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Resolution cannot polynomially simulate compressed-BFS
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Many algorithms for Boolean satisfiability (SAT) work within the framework of resolution
as a proof system, and thus on unsatisfiable instances they can be viewed as attempting to
find proofs by resolution. However it has been known since the 1980s that every resolution
proof of the pigeonhole principle (PHP}'), suitably encoded as a CNF instance, includes ex-
ponentially many steps [18]. Therefore SAT solvers based upon the DLL procedure [12] or
the DP procedure [13] must take exponential time. Polynomial-sized proofs of the pigeon-
hole principle exist for different proof systems, but general-purpose SAT solvers often remain
confined to resolution. This result is in correlation with empirical evidence. Previously, we
introduced the Compressed-BES algorithm to solve the SAT decision problem. In an earlier

work [27], an implementation of a Compressed-BFS algorithm empirically solved PHP); +in-
stances in ® (n%) time. Here, we add to this claim, and show analytically that these instances
are solvable in polynomial time by Compressed-BFS. Thus the class of tautologies efficiently
provable by Compressed-BFS is different than that of any resolution-based procedure. We
hope that the details of our complexity analysis shed some light on the proof system implied
by Compressed-BFS. Our proof focuses on structural invariants within the compressed data
structure that stores collections of sets of open clauses during the Compressed-BFS algorithm.
We bound the size of this data structure, as well as the overall memory, by a polynomial. We
then use this to show that the overall runtime is bounded by a polynomial.

1. Introduction

Modern high-performance complete SAT solvers such as Chaff [26] and GRASP
[21] use the Davis—Logemann—Loveland (DLL) search procedure [12]. DLL is a back-
tracking algorithm with several extensions, but its runtime on unsatisfiable instances is
lower-bounded by the length of resolution proofs. This fact can be combined with known
exponential lower bounds for resolution proofs of certain families of SAT instances, such
as the pigeonhole instances. The result is that any implementation of the DLL algorithm
must require exponential time on pigeonhole instances. A recent paper [4] examines the
practice of augmenting DLL with clause learning. The authors show that clause learning
exponentially improves DLL, but does not overcome the inherent limitations of resolu-
tion. Empirical evidence supports this claim. As shown in figure 1(a), the well-known
solver zChaff [26], which uses clause learning, empirically takes exponential time to
solve these instances.
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Runtime for instances of the pigeon-hole problem
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Figure 1. (a) Performance of several SAT solvers on hole-n instances. (b) Asymptotic performance of
Compressed-BFS on hole-n instances.

While much recent work was concerned with incremental improvements in im-
plementation details of the DLL procedure, a different avenue of research is to look
for new solver algorithms which lead to other classes of tractable problems. Put dif-
ferently, we are looking for proof systems other than resolution and solvers consistent
with them which may also have practical applications. To this end, we point out that
the recently reported Compressed-BFS algorithm [27] empirically solves pigeonhole in-
stances in polynomial time. A plot of runtime on pigeonhole instances for several SAT
solvers is shown in figure 1(a). It is evident empirically that the high-performance DLL
based solvers cannot solve these instances efficiently while Compressed-BFS is able
to quickly show unsatisfiability. In figure 1(b), the runtime of Compressed-BFS on a
number of pigeonhole instances is plotted, along with the function ® (x*). Compressed-



D.B. Motter et al. / Resolution cannot polynomially simulate compressed-BFS 123

BES can show unsatisfiability of PHPg(l) in under 15 seconds on a commodity PC. Since
Compressed-BFS is a general-purpose algorithm and competitively solves a number of
standard benchmarks (see appendix A), two questions arise: (i) whether the empirical
polynomial-time result for pigeonholes can be supported analytically, and (ii) what proof
system is implied by Compressed-BFS.

To this end, our work offers the first analytical proof that the Compressed-BFS
search procedure reported in [27] solves SAT instances from the pigeonhole family
in polynomial time. This has immediate implications to the proof system behind the
Compressed-BFS procedure. Since no polynomial-sized resolution proofs exist for the
pigeonhole instances, then resolution cannot polynomially simulate the underlying proof
system behind Compressed-BFS. While we do not claim resolution is strictly weaker
than Compressed-BFS, there is an infinite family of instances for which Compressed-
BFS exponentially outperforms resolution.

Results such as this were known for other methods of solving SAT, such as OBDD-
apply, which recursively constructs an OBDD of the given formula to determine satisfi-
ability. It is known that this method and resolution cannot polynomially simulate each
other [17]. Here we show that resolution cannot polynomially simulate Compressed-
BFS, as it solves in polynomial time a class of formulas which require exponential
length resolution proofs. In addition, OBDD-apply cannot solve pigeonhole instances
in polynomial time under any variable ordering, and therefore also cannot polynomially
simulate Compressed-BFS [17].

In addition to these theoretical implications, a SAT solver that solves pigeonhole
instances in polynomial time can be useful for real-world problems. Within a SAT in-
stance of routing, for example, there can be many embedded PHP}' instances to enforce
the capacities of routing channels [3]. The situation is similar on other structured prob-
lems such as planning and scheduling [14]. If a SAT solver cannot efficiently solve these
subproblems, it may unnecessarily perform poorly on the problem as a whole [14]. The
work in [14] shows how pigeonhole instances can be solved efficiently by using non-
clausal learning methods when they are reformulated as instances of 0—1 Integer Linear
Programming (ILP). In contrast, our work shows polynomial-time solutions of pigeon-
hole instances in terms of CNF, where exponential lower bounds on resolution proofs
hold.

The attractiveness of combining different techniques such as DLL/DP based SAT
approaches and the compression of Binary Decision Diagrams has spawned much re-
search in recent years. Using BDDs to encode the clause database during DLL has been
considered [1] as well as the ZRes algorithm, which combines the DP procedure [13]
with ZDDs [9]. The ZRes SAT solver [9] empirically solves pigeonhole instances much
faster than DLL based solvers as shown in figure 1, however we are unaware of any pub-
lished proof of polynomial time complexity on these instances for ZRes. Although ZRes
is based on the DP procedure, its state encoding leaves its complexity in this regard an
open question. Many other efforts to combine the strengths of multiple approaches (e.g.,
[5]) or to leverage the power of a compressed data structure (e.g., [15]) have been tried.
This idea is likely to be the subject of future research.
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Unfortunately, formulating the unknown proof system appears difficult due to the
complexity of ZDD algorithms used within the Compressed-BFS procedure. However,
we provide the details of our polynomiality proof for pigeonholes in the hope that they
will shed some light on the unknown proof system or at least some of its features.

The remaining part of this paper is organized as follows. Section 2 reviews the
necessary background. The Compressed-BFS algorithm is described in section 3. Sec-
tion 4 introduces the classic pigeonhole instances and some of their relevant properties.
In section 5 we show that the size of the algorithm’s main data structure is polynomially
bounded. In section 6 we show that Compressed-BFS proves the pigeonhole principle in
polynomial time. In sections 5 and 6, we give both the general outline of the proof and
detailed arguments for each step. Conclusions and our ongoing research are described
in section 7.

2. Background

LetV = {v1, vy, ..., v,} be a set of Boolean variables. A truth assignment for V is
amapping t : V — {true, false}. A partial truth assignment for V is a truth assignment
to some subset of variables V' C V. A literal is a variable or it’s negation. A clause can
be viewed a set of literals. A clause is satisfied by a truth assignment ¢ if at least one of
its literals is true under ¢. A clause is said to be violated by a truth assignment ¢ if all
of its literals are false under . A Boolean formula in conjunctive normal form can be
represented by a set C of clauses.

The implicit representation used in the Compressed-BFS algorithm is dependent on
the correspondence between valid partial truth assignments and sets of clauses. A partial
truth assignment is said to be invalid if this assignment violates some clause. Given a
valid partial truth assignment 7, we can classify clauses in a CNF with respect to ¢ as
follows.

e If a clause has at least one literal assigned some value, and no literals are assigned
true, this clause is said to be open.

o If any literals within a clause are assigned true, this clause is said to be satisfied.
e If no literals within a clause are assigned, the clause is said to be not activated.

o If all but one literal in an open clause are assigned, the clause is said to be unit.

The compression in Compressed-BFS comes by storing the collection of sets of open
clauses within a Zero Suppressed Binary Decision Diagram (ZDD). ZDDs can represent
combinatorial objects by a set of paths in a Directed Acyclic Graph (DAG) [22-24].
Since the number of paths in a DAG can be exponentially larger than the number of ver-
tices, ZDDs are able to achieve an exponential level of compression in certain instances.
Specifically, when the collection of sets is sparse or structured then the ZDD is often
able to represent the entire collection compactly, and it is this compact representation

which allows Compressed-BFS to refute PHP"™! instances in time polynomial in 7.
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A ZDD is defined as a directed acyclic graph (DAG) where each node has a
unique label, an integer index, and two outgoing edges which connect to what we will
call T-Child and E-child. Because of this we can represent each node X as a 3-tuple
(Xindexs X1, Xg) where X0 18 the index of the node X, X7 is its T-Child, and X is
its E-Child. Each path in the DAG ends in one of two special nodes, the 0 node and the
1 node. These nodes have no successors. In addition, there is a single root node. When
we use a ZDD we will in reality keep a reference to the root node. The semantics of a
ZDD can be defined recursively by defining the semantics of a given node.

A ZDD can be used to encode a collection of sets by encoding its characteristic
function. We can evaluate a function represented by a ZDD by traversing the DAG
beginning at the root node. At each node X, if the variable corresponding to the index of
X is true, we select the T-Child. Otherwise we select with the E-Child. Eventually we
will reach either 0 or 1, indicating the value of the function on this input. We augment
this with the Zero-Suppression Rule: we may eliminate nodes whose 7-Child is 0. With
these standard rules, 0 represents the empty collection of sets, while 1 represents the
collection consisting of only the empty set. ZDDs interpreted this way have a standard
set of operations based on recursive definitions [10,11,22-24], including the union and
intersection of two collections of sets, for example.

3. The Compressed-BFS algorithm

The idea behind the Compressed-BFS algorithm Cassatt' [27] corresponds directly
to a BFS over the tree of partial truth assignments (the two children of a partial assign-
ment are its immediate extensions with O and 1). This tree of partial assignments is con-
sidered for a given variable ordering. Cassatt implicitly represents partial assignments
by their effects on the satisfiability of clauses, and therefore naturally handles symmet-
ric or otherwise equivalent partial assignments. Additionally, Cassatt can identify partial
truth assignments that lead to satisfying solutions only if other partial truth assignments
to the same set of variables do. This reduces the number of partial truth assignments
that must be explored to ensure completeness of the search procedure. As a special case,
this includes handling of autark assignments [20], which further differentiates Cassatt
from DP or DLL based procedures. Two additional advantages of this algorithm are
compressed data representation and the implicit manipulation of large data sets. These
are accomplished through the use of ZDD based data structures and relevant algorithms.
The two most similar pre-existing algorithms are: (i) ZRes [9], an implementation of
the DP procedure using ZDDs, and (ii) an implementation of the DLL procedure with
ZDDs [2].

Compressed-BFS processes variables according to a static order, and implicitly
represents all promising truth assignments of a given depth d. These valid partial truth
assignments are assignments to variables xy, xz, ..., x; which do not cause all literals

I Born May 22, 1844, Allegheny City, PA, Mary Cassatt was an American painter and printmaker who
exhibited with the Impressionists [7].
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in some clause to be assigned false. The collection of these partial truth assignments is
called the front. To determine the proper state after processing variable x;, the algo-
rithm ‘copies’ the front, and modifies one copy of each assignment within this collection
to reflect the additional assignment of x;.; = true. It modifies the other copy of the
front to reflect assigning x,; = false. Finally, all valid partial truth assignments arising
from either of these branches might yield satisfiability, so both branches are combined
into the single new front.

Storing subsets of open clauses instead of explicit partial truth assignments is
enough information to perform a BFS and determine satisfiability of a formula. In this
general framework, any data structure which can manipulate collections of sets effi-
ciently can be used in this style of BFS. We chose the ZDD data structure because of
its balance between compactness of representation and efficiency of algorithms. Cassatt
uses standard ZDD operations to maintain the collection of sets of open clauses, called
the front. By combining this collection of sets of open clauses with a new truth assign-
ment to a single variable, the front can be advanced as described above. To update the
front to reflect a truth assignment to a single variable, the effects of this truth assign-
ment on the status of clauses must be considered. In general, an assignment to a single
variable x; = t (where ¢ € {true, false}) has the following effects on clauses.

e One or more clauses may be violated. Let Uy, , be the set of unit clauses for which this
variable assignment causes a conflict. Then, any subset in the front containing some
u € Uy, , must be pruned as it cannot yield satisfiability. This can be accomplished
with a ZDD intersection operation [22-24].

e One or more clauses may be satisfied. Let S, ; be the set of all clauses which contain
a literal in {x;, x;} and x; = ¢ makes this literal true. If these clauses were not yet
satisfied, then they become satisfied by this assignment. These clauses are removed
from all subsets in the front by ZDD existential abstraction [24].

e One or more clauses may be opened. Let A,, ; be the set of all clauses which were
not activated, contain a literal in {x;, x;}, and x; = ¢ makes this literal false. If instead
this literal were assigned true, the clause would be satisfied and not open and thus not
be needed to added to the front. All such clauses A,, ; are added to every subset in
the front by the ZDD Cartesian product operation [24].

Note that determining each of these sets depends only on the particular truth as-
signment to x; = f, and not to the internal state of the front. Thus, with each of these
sets of clauses, an appropriate action can be taken on the entire front. To prune branches
from the search containing violated clauses Uy, ;, we build the collection 2Clauses\Us;.1 of
all sets which do not contain any clauses in Uy, ;. This structured collection will have a
very small ZDD representation (the number of nodes is bounded by |Clauses|). We then
intersect this collection with the front. Also, when considering either CNF instances
with empty clauses or clauses with a single variable, this simple taxonomy breaks down.
However these cases can be handled with a simple preprocessing step. Finally, it is not
hard to see that throughout the algorithm we can remove subsets which are subsumed by
some other subset as these correspond to suboptimal partial truth assignments.
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Initially, we have no open clauses, and the front is set to be the collection con-
taining only the empty set, 1. For each variable x;, we create two copies of the front,
and modify one copy of the front as described above to reflect assigning x; = true.
We modify another copy to reflect assigning x; = false. Finally, the new front is the
union of these two, since we must consider promising branches in either case. In our
implementation, we use the MaxUnion operator, which is built from two additional op-
erators, Maximal and Subsumed Difference for the maintenance of a subsumption-free
ZDD [9-11,24]. After all variables are processed, there are two possible outcomes. If
there are no branches leading to satisfiability, then the front will be empty (equal to 0) as
it contains sets of open clauses, each of which corresponds to a promising branch in the
search. If any branches lead to satisfiability, then there will be no open clauses and the
front will contain the empty set (1). For a completely worked out instance of Cassatt on
a pigeonhole instance, see appendix B.

Pseudocode for the Cassatt algorithm is shown in figure 2. In general, ZDD algo-
rithms depend heavily on the ordering of ZDD nodes. Also, like most SAT algorithms,
Cassatt’s performance depends on the order in which variables are processed. To sim-
plify certain steps of the proof as much as possible, it is assumed that indices in the ZDD
are ordered according to which clause they represent. Larger clauses appear with higher
index in the ZDD ordering, and among clauses of the same size, clauses which contain
variables processed earlier are given higher index in the ZDD ordering.

1 Cassatt(Vars, Clauses)
2 front < 1
3 for i = 1 to |Vars| do
4 front’ < front
5 //Modify front to reflect x; = true
6 Form sets Ux,-,truey Sx,-,true, Ax,-,true
7 front < front N 2C1@ses\Us; e
8 front <— JAbstract(front, Sy, true)
9 front < front ® Ay, true
10 //Modify front’ to reflect x; = false
11 Form sets Ux,-,false, Sx,-,falsey Axi,false
12 front’ < front’ N 2¢/auses\Us; faise
13 front’ <— JAbstract(front’, Sy, taise)
14 front’ < front’ ® Ay, faise
15 //Combine the two branches via Union with Subsumption
16 front <— front Ug front’
17 if front = 0 then
18 return Unsatisfiable
19 if front = 1 then
20 return Satisfiable

Figure 2. Pseudocode for the Cassatt algorithm.
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In general, we may ensure that the Cartesian Product operator executes in linear
time (in the number of added nodes) by choosing an appropriate node ordering for a
given variable ordering. To do this, we would give priority to the criterion that clauses
which contain variables processed earlier are given higher index in the ZDD ordering.
Then each activated clause would necessarily have lower index than any clause yet ap-
pearing in the front. However, when this does not occur, the Cartesian Product with a
single set can still be performed efficiently by a single traversal as shown in section 6.

4. The CNF instances PHP"*!

In this work we consider a CNF encoding of the negation of the pigeonhole prin-
ciple. Such instances are easy to generate, widely available, and a part of standard SAT
benchmark suites, where they are known as hole-n instances. The pigeonhole prin-
ciple (PHP)') states that if m pigeons (m > n) are placed in n holes, then some hole
must contain more than one pigeon. Since PHP"™! is valid, we can encode its negation

PHP”*! in CNF form to obtain an unsatisfiable SAT instance. One way to do this is to
use n(n + 1) variables, x; ;, each representing that pigeon 1 < j < n + 1 is in hole
1 < i < n. We can thus form n groups H; of n 4 1 variables each, where each variable
within H; represents that some pigeon is in hole i. We can number variables in such a
way that the first n 4- 1 variables x; 1, X1 2, ..., X1 ,+1 make up the group H;, and so on.
Then, the group H; is made up of the variables

H; = {xi1,%i2, ..., Xint1}.

Encoded this way, the constraints fall into two categories. Within each group of
variables H;, there are (";’1) clauses which we call pairwise exclusion clauses of the
form

(Xi.a + Xip)
for 1 < a < b < n+ 1. These clauses prevent more than one pigeon from being in
hole i since whenever any one variable x; , € H; is true, in order to satisfy all pairwise
exclusion clauses, all other variables x; , must be false.

The second category of constraints, which we call pigeon clauses, are n + 1 clauses
of the form

(X1, +x2, + -+ xn5)

which select the jth element from each H;. These encode that each pigeon j must be in
at least one hole: at least one of x j, ..., x, ; must be true for this clause to be satisfied.

To make this formulation clear, a schematic representation of the instance PHP; is
shown in figure 3. Here, all variables are represented by dots on a horizontal line. The
pigeon clauses are shown below this line, while the pairwise exclusion clauses are shown
above this line. In this work, these variables are processed left-to-right, or equivalently,
in increasing lexicographic order. Such a variable ordering is easy to find practically, as
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Figure 3. The instance PHP%.

it corresponds to the ordering which minimizes cut-width (as defined by the minimum
cut linear arrangement problem [16,19], which has polynomial time approximations) of
the entire instance. A partitioning or placement algorithm can be used to find such an
order, if one was not able to explicitly construct it. It is important to note that there is no
variable ordering for which a resolution procedure or OBDD-apply procedure can refute
pigeonhole instances efficiently.

4.1. Structure of the instances PHPZJrl

Some insight can be gained by a careful examination of the instances PHP"*!
which will be useful in the proof that Compressed-BFS provides a polynomial time
refutation of these instances. It will also clarify the ideas which come into play at later
stages of the proof.

We first introduce the notion of the cut. The cut is well-defined graph-theoretic
term which can be extended to hypergraphs [6]:

If X and Y are sets of vertices in a hypergraph H, the set of edges of H with contain
vertices from both X and Y is denoted by [X, Y]. When X UY is a partition of V (H),
the set [ X, Y] is called an edge cut of H.

Since in Compressed-BFS we process variables according to some fixed order, it will
happen that only certain clauses will be activated. However, if all variables in a clause
are assigned, then for any branch in our search, this clause must be satisfied already.
Clauses which have some, but not all variables assigned have the potential to affect our
search, and are referred to as cut clauses. The cut can be visualized by drawing a vertical
line on figure 3. Then when a partial truth assignment to all variables to the left of the line
is being considered, only clauses this line crosses (cut clauses) will have the potential to
be open clauses.
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Figure 4. A larger instance: PHP;.

The first realization which will be useful was mentioned above: the pairwise ex-
clusion clauses for a given set of variables H; prevent more than one of the variables
from H; from being assigned true. Thus, when performing a search for satisfiability,
ideally there will be at most n + 2 different “branches” in the search: n + 1 branches
corresponding to setting each of the n + 1 variables in H; true, and one final branch
corresponding to setting them all false.

The second observation is that there are relatively few clauses containing elements

in both H; and H, . Figure 4 shows a schematic representation of a larger instance PHP?
to highlight the general form. As seen in figure 4, only the n 4 1 pigeon clauses extend
between H; and H; ;. Immediately after variables in H;, we say that only these n + 1
pigeon clauses are in the cut. Since we will be considering the effects of Compressed-
BES over these instances, we will consider truth assignments to variables up to a given
depth. If we look at the effects of truth assignments to all variables in Hy, ..., H;, then
whatever effects these assignments have on the formula must be completely captured in
these n + 1 pigeon clauses. In Compressed-BFS, the number of clauses in the cut affects
the performance of the algorithm [27]. We can consider all possible truth assignments
to variables in Hy, ..., H; to deduce the following lemma.

Lemmal. Let £k € {1,2,...,n — 1}. A valid partial truth assignment to variables
X115 X12, -« Xk.nt+1, 1.€. all the variables in Hj, ..., Hy, may satisfy at most k of the
n + 1 pigeon clauses.

Proof. First, notice that for 1 < i < k at most one of variables in the set H; can
be assigned true. If two or more variables from H; were true, then at least one of the
pairwise exclusion clauses for H; would be violated. As a result, any valid partial truth
assignment to the first k(n + 1) variables must set only one variable in H; true, for
each i. By similarly examining clauses, it is evident that any partial truth assignment
setting at most one of variables H; true is valid. Setting all such variables to false does
not violate any of the pigeon clauses, since we assume k < n. If exactly one of the
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variables within H; is assigned true, then this simply satisfies one of the n + 1 pigeon
clauses, and maintains the validity of the partial truth assignment.

Since there are k sets of the form H; = {x; 1, x; 2, ..., X; »+1}, and each can satisfy
at most one of the n + 1 pigeon clauses, it is clear that we may satisfy at most k of these
clauses. O

5.  Size bounds during refutation of PHP"*!

Determining the exact number of nodes at a given step is cumbersome, and not
necessary for an upper bound on the size of the ZDD in Compressed-BFS. This is pri-
marily due to the node sharing which gives some additional savings in space and runtime
at the expense of a conceptually simpler structure. Therefore, in the course of this proof
we consider a partially reduced ZDD which reveals the underlying structure. Since the
7DD reduction rules cannot add nodes, then the size of this partially reduced ZDD is an
upper bound on the size of the actual ZDD.

We show here that the number of nodes within Compressed-BFS’s main data struc-
ture, the front, is bounded by a polynomial before and after each individual operation
shown in the pseudocode of figure 2. We will show in the following section that the

types of structures we encounter in the refutation of PHP" ! allow Compressed-BFS to
execute in polynomial time, assuming any reasonable hash function.

Our proof will be structured as follows. First, we will show that the ZDD repre-
sentation immediately after processing all variables in some H; is the set of (n + 1 — k)-
element subsets of pigeon clauses, and will have (k + 1)(n + 1 — k) nodes. This will
give a polynomial bound at regular intervals throughout execution of the algorithm. The
remainder of the proof will show that as we consider variables within some Hj, the
ZDD in Cassatt does not grow too greatly. Although we will have a bound at regu-
lar intervals, we must show a bound between these intervals as well. The techniques
used in the proof are valid for the n![(n 4+ 1)!]* ‘hole major’ variable orderings, but
for simplicity the proof assumes that variables are processed in the lexicographic order
X115 X1,25 <« o s X1nd15 X215« « 5 Xpon 1

5.1. Bounds after all variables in Hy

Here we consider that immediately after completing all variables within some Hy,
there is a simple polynomial bound on the number of nodes.

Lemma 2. Letk € {1, 2, ..., n—1}. After completing variable x , 1, the front consists
of all (n 4+ 1 — k)-element subsets of the n + 1 pigeon clauses.

Proof.  From the structure of the instances PHP"™!, we know that the only clauses
which are in the cut are the n + 1 pigeon clauses. Thus the front must be composed
of subsets of these n + 1 clauses. From lemma 1, we know that after variable x; ,4; has
been assigned at most k of the pigeon clauses may be satsified. Then, at least n+ 1 —k of
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them must remain open. Since we must consider all choices of which k or fewer pigeon
clauses to satisfy, then all subsets containing n 4+ 1 — k or more pigeon clauses will be in
the front. Since in Cassatt we eliminate subsumptions, then the smallest subsets (those
subsets containing exactly n+ 1 —k elements) subsume all subsets containing more open
clauses. As a result, only the ("Zl) possible (n + 1 — k)-element subsets remain. O
Lemma 3. Let k € {1,2,...,n}. The ZDD representing all k-element subsets of n
elements contains exactly k(n + 1 — k) nodes.

Proof.  To show this, we first give the form of all such ZDDs in figure 5.

Within this ZDD, in order for a path to reach the terminal 1 node, it must be true
for exactly k of the variable values. If less than k values are set to true, the path reaches
the 0 node through one of the E-Child edges shown on the left of figure 5. If more
than k values are set true, then although it would appear that we follow a path leading
to the 1 node, the Zero-Suppression Rule implies that we traverse to the 0 node. As a
result only those paths which set exactly k variables true will reach the 1 node, and this
ZDD stores exactly all k-element subsets of an n-element set. Since there are a total of
n levels, the other ‘dimension’ of this ZDD is n + 1 — k. Since ZDDs are a canonical
representation, whenever it is necessary to store k-element subsets we will use exactly
k(n + 1 — k) nodes. O

Thus, in Cassatt, when it is necessary to store all (n 4+ 1 — k)-element subsets from
an (n + 1)-element set, we use (k + 1)(n + 1 — k) nodes, and the size of the ZDD is
polynomially bounded after completing each set of variables H.

5.2. Growth bounds within each H

Our main goal here is to show that as Cassatt processes variables within each Hy,
we do not introduce too many additional nodes. This presented in the following claim.

Figure 5. ZDD storing all k-element subsets of n elements.
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Claim. Fix k € {1, ..., n}. As we process variables within Hy = {xx.1, ..., Xx.n+1}, the
growth of the ZDD is polynomially bounded.

We know that before variable x; ; is processed the number of internal ZDD nodes
is exactly k(n + 2 — k). Similarly, after completing x; ,, the number of internal ZDD
nodes is exactly (k + 1)(n 4+ 1 — k). If we show that during this process the number of
nodes is bounded, we will have a bound throughout the execution of the algorithm.

To show this, it is useful to first consider the case when k € {2,...,n — 1}. This
differs from the case where k = 1 since there, the pigeon clauses are first activated. It
also differs from the case k = n, since there the pigeon clauses lead to conflicts. We can
extend the analysis of the cases k € {2,...,n — 1} to cover these cases without much
additional difficulty.

5.2.1. The general case, k € {2,...,n — 1}

When performing Compressed-BFS over variables within H;, we would naturally
expect the growth of the ZDD to be limited. This is because we know that as we consider
variables within some Hy = {x1,...,Xr.+1} the pairwise exclusion clauses for Hy
force at most one of these to be true. As a result, after processing variables there are at
most n + 2 possible search “branches”. If the ZDD reflects this structure, and each of
the corresponding ZDD “branches” led to a polynomially bounded representation, then
the entire ZDD would be bounded.

By actually considering how an assignment to some x € H; affects the structure
of the ZDD, it is possible to show that during the traversal the partially reduced ZDD
has a certain regular structure. This structure essentially mimics the heuristic argument
given above: there are up to n 4 2 branches and each branch leads to some bounded size
ZDD. We will show by induction that the form of this ZDD is maintained throughout all
variables within each H,.

5.2.2. Structure of the front during H

After variable x; ;, we expect our internal representation to contain i +1 ‘branches’,
each leading to some constraint on the pigeon clauses. However this structure is ob-
scured by ZDD node elimination rules. We now consider the case of a partially reduced
ZDD to use this structure to bound the number of nodes in the reduced ZDD. We first
present the structure of the ZDD after variable x; ;, then show by induction that this is
indeed the structure maintained by the algorithm.

The general structure of the ZDD while processing some variable within Hj is
shown in figure 6. Within this figure, each diamond shaped symbol corresponds to the
grid structured ZDD shown in figure 5, which represents all subsets of a given size.
After variable x; ;, there are i opportunities to branch off from the main path. Each
corresponds to setting one variable out of x|, Xz, ..., Xx; true, and correspondingly
satisfying one pigeon clause out of 1, 2, ..., i. The constraints each of these branches
leads to on the pigeon clauses is that at most k — 1 of the n remaining pigeon clauses
(different for each branch) are satisfied, and we have all (n + 1 — k)-element subsets
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Figure 6. Form of the front after xj ;.

of the n remaining clauses at the base of each branch. The leftmost branch corresponds
to setting none of xi i, X2, ..., Xx; true, and satisfying no pigeon clauses with such
an assignment. Thus along the leftmost branch, we have all (n 4+ 2 — k)-element sub-
sets just as before. Because of the pairwise exclusion clauses, no more than one of
Xk,1, Xk,25 - - - » Xx,; may be true. Along branch 1 < j < i (corresponding to where x; ;
is set true), the n + 1 — i pairwise exclusion clauses which have the form (x ; + Xy ),
i < h < n+ 1, remain open along each branch.

We now show by induction that this structure is preserved throughout the operation.
Initially, by lemma 2, the ZDD consists of all (n + 2 — k)-element subsets of the n + 1
pigeon clauses.

Consider setting variable x; ; true. Then, Compressed-BFS activates n clauses of
the form (x; 1 + X ;), 1 < j < n+ 1, and satisfies the single pigeon clause 1. The first
step of the algorithm is to remove all branches which contain violated clauses. Since
variable x; ; does not appear as the end literal for any clause, this step is superfluous.
Next, Cassatt existentially abstracts the single satisfied pigeon clause. In existential
abstraction, any occurrence of this clause in any subsets in the front will be removed.
Consequently, the result of this operation will contain all (n 4+ 2 — k)-element subsets
which do not contain pigeon clause 1 and all (n 4+ 1 — k)-element subsets not containing
pigeon clause 1. It is not hard to see this has the form shown in figure 7, however a simple
explanation of this structure is as follows. Similar to lemma 3, if more thann 4+ 2 — k
inputs are true, the Zero Suppression rule implies this set is not in the collection. Also,
if less than n + 1 — k inputs are true from pigeon clauses {2, ...,n + 1}, then more
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than k such inputs are false and we traverse to 0 via one of the branches on the left of
the graph. Instead, if exactly n + 2 — k inputs are set true, we traverse exactly to the
1 node. Finally, if exactly n + 1 — k inputs are true, we must pass through one of the
two bottom-most nodes in figure 7. If we pass through the left node, then n — k previous
inputs have been true, and since exactly n + 1 — k will be true, we must pass through
the 7-Child of this node to 1. If we pass through the right node, then n + 1 — k previous
inputs have been true. Whether this input is false or true, we will have a set withn+1—k
or (n 4+ 2 — k)-elements, respectively.

Finally Cassatt adds the n newly opened pairwise exclusion clauses which are of
the form (k1 +Xx j), 1 < j < n+ 1, to all sets via Cartesian Product. However, since
we ensure that these indices appear above the pigeon clauses in our ZDD ordering, the
Cartesian Product operation amounts to simply adding nodes to the top of the ZDD as
shown in figure 7. The resulting structure forms a single branch as shown in figure 7.

Next, consider setting variable x; ; false. Here, all clauses which would be ac-
tivated this step are immediately satisfied. Also, no additional clauses are satisfied or
violated. As a result, the resulting ZDD structure is the same as in the previous step: it
consists of all (n 4+ 2 — k)-element subsets of the n 4 1 pigeon clauses.

Finally both branches are combined via the subsumption-removing MaxUnion op-
eration, giving rise to the structure outlined in the previous section. This is shown in
figure 8, however here we do not show the merging effects of the ZDD reduction rules,

K1 % net)

1 !

X, +X
( k.1 k,2)
Pigeon Clause n+1
Pigeon Clause n

Pigeon Clause n-1

Pigeon Clause i+2
Pigeon Clause i+1
Pigeon Clause i

Pigeon Clause 2

Pigeon Clause 1

Figure 8. Resulting ZDD after variable xg .
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to illustrate the underlying structure of the ZDD. The subgraph of the ZDD containing
all n + 2 — k and (n 4+ 1 — k)-element subsets not containing pigeon clause 1 has sub-
sumptions eliminated from it. As a result, the (n+ 1 — k)-element subsets subsume those
with (n + 2 — k)-elements, and the resulting ZDD has the form of the grid-structured
ZDD of lemma 3, as shown in figure 8.

Now, assume that after variable x; ;, i € {1, ..., n}, we have the precise structure
shown in figure 6 and are processing variable x; ;1. If variable x ;4 is set true, we
violate the i clauses of the form (X ; + Xi;+1) where 0 < j < i + 1. One of these
i clauses appears in each branch of the structure shown in figure 6. Thus Cassatt will
first prune all branches except the leftmost branch, whose subsets contains only pigeon
clauses.

The key idea in this step is that after eliminating subsets which contain violated
clauses, we arrive at the same grid structured ZDD which appeared after processing
variable x;_j ,41. This is true in this case since pairwise exclusion clauses constrain
more than one of {x;i,..., X1} from being true. Thus when we consider setting
Xr.i+1 true, the only valid branches in the ZDD are those in which all other variables
{xx.1,...,xx;} are false, and no additional pigeon clauses are satisfied. Since variable
Xk.i+1 18 set true, it will satisfy the (i + 1)th pigeon clause, and next Cassatt eliminates
this clause by existentially abstracting it from the ZDD. The resulting ZDD contains all
(n+2 —k)-element and (n 4+ 1 — k)-element subsets which do not contain pigeon clause
i + 1. Finally, it will open n — i pairwise exclusion clauses of the form (Xi ;41 + Xk ;),
i+1 < j<n+1,giving rise to a single branch structure similar to the base case. This
operation is summarized in figure 9.

A different case occurs when variable x; ;] is set false. In this case no clauses are
violated, or activated. Instead, all pairwise exclusion clauses of the form (xi ; + X i+1),
1 < j < i+ 1, are satisfied. Each branch in the structure shown in figure 10 except
for the leftmost branch contains one of these clauses. Each such clause is removed via
Existential Abstraction.

By combining these two branches via union with subsumption, we effectively in-
crease the number of branches by 1, while removing one node along each branch to
obtain exactly the general structure of the ZDD which was introduced in figure 6. By
induction, then, this structure is maintained throughout the progression of the algorithm
whenever k € {2,...,n — 1}. Thus, after variable x; ;, the number of ZDD nodes is
bounded by i(k(n — 1 — k) + (n + 1 —1i)) + k(n + 2 — k), simply by counting nodes
in the partially reduced ZDD of figure 6. Recall that this partially reduced ZDD forms
an upper bound on the number of nodes in the front since ZDD reduction rules only
eliminate nodes from this ZDD.

5.3. Growth bounds within H,

In the analysis of the general case, k € {2,...,n — 1}, we made use of the fact
that the pigeon clauses were opened previously. When processing a variable x| ; where
1 < i < n+ 1, the structure of the ZDD is not as complex as in other cases, however,
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the analysis is similar. It is still useful to consider the unreduced ZDD to highlight the
structure present.

The structure of the ZDD after processing variable x; ;, where 1 < i < n + 1
mimics the general structure shown in figure 6. However, the grid structured ZDD rep-
resenting all subsets of a given size is reduced to a degenerate form, representing a
single subset of some of these pigeon clauses. The number of elements in these sub-
sets is further obscured since at each step, a pigeon clause is opened. However, it is
not hard to see that after variable x; ;, in the leftmost branch (corresponding to setting
all x;1,x12,...,x1,; false), we have the single subset containing exactly all i pigeon
clauses opened thus far. Similarly, at the base of each of the i side branches, we have
the single subset containing the remaining i — 1 pigeon clauses, since each such branch
corresponds to satisfying one of these clauses.

To show that this structure is correct, we proceed by induction again. Consider
processing variable x; ;. When we set x| | true, we activate n pairwise exclusion clauses
of the form (x;,; + x;, ;) where 1 < j < n + 1. When we set x; ; false, we activate the
single pigeon clause 1. Combining these gives the structure outlined previously.

Next, assume that after variable x) ; the partially reduced ZDD has the form shown
in figure 11. When we set x; ; true, we first must prune all branches containing pair-
wise exclusion clauses of the form (x; ; + X ;41) where 1 < j < i + 1. By assumption,
each branch aside from the leftmost branch in the ZDD must contain one such clause,
and after this pruning, the ZDD is reduced to the single set of i pigeon clauses along
the leftmost branch. Instead of satisfying a pigeon clause as in the general case, here we
simply do not activate this clause. Finally, we activate n — i pairwise exclusion clauses
of the form (X ;41 + X1,j) wherei +1 < j <n+1.

If we set x; ;4 false, we violate no clauses, and satisfy all pairwise exclusion
clauses of the form (x; ; + X1 ;41) where 1 < j < i + 1. Each branch along the ZDD

Pigeon Clauses

Figure 11. Structure of the ZDD for variables within Hj.
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contains one such clause, and it is removed from the ZDD. Finally, this step opens one
pigeon clause. By the Cartesian product and because the pigeon clauses appear lower in
the ZDD, this clause is added to the base of each branch in this ZDD. After combining
these two together, we arrive at the invariant structure from figure 11.

Thus, this structure is valid for all variables within H;, and the size of the corre-
sponding ZDD is bounded by i(n +1—i) + (i — 1)) +i =i(n + 1).

5.4. Growth bounds within H,

Similar to the analysis of Hj, our task is somewhat simplified in this case as we
need not consider the ZDD structure of figure 6. Also, in this case we arrive at con-
flicts after processing each variable due to the pruning of branches containing violated
clauses.

The structure of the ZDD after processing variable x, ;, 1 < i < n+ 1, again mim-
ics the general structure shown in figure 6 aside from reuse among different branches.
The basic ‘branching’ of the ZDD is, as mentioned before, a consequence of the pairwise
exclusion clauses. Thus, as we process variables within any H; it will arise. However,
in this case, each branch leads to the same structure at the base of the ZDD, and there
is a total reuse of nodes. The invariant structure (of an unreduced ZDD) at this stage is
shown in figure 12.

Pigeon Clauses

Figure 12. Structure of the ZDD for variables within H,.
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We again proceed by induction to show that this structure is correct. Before the first
variable within H,,, the front consists of all 2-element subsets of the n+ 1 pigeon clauses.
When we consider assigning variable x,, | true, we activate n pairwise exclusion clauses,
just as in previous steps. Also, we satisfy a single pigeon clause. If subsumptions are
eliminated, these give rise to a ZDD consisting of all subsets containing every pairwise
exclusion clause, and exactly one of the remaining n pigeon clauses.

When we consider assigning x, ; false, we now violate pigeon clause 1, since upon
reaching variables in H, all pigeon clauses become unit. Thus, all 2-element subsets
containing this pigeon clause are eliminated; the resulting ZDD consists of all 2-element
subsets from the remaining n pigeon clauses. Assigning x, | false has no other effects,
since the pairwise exclusion clauses are not opened in this case. The union of these two
branches fits within the framework of figure 12.

Now assume that after processing variable x, ;, i € {1, ..., n}, the front is of the
form shown in figure 12. If variable x, ;; is assigned true, then as before, we violate
pairwise exclusion clauses appearing in each branch of the ZDD aside from the leftmost
branch. Thus after pruning this copy of the front, we are left with all 2-element subsets
of the remaining n + 1 — i pigeon clauses. One of these pigeon clauses is satisfied as a
result, and existentially abstracted away, leaving all 1-element subsets of the remaining
n —1i pigeon clauses. Finally the Cartesian product adds n — i pairwise exclusion clauses
of the form (X, ;1 + X, ;) to each subset, where i +1 < j < n + 1. This gives rise to a
single new branch of the structure shown in figure 12.

If variable x, ;4 is assigned false, then we violate the (i + 1)th pigeon clause.
Since each branch aside from the leftmost branch allows exactly one of the n 4+ 1 — i
pigeon clauses in the cut, then these branches are not pruned completely. Instead, they
are updated to reflect allowing exactly one of the remaining n — i pigeon clauses. Along
the leftmost branch, which ends in all 2-element subsets of the n + 1 — i pigeon clauses,
those subsets containing the (i + 1)th pigeon clause are similarly pruned.

Since the x, ;41 = true branch in this case contains all 1-element subsets of the
remaining n + 1 — i pigeon clauses as a subexpression, then this portion of the ZDD
from the x,;;; = false branch can be trivially reused when these are combined. This
gives rise to the recombination of all side branches in figure 12. To count the size of the
ZDD for variables within H, also notice that the portion of the ZDD which represents
all 1-element subsets of pigeon clauses can be merged with the portion of the ZDD
which represents all 2-element subsets (except the topmost node), for additional node
savings. Thus, the size of the ZDD for variables within H, is bounded by i(n +1—1i) +
2(n —i) + 1.

As a result, the number of nodes within the ZDD at any step in the algorithm is
bounded polynomially. We include a comparison of our bounds predicted value with
the actual number of nodes needed to solve the instance hole-50 in figure 13. It is
clear that the bound is not tight in most instances as we ignore ZDD reduction rules to
simplify the construction. However for variables within H,, the bound exactly counts
the number of nodes used.
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Figure 13. Bounds on the number of ZDD nodes.

6.  Polynomial-time refutation of PHP"*!

During the refutation of PHP"*!, the number of nodes in the front is polynomially
bounded after processing each variable. In addition, we noted explicitly in most cases
that before and after each ZDD operation the number of nodes is similarly bounded; this
was necessary to construct the explicit bound after each variable. The remaining cases
will be discussed as necessary.

In general, ZDD operations are often performed as traversals over the ZDD or a pair
of ZDDs and for such traversals, one can bound the amount of work done by the number
of nodes in the argument ZDDs with appropriate caching of results [22]. For example,
the ZDD intersection operation f Mg can create at most O(| f|-|g|) additional nodes. In
addition, if we perfectly cache the results of function calls, the ZDD intersection f N g
cannot cause more than O (| f| - |g|) different function calls. Since the number of nodes
is polynomially bounded, we assume any reasonable hash function which does not cause
such traversals to require superpolynomial time.

In Compressed-BFS, however, some ZDD operations are not such traversals. These
7DD operations use the results of computations recursively, and are not a priori bounded
by the size of their arguments. However, we will show that even these operations perform
in polynomial time when the ZDD assumes any of structures shown in the previous
section. To show this, we will first give pseudocode for the nontraversal operations used
in Compressed-BFS.

It is clear that the ZDD intersection performs in polynomial time. As mentioned
previously, if a suitable ordering for the ZDD nodes is chosen, the Cartesian product
operation can also be performed quickly (linear in the number of activated clauses).
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Product(ZDD f, ZDD-Set s)
if(findex < Sindex)
return ( finger, Product( f7, s), Product( fz, s))

if(findex > Sindex)
return (S;;4.., Product( f, s7), 0)

! findex 7 Sindex

AN WN =

Figure 14. Pseudocode for Cartesian product with a single set.

Although this ordering can always be selected, for the purposes of this proof we instead
chose a node ordering which highlighted the significance of branches within the ZDD.
Regardless of node ordering, in Cassatt we need only form the Cartesian product of a
single set to the main ZDD, which can be performed in a single traversal as shown in
figure 14, and thus this operation will execute in polynomial time. In this pseudocode
the ZDD s must contain a single set of clauses, none of which may be contained in any
of the sets in f.

The remaining operations are Existential Abstraction, and MaxUnion [8,24]. These
operators both use additional routines recursively within their definition, and the runtime
is not as simple to bound. To consider these operations, we will again need to do a case-
by-case analysis based on the ZDD structures introduced in the previous section.

6.1. Time complexity bounds within Hy

Consider the general case of processing a variable x;; in Hy, where k € {2,...,
n — 1}. Then the ZDD has the form shown in figure 6. Here we show the runtimes of
both the Existential Abstraction routine and the MaxUnion routine while processing this
variable are polynomially bounded. To do this, a detailed pseudocode for each routine
is given and discussed within this general case. The remaining cases of variables within
H, and H, follow almost trivially.

6.1.1. Existential abstraction

The Existential Abstraction operation (figure 16) can be written recursively by us-
ing the standard ZDD Union operation as a subroutine (figure 15) [24,25]. However,
since existential abstraction depends on the result of this union, in general we can not
easily bound its complexity in terms of input size and thus it is not readily apparent that
in the general case this operation will take time polynomial in | f| and |g|.

Claim. When Existential Abstraction is used in the refutation of PHP"*!, the ZDD has
a specific structure for which the operation will execute in polynomial time.

In Compressed-BFS, the Existential Abstraction routine is used in two cases. First,
when a variable is set true, we may need to existentially abstract a single pigeon clause.
However, when only a single clause must be abstracted, the operation is equivalent to
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1 Union(ZDD f,ZDD g)

2 if(f = 0) return g

3 if(g = 0) return f

4 if(f = g) return f

5 if(findex < gindex)

6 return (findexv Union(fE, 8)1 fT)

7 if(findex > gimlex)

8 return (gingex, Union(gg, f), g7)

9 i findex = gindex)

0 return ( fingex, Union( /g, gg), Union( 7, g7))

Figure 15. Pseudocode for ZDD Union.

ExistAbs(ZDD f, ZDD-Set s)
if( findex > Sindex)
return ExistAbs(f, s7)
if( findex < Sindex)
return { fi,qex, EXistAbs( fr, s), ExistAbs( fg, 5))
if(findex = Sindex)
return Union(ExistAbs( /7, s7), ExistAbs( fg, s7))

NN R W~

Figure 16. Pseudocode for ZDD Existential Abstraction.

finding the union of the two cofactors of this variable. It is clear that in this case, the
complexity is bounded polynomially.

Secondly, when a variable is set false, we must abstract i pairwise exclusion
clauses. We will now show this case is also bounded polynomially. When we process all
but the last variable in Hj, each branch of the main ZDD will contain one such clause,
as described previously. Existential abstraction of these clauses then recurses along each
branch. However, because the E-Child of each node corresponding to a pairwise exclu-
sion clause is 0, we effectively attempt to form the union of the remaining ZDD with 0.
In these cases, the union step of existential abstraction performs no additional work, and
the operation effectively boils down to a single pass over the ZDD.

Finally, a different case occurs when we process the last variable x; ,4; in some
H;. At this step, the nodes to be existentially abstracted are the nodes which separate the
ZDD into branches, and their E-Child is not zero. However each node along this main
branch will be removed. As a result, the operation boils down to forming the union of
each of the n + 1 branches as shown in figure 17. The main branch holds all (n +2 — k)-
element subsets of the n + 1 pigeon clauses, while each remaining branch b; holds
(n + 1 — k)-element subsets of the n pigeon clauses other than pigeon clause j. Instead
of decomposing the operation further, we now focus on the result ; of each union in
figure 17.

Lemma 4. Each result ZDD r; contains O (n?) nodes.
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Proof. 'We show this by giving the explicit form of each r; in figure 18. The union r| of
the main branch and the first branch, b, will contain all (n + 2 — k)-element subsets as
well as those (n + 1 — k)-element subsets which do not contain pigeon clause 1. It is not
hard to verify this ZDD has the form shown in figure 18: similarly to lemma 3, if more
than n 4+ 2 — k inputs are true, the Zero Suppression rule implies this set is not in the
collection. Also, if less than n + 1 — k inputs are true from pigeon clauses {1, ..., n},
then more than k such inputs are false and we traverse to 0 via one of the branches on
the left of the graph. Instead, if exactly n 4+ 2 — k inputs are set true, we traverse exactly
to the 1 node. Finally, if exactly n + 1 — k inputs from {1, 2, ..., n} are true, we must
pass through the bottom-most node at level 1. If the input 1 is true, we should traverse
to 1 as we have a set with (n + 2 — k) elements. Otherwise, we should also traverse to 1
since we have a set with (n + 1 — k)-elements, not containing pigeon clause 1. It follows
that this ZDD is the result r; of the union between the main branch and b .

The remaining unions are similarly shown to have the form in figure 18. Assume
that after branch b; we have the form of figure 18, and are performing the union with
branch b;,;. Then the only subsets which need to be added are those (n + 1 — k)-
element subsets (not containing i + 1) which contain all elements in {1, ..., i}. This is
the case because the structure in figure 18 already contains all (n+ 1 —k)-element subsets
which do not contain all elements in {1, ..., i} and hence contains those such subsets
not containing i 4 1. If it is the case that there are no such subsets (i.e. if i > n+1—k
then no (n + 1 — k)-element subset can contain all required i elements) then the structure
is unchanged. However, if there are (n + 1 — k)-element subsets which do not contain
i + 1, and do contain all of {1, ..., i}, then these subsets may be added by creating a
single node as indicated in figure 18. This is the case since in order for ann + 1 — k
element subset to contain all of {1, ..., i} it must traverse the T-Child for each of those
nodes. The only portion of the previous ZDD which did not allow such a traversal to
reach 1 is augmented with an additional node at level i. U

Since each union operation’s runtime is bounded by the product of its inputs’ sizes,
the entire Existential Abstraction routine will execute in polynomial time. It follows
that during the execution of Compressed-BFS during variables within some H; for k €
{2,...,n — 1} that the Existential Abstraction procedure takes polynomial time in 7, as
it performs successive unions on ZDDs of bounded size.

6.1.2. Union with subsumption removal

After the front is modified to reflect assigning a given variable true, and a copy of
the front is modified to reflect assigning a given variable false, these two copies must
be combined into a single data structure. In our implementation, this is accomplished
by using a subsumption-removing union operator, MaxUnion, to facilitate maintaining a
subsumption-free database of clauses [8,24]. In previous steps of the proof, it was noted
that it was possible for some sets to subsume others. The subsumption-removing union
operator removes such sets while combining the two branches.
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1 operator\s (ZDD f,ZDD g)

2 if(f=0]|g=1||g = f) return 0

3 if(f =1||g = 0) return f

4 if( findex > Sindex)

5 return f \s gg

6 if(findex < gindex)

7 return <findex’ fT \S 8> fE \S g)

8 if( findex = Gindex)

9 return ( findex, (f7 \s &7) \s &£, f£ \s §E)

Figure 19. Pseudocode for ZDD subsumed difference.

Maximal(ZDD f)
if(f = 1||f = 0) return f
if(fr = fg) return fr
let A = Maximal( fg)
return ( fin4ex, Maximal( f7) \s A, A))

O O S

Figure 20. Pseudocode for ZDD subsumption elimination.

The subsumption-removing union operator MaxUnion is built on two other ZDD
procedures. The first operator is the subsumed-difference operator \g [8,10,11]. In
Figure 19 we list pseudocode for this operator, note that there are alternate ways of
implementing it [8]. A \g B returns a ZDD containing all of the sets contained in A that
are not subsumed by some set contained in B. The second procedure is Maximal, whose
pseudocode is listed in figure 20, removes all subsumed sets from the given ZDD.

To see that performing the MaxUnion to combine the two possibilities after some
variable x; ; in H; executes in polynomial time, recall the structure reached after setting
such a variable x; ; true in figure 9 and the structure reached after setting such a variable
false in figure 10. These two structures must be combined via MaxUnion. When i < n,
the newly added pairwise exclusion clauses in figure 9 have lower index (thus appearing
higher in the figure) than any other clauses in these structures, and this is where the
MaxUnion( f, g) begins. Then the MaxUnion recurses (based on line 7). Since fr = 0,
the recursion branch to find MaxUnion( fg, g) simply returns Maximal(g). Thus, the
effect of MaxUnion is to find the Maximal of both branches as shown in figure 22. It
will then combine these branches via Subsumed Difference.

Within each branch, some subsumed sets may be present due to the existential
abstraction operation used. Note that the intersection operation can only remove sets,
and the Cartesian product adds elements to every set, so neither of these operations can
create subsumed sets.

The x;; = true branch will then have subsumptions as it contains all (n + 1 — k)-
element sets not containing pigeon clause i as well as all (n + 2 — k)-element sets not
containing pigeon clause i. It follows that these (n + 1 — k)-element sets will subsume
the larger sets, leaving only all (n 4+ 1 — k)-element sets not containing pigeon clause i,
and thus the action of the Maximal operator on the ZDD is nontrivial.
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MaxUnion(ZDD f, ZDD g)
if(f = 0) return Maximal(g)
if(g = 0) return Maximal( f)
if(f = g) return Maximal( f)
if(f =1||g = 1) return 1
if( findex < gindex)
return { fiygex, MaxUnion( fg, g), Maximal(f7) \s MaxUnion( fg, g))
i findex > gindex)
return (g;gex, MaxUnion(gg, f), Maximal(g7 \s MaxUnion(gg, f))
if( findex = gindex)
return ( findex, MaxUnion( fr, gr) \s MaxUnion(fg, gg), MaxUnion(fg, gg))

— O 0 0N LN kW=

—

Figure 21. Pseudocode for ZDD subsumption-free union.

Figure 22. ZDDs f, g to be combined via MaxUnion.

However, it is possible to trace the execution of this operator over the ZDD due to
its regular structure. The execution in this step is essentially the same regardless of the
implementation of the Subsumed Difference operator since all necessary subsumptions
are performed by line 3 of the Maximal routine (figure 20).

As the Maximal operator proceeds in a bottom-up fashion, when it views higher
nodes in the ZDD, the subsumptions present in lower portions will already have been
eliminated. Then whenever Maximal returns, the ZDD beneath that point has already
taken its final form: all (n + 1 — k)-element subsets. However, the Maximal operator
will also perform a subsumed difference operation in order to ensure the completeness
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of the search. We will now show that this subsumed difference operation essentially
performs no useful task in this case, and runs in time polynomial in 7.

Lemma S. Consider two nodes A and B on the same level of a ZDD containing all
k-element subsets out of n elements. Suppose that A appears to the “left” of B in the
sense that to reach A from the least common ancestor of A and B we traverse more 7-
Children than to reach B, then the Subsumed Difference A \ g B returns A and executes
in polynomial time.

Proof.  First notice that A consists of all i-element sets and B consists of all j-element
sets, where i < j < k. This is true since the sub-portion of the ZDD represented by
both A and B has the structure of lemma 3. Also, since A is “left” of B, there are fewer
remaining 7-Children to traverse, implying via lemma 3 that A contains subsets of fewer
elements than B. Then the Subsumed Difference will return A as no subset of B can
subsume a subset of A.

To show that the Subsumed Difference A \ g B does not create additional nodes, we
can proceed by induction. First, since nodes A and B have the same index, we always
recurse based on line 9 of the pseudocode given for Subsumed Difference. For the base
case, we have A and B as the only two nodes on the (n — 1)th level of an n level ZDD of
all subsets. Then Ay = 1so Ay \s Br = 1as By # 1. Similarly, based on the terminal
cases given in the pseudocode, (A7 \s Br) \s Bg = 1 as well. Finally since B = 0
we have Ag \s Bg = Ag. It follows from line 9 of the routine that we return the node
(Aindex, 1, Ag) which is precisely A, and no additional nodes need to be created.

Now assume that A\ g B does not create additional nodes when A, B have the same
index in a ZDD of all k-element subsets, and A is left of B. Then there are three cases.

e Case 1: A7 = 1. In this case, Ay \s Br = 1 as it is impossible that By = 1. Then
(A7 \s Br) \s Bg = 1 as well. Finally Ag \g Bg is formed. If B = 0, then
we will return the node (A;uz.., 1, Ag) which is precisely A. Otherwise, we will
recursively evaluate the subsumed difference Ag \g¢ Bg. But Ag is “left” of B,
and by assumption this evaluation creates no additional nodes and returns Ag. Then
we still return the node (A;uuex, 1, Ag) = A and thus this step creates no additional
nodes.

e Case2: B =0and Ay # 1. In this case, we form Ay \g By = A7 without creating
additional nodes by assumption. Then, (A7 \s Br) \s Bg = Ar without additional
nodes simply since
Bg = 0. Finally, we evaluate Ap \s B = Ag without creating additional nodes
since B = 0. Then we return (A4, A7, Ag) = A and again no additional nodes
are necessary.

e Case 3: Ay # 1 and Bg # 0. Then the three subsumed difference operations
AT \S BT = AT, (AT \S BT) \S BE = AT, and AE \S BE = AE can each be
performed without creating additional nodes by assumption. We then return the node
(Ajndexs AT, Ag) = A and create no additional nodes.
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It follows that in all cases, when we evaluate A \ g B, we do not create additional
nodes. Since A \g B does not create additional nodes and only depends recursively
on subsumed differences of elements of the same index, there are a limited number
of calls which can be made. Namely, if results of these calls are hashed, there are a
total of at most O (n) nodes on a given level, and correspondingly O (n?) calls can be
made per level. Then the evaluation of any A \g B satisfying the conditions of the
lemma will execute time polynomial in n. Further the total time complexity of finding
all such A \g B within a given ZDD storing k-element sets is bounded by a polynomial
in n. [l

Since the Subsumed Difference is called after the recursive evaluation of Maximal
(figure 20, line 5), we have exactly the conditions of lemma 5 for each call to Subsumed
Difference. Since the total time of all such calls is bounded by a polynomial in 7, it
follows that the time complexity of execution of Maximal on the x; ; = true branch will
take time bounded by a polynomial.

The x; ; = false branch will have no subsumptions unless we are processing the last
variable in Hy, since in these other cases, the only nodes existentially abstracted away are
pairwise exclusion clauses from each branch of the ZDD. When only these clauses are
removed, no new subsumed sets are created, and all previously existing subsumed sets
were removed during the last MaxUnion. In addition, when processing the x;; = false
branch, we recurse to find the Maximal of i + 1 grid structured ZDDs forming subgraphs
of the main ZDD. Since each of these i + 1 Maximal operations will take polynomial
time, the entire Maximal will execute in polynomial time.

However, when we process the last variable x4 ,.; in some H; then we arrive at
a structure similar to that in the x;; = true branch. Namely, we have all (n + 1 — k)-
element subsets of the n + 1 pigeon clauses, as well as all (n + 2 — k)-element subsets
of these clauses. Then all (n + 1 — k)-element subsets should subsume the larger sets.
However there are no activated clauses in the x; ,4; = true branch to partition the action
of MaxUnion into two Maximal operations as in the previous case.

Recall that the x; ;41 = true branch contains all (n+1—k)-element and (n+2—k)-
element subsets which do not contain pigeon clause n + 1. It follows then, that this ZDD
is entirely contained within the x; ,+; = false branch. If at the topmost node f of the
Xr.n+1 = false branch, we traverse along the E-Child, then we restrict to alln + 1 — &
and (n 4+ 2 — k)-element sets to those not containing pigeon clause n + 1, exactly the
same ZDD as the x; ,4+1 = true branch.

The action of MaxUnion on these ZDDs appears somewhat unnecessary as one is
entirely contained as a subset of the other. It will now be shown that MaxUnion cap-
tures this relationship and effectively only performs a Maximal operation on the entire
ZDD.

When MaxUnion(f, g) is applied to these two branches, since their root nodes
are at different levels, the rule in line 7 is applied. Thus we first attempt to find
MaxUnion( fg, g). However, since fr = g, we attempt to find MaxUnion(g, g) which
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reduces to Maximal(g). Then as described in the analysis of x;; = true, the action of
Maximal on a structure of this form runs in polynomial time.

Next, MaxUnion( f, g) recursively calls Maximal( f7). However, Maximal can ex-
ecute on this structure in polynomial time. Finally, MaxUnion(f, g) performs the sub-
sumed difference Maximal( f7) \s Maximal(g). However, this exactly satisfies the con-
ditions of lemma 5, and thus executes in polynomial time.

It follows that the MaxUnion of the two branches can be performed in polynomial
time while processing any variable within Hy where k € {2,...,n — 1}.

6.2. Time complexity bounds within H;

The structure assumed when we examine a variable of the form x;; where 1 <
i < n + 1 is significantly simpler than that of the general case. It maintains the general
“branching” however, and nearly all of the analysis from the previous section remains
valid in this case as well. In particular, the action of the Existential Abstraction is exactly
the same.

The MaxUnion operation again reduces to two Maximal calls when 1 <i < n+1.
However in these simplified cases there are no subsumptions to eliminate. It is clear that
Maximal requires polynomial time when its argument contains a single set: the E-Child
of each node is 0. Since as before, the action of Maximal on the branching structure of
the ZDD is time bounded, then the time complexity of MaxUnion is also bounded.

Finally when processing variable x; , the resulting ZDD structure is slightly dif-
ferent. Recall that for variables in H; where k € {2, ..., n— 1} we have that the structure
for the x; ,+1 = true branch was entirely contained within the x; ,+; = false branch.
This is because when performing Existential Abstraction, we form unions rq, 2, . .., ry.
All Union results r;, where n +2 — k < j < n, are the same, and hold all (n + 1 — k)-
element subsets as well as all (n + 2 — k)-element subsets of the n + 1 pigeon clauses.
In this case, there are no such Unions r;, as the last union formed is r, and k = 1. Then
the structure holds all (n + 2 — k = n + 1)-element subsets, as well as all n-element
subsets which contain pigeon clause 1. Thus the MaxUnion is between this collection
and the collection for the x; ,4; = true branch: the single n-element set not containing
the pigeon clause 1.

Although this case is different, the presence of the pigeon clause 1 in subsets for
the x; ,4+1 = false branch causes the MaxUnion operation to again partition into two
Maximal operations followed by a Subsumed Difference. Again due to the structure of
the ZDD, these will be polynomially bounded, by lemma 5 and that finding Maximal of
a ZDD containing a single subset is efficient.

It follows that all operations for variables within H; execute in polynomial time.

6.3. Time complexity bounds within H,

In this final case, we consider processing a variable x,, ; where the initial structure
is of the form shown in figure 12. The execution of Existential Abstraction over this
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structure is bounded by the same arguments as before. For the case of variable x,, ,,+1,

however, both the x, ,4; = true and x,, ,4.; = false branches are identically 0.
Similarly, the MaxUnion is partitioned when 1 < i < n 4+ 1 and trivial when

i = n + 1. Then all operations throughout the algorithm execute in polynomial time

during the refutation of PHP"*!.

7.  Conclusions and ongoing work

Our work offers a detailed analysis that shows the Compressed-BFS search pro-
cedure reported in [27] solves SAT instances from the pigeonhole family in polynomial
time, confirming earlier empirical results. This proof was facilitated by recognizing
structural invariants on partially reduced ZDDs within different stages of the algorithm.
Once a given structural invariant had been recognized, it was shown correct by induc-
tion. The time bound on ZDD operations was accomplished by noting the exact effects
of each ZDD operation.

While explicitly formulating this unknown proof system appears difficult due to
the complexity of the ZDD algorithms used during the Compressed-BEFS procedure, we
believe that the details of our polynomiality proof shed some light on it. Namely, one can
distinguish several mechanisms which must be reflected in that proof system. First, the
steps of proofs may be represented by directed graphs which have exponentially many
directed paths (in terms of the number of vertices). Second, those graphs encode Boolean
formulas in a compact way by representing elements of Boolean formulas by directed
paths. Most importantly, this compact representation facilitates efficient transformations
of Boolean formulas. We conjecture that such graphs can be interpreted as instructions to
reuse common Boolean sub-formulas. Therefore, the next step towards formalizing the
proof system behind Compressed-BFS may require a description of Compressed-BFS in
terms of term rewriting and common sub-formulas.

Our ongoing work proceeds in several directions. First, we are studying modifica-
tions of well-known SAT solvers that are required to produce resolution proofs of un-
satisfiability rather than just a negative answer. Second, we are trying to modify traces
saved by Compressed-BFS so that they form the basis of verifiable proofs. Another
natural direction of research is to determine whether the addition of pruning based on
Boolean Constraint Propagation will affect the efficiency of Compressed-BFS. However
our preliminary investigations hint that this type of idea will not have as dramatic effects
as in resolution-based procedures. Future directions of research also include explicitly
formulating hard examples for Compressed-BFS.

Appendix A. Cassatt on other benchmarks
Table 1 shows how Cassatt and a few well known SAT solvers fare on a subset

of benchmarks taken from the SAT02 competition [28]. The benchmarks were run on
machines with 2.0 GHz processors with 1GB of RAM. “# Solved” is the number of



D.B. Motter et al. / Resolution cannot polynomially simulate compressed-BFS 153

Table 1
A comparison of Cassatt with other SAT solvers on difficult benchmarks from the SAT 2002 competition
[28]. Each solver was given 3600 CPU seconds per benchmark. The number of benchmarks completed
within that time as well as the total CPU time for each suite of benchmarks is shown.

Bart Series Lisa Series Homer Series

# Solved Time # Solved Time # Solved Time

Cassatt 21 1585.4 0 50400 15 of 15 4.26
BerkMin 21 80.58 11 23334 6 32837
mChaff 2 70375 10 19249 12 14788
zChaff 5 58079 12 of 14 12273 6 35575
GRASP 21 of 21 1.33 0 50400 0 54000
ZRes 0 75600 0 50400 1 53891

Ca Series Dp Series XOR-Chain Series

# Solved Time # Solved Time # Solved Time

Cassatt 3 19935 0 79200 27 of 27 30.4
BerkMin 8 41.78 21 of 22 5829.0 6 75876
mChaff S8of 8 2.95 18 14826 18 53983
zChaff 8 6.90 18 16482 20 50677
GRASP 7 5843.4 12 36184 0 97200
ZRes 6 7659.2 7 54987 27 104.19

benchmarks which the solver was able to complete given a timeout of 3600 seconds per
benchmark. “Time” is the total amount of time taken for all of the benchmarks in a series
of benchmarks. Solvers which could not finish a benchmark within the timeout period
of 3600 seconds were charged 3600 seconds for that particular benchmark.

These benchmarks show that Cassatt performs competitively on a collection of
difficult benchmarks. In fact the XOR-Chain series of benchmarks, on which Cassatt
peforms quite well, contains the smallest unsatisfiable benchmark that was unsolved in
the SAT02 competition [28]. The two other series where Cassatt does well, the Bart
series and Homer series, represent FPGA switch-box problems as described in [3].

Appendix B. Cassatt example — refutation of PHP%

The SAT instance of PHP% contains 6 variables, {x; 1, x1 2, X1.3, X2.1, X2,2, X2,3}, and
9 clauses {(x1,1 +X1,2), (X1,1+Xx1.3), (X12+X1,3), (k2,1 +X2.2), (X2,1 +X23), (X22+X23),
(x1.1 +x2.1), (x1.2 + x2.2),(x1.3 + x2,3)} (numbered 1-9, respectively). See figure 23 for
the progression of the ZDD representation of the front.

Cassatt begins by setting the front to {{}}. Next Cassatt processes x; ;. If x; ; is set
true, clauses 1 and 2 are opened and clause 7 is satisfied. If x; ; is set false, clauses 1
and 2 are satisfied and clause 7 is opened. Thus the front becomes {{1, 2}, {7}}.
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Figure 23. Progression of the front during refutation of PHP%.

Next x; 5 is processed. If x , is set true, clause 1 is violated, clause 3 is opened,
and clause 8 is satisfied. If x; , is set false, clauses 1 and 3 are satisfied and clause 8 is
opened. Thus the front becomes {{3, 7}, {2, 8}, {7, 8}}.

Next x; 3 is processed. If x; 3 is set true, clauses 2 and 3 are violated and clause 9 is
satisfied. If x; 3 is set false, clauses 2 and 3 are satisfied and clause 9 is opened. Thus the
front becomes {{7, 8}, {7, 9}, {8, 9}, {7, 8,9}}. {7, 8, 9} is subsumed by other elements
of the front, so the front is reduced to {{7, 8}, {7, 9}, {8, 9}}.

Next x,,; is processed. If x,; is set true, clauses 4 and 5 are opened and clause
7 is satisfied. If x; ; is set false, clauses 4 and 5 are satisfied and clause 7 is violated.
Thus the front becomes {{4, 5, 8}, {4, 5,9}, {4, 5, 8,9}, {8, 9}}. {4, 5, 8,9} is subsumed
by other elements of the front, so the front is reduced to {{4, 5, 8}, {4, 5, 9}, {8, 9}}.

Next x5, is processed. If x;, is set true, clause 4 is violated, clause 6 is opened,
and clause 8 is satisfied. If x, , is set false, clauses 4 and 6 are satisfied and clause 8 is
violated. Thus the front becomes {{5, 9}, {6, 9}}.

Lastly x 3 is processed. If x, 3 is set true, clauses 5 and 6 are violated and clause 9
is satisfied. If x; 3 is set false, clauses 5 and 6 are satisfied and clause 9 is violated. Thus

the front becomes {}, which means that PHP; is unsatisfiable.
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