodes on the Circle Bundle

The key to the calculation of the spectral density function at x; € X is the observa-
tion that, with the Kaluza—Klein metric, the assumptions on X imply the stability
of the geodesic fiber I' = 77 (x0). Thus one should be able to construct an ap-
proximate eigenfunction, or quasimode, for Az which is asymptotically localized
on I'. The lowest eigenvalue of the quasimode (or rather a particular coefficient in
its asymptotic expansion) will yield the spectral density function.

The computation is largely a matter of interpolating between two natural coor-
dinate systems. From the point of view of writing down the Kaluza-Klein metric
explicitly, the obvious coordinate system to use is given by first trivializing Z to
identify a neighborhood of I with S x U,,, where U, is a neighborhood of x; in X.
(The base point x¢ will be fixed throughout this section.) On U,, we can introduce
geodesic normal coordinates centered at xo. These coordinates will be denoted
0, x', ..., x™). The corresponding base point zo, € 7! (x,), specified by 6 = 0,
is arbitrary. In such coordinates the connection « takes the form o« = df + o; dx/.

We will follow the quasimode construction outlined in [1], which is essentially
based in the normal bundle NI' C TZ. Let v: NI' — Z be the map defined
on each fiber N.I" by the restriction of the exponential map exp.: 7,Z — Z. Of
course, ¥ is only a diffeomorphism near I'. The Fermi coordinate system along
I' is defined by the combination of ¥ and the choice of a parallel frame for NT.
Let y (s) be a parametrization of I' by arclength, with y (0) = zo, ¥'(0) = 9. Let
e;j(s) be the frame for N, I" defined by parallel transport from the initial value
e;(0) = 9;, where 9; denotes 9/dx’. Then the Fermi coordinates are defined by
the map

(5. ) > Y (y7e;(s)).
Note that s = 6 only on I'.

3.1. THE ANSATZ

Now we can formulate the construction of an approximate solution of (A; —
A)f = 0 as a set of parabolic equations on NI'. Let « be an asymptotic para-
meter (eventually to be related to k). Setting f (s, y) = e/““U (s, y) we consider the
equation

(Az — 1) e U(s,y) =0. (3.1

Since we are hoping to localize near y = 0 for large «, the ansatz is to substitute
u’ = /k y’ and do a formal expansion

e_iKSAZeiKS:K2+K£0+\/I?£1+£2+"'- (3.2)

This defines differential operators o£ ; on a neighborhood of the zero-section in NT',
but since the coefficients are polynomial in the y/ variables, they extend naturally
to all of NT". We also make an ansatz of formal expansions for A and U':
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r=k’+o+--, U=Uy+«'U+---.

Substituting these expansions into (3.1) and reading off the orders gives the equa-
tions

oC()U() = 0, oClU() = 0, oC()Ul = —(oCZ — O’)Uo. (33)

Since £ is well defined on NT", we can seek global solutions U (s, y), subject to
the boundary condition limy|_,o, U; = 0. In the right coordinates, we will see that
LoUp = 0 s simply a harmonic oscillator Schrodinger equation. Furthermore, the
second equation will be satisfied if and only if U is taken to be the ground-state
solution this Schrodinger equation. Hence these two equations will determine Uy
up to normalization. Solutions of the third equation exist only for a certain value of
o, and the main goal of this section is to compute this quantity.

By pulling back with ¢, we can use (6, x) as an alternate coordinate system on
NT (near the zero section). We’ll use Bi s i, J J’ to denote the various tensors
lifted from X and written in these coordinates (so all are independent of 6). Also
I:ZU will denote the Christoffel symbols of the Kaluza—Klein metric g in the (6, x)
coordinates. The index convention is that Greek indices range over O, ..., 2n and
Roman over 1, ..., 2n. To reduce notational complexity insofar as possible, we
will adopt the convention that unbarred expressions involving B;;, «;, w;;, J J’ and
their derivatives are to be evaluated at the base point xy € X, e.g.

_ 0 -
Bij = Bijlx=0, Bij = Wﬂiﬂx:O-

The Christoffel symbols of B;; (evaluated at xq) will be denoted by F Jl «» With the

same convention for evaluation of derivatives as above. (Thus F ]l.k = 0 because the

coordinates are geodesic normal at xy, but 9,, F Jl « 1s nonzero.) The freedom in the
trivialization of Z may be exploited to assume that
1
Olj :0, ajoekzia)jk,

where throughout the computation d; denotes the vector field 3/dx’ on (or lifted
from) X.

Let g, to denote the Kaluza—Klein metric expressed in the (6, x) coordinates.
The horizontal lift of 9; to Z is

E; =0; —a,d. (3.4)
The Kaluza—Klein metric is specified by the conditions:

g(E;,09) =0, g(0.,0) =1, g(E;, Ex) = Bj.
Substituting in with (3.4) we quickly see that

go=1, gio=a, gx=PBj+ad.
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In block matrix form we can write

1 o
gz(& B+&&)’ 3.5)
from which
—_ __1 —_ o __l -
g = < : fgﬁ&“ g_l‘" ) (3.6)

We will use G, to denote the Kaluza—Klein metric written in the Fermi coor-
dinates (s, y), i.e.

a 0 a 0 d ad
Goo=2¢ a,g . Goj=¢ a,w , Gij=g B_y”w .

G, 1s well defined in a neighborhood of y = 0, and with the ansatz above we only
need to know its Taylor series to determine £;. As noted above, the heart of the
calculation will be the change of coordinates from (6, x) to (s, y).

By assumption G,, = §,, to second order in y. After the substitution u; =
Jky;j, we can write the Taylor expansions of various components as

Gy = 1+/<_1a(2)+K_3/2a(3)+/<_2a(4)—I---',
10 -3/253) 4 .
Goj = kb7 + kb7 4
ij = Sjk—f—K_lC;i)"—"', (37)

where superscript (/) denotes the term which is a degree / polynomial in u. Then
using the definition

1
A7 =~ [JEG“"aV] ,

we can substitute the expansions (3.7) into (3.2) and read off the first few orders in
K:

Lo = —2id; —a? — 32,
. d Jd .
£y = —a® +2ip/? = i (b)),
ou/ ou’
Lo = =3} +2ia?d; —a® + (@?)* + P +
3 I
+i|—La,Tre® + 260 4 (Zp V) | +
ou/ ou/

a9 0 (0 oy 0 o @9
te dul duk + ol C duk 2 9ul @™ 4 Tre ]Bu/" 3-8)
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3.2. THE METRIC IN FERMI COORDINATES

For use in the calculation, let us first work out some simple implications of J 2 =
—1. Using conventions as above, this means J ]k Ji' = =& Differentiating at the
base point xy gives us

@I = —TE@I,  TE@I)) =0,
The other basic fact is dw = 0, which translates to
alek + aja)kl + Bka)lj =0.

LEMMA 3.1. 9,J] =0.
Proof. Using the fact that J| = wj; " we have

TE@ ) = —@JN T}
=~
= —%(316011( — akwjl)wkl
= 300"
= —300; 70/
= 0. =
A similar fact, which will also be needed, is

LEMMA 3.2. For any vector v/ we have
(@I (@v),, = 0.

Proof.
@I (V) = @) Iy,
= —@y)v! I}y
= —(qoms)(Jv)"V°
= (0,wgm)(JV)™V*
= — (@™ @V, H

To proceed, we must determine the terms in the Taylor expansion of G, in terms
of the geometric data B, w, J, a. Let us expand the parallel frame e (s) in the basis
{0} as T}‘ k. The parallel condition on e (s) is then

a

k k l
oTf = ~TyT},
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where

ko 1k | gk 1 gk
Lo = 387" (dam — Onety) = 58" wpm = 5J;

The solution is

k _ p.—s/20\k
Tj = (e )j.

Since this is the matrix relating the x-frame to the y-frame at x = 0, we have
%lxzo = T}‘. This makes it convenient to introduce an auxiliary coordinate z¥ =
iy
Ty’
The transformation to Fermi coordinates may now be written as

0 =s+A(s,z), x/ =z +Bis,z7).

The functions A and B are determined by the condition that the ray ¢ — (s, ty) be
a geodesic. Of course, we are really just interested in the Taylor expansions:

A=kT"AD 41 PAD A9 4

’

B/ :K—IB]’(Z)_’_K—Z%/ZBJ(?’)_{_.”

’

where degrees are labeled as above.
Denoting the ¢ derivative by a dot, the geodesic equations are

6 = —Tpe0* — 2T, 0%, — T95;4,
i = —Tge0% — 2T°4, 0% — Xk . (3.9)

The Christoffel symbols of g;; are
oo = féo =0,
f‘(())j = %(j @)

Substituting the Taylor expansion of the Christoffel symbols at x; into (3.9) and
equating coefficients, we find A® =0, B® =0,

A(3) = —(8maja1)ZijZl,
AW = — L (8,,0;0)7 2"/ — ﬁ(akFJljl)ZijZZ(wZ)i’

Bk(3) _ _é(amF]l_cl)ZijZl' (310)
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Using x = z + k3?2B® 4+ ..., we can then determine the coefficients of the
expansion of oy:

& = —w,
&,9) = 1(@0u00)7'Z"n,
&Y = 10000027 2" + Fowi BuFi2"2 2. (.11)

The Fermi coordinate vector fields are

3 = (1+ 8,A)3 + (" + B,

o _ aA d + T’+aB’8
8yf_ oy/ 0 J oy/ o

Note that z/ = T/ (s)y*, so 7/ = —1/2(Jz)/. To compute a®, we use (3.10) and
(3.11) to expand Gop = g(dy, d5). The second order term is

2
I L N (3.12)

4
At third order we have
a® = 249 +2aP 7"
= —1@00,)227 22" + 272 " + (8 9m) 2 2"
= 1(0;00,)(J2) 22" — 3(0;i0m) 2’ 2 (J )"
= 1@’ (T
Thus, by Lemma 3.2 we have
a® =0. (3.13)
The fourth-order term is somewhat more complicated:
a® = 24" 12697 4+ 2oD(B™) +
+Z/l(l31(,,21) —I-Ot(l) (1))Z/'" +2Z (B/m)(3)

We will expand the first term,
24 = %(3k3m3‘a1)[3zkz’"(Jz)jzl—I—z "I+
(BkF’,)[(Jz)kz (w2); + 22527 (J2) ! (w2)i + 2F277 2]
and the second,

2a® 7k — — 10,90, 00) 12" (T 2)F — llza)ki(amF;,)szjZl(JZ)k-
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The terms involving d,,a; combine to form factors of w;,;:
24" 42007 = — L3000 2" (TD)F + L@ FD (T 27 (02); +
+ 5O FjNZ' 2 (J2) (02); + §(Fj)2! 7'z
After noting that 2P (B"™)® 4 27/ (B™)® = 0, we are left with the term
B2 + o alD)z™ = L @0 ) (J2)' 2 2 (T )" + %
So in conclusion,
a® = =390 2" (T + 5 (W FiN(J2) 2 (02);
+ 5 FjNZ2 (J2) (02); + § (e Fj*2! 7'z

Z4

+ 20 %Bm) JD)'2/ (T )" + R (3.14)

For b; = g(9y, d,;) the third-order term will prove irrelevant, so we compute
only

b?P = 0,,A% +oPT"
= — (02T} 2 2" + 2 T]"] + 5 BuByoum) 2 ' T)"
= — 30 TFZ'2" + 5 (Oyom) 2 ' T)"
= 1@ T (3.15)
Finally, we have ¢;,, = g(d,:, d,»). It is convenient to insert factors of T':
Tl T = B +aVe” + (3B + (34BY)
= 3(@0mB) " + {(W2) j(w2)k — £(0; Fu)z'z' —

— L@ Fu)2"7 — L@ FupZ'd — Y@ Fupz™. (3.16)

3.3. PARABOLIC EQUATIONS

With the computation of a® in (3.12), we now have that
. u? 2
Lo=—2i0; + — —0,.
4
The equation £yUy = 0 is then the harmonic oscillator as promised. The ‘ground
state’ solution is

Up = e /2 e /4, (3.17)
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Now e/“SU is required to be periodic in s, which means that

n
— — e Z.
)

A function on z which is e x (periodic) comes from a section of L, so the relation

between the two asymptotic parameters is k = x —n /2. Recall that the leading term
in the eigenvalue A was

2
2 _ 42 n
k- =k +nk+z. (3.18)

The nk correction at first order exhibits the spectral drift accounted for by subtract-
ing nk from A;.

By the well-known analysis of the quantum harmonic oscillator, a complete set
of solutions to LoUU = 0 can be generated by application of the ‘creation operator’

* -+ —is/2 _u_]
A]— 1€ <8uj 2)

We will need
Uij = Aj‘A;‘.Uo, Uijn = Aj‘AjTA,’jA;‘UO,
which are easily computed explicitly:
Uij = (—ujug + 8;j) e U,
Uij = (winjuguy — 8;juuy — S juy — Sy jug — 8 jeuiuy—

— Suiuj — djuiug + 8;;0k + 810 jk + Siksﬂ) e_ZiSUO'

. (2 .
Since a® = 0 and a,ib’ @ _ 0, the next operator is

£ =201 2
ou’
It then follows from b;z)uf = 0 that £, Uy = 0. Moreover, it is easy to check, using
the creation operators, that Uy is the unique solution of LyU = 0 for which this is
true.
Consider finally the third equation

LoUy = —(L2 — o) Uy, (3.19)

from which we will determine o. Since «£,Uj has coefficients polynomial in u; of
order no more than four, we can expand

L2Uo = [CMuju jugu; + CVuiuj + C1U. (3.20)
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PROPOSITION 3.3. Egquations (3.3) have a solution Uy, Uy € C*(NT) if and
only if

o=C+C'+3C", (3.21)

where the coefficients C* are assumed symmetrized.
Proof. We have already remarked that U is fixed by the first two equations of
(3.3). In terms of the harmonic oscillator basis we can rewrite (3.20) as

LUy = GZiSDijklUijk[ + eisDile‘j + DU,.
Observe that
Lo Ujji) = —4Uiju, Lo Uyy) = —2U;.

Therefore the equation LyU; = — (L, — 0)Uj has a solution only if ¢ = D, and
in this case we write the solution explicitly as

U] — %eziSDijklUijkl + %eiSDij U;]
To compute D we note

Cijl/tl'l/ton = —Cij ei‘YUij + CIZU(),
and (with the symmetry assumption),

Cijklu,-ujukuon = Cijkl eZiSU,'jk] + [6ijkll/tkl/t] — 3Ckk”]U0

= Cijkl eZiSU,'jk] + ( . ) e” Jjk + 3Ckk”U0.

This means that

D=C+C'+3C4". O

To conclude the computation, we will examine £, Uy piece by piece and form the
contractions of coefficients according to (3.21). From (3.8) we break up £,Uy =
Wi+ -+ + W, where

Wy = [-98? + 2ia®d,]Up,
Wy = [—a™ + (@®)*1U,,
Wy = (b?)*U,,

; 0 Jd .
W4 =i [—%B‘YTI'CQ) + 2bJ(3)W + <ij(3))i| U(),

. a 0 0 @) 0
: [C du’ du* + ous quk | °

d ad
W6 = —%w[a(z)-{-TrC(z)]mUo.
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By (3.17) we compute

2 2
Wy = [—92 +2ia®8,1Up = | = — == | v,
: 4 4
The contribution to o from W is thus:
n?
4

For W,, from the calculations of ¢® and a® we have

281

(3.22)

—a® + (@?)? = 300;00u)7’ 7" (T2 — 5O Fi)(J2) 2 2 (w2) —

— 5@ FjNZ' e (J2) (02); — §(Fj22! 7'z —

— 23;0Bm) (J2) 2 2 (T )"

We symmetrize and take the contractions to find the contribution to o:

L3/ 9;0m)0™ + 13,0/ o)’ — LB FL) — L@ Fl) -

— 10,0k Bm) e’ " — F (B 0" 3 Bim).
Let us simplify this expression. By do = 0 we have
(3;0' o)’ = 1(379;wm)™.
From w,,; = —er J_k’ we derive
(879 ;0pm)™ = B33 Bl — (370, ") JE.
Finally from J? = —1 we obtain
(379; "X = =3, @7 T8 = VI

Combining these facts gives

1(070;0u)0™ + 1(3;0' o)’ = 18070, B — VI

Evaluating the Christoffel symbols gives
B Fily = §B" 0 9Bk + OBk — 0B
= 99" By — 5™ 0" ok i
and
I Fly = 38" 0" Bim.

Thus the final contribution from W, to o is

—LVIP = 10;0Bm)a’ " + LB B — 5079 B

(3.23)
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By our calculations,
(bP)? = § (o) 2 @i T2 2,
which (recalling that 8/ J J’” = 0) gives a contribution from W3 of
L Qo) @ ™) + FIVI.
By do = 0, we have
(O wim) (3 ™) = =5 Bpwm) (3 0™) = +3|V I,
So the contribution from W3 simplifies to
LvJP. (3.24)

The terms in Wy are purely imaginary and therefore must contribute zero be-
cause o is real. This can easily be confirmed explicitly.
To compute Ws we need to consider

P304 Up + (8,5¢* ), U,

Noting that 9, Uy = —(u;/2)Uy, this becomes

2 ik (2 ik(2)
[icﬁk)u u ,3J () uk(au-/CJ )] Uo.

If ¢/*? is written E j,ﬁulum, then under contraction the contribution is
$(B" Bk Ep, + Efy + () — 5" B Ep, — 3 (Ef + E[)
~1(B" B E”‘ El + E[})
This is the same as the contribution of
—1eQuint = —1@;8 B 2K + L0 Fi) 2"k 2
yielding
—3B" (370, B) — 370" Bjn) + 1B O F, + 3 (3" Fyp),

which vanishes upon substitution of the F. Hence the total contribution of W5 to o
is zero.
Finally, we evaluate the expression appearing in Wg:

lujau_/ [a(z) +Trc(2)] = %[a(z) +Trc(2)]
= 1(B" ;B " — L@ FZ't — $ 0, F"d
The contribution is

LB 0" 0 Bm) — LB Fl) — L™ FL)).
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Substituting in for F}, gives us a final contribution from W of

£(B" 0" O Bim) — £(0"0' B). (3.25)
Adding together (3.22), (3.23), (3.24), and (3.25) gives

2
n . .
o =—7- LIVIP = 2@;Bim) 0’ ™ + L™ 0* 0 By — 1070 B

The last three terms on the right-hand side could be written in terms of the curvature
tensors:

=100k Bim)w’ " + 1B 0 0B — $070'Bj1 = 1 (R + S Ryjime" ™) .

To complete the calculation we cite a lemma which can be found, for example, in

[7].
LEMMA 3.4. For an almost Kdhler manifold,
R+ 1Rjime" "™ = =1V 2.

This lemma leads us to the final result that

n2

o=—7- 2V (3.26)

3.4. QUASIMODES

Let us introduce the function

h(x) = —Z|VJ (@)

PROPOSITION 3.5. Fix xo € X and let T' = w~'(xq). There exists a sequence
Y € L2(2); with ||kl = 1 such that

(A — nk — h(xo) ¥l = OG™"/2). (3.27)

Moreover, ;. is asymptotically localized on T in the sense that if ¢ € C*(Z)
vanishes to order m on I', then

(Y, oY) = O(k™"/?). (3.28)

Proof. Let W be a neighborhood of I' in which Fermi coordinates (s, y) are
valid, and x € C°°(Z) a cutoff function with supp(x) C W and x = 1 in some
neighborhood of I'. Then we define the sequence vy, € C*(Z); by

Ui (s, y) = Agx € [Ug + kUi,
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where U (s, y) are the solutions obtained above, k = k + n/2, and Ay normalizes
[k ]l = 1. This could be written as

V(s ) = Arx €5 [Py + Po(y) + k Py(y)]e /4, (3.29)

where P; is a polynomial of degree / (with coefficients independent of k). Since
Py =1+ O(k~"), we have that

k n/2
Ay ~ (—) as k — oo.
2

The concentration of i, on I' described in (3.28) then follows immediately from
(3.29).

By virtue of the factor e , we can turn the formal considerations used to
obtain the operators o£; into estimates. With cutoff, x£; could be considered an
operator on Z with support in W. By construction we have

iy /4

XAz — kP — kLo — VL — Lol = Y Epmpls. y)k'aoL,
Lm,|B|<2

where A;,, g is supported in W and vanishes to order 2/ 4+ |8| + 1 at y = 0. We
also have

(kLo + Ly + Lo—0) Uy +k7U) =k ' (Wil + L2 —0)Uj.

Combining these facts with the definition of v, we deduce that

2
(Az =17 = 0)ls, y) = Ax Y _K'Fi(s, y)e /",
<4

where F; is supported in W and vanishes to order 2/ 4+ 1 at y = 0. Using this order
of vanishing we estimate

| Ak Fr e 74| = Ok™).

Noting that Az — k> —o = A, —nk — h(xy) on L*(Z);, we obtain the estimate
(3.27). O

4. Spectral Density Function

Let ¥, € L?(Z) be the sequence produced by Proposition 3.5. As in Section 2,
we let IT; denote the orthogonal projection onto the span of low-lying eigenvectors
of A, — nk. Consider

o = iy = I — )Y,
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By Theorem 1.1 (for k sufficiently large, which we will assume throughout),
[(Ap — nk)@ell < M, [(Ap — nk)nill > ak ||l -

By Proposition 3.5 we have a uniform bound
[(Ar —nk) Yl < C,

so these estimates imply in particular that
ak |lmell < C+ M.

Hence ||n: ]| = O(k™1).
From Lemma 2.1 we know that g satisfies

(D, (A —nk — w*q)r) = O(1/k).

Let r; = (A, —nk+h(xo))¥, which by Proposition 3.5 satisfies ||r¢ || = O(k~!/?).
So

(br, (Ap —nk — t*q)pr)
= (k. (h(x0) — *q)i) + (x, (A — nk — h(x0))Pr)
= (pr, (h(x0) — T*Q)Pr) + (D, i) — (D, (A — nk — h(xo))me). (4.1)

The left-hand side is O(1/k), while the second term on the right is O(k~/%), The
third term term on the right-hand side is equal to

(A — k)i i) < M Inell = OG™).
Therefore, the first term on the right-hand side of (4.1) can be estimated
(x. (h(x0) — T*q)i) = Ok™'/?).
Because |||l = O(1/k) this implies also that
h(xo) = (Y, (T*@)yn) = OK™2).
Since ¢ is smooth, the localization of ¥, on I" from Proposition 3.5 implies that
Vi, (T W) = q(x0) + Ok™"7?).
Thus g (xg) = h(xp). This proves Theorem 1.2.
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