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Abstract

Unlike linear visibility for which there exists only one line segment connect-
ing two points, there are an infinite number of circular arcs connecting two
points. To compute circular visibility: a collection of circular arcs which em-
anate from a given point and reach an edge without intersecting another edge
in a polygon, the arcs are classified with respect to the edges of the polygon
resulting in a planar partition. It is shown in this paper that such a partition
can be constructed in O(n) time, where n is the number of vertices in the poly-
gon. Given such a diagram, the point visibility hull inside a simple polygon
can be found easily.



1 Introduction

Among the visibility problems, a fundamental one is the computation of a point vis-
ibility polygon: the portion of a polygon which is visible to a point internal to it.
ElGindy and Avis [9] and Lee [12] developed linear time algorithms for constructing
a point visibility polygon inside a simple polygon. Another fundamental visibility
problem is the computation of an edge-visibility polygon. Introduced by Avis and
Toussaint [2], edge visibility is divided into three categories: complete, strong, and
weak. Whether a polygon is completely or strongly visible to a given edge can be
answered by the kernel algorithm developed by Lee and Preparata [11], whereas the
problem of detecting if a polygon is weakly visible from an edge can be solved in
linear time [2]. Chazelle et. al [4,5] show that an edge-visibility polygon inside a
triangulated simple polygon can be constructed in linear time. Suri and O’Rourke
[17] show that an edge visibility polygon inside a non-simple polygon can be con-
structed in (n*) time. These linear visibility algorithms support many applications.
The art gallery problem [14] seeks the minimum number of points inside a polygon
such that the point-visibility polygons of these points cover the entire polygon. The
minimum link path between two points inside a-simple polygon is solved optimally
by constructing a sequence of visibility polygons [16]. The shortest path can also be
solved in linear time by utilizing visibility [10].

Circular visibility is established by arcs. Since straight lines can be considered
as degenerate arcs, the realm of visibility is extended by considering circularity, the
notion of of which is illustrated in Figure 1, where a point ¢ is circularly visible to
a point p if a circular arc can be drawn from p to ¢ without hitting an obstacle.
Such a directed circular arc — clockwise or counterclockwise — is called a wvisthility

arc and can be uniquely defined by its radius, center, endpoints, and direction. For
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Figure 1: Circularly visible points

the simplicity of discussion, we adopt the counterclockwise direction. An O(nlogn)
algorithm has been reported by Agarwal and Sharir (1] for computing the portion of
a simple polygon which is circularly visible to a fixed interior point.

Circular visibility can be used to characterize the motions of a mobile robot. The
number of links in a minimum link path is smaller with circular arcs than with line
segments as links. Circular visibility can also be used to characterize the workspace
of a stationary robot with rotary joints - locating joints for assembly or disassembly.

Clearly, there can be more than one circular arc between the point in question
and points on an edge of a polygon. Since an arc can be represented by its center,
the visibility arcs to a particular edge of the polygon can be represented by a region
for their corresponding centers. We utilize this representation to solve the following

problem.

Problem CVD(p,Q): Circular Visibility Diagram of a Simple Polygon @
Given: a simple polygon Q with edges e, €y, ..., €, and a point p contained in Q.
Find: for each e;, the circular arcs which emanate from p and intersect e; before

intersécting any other edge of Q.



Figure 2: Some counterclockwise visibility arcs of edge e;.

Let F2 denote the set of centers corresponding to the counterclockwise visibility
arcs from p to e;, as shown in Figure 2. (The notation FZ is used, throughout this
paper, to represent the set of centers of the visibility arcs from a given point to A in
the presence of B.) Since visibility arcs are represented by their centers, a solution to
Problem CVD(p,Q) indicates a partition of the plane. The partition is represented as
{FJ, FS, FS

ey Fey Fg }, where Ff represents the set of centers for counterclockwise

arcs which emanate from p that do not hit the boundary of Q. Such a partition is
called the circular visibility diagram (CVD) of @ with respect to p.

The data structure of the CVD is similar to the dual space data structure used
by Chazelle and Guibas [5] for solving a variety of linear visibility problems. In that
paper, a transform is employed in which a line az 4+ by + 1 = 0 is represented by

a point (a,b) [4,13]. Points in the dual space are grouped into regions according to



Figure 3: The possible hitting order between two edges.

the edge whose corresponding visibility rays hit, resulting in a planar partition in the
dual space.

In linear visibility, a partial order in which visibility rays hit the edges of a polygon
is crucial for the construction. In circular visibility, however, arcs emanating from
a point can hit two edges in either order, as shown in Figure 3. To overcome the
apparent lack of a partial order, a polygon is decomposed into a star-shaped polygon
and a set of pockets, each of which exhibit a partial order. By constructing the
CVDs for the star-shaped polygon and then for every pocket, the CVD of a simple
polygon is constructed. The sections follow the development of such an idea. The
CVD of a single edge is first examined. Based on the CVD for an edge, algorithms for
constructing the CVDs of two types of open polygonal curves — obtuse star-shaped
chains and pockets — are developed. Finally, the circular visibility diagram of the

simple polygon is constructed and linearity in time for the construction is shown.

2 Circular Visibility Diagram of An Edge

In this section, the CVD for a single edge is constructed. The objective is to classify
the visibility arcs into three groups — those which hit one side of an edge; those which

hit the other side of the edge; and those which do not hit an edge at all - by their



Figure 4: A partition of counterclockwise visibility arcs with respect to edge ub.

corresponding centers. The distinction among various visibility arcs is first examined.

Let p be the point from which visibility arcs emanate. Let ¢ be a point on a
directed edge uv. A visibility arc can reach ¢ from the left or from the right of .
Such a distinction among visibility arcs can be made by classifying the loci of the
centers to p and to uv, as the partition shown in Figure 4 (a). First, the bisector 3, of
p and u and the bisector 8, of p and v, are constructed respectively. Then, a parabola
B.- with focus p and directrix coincident with v, is constructed. By construction,
B, is tangent to B, and B, at u’ and ¢/, and both uw' and vv' are perpendicular
to uv [3]. Let ﬂ:l'{; denote the portion of .. between u’ and v’. Let B} denote the
half-line of 8, which has C! continuity with ﬂ:fi; at u' and B the half-line of 3, which
has C* continuity with ﬂ::;) at v'*. While 3,, f,, and .. contain all the equidistant
points between p and u, p and v, and p and uv, respectively, the continuous curve
B consisting of B, B, and ,3::; contains all the equidistant points between p and
wv. This curve is also known [15] as the Voronoi diagram of p and uv.

B., B, and ﬁ:.‘.;) partition the plane into five regions, R;, R;, ..., and Rs, as shown

1The other halves of B, and 3, are denoted as 8; and ;.



(a)

Figure 5: The centers of visibility arcs which: (a) miss wb, (b) hit ub from the left,
and (c) hit ud from the right.

in Figure 4 (b). It is shown in the following theorem that, arcs drawn from p about
points in a region will miss uv, or hit ¥ from the left, or hit 4 from the right. These
five regions are thus combined into three sets, as shown in Figure 5. We note that

hitting the right side of ub is essentially the same as hitting the left side of vi.

Theorem 2.1 Let F™, Fy,, and Fy represent, respectively, the regions containing

all the points about which counterclockwise arcs drawn from p miss ub, hit ub from
the left, and hit wv from the right. Then,

(i) F® =R, UR,

(1,2) Fu-;, = R4 U R5

(i) Fa, = R
Proof: As R, lies on the side of the Voronoi diagram which contains p, the distances
d(z,p) < d(z,ud), for all z € Ry, which means that visibility arcs from p centered

at a point in R; will not intersect ud. Similarly, since R, is the intersection of the

half-planes (not containing p) of the bisectors 3, and B, i.e. d(z,u) < d(z,p) and



d(z,v) < d(z,p), for all z € R,, visibility arcs centered at a point in R, will not
intersect b either. Thus, (i) is true.

To show (ii) and (iii), first consider the points in Rs. As Ry lies on the side of
the Voronoi diagram that does not contain p, d(z,ub) < d(z,p), for all z € Ry;
R4 also lies in the half-planes, containing p, of the bisectors 3, and f3,, in which
d(z,p) < d(z,u) and d(z,p) < d(z,v), for all z € Ry. In other words, any circle
centered at a point in R4 will not contain the end points of ub; yet, the distance
between the center and u® is shorter than the radius of the circle, which means that
such circles will intersect ud at two points. Since R, lies to the left of ub, all such
arcs will intersect ub from the left.

A similar reasoning shows that every arc drawn from point p about a point in R
or Rs will intersect uv at one point. Suppose an arbitrary arc drawn from p intersects
b at q. The center of the arc pq, if in Rs, always lies to the right of gp. This indicates
that a counterclockwise pq drawn from p and centered at a point in Rs always hits ub
from the left. On the other hand, if arc pq is drawn from p and centered at a point

in R, it always hits uv from the right. This completes the proof for (ii) and (iii).
O

Suppose that the edges of a polygon are given in the counterclockwise order. Since
p is inside the polygon, all the first crossings of the visibility arcs will be from the
left of the edges. Thus only the intersections from the left of an edge are of interest.
Figure 6 gives the four possible cases of the counterclockwise CVDs of an edge ub.
Figure 6 (a) depicts a Type L CVD, where p is to the left of 4 and a Type R CVD,
where p is to the right of ub. In both cases, counterclockwise arcs drawn from p
about a point in F hit the left side of wb. Figure 6 (b) shows the limiting cases

Type T and Type A, in which p is collinear with 4v and ub is directed either toward



Type T Type A

(b)

Figure 6: Counterclockwise CVDs for p and ub.



or away from p. We note that if wb is directed away from p, no counterclockwise arc

emanating from p will hit 4 from the left side.

3 Circular Visibility Diagram of an Obtuse Star-
shaped Chain

The classification of the visibility arcs which hit a special class of open polygonal
chain on the left in next examined. As noted earlier, edges of a polygonal chain
may obstruct visibility arcs. The resolution of the obstruction and subsequently the
construction of the CVD can be costly. However, if a partial order in which an arc
hits the edges of such a chain can be established, the CVD can be then constructed
efficiently.

An open polygonal chain is star-shaped if the polar angle 8, which is the angle
rotated counterclockwise from the polar axis, of a point traversing the chain is either
monotonically decreasing or increasing, with respect to some point p. A star-shaped
chain is obtuse if the span of 8 of the points on the chain is less than 180°. Given
an obtuse star-shaped chain with monotonically increasing 8 with respect to p (with
all the edges directed counterclockwise), the visibility arcs to the individual edges of
the chain can be identified. To determine efficiently the first edge that an arc hits,
a partial order in which circular arcs emanating from p hit the edges of the chain is

identified. That such a partial order exists is established by the following lemma.

Lemma 3.1 Let C = {eg,e€1,€3,...,n} be an obtuse star-shaped chain which is
monotonically increasing in 0. A counterclockwise arc emanating from p hits e; before
e; only if1 < 3. Similarly, if 6 is monotonically decreasing, then an arc can hits e;

before Ritting ej only if j < 1.



Proof: For a chain that is monotonically increasing, a counterclockwise arc drawn
from p which hits e; at a point ¢ will always lie to the left of ¢p, whereas e;, for all
j > 1, always lies to the right of ¢p because the chain C is star-shaped about p and
spans less than 180°. Since such an arc does not intersect any succeeding edges of e;

in C, it hits another edge before hitting e; only if the edge precedes e;.
O

Since constructing the CVD for an obtuse star-shaped chain with decreasing 0 is
closely analogous to that with increasing 8, we will illustrate the latter case. Based
on Lemma 3.1, a recursive relationship between the CVD of an obtuse star-shaped

chain and the CVDs of its constituent edges is established.

Theorem 3.2 The regions in a counterclockwise CVD of the monotonically increas-

ing chain C' can be computed by:

o | Fa ifi=0
| FanFS i,

and
o | B ifi=0

FENFS= ifi>0

where C; = {eq, €1,...,€;} denotes a sub-chain of C.

Proof: Based on Lemma 3.1, circular arcs about points in F,, may hit e;, only if
j < 1. Therefore, for points to be in FS", their corresponding circular arcs can not
hit e;, for all 7 < i. As Ff‘ represents the intersection of F;’, for all j < 1, Fg‘ is
equal to the intersection of F,; and Ff =

O

10



Intersecting F,, and F. f =1, for all > 0, takes O(n?) time, which seems to indicate
that an algorithm for constructing a CVD for an obtuse star-shaped chain exceeds
linear time. However, by utilizing certain properties of the consecutive FS s, we can
show that constructing a circular visibility diagram of an obtuse star-shaped chain
is analogous to cutting a pie, piece by piece. Also, since the time complexity for
the identification of the cutting points is amortized, such a pie cutting procedure
can therefore be achieved in linear time. A similar linear time cutting procedure is
described by Edelsbrunner and Guibas (7] for computing a “bay” formed by lines
sorted in slope order.

Before investigating the properties of the consecutive Fg s, the portion of F',
which has no effect on the construction of the CVD, is identified and is omitted from
the subsequent analysis. Recall that Fj*, which equals the union of regions R; and
R; as shown in Figure 5 (a), contains all the points about which arcs emanating from
p miss e;. Let region R; computed with respect to e; be denoted as R3'. As to be
established in Lemma 3.3, the intersection of R3' and F.,, is always empty. Also,
since the star-shaped chain is obtuse, the region F.,, for j > ¢, will not go around p
and come back to intersect Ry. Therefore, each individual Fy* denotes only points

in Ry, which is also the region of the Voronoi diagram of p and e; containing p.

Lemma 3.3 Let C be an obtuse star-shaped chain, and e; and e;4, be two consecutive

edges in C. Then, F,,, N R} = ¢.

Proof: Let B, represent the perpendicular bisectors of pv, as shown in Figure 7.
Since C is star-shaped, p is to the left of ; and e;;;, which means that F,; and F,,,
are both Type L regions. B,,, which is the perpendicular bisector of p and the vertex
v; joining edges e; and e;,,, creates two half-planes, one of which contains p. By

definition, F,,_, is on the side of half-plane containing p while R, of ¢; is on the other

i+1

11
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Figure 7: The superimposition of F,,, and R;.,.

i+1
half-plane. Therefore, F,,., N By = ¢.
O

Also, properties on the unbounded regions in the CVD are needed before estab-
lishing the properties on the consecutive Fg s. In a given CVD, it is possible to
distinguish bounded regions from the unbounded ones. The existence of unbounded
regions ih a CVD is closely related to the linear visibility of the edges, as established

in the following lemma.

Lemma 3.4 For some edge e; of a polygon @, the region FS is unbounded if and

only if some point on e; is linearly visible from p.

Proof: A point ¢ on e; is linearly visible from p if and only if the line segment
pq does not intersect any other edges of (). A line segment is in fact a degenerate
circular arc whose center lies on the perpendicular bisector of this line segment at
infinity. A region corresponding to a linearly visible edge contains points to infinity

and therefore is unbounded. The validity of the converse is easy to see.

12



O

It can also be shown that these unbounded regions of a CVD are ordered about

Lemma 3.5 The counterclockwise order of the unbounded regions around p in the

counterclockwise CVD is the same as that of the edges linearly visible from p.

Proof: The order of the linearly visible edges around p follows the order of the rays
from p to the edges. Also, the order of the unbounded regions around p follows the
order of the centers at infinity which in turn follows the order of the rays from p to
the edge because the radii of the centers at infinity are perpendicular to the right of

the rays from p.

O

With the order on the unbounded regions of the CVD in hand, a property between
the consecutive F. f s can now be extablished. Without loss of generality, all the CVDs
of individual edges of a chain C are assumed to be of Type L. (Refer to Figure 6.)
Being Type L, F¢; of edge ¢; in C is bounded by three curves: 8, , ﬂ;‘, which is the
portion of B, between v;_, and v;, and Bt, as shown in Figure 8 (a). To simplify
the following discussion, ﬂ;.. and S} are denoted by a single curve f,,, as indicated
in Figure 8 (a). The portion of f,, remaining in the CVD of an obtuse star-shaped
chain C' is denoted as f, as shown in Figure 8 (b).

Since C is star-shaped about p, i.e. every vertex on e; is linearly visible to p, F ec
is unbounded and the order of Fg about p is the same as that of e;. Such an order
of FZ indicates an order for constructing the CVD of C. In the following, FS, is

€41

shown to be bounded by f.,,, and the boundaries of F; f ‘.

13



Figure 8: (a) Overlapping the CVDs of two edges. (b) The circular visibility diagram

of two consecutive edges.

Lemma 3.6 Let C be an obtuse star-shaped chain, and let e; and e;,; be two con-

. . C . . Ci
secutive edges in C. Then, F,;  is bounded by f.;,, and the boundaries of Fy".

Proof: As shown in Theorem 3.2, F¢ 41 18 equal to the intersection of Fe,,, and F, f L

As F.

€it1

8 (a). Also, Ff " is bounded by B, as Fj' is bounded by 3,, and Ff ‘ is a subset of

is a Type L region, by definition, it is bounded by f.,,, and 3,,. See Figure

Fy'. Moreover, since both F,, and Ff * lie in the half-plane of §,; which contains p,
. Ci
Fg+ , is therefore bounded by f,,, and the boundary of Fy".

O

It is also essential for the algorithm that f.,,, intersects the boundaries of Ff " at

only one point, which is equivalent to showing that ff is continuous.

Lemma 3.7 ff is continuous, for all i.

14



Proof: Given two consecutive edges, we show that f,, , will intersect f,; only once.
This is because that the tangents of the points on f,, are non-decreasing as f,, goes
to infinity and are bounded by the two perpendicular bisectors between p and the
two end points of e;. Thus, the tangents of the points on f,,,, are greater than those
on fe,. Also, since C is obtuse, f,,, can not go around p and hit f,. Therefore,
feiys Will only intersect f,; once. By using the same argument, we can show that f,,,,
can intersect the boundaries of Ff * only once, which means that the portion of f.,,,

becoming f is continuous.
O

Lemma 3.6 indicates that F ,, can be constructed by intersecting fe,,, with the
boundaries of Ff *, and Lemma 3.7 that they intersect at only one point. Subse-

quently, in each iteration of the algorithm, fg ,, Partitions Ff ‘ into two regions:
FZ,, and Ff‘“, as depicted in Figure 8 (b).

In the algorithm for constructing a CVD, FC and Ff ° are constructed first. This
can be done in constant time. Then, in each iteration, f.; is employed to intersect
the boundaries of Ff *~!, which subsequently results in Fy* and Fg . After fec: is
computed, it replaces those boundaries? of Ff ! which lie in Fg and becomes a
boundary of Fy*. A stack is used to record ff; that comprise the boundaries of F°*;
every time an f, is introduced to partition F f =1 those fg that do not intersect
fe; are popped out until one does. Then fec: is computed and pushed to the top of
the stack. Those fg that were popped, along with fg , comprise the boundaries of
FS. At the end of the algorithm, the fg s remaining in the stack are identified as the

boundaries of Ff .

21t is noted that the particular fg. bounding Ff"‘ that f,, intersects may still contribute to the

boundaries of Ff ’

15



The time complexity of this algorithm is of the same order as the number of fec;
popped out of the stack, which is of the same order as the number of edges in the
chain. Therefore, this algorithm takes O(n) time, where n is the total number of
vertices in C. The counterclockwise CVD of an obtuse star-shaped chain is depicted

in Figure 9.

4 Circular Visibility Diagram of a Pocket

In this section, the CVDs of another class of open polygonal chain is discussed. This
open polygonal chain is called a pocket. It has its two end points collinear with p,
and p does not lie on the lid, the line segment connecting the two end points. As
adopted earlier, the edges of a pocket are oriented counterclockwise; only visibility
arcs hitting the left side (the inside) of the pocket are of interest. In the example
depicted in Figure 10 (a), only counterclockwise arcs emanating from p can hit the
inside of the pocket without first hitting the pocket from the outside. Such pockets
are called counterclockwise pockets. Pockets on the opposite side of a lid, on the
other hand, can only have clockwise visibility arcs hitting the inside of them and are
thus called clockwise pockets, as illustrated by the shaded area in Figure 10 (b). The
collinearity of p with the lid exhibits an essential property, which will be explained
shortly and employed in the construction of the CVD for a pocket.

Lemma 4.1 Let uv be a line segment collinear with point p, where u € pv. Then

every arc emanating from p will intersect uv at most once.

Proof: Suppose an arc emanating from p passes through v at ¢. Since there can be

at most two intersections between an arc and a line segment, and since the arc has

16



Figure 9: The CVD of an obtuse star-shaped chain.
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a CW pocket
(a) ()]

Figure 10: (a) A counterclockwise pocket. (b) The trapezoidization of a pocket.

already passed through pv at ¢ and p, it can not have another intersection with puv.

As p € uv, uv contains exactly one intersection with the arc, namely g.
]

To efficiently construct the CVD for a pocket, a partial order in which arcs ema-
nating from p hit the edges of the pocket is required. However, the edges of a pocket
do not inherently possess such an order. In the following, the edges of a pocket are
decomposed into edges exhibiting partial ordering: a CVD is first computed with
respect to the decomposed edges; and regions in such a CVD are then merged into
the CVD of the pocket with respect to the original (undecomposed) edges.

The decomposition of the edges of the pocket is done by utilizing vertez-edge
visible pairs joined by dotted line segments, as shown in the pocket of Figure 10
(b). A vertex-edge visible pair is a vertex and an edge which can be connected by
a line segment lying entirely inside the pocket. By employing line segments whose

extenslons pass through p to connect all the vertex-edge pairs of the pocket, the

18



interior of the pocket is decomposed into trapezoids®, as shown in Figure 10 (b). Such
a decomposition is also known as a trapezoidization[6,15,18]. Tarjan and van Wyk
[18] show that a trapezoidization of a simple polygon can be done in O(nloglogn)
time, where n is the total number of vertices in the simple polygon. As a recent
development, the time complexity of the trapezoidization algorithm is advanced by
Chazelle [6] to O(n).

Each trapezoid in the pocket consists of four sides. The in-edge and the out-edge
are connecting line segments of the vertex-edge visible pair, where the in-edge is
the side with the smaller §. Both of the in-edge and the out-edge are considered to
be transparent. The top-edge and the bottom-edge are portions of the edges of the
pocket, where the top-edge is closer to p than the bottom-edge is. Both of the top-edge
and the bottom-edge are considered to be opaque.

The circular arcs are now classified with respect to the side of a trapezoid they
hit. Let ej, eo, er, and ep denote the in-edge, out-edge, top-edge, and bottom-edge,
respectively, of a trapezoid T;. Let Ffl_‘ denote the region containing all the centers
about which arcs emanating from p hit e; from the outside (right side)*. Since er
and ep are opaque and since only counterclockwise visibility arcs are employed, any
arc which hits e, ep, or ep from the inside must first pass through e;. After crossing
er, an arc will then first hit ez, eg, or eg. Those arcs that hit ez or eg are blocked.
Those arcs that hit ep, on the other hand, may pass through ep (as eo is transparent),
come back through it, and hit either er or eg. However, since p is collinear with ep,

by Lemma 4.1, those arcs that pass through ep can not come back into T; through

3lines originating from the same point can be viewed as in parallel.
4As adopted earlier, e is a directed edge such that the inside of the trapezoid is to the left of

it. e is e; directed in the opposite direction. In other word, visibility arcs about points in FeT_" will
I

hit e} from the left, which is consistent with the notation of Ff.

19



er? e’

Figure 11: FT is divided into FT, FT, and Fg:;.
r

eo. Therefore, FeT.‘ can be partitioned into three mutually exclusive regions, F*:
I

er?
FE

o and F;f;, corresponding to arcs that pass through e; and hit er, eg, and ep,

respectively. Such a partition is illustrated in Figure 11.
A partial order in which arcs about points in F T intersect er, €o, and ep is
er
and F;‘ro‘.

utilized to compute FCTT‘, FCTB",

Theorem 4.2 Let F,,, F,, and F,, be the regions containing all the points about

which circular arcs hit er, eg and ep, respectively. Then,

. = pT
Fy =F Nk,
) T;
F& = FA0(Fep - F.,)
FL =F%n(F.,-F.p)
Proof: Since er is facing away from the emanating point p, arcs which hit er im-
mediately after crossing e; will not intersect eg or ep afterwards. Also, by Lemma

4.1, an arc which hits ep immediately after crossing e; will not intersect ep or er

afterwards. However, since ep is facing toward p, an arc which hits eg immediately

20



after crossing e; may intersect ep or er afterwards. These three relations indicate
that only ep may obstruct arcs in hitting eo or er.

Since ep and er do not obstruct circular arcs passing through e; in hitting ep,
Fg;; = FeTI_" N F,,. On the other hand, since eg may obstruct arcs in hitting er or e,
FL = (FTI_ NF.,) - F% and FT = (FCTI_‘ N F.,) — FE. By substituting F% with
(FENE)

FR = (FinF,)-(FiNF,)

= F:: N(F,, —F.p).
Similarly, F% = F N (F., — F.,), which completes the proof.
I
O

With the visibility arcs classified according to the side of a trapezoid they hit,
the transition of the visibility arcs from one trapezoid to the next is now examined.
Since no counterclockwise visibility arc can reach the inside of a clockwise pocket,
the trapezoids in CW pockets as depicted in Figure 10 (b) are discarded from further
consideration. Also, since counterclockwise visibility arcs can not reach portions
of the pocket on the other side of the line coincident with the lid, such portions
are discarded as well. Consequently, the in-edgs of the trapezoids to be considered
span less than 180°. Without the CW pockets and portions of the pocket requiring
visibility arcs to travel more than 360° to reach them, it can be safely assumed that
the trapezoid containing the lid of a pocket has the smallest § with respect to p.

The 0s of in-edges exhibit a partial order in which the visibility arcs pass through
these trapezoids. The same order also gives rise to the order in which arcs hit the
top-edges and the bottom-edges of the trapezoids in a pocket. Such a partial order can
be uniquely represented by the dual graph of the trapezoidized pocket, in which each

21



node is associated with a trapezoid and each link with any two trapezoids sharing a
side. ‘This dual graph is clearly a partial-order tree with the root node representing
the trapezoid containing the lid of the pocket®, as shown in Figure 10 (b).

The construction of the CVD of a pocket starts from Ty, the trapezoid at the
root of the partial-order tree. F;‘:_R is subsequently partitioned into three regions:
Fg;ﬂ, Fgf, and TBTOR, by utilizing Theorem 4.2. Fgg‘ then becomes FeT;l of Ty, the

immediate descendant trapezoid of Tr. The CVD of a pocket is constructed by
7". .
and F,} throughout the partial-

orderly partitioning F:_‘ (or Fg;;’-l) into FE'T‘, Fg;,

order tree. It is noted that arcs which hit er and eg of T; hit the same two edges
in the pocket P where T; resides, which means FeI; = Fz;'; and Fe]; = Fe:g. Such
a partition seems to require O(nlogn) time to complete[8], where n is the number
of vertices of the pocket. However, by showing that FeTo" is convex and utilizing the
counterclockwise order of the in-edges about p, the partition can be completed in
linear time.

Before verifying the two properties indicated above, the detailed construction of
Ff;; is first examined. Let the trapezoid of interest, T;, be depicted as in Figure 12
(a). By Theorem 4.2, F equals the intersection of FeTI.‘ and (F,, — F.,). Since F,,
is a type T region bounded by §,; and f,,,, and F; is a type L region bounded by
fep and B,,, subtracting F,, from F,, always results in two separate regions, denoted
as AT and A as shown in Figure 12 (a). It is noted that A C Rg?, i.e., all the
arcs centered at points in A will hit ep from the outside. Since an arc can not hit
both e; and ep from the outside, the intersection of A; and Fﬁ is therefore always

I

empty. On the other hand, A} may contribute to F.% since (R{? N R;™) C Af, where

5Tt is noted that there are trapezoids with three opaque sides and only one transparent side.
However, since such trapezoids only appear at the leaves of the partial order tree, they will not

affect the algorithm, and therefore will not be discussed.
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Figure 12: (a) (F., — F.,) is divided into A} and A;. (b) (R{® N RST)

(R N R3T), as illustrated in Figure 12 (b), contains all the centers about which
arcs emanating from p do not hit either er or eg from the inside. Therefore, the
intersection of Fgﬁ and (F,, — F.,) can be subsituted with the intersection of F;‘r_‘

I I

and AF. That Fgg is convex can be shown by examining the intersection of FCT_" and

I
AF.

Theorem 4.3 FT

eo’

for all T; € P, is convez.

Proof: The initial F:’l" is a stripe bounded by two parallel lines and is therefore
I

convex. Subsequent FL:

co» Which is equal to the intersection of A and FCT_", is convex
I

since both A¥ and FeT: are convex. Therefore, by induction, all the FeTC;s are convex.
1

O

The computing of the intersection of FcT_‘ and A}, for all T; € P, is dominated
I
by the computing of the intersection points bewteen the boundary of FeT_‘ and the
I

boundary of A}. It is shown in the following that, by dividing the boundary of FCT_"
I
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into two pieces and maintaining them with two stacks, completing all the intersections
can be achieved in linear time.

Since F, 3('; results from the intersection of Fz;_" and A}, the boundary of F, g;; consists
of portions of the 3,5 and the f;s contributing to the boundary of Fg;_‘, where v;
is a vertex of the top-edge of a trapezoid and e; is the bottom-edge of a trapezoid.
Since the in-edges of the pockets are ordered about p, the perpendicular bisectors of
line segments between p and the vertices of the top-edges and the bottom-edges are
also ordered, respectively, by their normals (pointing toward p); consequently, the
Bu,s and the f.;s® of the Afs are in slope order, respectively, following the partial
ordering of the pockets. The construction of the CVD for a pocket by intersecting
Fg;_‘ with A} is thus analoguous to constructing an upper bay and a lower bay, as
described in Section 3, simultaneously.

The upper bay, maintained by a stack Sy, consists of only the 3, ;s whereas the
lower bay, maintained by stack S, consists of only the f.s. Let y and v denote
the intersections between the upper bay and the lower bay, as shown in Figure 13
(a). As the construction of the CVD proceeds, the intersection of Fi_‘ and A} with
boundary ,, and f,, is computed, as shown in Figure 13 (b). The intersection points
between 3, and the boundary of FCTI_‘ are sought by checking through Sy and S,
respectively, starting from the end of the stacks containing u. The 3,5 in Syy which do
not intersect f3,, are popped out sequentially until one does. Similarly, St, is updated
by popping out f.;s which do not intersect f,, until one does. The portion of S,
Tip1

lying inside F T: contributes a boundary curve to FZ
r : 1

region encompassed by this portions of 3,, and the boundary curves of FCT_' between y
I

and the two intersections with f,, yields F ETT‘ (The boundary curves of F' T between
€r

, and is pushed into Sy. The

6By construction, the slope on fp, changes monotonically and is bounded by the slopes of 3y

and §,.
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Figure 13: The partition of FeT_‘.
I

p and the two intersections with §,, are the f,;s and f,;s being popped out of Sy
and Sy, when computing the intersections with f,,.) Likewise, the intersection points
between f,, and the boundary of FCTI_‘ can be identified by checking through Sy and
Sy, from v, the other end of the stacks. The portion of f., lying inside F;‘:_' contributes
a boundary curve to FCTI_"“, and is pushed into S;. The region encompassed by this
portions of f., and the boundary curves of FCT_‘ between v and the two intersections

I
with f,, yields F, CT;. (The boundary curves of FCT_‘ between v and the two intersections

I
with f., are the f,.s and f,;s being popped out of Sy and S; when computing the
intersections with f.,.) The curves remain in Sy and Sg, yeild FCT(; If neither 8, or
fep intersects Ff_‘“, Sy and Sp, remain the same. The partition continues until all
I

of the trapezoids are examined or when FeT_‘ N A} is empty, which means that all the
I

visibility arcs are blocked.
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The time required for finishing all the partitioning is shown to be linear to the
number of vertices in the pocket. Let ny and ny be the number of 8,,s and f;s in Sy
and Sy, respectively, and let C(ny,ny) denote the total time required for partitioning
the F:_‘with Sy and Sy, of size ny and np, respectively. Suppose iy, i1, ju, and ji
curved are checked, respectively, for identifying the intersections between £,, and Sy,

8, and Sy, f., and Sy, and f,, and Sy. Then,
C(ny,nt) = O(iv) + O(iz) + O(jv) + O(ji) + C(nv — w — ju,nL — 1z — JL)-
By replacing C(ny,nz) with C(ny + nr),
C(ny +nt) = O(iv +ir + ju + jr) + C(nu + nL — iv — ju — 1z — Jr)-

Let (ny + n) equal n and (iy + ju + ir + ji) equal k. By substituting n and k into

the formula, a recurrence formula
C(n) =0(k)+ C(n —k)

is obtained. The solution to this recurrence formula is clearly O(n). In other words,
the plane partition, which yields the CVD of a ~pocke'c, can be constructed in O(n)
time, where n is the number of vertices in the trapezoidized pocket.

It is clear that the number of vertices in the original pocket and the number of
vertices in the trapezoidized pocket are of the same order. Therefore, given a pocket
with n vertices, the CVD of the pocket with decomposed edges can be constructed in
O(n) time. The CVD of the pocket with the original edges can be then obtained by
merging the regions corresponding to the decomposed edges of original edges, which
can be computed easily in O(n) time. Therefore, the total time complexity of the
algorithm is still bounded by O(n).

The CVD of the pocket P in Figure 10 is depicted in Figure 14. Figure 14 (a)
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(a)

(b)

Figure 14: (a) CVD of a pocket with decomposed edges. (b) CVD of a pocket with

the original edges.
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shows the CVD of P with the decomposed edges, and Figure 14 (b) shows the CVD
of P with the original edges.

5 Circular Visibility Diagram of a Star-shaped
Polygon

The notion of a star-shaped polygon is defined as a closed polygonal curve whose
boundary is monotonic in § about p. The CVD for such a polygon can be constructed
by using the algorithm for obtuse star-shaped chains discussed in Section 3.

Given a polygon @), star-shaped about p, it is observed that cutting @ by a
horizontal line passing through p yields two obtuse star-shaped chains — the upper
chain Cy and the lower chain Cf, - each of which spans 180° about p. The CVDs for
Cu and Cf, can be constructed individually, and then merged. Clearly, if an arc does
not intersect either Cy or Cf, it will not intersect (). If an arc intersects only one of
the chains, it intersects the corresponding edge in Q). If an arc intersects both chains,
the center of such an arc appears in both of the CVDs of the two chains. Yet, the arc
can only hit one edge in (). This means that the overlapping of the two CVDs needs
to be resolved so as to merge the two CVDs properly. To resolve the overlapping,
the order in which the arc intersects the two chains needs to be determined.

Let Ly be the perpendicular line passing through p. Let F¢, and F¢, denote the
regions containing the centers about which arcs emanate from p and hit Cy and Cp,
respectively. Let ng and FgL be the regions containing the centers about which arcs
emanate from p and intersect Cy and Cp, respectively, in the presence of (). The

following lemma resolves the overlappings between the CVDs of the two chains.
Lemma 5.1 Let q be a point in Fgo, NFg,. Then, if q lies to the left of Ly, q € FCQU.
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If q lies to the right of Ly, q € FgL.

Proof: Arcs centered at a point to the right of Ly always go downward first from p.
Therefore, if such arcs intersect both Cy and Cp, they must hit Cp, first. Likewise,
arcs centered at a point to the left of Ly must hit Cy first if they intersect both Cy
and Cr.

O

Lemma 5.1 indicates that, in the presence of (), arcs emanating from p and cen-
tered at points to the right of Ly can hit Cy without being blocked by Cp, only if
these points also lie in F| f L. Similarly, arcs emanating from p and centered at points
to the left of Ly can hit C, without being blocked by Cy only if these points also lie
in Fyv.

Let FS , for all e; € Cp, be constructed first. The feasible area where FgL can
lie is the union of F f U and the half-plane to the right of Ly. Ff U can be obtain by
computing the CVD of Cy, as shown in Figure 15 (a). The result of the union of F, f v
and the half-plane to the right of Ly is shown in Figure 15 (b). Fe?. can therefore
be constructed along the boundary of Ff U with the procedure used for obtuse star-
shaped chains. After completing constructing the F 3 s, Ff L is obtained. Fg, for all
e; € Cy, can then be constructed similarly along the boundary of Ff L. Figure 16
shows the final result of the CVD of the star-shaped polygon Q.

It is noted that the construction of the CVD for @ is equivalent to constructing the
CVDs for three obtuse star-shaped chains (one and a half rounds of the star-shaped
polygon). Since the construction of Fc? , for all e; € Cy, and Fg , for all e; € Cp,
takes O(n) time each, where n is the number of vertices of @, the time required for

constrycting the CVD for a star-shaped polygon is bounded by O(n).
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(a) (b)

Figure 15: Construction of the CVD for the upper chain of a star-shaped polygon.

6 Circular Visibility Diagram of a Simple Poly-
gon

Now that the linear time algorithms that compute the CVDs for a star-shaped poly-
gon and for a pocket have been established, the utilization of these algorithms for
constructing the CVD of a simple polygon is to be shown. The outline of the CVD

construction procedure is illustrated as follows.

Algorithm CVD(p,Q)
Decompose Q: @ = Q*+ P+ ...+ P,
Construct CVD(p,Q*)
for: =1tom do
Construct CVD(p,F;)
Merge the CVDs

end.
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Figure 16: The CVDs of the star-shaped polygon.
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Figure 17: The decomposition of a simple polygon Q.

It is observed that any simple polygon can be decomposed into a star-shaped
polygon and a number of pockets, with respect to a point inside the polygon, as
shown Figure 17. Let @* be the star-shaped polygon obtained by computing the
linear visibility polygon with respect to p. It can be constructed optimally by the
algorithm developed by Lee [12] in O(n) time, where n is the number of vertices of
Q. Then, taking the boolean difference between Q* and @ results in (if exists) a set
of pockets P, Py, ..., P,. Since Q* C @, the computing of the boolean difference
between them can be achieved in O(n) time.

That this algorithm constructs a correct CVD of a simple polygon is easy to see.
By Lemma 4.1, arcs crossing the lid of a pocket can not come back into @* (p is be
definition in Q*) through the lid and hit other edges of Q*. Thus, the collection of
visibility arcs that hit the edges of @ which are also the edges of @* are the same as
those computed with respect to Q*. On the other hand, visibility arcs that hit the

32



edge of Q* which is the lid of a pocket contribute to all the visibility arcs going into
this pocket. The CVD for edges of @ which are in the pockets can thus be computed
by further decomposing the region containing all the points about which arcs hit the
lid, as described in Section 4.

It is shown in the following that the construction of the CVDs of Q* and the
pockets is bounded by O(n), where n is the total number of vertices in Q. Where
the CVD of @* can be constructed in O(n) time using the algorithm described in
Section 5, the computing of the CVDs of the pockets in @ requires extra effort. It is
because as some of the visibility arcs to the lids may be obstructed by other edges
of Q*, the CVD region of the lid of a pocket will not be a simple Type T region. By
construction, such a region is the intersection of a stripe, a region bounded by two
parallel lines, and a Ff *, as described in Section 3. Since both the stripe and Fy"
are convex, the region containing all the points about which visibility arcs crossing
the lid is convex. The algorithm for computing the CVDs for pockets is therefore
applicable with starting regions being convex. The time required for constructing the
CVD for a pocket becomes O(m; + n;), where m; is the number of vertices in pocket
P; and n; is the number of edges of the starting region F?, where ei is the lid of P..
Note that the sum of n; is bounded by the total number of vertices in Q*. Therefore,
the total time required for constructing the CVDs for all the pockets is still bounded
by the total number of vertices in Q).

The total time complexity for constructing the CVD of a simple polygon is the
sum of the time complexity for the individual processes. Since the time complexity
of all of the processes are bounded by O(n), this algorithm computes the CVD of
a simple polygon in linear time. The CVD of the polygon in Figure 17 is shown in
Figure 18.
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Figure 18: The CVD of a simple polygon Q).
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7 Conclusion

This paper utilized the notion of circular visibility and developed an algorithm for the
classification of circular visibility arcs. Such a classification is achieved by computing
a plane partition of the centers about which arcs emanating from a fixed point hit a
particular edge of a simple polygon. A linear time algorithm is developed to compute

such a plane partition.
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